Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing
Components produced by additive manufacturing (AM) via direct metal laser sintering (DMLS) have typical as-fabricated surface defects. As a result, surface properties of AM products should be modified to increase their strength, anti-wear behaviour, and at the same time to ensure their high corrosio...
Saved in:
Published in | Archives of Civil and Mechanical Engineering Vol. 21; no. 4; p. 157 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
24.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2083-3318 1644-9665 2083-3318 |
DOI | 10.1007/s43452-021-00306-3 |
Cover
Loading…
Abstract | Components produced by additive manufacturing (AM) via direct metal laser sintering (DMLS) have typical as-fabricated surface defects. As a result, surface properties of AM products should be modified to increase their strength, anti-wear behaviour, and at the same time to ensure their high corrosion resistance. Surface modification via shot peening is considered suitable for additive manufacturing of medical devices made of 17-4PH stainless steel. The objective of this study was to determine the effect of shot peening pressures (0.3 MPa and 0.6 MPa) and three types of blasting media (CrNi steel shot, nutshell granules and ceramic beads) on the tribological characteristics and corrosion resistance of specimens of DMLS 17-4PH stainless steel. Results demonstrated that shot peening caused steel microstructure refinement and—except for the nutshell shot-peened specimens—induced both martensite (α) formation and retained austenite (γ) reduction. 17-4PH specimens peened with steel and ceramic shots showed the highest increase in surface hardening by approx. ~ 119% (from 247 to 542 HV), which significantly improved their wear resistance. The highest mechanical properties (hardness and wear resistance) and corrosion resistance were obtained for the surfaces modified using the following media: ceramic beads > CrNi steel shot > nutshell granules. Adhesive and fatigue wear were two predominant mechanisms of tribological deterioration. Results demonstrated that the application of shot peening using ceramic beads led to grain size refinement from 22.0 to 14.6 nm and surface roughness reduction, which in turn resulted in higher corrosion resistance of the material. DMLS 17-4PH specimens modified by shot peening using ceramic beads and a pressure of 0.6 MPa exhibited the optimum surface morphology, hardness and microstructure, and thus improved wear and corrosion performance. |
---|---|
AbstractList | Components produced by additive manufacturing (AM) via direct metal laser sintering (DMLS) have typical as-fabricated surface defects. As a result, surface properties of AM products should be modified to increase their strength, anti-wear behaviour, and at the same time to ensure their high corrosion resistance. Surface modification via shot peening is considered suitable for additive manufacturing of medical devices made of 17-4PH stainless steel. The objective of this study was to determine the effect of shot peening pressures (0.3 MPa and 0.6 MPa) and three types of blasting media (CrNi steel shot, nutshell granules and ceramic beads) on the tribological characteristics and corrosion resistance of specimens of DMLS 17-4PH stainless steel. Results demonstrated that shot peening caused steel microstructure refinement and—except for the nutshell shot-peened specimens—induced both martensite (α) formation and retained austenite (γ) reduction. 17-4PH specimens peened with steel and ceramic shots showed the highest increase in surface hardening by approx. ~ 119% (from 247 to 542 HV), which significantly improved their wear resistance. The highest mechanical properties (hardness and wear resistance) and corrosion resistance were obtained for the surfaces modified using the following media: ceramic beads > CrNi steel shot > nutshell granules. Adhesive and fatigue wear were two predominant mechanisms of tribological deterioration. Results demonstrated that the application of shot peening using ceramic beads led to grain size refinement from 22.0 to 14.6 nm and surface roughness reduction, which in turn resulted in higher corrosion resistance of the material. DMLS 17-4PH specimens modified by shot peening using ceramic beads and a pressure of 0.6 MPa exhibited the optimum surface morphology, hardness and microstructure, and thus improved wear and corrosion performance. Components produced by additive manufacturing (AM) via direct metal laser sintering (DMLS) have typical as-fabricated surface defects. As a result, surface properties of AM products should be modified to increase their strength, anti-wear behaviour, and at the same time to ensure their high corrosion resistance. Surface modification via shot peening is considered suitable for additive manufacturing of medical devices made of 17-4PH stainless steel. The objective of this study was to determine the effect of shot peening pressures (0.3 MPa and 0.6 MPa) and three types of blasting media (CrNi steel shot, nutshell granules and ceramic beads) on the tribological characteristics and corrosion resistance of specimens of DMLS 17-4PH stainless steel. Results demonstrated that shot peening caused steel microstructure refinement and—except for the nutshell shot-peened specimens—induced both martensite (α) formation and retained austenite (γ) reduction. 17-4PH specimens peened with steel and ceramic shots showed the highest increase in surface hardening by approx. ~ 119% (from 247 to 542 HV), which significantly improved their wear resistance. The highest mechanical properties (hardness and wear resistance) and corrosion resistance were obtained for the surfaces modified using the following media: ceramic beads > CrNi steel shot > nutshell granules. Adhesive and fatigue wear were two predominant mechanisms of tribological deterioration. Results demonstrated that the application of shot peening using ceramic beads led to grain size refinement from 22.0 to 14.6 nm and surface roughness reduction, which in turn resulted in higher corrosion resistance of the material. DMLS 17-4PH specimens modified by shot peening using ceramic beads and a pressure of 0.6 MPa exhibited the optimum surface morphology, hardness and microstructure, and thus improved wear and corrosion performance. |
ArticleNumber | 157 |
Author | Walczak, Mariusz Szala, Mirosław |
Author_xml | – sequence: 1 givenname: Mariusz orcidid: 0000-0001-6728-9134 surname: Walczak fullname: Walczak, Mariusz organization: Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology – sequence: 2 givenname: Mirosław orcidid: 0000-0003-1059-8854 surname: Szala fullname: Szala, Mirosław email: m.szala@pollub.pl organization: Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology |
BookMark | eNp9kMtKBDEQRYMoqOP8gKuAW1vzmnR6Kb5hREFdh3RS0Zax0yZpxT_ws804guLCVbK451bV2UbrfegBoV1KDigh9WESXMxYRRitCOFEVnwNbTGieMU5Veu__ptomtITIYSSmlE520Ifp96DzTh4nB5DxgNA3_UPOPQ4PwJOY_TGAh5iGCDmDtI-tiHGkLqSML3Db2BioaIP8dn0JVqaaF2JmwucMsBiibrRgsPtOz65mt9i41yXu1fAJT-W9jzGMnEHbXizSDD9fifo_uz07viiml-fXx4fzSvLJc-VAWZbcMa1XtZS0lY10ColBdjWgatJa6ypmSGWUSrUTDY1a6VwqnGiAQ98gvZWvWWvlxFS1k9hjH0ZqVnDuVSyEaKk1Cply6kpgte2yyaXo3M03UJTopfq9Uq9Lur1l3rNC8r-oEPsnk18_x_iKygNSxkQf7b6h_oEaJiaAw |
CitedBy_id | crossref_primary_10_1016_j_powtec_2022_117299 crossref_primary_10_3390_ma17071541 crossref_primary_10_1016_j_mtcomm_2024_110062 crossref_primary_10_2478_adms_2021_0025 crossref_primary_10_1016_j_matpr_2022_07_248 crossref_primary_10_1007_s40194_023_01628_x crossref_primary_10_1080_02670844_2022_2073424 crossref_primary_10_3390_lubricants11060257 crossref_primary_10_3390_ma15249000 crossref_primary_10_3390_ma17061383 crossref_primary_10_1007_s10704_022_00615_5 crossref_primary_10_1016_j_jmapro_2023_09_059 crossref_primary_10_1177_09544089241278239 crossref_primary_10_5006_3962 crossref_primary_10_1016_j_mechmat_2023_104576 crossref_primary_10_1016_j_surfcoat_2022_129175 crossref_primary_10_1016_j_wear_2023_205185 crossref_primary_10_3390_coatings14030315 crossref_primary_10_1016_j_mfglet_2023_08_095 crossref_primary_10_1007_s00170_022_09579_1 crossref_primary_10_1088_2631_8695_adaad9 crossref_primary_10_1007_s00170_024_14099_1 crossref_primary_10_1016_j_matdes_2025_113769 crossref_primary_10_3390_coatings13010089 crossref_primary_10_1007_s00170_022_09740_w crossref_primary_10_3390_ma15196677 crossref_primary_10_1016_j_matdes_2024_112939 crossref_primary_10_3390_ma15228131 crossref_primary_10_1142_S0218625X22501025 crossref_primary_10_1016_j_jmrt_2022_09_011 crossref_primary_10_2478_msp_2022_0038 crossref_primary_10_3390_coatings13122036 crossref_primary_10_1016_j_jmatprotec_2022_117596 crossref_primary_10_1007_s40033_025_00862_5 crossref_primary_10_1080_10426914_2024_2368542 crossref_primary_10_1016_j_jmrt_2024_03_110 crossref_primary_10_3390_met13050874 crossref_primary_10_1007_s11665_025_10650_7 crossref_primary_10_1016_j_surfcoat_2022_128943 crossref_primary_10_1016_j_jmrt_2022_05_123 crossref_primary_10_3390_cryst12030374 crossref_primary_10_3390_ma15228122 crossref_primary_10_2139_ssrn_4054597 crossref_primary_10_3390_met14010022 crossref_primary_10_46519_ij3dptdi_1138450 crossref_primary_10_3390_ma15072476 crossref_primary_10_1088_1742_6596_2130_1_012033 crossref_primary_10_1080_10426914_2023_2244033 crossref_primary_10_3390_app12062849 crossref_primary_10_1007_s43452_024_00893_x crossref_primary_10_1016_j_jestch_2024_101895 crossref_primary_10_1007_s12666_022_02742_y crossref_primary_10_1007_s00170_023_10814_6 crossref_primary_10_1016_j_mtcomm_2025_111934 crossref_primary_10_1088_2053_1591_ad9240 crossref_primary_10_1177_14644207231196266 crossref_primary_10_1108_RPJ_11_2022_0395 crossref_primary_10_1007_s11665_023_08517_w crossref_primary_10_3390_ma16196513 crossref_primary_10_3390_ma15010093 crossref_primary_10_1016_j_mtcomm_2023_107699 crossref_primary_10_1007_s40964_024_00885_6 crossref_primary_10_1016_j_addlet_2023_100158 crossref_primary_10_1016_j_msea_2023_145477 |
Cites_doi | 10.1016/j.acme.2016.04.014 10.3390/ma13235537 10.17531/ein.2019.1.6 10.1016/j.matdes.2013.11.052 10.1016/j.compositesb.2019.106949 10.1016/j.wear.2019.04.001 10.3390/met10020255 10.1016/S2238-7854(12)70029-7 10.1088/2053-1591/ab6920 10.1016/j.jmatprotec.2009.08.010 10.1016/j.jmapro.2021.03.008 10.1016/j.wear.2019.203100 10.1016/j.corsci.2010.09.044 10.1016/S0921-5093(02)00870-5 10.1016/j.surfcoat.2013.02.052 10.1007/s11837-015-1754-4 10.1016/j.powtec.2020.01.073 10.1016/j.acme.2015.09.004 10.12923/j.2084-980X/26.4/a.17 10.1016/j.corsci.2004.03.011 10.1016/j.apsusc.2015.12.019 10.1007/s10853-020-05109-0 10.1016/j.compositesb.2019.106967 10.1016/j.addma.2014.12.007 10.1002/adem.200800046 10.1016/j.wear.2020.203367 10.1016/j.surfcoat.2019.01.003 10.1016/j.corsci.2009.10.018 10.1016/j.surfcoat.2021.126979 10.1016/j.jmbbm.2017.03.024 10.1088/2051-672X/4/4/045001 10.24425/amm.2019.126263 10.1007/s43452-020-00080-8 10.1155/2019/8169538 10.1016/j.phpro.2015.11.052 10.1088/2051-672X/aafe33 10.1590/1516-1439.316514 10.1016/j.procir.2018.05.039 10.1016/S1003-6326(19)65071-5 10.3390/met10070856 10.1016/j.matdes.2016.08.037 10.1016/j.engfailanal.2020.104784 10.1016/j.powtec.2018.03.010 10.1016/j.actamat.2012.11.052 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 Copyright Springer Nature B.V. Dec 2021 |
Copyright_xml | – notice: The Author(s) 2021 – notice: Copyright Springer Nature B.V. Dec 2021 |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s43452-021-00306-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Engineering Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2083-3318 |
ExternalDocumentID | 10_1007_s43452_021_00306_3 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Ministerstwo Nauki i Szkolnictwa Wyższego grantid: 030/RID/2018/19 funderid: http://dx.doi.org/10.13039/501100004569 |
GroupedDBID | --M .~1 1~. 23M 2JY 4.4 406 457 4G. 5GY 7-5 8P~ AACDK AAEDT AAEPC AAHNG AAIKJ AAJBT AALRI AAOAW AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABJCF ABJNI ABMQK ABRTQ ABTEG ABTKH ABTMW ABXRA ACAOD ACDAQ ACDTI ACGFS ACHSB ACPIV ACSTC ACZOJ ADBBV ADEZE ADTZH AECPX AEFQL AEKER AEMSY AENEX AESKC AEZWR AFBBN AFDZB AFHIU AFKRA AFOHR AFQWF AFTJW AGHFR AGMZJ AGQEE AGUBO AGYEJ AHPBZ AHWEU AIGIU AILAN AIXLP AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA BENPR BGLVJ BLXMC C6C CCPQU DPUIP EBLON EBS ESX FDB FEDTE FIGPU FIRID FNPLU GBLVA HCIFZ HVGLF IKXTQ IWAJR JJJVA JZLTJ LLZTM M7S MAGPM MO0 NPVJJ NQJWS O-L O9- OAUVE P-8 P-9 P2P PC. PHGZM PHGZT PQGLB PT4 PTHSS Q38 ROL RSV SDF SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ Y2W ~G- AAYXX CITATION 8FE 8FG DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c363t-ae2cbedadbf67661b89eb8864ecbded70baca72a0c2114856972b64d89d49efe3 |
IEDL.DBID | C6C |
ISSN | 2083-3318 1644-9665 |
IngestDate | Fri Jul 25 11:59:07 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 Tue Jul 01 04:16:38 EDT 2025 Mon Jul 21 06:08:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Corrosion Surface engineering Wear 17-4PH steel Shot peening Additive manufacturing Tribology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-ae2cbedadbf67661b89eb8864ecbded70baca72a0c2114856972b64d89d49efe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6728-9134 0000-0003-1059-8854 |
OpenAccessLink | https://doi.org/10.1007/s43452-021-00306-3 |
PQID | 2933686944 |
PQPubID | 6587200 |
ParticipantIDs | proquest_journals_2933686944 crossref_citationtrail_10_1007_s43452_021_00306_3 crossref_primary_10_1007_s43452_021_00306_3 springer_journals_10_1007_s43452_021_00306_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-24 |
PublicationDateYYYYMMDD | 2021-09-24 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Wrocław |
PublicationTitle | Archives of Civil and Mechanical Engineering |
PublicationTitleAbbrev | Archiv.Civ.Mech.Eng |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | PQ Trung (306_CR15) 2016; 4 S Gürgen (306_CR35) 2019; 173 S Kc (306_CR41) 2019; 440–441 N Haghdadi (306_CR6) 2021; 56 A Dehghan-Manshadi (306_CR20) 2020; 364 HR Lashgari (306_CR1) 2020; 456–457 M Qiao (306_CR48) 2020; 7 R Groarke (306_CR4) 2020; 13 M Walczak (306_CR43) 2013; 36 D Song (306_CR44) 2011; 53 M Winnicki (306_CR9) 2016; 16 JS de Peltz (306_CR13) 2015; 18 K-HZ Gahr (306_CR33) 1987 AA Ahmed (306_CR24) 2016; 363 Y Yang (306_CR40) 2019; 428–429 R Żebrowski (306_CR17) 2019; 64 HR Lashgari (306_CR39) 2021; 64 GE Dieter (306_CR31) 1988 306_CR19 B AlMangour (306_CR36) 2016; 110 MA Ameer (306_CR42) 2004; 46 H Kovacı (306_CR16) 2019; 360 BKC Ganesh (306_CR21) 2014; 56 C Opt-Hoog (306_CR47) 2008; 10 M Kaszuba (306_CR8) 2020; 20 Y Kameyama (306_CR14) 2009; 209 S Jelliti (306_CR32) 2013; 224 L Thijs (306_CR25) 2013; 61 S Cheruvathur (306_CR30) 2016; 68 NN Aung (306_CR46) 2010; 52 C Li (306_CR7) 2018; 71 M Benedetti (306_CR11) 2017; 71 LE Murr (306_CR29) 2012; 1 L Łatka (306_CR10) 2021; 410 ZB Wang (306_CR37) 2003; 352 EU Solakoğlu (306_CR28) 2019; 7 306_CR23 V-P Matilainen (306_CR27) 2015; 78 306_CR22 L Zai (306_CR3) 2020; 10 I Yadroitsev (306_CR26) 2015; 7 WSW Harun (306_CR12) 2018; 331 R Żebrowski (306_CR18) 2019; 21 S Gürgen (306_CR34) 2019; 173 S Wu (306_CR45) 2019; 29 W Macek (306_CR5) 2020; 118 D Palanisamy (306_CR2) 2016; 16 M Szala (306_CR38) 2020; 10 |
References_xml | – volume: 16 start-page: 743 year: 2016 ident: 306_CR9 publication-title: Arch Civ Mech Eng doi: 10.1016/j.acme.2016.04.014 – volume: 13 start-page: 5537 year: 2020 ident: 306_CR4 publication-title: Materials doi: 10.3390/ma13235537 – volume: 21 start-page: 46 year: 2019 ident: 306_CR18 publication-title: Eksploatacja i Niezawodnosc. doi: 10.17531/ein.2019.1.6 – volume: 56 start-page: 480 year: 2014 ident: 306_CR21 publication-title: Mater Des (1980–2015) doi: 10.1016/j.matdes.2013.11.052 – volume: 173 year: 2019 ident: 306_CR35 publication-title: Compos B Eng doi: 10.1016/j.compositesb.2019.106949 – volume: 428–429 start-page: 376 year: 2019 ident: 306_CR40 publication-title: Wear doi: 10.1016/j.wear.2019.04.001 – volume: 10 start-page: 255 year: 2020 ident: 306_CR3 publication-title: Metals doi: 10.3390/met10020255 – volume: 1 start-page: 167 year: 2012 ident: 306_CR29 publication-title: J Market Res doi: 10.1016/S2238-7854(12)70029-7 – volume: 7 year: 2020 ident: 306_CR48 publication-title: Mater Res Express doi: 10.1088/2053-1591/ab6920 – volume: 209 start-page: 6146 year: 2009 ident: 306_CR14 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2009.08.010 – volume: 64 start-page: 1517 year: 2021 ident: 306_CR39 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.03.008 – volume: 440–441 year: 2019 ident: 306_CR41 publication-title: Wear doi: 10.1016/j.wear.2019.203100 – volume: 53 start-page: 362 year: 2011 ident: 306_CR44 publication-title: Corros Sci doi: 10.1016/j.corsci.2010.09.044 – ident: 306_CR23 – volume: 352 start-page: 144 year: 2003 ident: 306_CR37 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(02)00870-5 – volume: 224 start-page: 82 year: 2013 ident: 306_CR32 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2013.02.052 – volume: 68 start-page: 930 year: 2016 ident: 306_CR30 publication-title: JOM doi: 10.1007/s11837-015-1754-4 – volume: 364 start-page: 189 year: 2020 ident: 306_CR20 publication-title: Powder Technol doi: 10.1016/j.powtec.2020.01.073 – volume: 16 start-page: 53 year: 2016 ident: 306_CR2 publication-title: Archiv Civ Mech Eng doi: 10.1016/j.acme.2015.09.004 – volume: 36 start-page: 425 year: 2013 ident: 306_CR43 publication-title: Curr Issues Pharm Med Sci doi: 10.12923/j.2084-980X/26.4/a.17 – volume: 46 start-page: 2825 year: 2004 ident: 306_CR42 publication-title: Corros Sci doi: 10.1016/j.corsci.2004.03.011 – volume: 363 start-page: 50 year: 2016 ident: 306_CR24 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.12.019 – volume: 56 start-page: 64 year: 2021 ident: 306_CR6 publication-title: J Mater Sci doi: 10.1007/s10853-020-05109-0 – volume-title: Mechanical metallurgy year: 1988 ident: 306_CR31 – volume: 173 year: 2019 ident: 306_CR34 publication-title: Compos B Eng doi: 10.1016/j.compositesb.2019.106967 – volume: 7 start-page: 45 year: 2015 ident: 306_CR26 publication-title: Addit Manuf doi: 10.1016/j.addma.2014.12.007 – volume: 10 start-page: 579 year: 2008 ident: 306_CR47 publication-title: Adv Eng Mater doi: 10.1002/adem.200800046 – volume: 456–457 year: 2020 ident: 306_CR1 publication-title: Wear doi: 10.1016/j.wear.2020.203367 – volume: 360 start-page: 78 year: 2019 ident: 306_CR16 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.01.003 – volume: 52 start-page: 589 year: 2010 ident: 306_CR46 publication-title: Corros Sci doi: 10.1016/j.corsci.2009.10.018 – volume: 410 year: 2021 ident: 306_CR10 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2021.126979 – volume: 71 start-page: 295 year: 2017 ident: 306_CR11 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2017.03.024 – volume: 4 start-page: 045001 year: 2016 ident: 306_CR15 publication-title: Surf Topogr Metrol Prop doi: 10.1088/2051-672X/4/4/045001 – volume: 64 start-page: 377 year: 2019 ident: 306_CR17 publication-title: Arch Metall Mater doi: 10.24425/amm.2019.126263 – volume: 20 start-page: 78 year: 2020 ident: 306_CR8 publication-title: Arch Civ Mech Eng doi: 10.1007/s43452-020-00080-8 – ident: 306_CR19 doi: 10.1155/2019/8169538 – volume: 78 start-page: 377 year: 2015 ident: 306_CR27 publication-title: Phys Procedia doi: 10.1016/j.phpro.2015.11.052 – volume: 7 start-page: 015012 year: 2019 ident: 306_CR28 publication-title: Surf Topogr Metrol Prop doi: 10.1088/2051-672X/aafe33 – volume-title: Microstructure and wear of materials year: 1987 ident: 306_CR33 – volume: 18 start-page: 538 year: 2015 ident: 306_CR13 publication-title: Mater Res doi: 10.1590/1516-1439.316514 – volume: 71 start-page: 348 year: 2018 ident: 306_CR7 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.05.039 – volume: 29 start-page: 1641 year: 2019 ident: 306_CR45 publication-title: Trans Nonferr Metals Soc China doi: 10.1016/S1003-6326(19)65071-5 – volume: 10 start-page: 856 year: 2020 ident: 306_CR38 publication-title: Metals doi: 10.3390/met10070856 – volume: 110 start-page: 914 year: 2016 ident: 306_CR36 publication-title: Mater Des doi: 10.1016/j.matdes.2016.08.037 – ident: 306_CR22 – volume: 118 year: 2020 ident: 306_CR5 publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2020.104784 – volume: 331 start-page: 74 year: 2018 ident: 306_CR12 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.03.010 – volume: 61 start-page: 1809 year: 2013 ident: 306_CR25 publication-title: Acta Mater doi: 10.1016/j.actamat.2012.11.052 |
SSID | ssj0001072165 |
Score | 2.4947097 |
Snippet | Components produced by additive manufacturing (AM) via direct metal laser sintering (DMLS) have typical as-fabricated surface defects. As a result, surface... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 157 |
SubjectTerms | Additive manufacturing Alloys Ceramics Civil Engineering Corrosion effects Corrosion resistance Corrosion resistant steels Corrosive wear Crystal defects Engineering Fatigue wear Grain size Granular materials Hardness Laser sintering Manufacturers Manufacturing Martensite Martensitic stainless steels Mechanical Engineering Mechanical properties Medical device industry Medical equipment Microstructure Morphology Nickel chromium steels Original Article Precipitation hardening steels Raw materials Retained austenite Scanning electron microscopy Shot peening Stainless steel Steel products Structural Materials Surface defects Surface properties Surface roughness Tribology Wear resistance |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF5RuLSHCmirpg1oDtyaVbG9fuypQkCIEKBKbSRu1j7G6gHZIXGE-g_42Z3Z2ElbiZz3Icvf7M5jZ74R4sRVOaoItXReWakwTaUurJakmjFK0TrrQoLsXTaZquv79L4LuC26tMr-TgwXtW8cx8i_klpKsiLTSn2bPUruGsWvq10LjVdiLyJNwxJejK82MRYm_wrdJMkpUExEmXZ1M6F6TiUqjSXnKATLWSb_6qaNwfnfG2lQPeN98bazGeFsBfKB2MH6ULz5i0nwnXhesRBDU8HiV9PCjNxTGoCmBrLwYLGcV8YhzDj0PmcO1RGQ20lfQbCAqT08kcTTqnUVAe9EmkV9nwDJAT7wUk9i4MH-hovbmx_AmUh8VwLNX3J9RCh4fC-m48uf5xPZNVmQLsmSVhqMnUVvvK2ynJS1LTTaosgUOuvR56fWOJPH5tTF7Dqlmc5jmylfaK80Vph8ELt1U-NHAcbaKtIVE9YXSqWVzm0cG3IQE2McoTEQUf97S9cxkHMjjIdyzZ0cICkJkjJAUiYD8WW9Zrbi39g6e9ijVnZncVFuJGcgRj2Sm-GXd_u0fbfP4nUchIefqIZit50v8YgslNYeBzH8A-1j4jk priority: 102 providerName: ProQuest |
Title | Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing |
URI | https://link.springer.com/article/10.1007/s43452-021-00306-3 https://www.proquest.com/docview/2933686944 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VuLSHqg9Ql8dqDr2BgSS2Ex_bhWVVFYTaInGL_JiIA8qu9qGKC2d-dsfZ7C6gFqmXXOyxIn-TzIxn5jPAZ1_lJBMywgfphCSlhCmcEWyaKVHkvPNNgeyFHlzJb9fquqXJib0wz_L3RxOZSZWKWEjQuLciW4MNlWQ6lm_1dG91nhKJvrRq-2L-LvrU9qwcymc50Ma09N_B29YnxC9zEN_DK6o_wJtHTIEf4WHOMozDCic3wymOOPzkARzWyB4cTmbjynrCUTxaH0eO1APksJLfgrcdbR3wN2s0Sy27BOJKbDnk5QAZZ7qNooFhDuju8OT8-0-MlUbxX4g8fxb7H5qGxk246p_-6g1Ee4mC8JnOpsJS6h0FG1ylczbGrjDkikJL8i5QyI-d9TZP7bFPY2iktMlTp2UoTJCGKsq2YL0e1vQJ0DpXJaaKhPSFlKoyuUtTywFgZq1nBDqQLLa39C3DeLzo4rZcciM3kJQMSdlAUmYd2F_KjOb8Gi_O3l2gVrbf2qRkh4XVQRspO3CwQHI1_O_Vtv9v-g68ThtliimpXVifjme0xx7J1HVh7fA-4WfRP-vCxtfTi8sf3UY9_wBPD9xy |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOQCHiqe6tEAOcKIR3STzyAEhRFm2dFsh0Uq9DXl4xKGaXfahqv-AX8NvxM7O7AISvfU8iTWKv8R2Yn8GeBnqAk0frQzReGkwy6QtvZVkmrGfoQ8-pATZk3x4Zj6fZ-cb8KurheG0yu5MTAd1HAe-I39DZknnZW6NeTf5IblrFL-udi00lrA4wqtLCtlmbw8PSL-vlBp8PP0wlG1XARl0rufSoQoeo4u-zguyTr606MsyNxh8xFjsexdcodx-UBwrZLktlM9NLG00FmvUJPcW3DZaW04hLAef1nc6TDaWuldSEGKY-DJr63RStZ7RJlOScyKSpy7137Zw7eD-8yabTN3gPmy1Pqp4vwTVA9jA5iHc-4O58BH8XLIei3EtZt_HczGhcJg-iHEjyKMUs8W0dgHFhK_6p8zZuicozKW_IBgI10RxSUtJs1ZVCyyJLJn5MhSEO7zgqZFgF4W_EgfHo6-CM5_4bBY0fsH1GKnA8jGc3cjyP4HNZtzgNgjnfd23NRPkl8ZktS28Uo4CUu1cIG30oN8tbxVaxnNuvHFRrbiak0oqUkmVVFLpHrxezZks-T6uHb3baa1q9_6sWiO1B3udJtef_y_t6fXSXsCd4enxqBodnhztwF2VgMTPY7uwOZ8u8Bl5R3P_PEFSwLeb3gO_AXdrIa4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSKg9oPJSt1CYQ29gQRLHiY9oYbU8ipAAiVvkx1g9oOxqN6uKf8DP7tib3QVEkXq2x4ryTTIz9nyfGftpfYEiQcWtE4YLzHOuSqM4hWZMcjTW2Nggey379-LiIX94weKP3e6zI8kppyGoNNXN0dD5oznxTWQiT3loL4hJL88-sRWqVJLQ1NeV3cUuS5D_knnLlnnf9HVEWqSZb05GY8DpfWVrbaYIJ1No19kS1hvsywv9wE32PNUehoGH8e9BA0MqSmkABjVQXgfjychrizAMG-6joJx6CFRs0lMQGKBrB3_Iz8lqzh0IK1E8ETd9IPTxMZg6At-BeYLTX1e3EPqPwh8SaP4ksCIizXGL3ffO7rp93l6twG0ms4ZrTK1Bp53xsqAQbUqFpiylQGscuuLYaKuLVB_bNBRMuVRFaqRwpXJCocdsmy3Xgxq_MdDG-ET5IFNfCpF7VZg01VQWZlpbQqDDktnrrWyrOx6uv3is5orJEZKKIKkiJFXWYQdzm-FUdePD2bsz1Kr2CxxXlMZkspRKiA47nCG5GP73at__b_o-W7057VVX59eXO-xzGv0qnFntsuVmNMEflLI0Zi965V9qj-Qo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+shot+peening+on+the+surface+properties%2C+corrosion+and+wear+performance+of+17-4PH+steel+produced+by+DMLS+additive+manufacturing&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.au=Walczak%2C+Mariusz&rft.au=Szala%2C+Miros%C5%82aw&rft.date=2021-09-24&rft.issn=2083-3318&rft.eissn=2083-3318&rft.volume=21&rft.issue=4&rft_id=info:doi/10.1007%2Fs43452-021-00306-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43452_021_00306_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon |