Robust personalized pricing under uncertainty of purchase probabilities
This paper is concerned with personalized pricing models aimed at maximizing the expected revenues or profits for a single item. While it is essential for personalized pricing to predict the purchase probabilities for each consumer, these predicted values are inherently subject to unavoidable predic...
Saved in:
Published in | EURO journal on computational optimization Vol. 13; p. 100114 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2192-4406 |
DOI | 10.1016/j.ejco.2025.100114 |
Cover
Abstract | This paper is concerned with personalized pricing models aimed at maximizing the expected revenues or profits for a single item. While it is essential for personalized pricing to predict the purchase probabilities for each consumer, these predicted values are inherently subject to unavoidable prediction errors that can negatively impact the realized revenues and profits. To resolve this challenge, we focus on robust optimization techniques that yield reliable solutions to optimization problems under uncertainty. Specifically, we propose a robust optimization model for personalized pricing that accounts for the uncertainty of predicted purchase probabilities. This model can be formulated as a mixed-integer linear optimization problem, which can be solved exactly using mathematical optimization solvers. We also develop a Lagrangian decomposition algorithm combined with the golden section search to efficiently find high-quality solutions to large-scale problems. Experimental results demonstrate the effectiveness of our robust optimization model and highlight the utility of our Lagrangian decomposition algorithm in terms of both computational efficiency and solution quality.
•Robust optimization model for personalized pricing considering prediction uncertainty.•Mixed-integer linear optimization formulation for robust personalized pricing.•Scalable algorithm using Lagrangian decomposition and golden section search.•Effectiveness of our pricing framework evaluated through computational experiments. |
---|---|
AbstractList | This paper is concerned with personalized pricing models aimed at maximizing the expected revenues or profits for a single item. While it is essential for personalized pricing to predict the purchase probabilities for each consumer, these predicted values are inherently subject to unavoidable prediction errors that can negatively impact the realized revenues and profits. To resolve this challenge, we focus on robust optimization techniques that yield reliable solutions to optimization problems under uncertainty. Specifically, we propose a robust optimization model for personalized pricing that accounts for the uncertainty of predicted purchase probabilities. This model can be formulated as a mixed-integer linear optimization problem, which can be solved exactly using mathematical optimization solvers. We also develop a Lagrangian decomposition algorithm combined with the golden section search to efficiently find high-quality solutions to large-scale problems. Experimental results demonstrate the effectiveness of our robust optimization model and highlight the utility of our Lagrangian decomposition algorithm in terms of both computational efficiency and solution quality. This paper is concerned with personalized pricing models aimed at maximizing the expected revenues or profits for a single item. While it is essential for personalized pricing to predict the purchase probabilities for each consumer, these predicted values are inherently subject to unavoidable prediction errors that can negatively impact the realized revenues and profits. To resolve this challenge, we focus on robust optimization techniques that yield reliable solutions to optimization problems under uncertainty. Specifically, we propose a robust optimization model for personalized pricing that accounts for the uncertainty of predicted purchase probabilities. This model can be formulated as a mixed-integer linear optimization problem, which can be solved exactly using mathematical optimization solvers. We also develop a Lagrangian decomposition algorithm combined with the golden section search to efficiently find high-quality solutions to large-scale problems. Experimental results demonstrate the effectiveness of our robust optimization model and highlight the utility of our Lagrangian decomposition algorithm in terms of both computational efficiency and solution quality. •Robust optimization model for personalized pricing considering prediction uncertainty.•Mixed-integer linear optimization formulation for robust personalized pricing.•Scalable algorithm using Lagrangian decomposition and golden section search.•Effectiveness of our pricing framework evaluated through computational experiments. |
ArticleNumber | 100114 |
Author | Sukegawa, Noriyoshi Ikeda, Shunnosuke Takano, Yuichi Nishimura, Naoki |
Author_xml | – sequence: 1 givenname: Shunnosuke orcidid: 0009-0004-4283-0819 surname: Ikeda fullname: Ikeda, Shunnosuke email: ikeda@cs.tsukuba.ac.jp organization: Data Management & Planning Office, Recruit Co., Ltd., 1–9–2, Chiyoda–ku, Tokyo, 100-6640, Japan – sequence: 2 givenname: Naoki surname: Nishimura fullname: Nishimura, Naoki email: nishimura@r.recruit.co.jp organization: Data Management & Planning Office, Recruit Co., Ltd., 1–9–2, Chiyoda–ku, Tokyo, 100-6640, Japan – sequence: 3 givenname: Noriyoshi orcidid: 0000-0002-3560-0036 surname: Sukegawa fullname: Sukegawa, Noriyoshi email: sukegawa@hosei.ac.jp organization: Department of Advanced Sciences, Hosei University, 3–7–2 Kajinocho, Koganei–shi, Tokyo, 184-8584, Japan – sequence: 4 givenname: Yuichi orcidid: 0000-0002-8919-1282 surname: Takano fullname: Takano, Yuichi email: ytakano@sk.tsukuba.ac.jp organization: Institute of Systems and Information Engineering, University of Tsukuba, 1–1–1 Tennodai, Tsukuba–shi, Ibaraki, 305-8573, Japan |
BookMark | eNp9kM1KAzEUhbOoYK19AVfzAlPzM5mZgBspWgsFQXQd8nNTM4yTkkyF-vSmjrh0cy8c7jmc-12h2RAGQOiG4BXBpL7tVtCZsKKY8ixgQqoZmlMiaFlVuL5Ey5Q6nHWOG8z4HG1egj6msThATGFQvf8CWxyiN37YF8fBQszTQByVH8ZTEVxxOEbzrhLkq6CV9r0fPaRrdOFUn2D5uxfo7fHhdf1U7p432_X9rjSsZmOprMOaOgFUO2GgpZQqDlZgrdq2rTkxnBLCWuFYVRnDmTVOMNOABVtjztgCbadcG1Qnc9EPFU8yKC9_hBD3UsXRmx6k0sQ2jLUcG6iwUMIp3tK6Bm0b3jqas-iUZWJIKYL7yyNYnmnKTp5pyjNNOdHMprvJBPnLTw9RJuMhI7I-ghlzDf-f_RtxooKH |
Cites_doi | 10.1111/joie.12085 10.1007/s10994-022-06128-5 10.1007/s00500-021-06047-y 10.1287/moor.2020.1085 10.1287/mnsc.2013.1788 10.1287/mnsc.2014.1939 10.1007/s11156-014-0442-8 10.1090/S0002-9939-1953-0055639-3 10.1287/msom.5.3.203.16031 10.1287/opre.1090.0741 10.1007/s10107-021-01679-2 10.1007/BF02579036 10.1016/S0304-4076(98)00055-4 10.1287/mnsc.2022.4651 10.1080/24725854.2020.1798036 10.1137/080734510 10.1287/mnsc.2020.3821 10.1287/mnsc.27.1.1 10.1287/opre.1030.0065 10.1007/s12626-024-00176-0 10.1177/1356766712471839 10.1287/mksc.15.4.321 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.ejco.2025.100114 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_ab1d733850ce409a9fa58266ebd758f2 10_1016_j_ejco_2025_100114 S2192440625000115 |
GroupedDBID | 0R~ 0VY 203 30V 4.4 408 409 6I. 7WY 8FE 8FG 8FL 96X AAEDW AAFTH AAIAL AAJKR AALRI AARHV AARTL AATVU AAWCG AAXUO AAYIU AAYQN AAYTO AAYWO AAZMS ABBXA ABDZT ABFSG ABFTV ABJOX ABKCH ABQBU ABTMW ABUWG ABXPI ACGFS ACKNC ACMLO ACOKC ACSTC ACVFH ADCNI ADHHG ADHIR ADKPE ADRFC ADURQ ADVLN ADYFF ADZKW AEBTG AEGNC AEJHL AEJRE AEOHA AEPYU AETCA AEUPX AEXQZ AEXYK AEZWR AFBBN AFHIU AFKRA AFLOW AFPUW AFWTZ AFZKB AGAYW AGDGC AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHWEU AHYZX AIGII AILAN AITGF AITUG AIXLP AJBLW AJRNO AJZVZ AKBMS AKLTO AKRWK AKYEP ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMYQR ANMIH APXCP ARAPS ASPBG AUKKA AVWKF AVXWI AXJJW AXYYD AYQZM AZFZN AZQEC BAPOH BENPR BEZIV BGLVJ BGNMA BPHCQ CCPQU CSCUP DWQXO EBS EIOEI EJD ESBYG FDB FEDTE FERAY FINBP FNLPD FRNLG FRRFC FSGXE FYJPI GGRSB GJIRD GNUQQ GROUPED_DOAJ HCIFZ HF~ HMJXF HQYDN HRMNR HVGLF HZ~ I0C IXD J-C JBSCW JCJTX K60 K6V K6~ K7- KOV M0C M4Y NB0 NQJWS NU0 O9- O93 O9G O9J OK1 P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PUEGO RLLFE ROL RSV SHX SISQX SOJ SPISZ STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX CITATION |
ID | FETCH-LOGICAL-c363t-adf0b2f9e2bf9ce8222a5ed90ba888651c5211389f344cc53dcf93c7eded60533 |
IEDL.DBID | DOA |
ISSN | 2192-4406 |
IngestDate | Wed Aug 27 01:28:59 EDT 2025 Wed Aug 27 16:28:00 EDT 2025 Sat Sep 13 17:01:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lagrangian decomposition Personalized pricing Robust optimization Mixed-integer optimization |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-adf0b2f9e2bf9ce8222a5ed90ba888651c5211389f344cc53dcf93c7eded60533 |
ORCID | 0000-0002-8919-1282 0009-0004-4283-0819 0000-0002-3560-0036 |
OpenAccessLink | https://doaj.org/article/ab1d733850ce409a9fa58266ebd758f2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab1d733850ce409a9fa58266ebd758f2 crossref_primary_10_1016_j_ejco_2025_100114 elsevier_sciencedirect_doi_10_1016_j_ejco_2025_100114 |
PublicationCentury | 2000 |
PublicationDate | 2025 2025-00-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | EURO journal on computational optimization |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wang, Huang, Han, Lim (br0400) 2021 Bitran, Caldentey (br0080) 2003; 5 Den Boer, Zwart (br0130) 2014; 60 Feldman, Trzcinka, Winer (br0180) 2015; 45 Pachamanova, Lo, Gülpınar (br0320) 2020; 36 Uehara, Nishimura, Li, Yang, Jobson, Ohashi, Matsumoto, Sukegawa, Takano (br0370) 2024; 62 Wang, Chen, Wang (br0390) 2021 Ikeda, Nishimura, Umetani (br0240) 2023 Efron (br0150) 1992 Duchi, Glynn, Namkoong (br0140) 2021; 46 Subramanian, Sun, Drissi, Ettl (br0350) 2022 Ikeda, Nishimura, Sukegawa, Takano (br0230) 2023; 11 Bertsimas, Brown, Caramanis (br0040) 2011; 53 Kochenderfer, Wheeler (br0310) 2019 Waldfogel (br0380) 2015; 63 Boyd, Xiao, Mutapcic (br0090) 2003 Zaslavski (br0420) 2020 Golrezaei, Nazerzadeh, Rusmevichientong (br0210) 2014; 60 Elmachtoub, Gupta, Hamilton (br0160) 2021; 67 Allenby, Rossi (br0010) 1998; 89 Ito, Fujimaki (br0260) 2017 Kallus, Zhou (br0280) 2021 Bertsimas, Sim (br0050) 2004; 52 Chen, Cire, Hu, Lagzi (br0100) 2023; 69 Elreedy, Atiya, Shaheen (br0170) 2021; 25 Sigala (br0340) 2013; 19 Delage, Ye (br0120) 2010; 58 Thiele (br0360) 2006 Yanagi, Ikeda, Takano (br0410) 2024 Bertsimas, Van Parys (br0060) 2022; 195 Amram, Dunn, Zhuo (br0020) 2022; 111 Biggs, Sun, Ettl (br0070) 2021 Kiefer (br0300) 1953; 4 Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (br0290) 2017; 30 Ben-Tal, El Ghaoui, Nemirovski (br0030) 2009; vol. 28 Rossi, McCulloch, Allenby (br0330) 1996; 15 Fisher (br0190) 1981; 27 Jin, Lin, Zhou (br0270) 2021; 53 Chen, Xu, Zhao, Zhou (br0110) 2023 Geoffrion (br0200) 2009 Guignard (br0220) 2003; 11 Ikeda, Nishimura, Umetani (br0250) 2025; 19 Golrezaei (10.1016/j.ejco.2025.100114_br0210) 2014; 60 Sigala (10.1016/j.ejco.2025.100114_br0340) 2013; 19 Biggs (10.1016/j.ejco.2025.100114_br0070) 2021 Guignard (10.1016/j.ejco.2025.100114_br0220) 2003; 11 Bertsimas (10.1016/j.ejco.2025.100114_br0040) 2011; 53 Ikeda (10.1016/j.ejco.2025.100114_br0230) 2023; 11 Wang (10.1016/j.ejco.2025.100114_br0400) Duchi (10.1016/j.ejco.2025.100114_br0140) 2021; 46 Den Boer (10.1016/j.ejco.2025.100114_br0130) 2014; 60 Ikeda (10.1016/j.ejco.2025.100114_br0250) 2025; 19 Amram (10.1016/j.ejco.2025.100114_br0020) 2022; 111 Bertsimas (10.1016/j.ejco.2025.100114_br0060) 2022; 195 Ito (10.1016/j.ejco.2025.100114_br0260) 2017 Bitran (10.1016/j.ejco.2025.100114_br0080) 2003; 5 Ke (10.1016/j.ejco.2025.100114_br0290) 2017; 30 Rossi (10.1016/j.ejco.2025.100114_br0330) 1996; 15 Subramanian (10.1016/j.ejco.2025.100114_br0350) 2022 Geoffrion (10.1016/j.ejco.2025.100114_br0200) 2009 Wang (10.1016/j.ejco.2025.100114_br0390) Pachamanova (10.1016/j.ejco.2025.100114_br0320) 2020; 36 Waldfogel (10.1016/j.ejco.2025.100114_br0380) 2015; 63 Yanagi (10.1016/j.ejco.2025.100114_br0410) 2024 Allenby (10.1016/j.ejco.2025.100114_br0010) 1998; 89 Delage (10.1016/j.ejco.2025.100114_br0120) 2010; 58 Efron (10.1016/j.ejco.2025.100114_br0150) 1992 Ikeda (10.1016/j.ejco.2025.100114_br0240) 2023 Elmachtoub (10.1016/j.ejco.2025.100114_br0160) 2021; 67 Kiefer (10.1016/j.ejco.2025.100114_br0300) 1953; 4 Feldman (10.1016/j.ejco.2025.100114_br0180) 2015; 45 Elreedy (10.1016/j.ejco.2025.100114_br0170) 2021; 25 Fisher (10.1016/j.ejco.2025.100114_br0190) 1981; 27 Zaslavski (10.1016/j.ejco.2025.100114_br0420) 2020 Uehara (10.1016/j.ejco.2025.100114_br0370) 2024; 62 Chen (10.1016/j.ejco.2025.100114_br0110) 2023 Ben-Tal (10.1016/j.ejco.2025.100114_br0030) 2009; vol. 28 Bertsimas (10.1016/j.ejco.2025.100114_br0050) 2004; 52 Thiele (10.1016/j.ejco.2025.100114_br0360) 2006 Kochenderfer (10.1016/j.ejco.2025.100114_br0310) 2019 Jin (10.1016/j.ejco.2025.100114_br0270) 2021; 53 Boyd (10.1016/j.ejco.2025.100114_br0090) 2003 Kallus (10.1016/j.ejco.2025.100114_br0280) 2021 Chen (10.1016/j.ejco.2025.100114_br0100) 2023; 69 |
References_xml | – volume: 111 start-page: 2741 year: 2022 end-page: 2768 ident: br0020 article-title: Optimal policy trees publication-title: Mach. Learn. – start-page: 946 year: 2021 end-page: 956 ident: br0070 article-title: Model distillation for revenue optimization: interpretable personalized pricing publication-title: International Conference on Machine Learning, PMLR – volume: 58 start-page: 595 year: 2010 end-page: 612 ident: br0120 article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems publication-title: Oper. Res. – volume: 46 start-page: 946 year: 2021 end-page: 969 ident: br0140 article-title: Statistics of robust optimization: a generalized empirical likelihood approach publication-title: Math. Oper. Res. – volume: vol. 28 year: 2009 ident: br0030 article-title: Robust Optimization – year: 2020 ident: br0420 article-title: The Projected Subgradient Algorithm in Convex Optimization – volume: 4 start-page: 502 year: 1953 end-page: 506 ident: br0300 article-title: Sequential minimax search for a maximum publication-title: Proc. Am. Math. Soc. – start-page: 569 year: 1992 end-page: 593 ident: br0150 article-title: Bootstrap methods: another look at the jackknife publication-title: Breakthroughs in Statistics: Methodology and Distribution – start-page: 82 year: 2009 end-page: 114 ident: br0200 article-title: Lagrangean relaxation for integer programming publication-title: Approaches to Integer Programming – volume: 63 start-page: 569 year: 2015 end-page: 597 ident: br0380 article-title: First degree price discrimination goes to school publication-title: J. Ind. Econ. – volume: 52 start-page: 35 year: 2004 end-page: 53 ident: br0050 article-title: The price of robustness publication-title: Oper. Res. – volume: 15 start-page: 321 year: 1996 end-page: 340 ident: br0330 article-title: The value of purchase history data in target marketing publication-title: Mark. Sci. – volume: 19 start-page: 165 year: 2013 end-page: 180 ident: br0340 article-title: A framework for designing and implementing effective online coupons in tourism and hospitality publication-title: J. Vacat. Mark. – volume: 45 start-page: 435 year: 2015 end-page: 454 ident: br0180 article-title: Pricing under noisy signaling publication-title: Rev. Quant. Finance Account. – volume: 53 start-page: 453 year: 2021 end-page: 471 ident: br0270 article-title: Price discounts and personalized product assortments under multinomial logit choice model: a robust approach publication-title: IISE Trans. – start-page: 1520 year: 2023 end-page: 1530 ident: br0110 article-title: Personalized pricing with group fairness constraint publication-title: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency – year: 2021 ident: br0390 article-title: Distributionally robust prescriptive analytics with Wasserstein distance – start-page: 1833 year: 2017 end-page: 1841 ident: br0260 article-title: Optimization beyond prediction: prescriptive price optimization publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 36 start-page: 149 year: 2020 end-page: 175 ident: br0320 article-title: Uncertainty representation and risk management for direct segmented marketing publication-title: J. Mark. Manag. – volume: 5 start-page: 203 year: 2003 end-page: 229 ident: br0080 article-title: An overview of pricing models for revenue management publication-title: Manuf. Serv. Oper. Manag. – volume: 11 start-page: 151 year: 2003 end-page: 200 ident: br0220 article-title: Lagrangean relaxation publication-title: TOP – volume: 25 start-page: 11711 year: 2021 end-page: 11733 ident: br0170 article-title: Novel pricing strategies for revenue maximization and demand learning using an exploration–exploitation framework publication-title: Soft Comput. – volume: 30 start-page: 3149 year: 2017 end-page: 3157 ident: br0290 article-title: LightGBM: a highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – start-page: 31 year: 2023 end-page: 36 ident: br0240 article-title: Operating range estimation for price optimization publication-title: 2023 IEEE International Conference on Data Mining Workshops (ICDMW), IEEE – start-page: 4602 year: 2022 end-page: 4610 ident: br0350 article-title: Constrained prescriptive trees via column generation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2019 ident: br0310 article-title: Algorithms for Optimization – year: 2021 ident: br0400 article-title: Price optimization with practical constraints – volume: 60 start-page: 770 year: 2014 end-page: 783 ident: br0130 article-title: Simultaneously learning and optimizing using controlled variance pricing publication-title: Manag. Sci. – start-page: 429 year: 2024 end-page: 440 ident: br0410 article-title: Robust portfolio optimization for recommender systems considering uncertainty of estimated statistics publication-title: Pacific Rim International Conference on Artificial Intelligence – year: 2003 ident: br0090 article-title: Subgradient methods – volume: 89 start-page: 57 year: 1998 end-page: 78 ident: br0010 article-title: Marketing models of consumer heterogeneity publication-title: J. Econom. – volume: 11 year: 2023 ident: br0230 article-title: Prescriptive price optimization using optimal regression trees publication-title: Oper. Res. Perspect. – volume: 19 start-page: 49 year: 2025 end-page: 68 ident: br0250 article-title: Interpretable price bounds estimation with shape constraints in price optimization publication-title: Rev. Socionetwork Strateg. – volume: 195 start-page: 39 year: 2022 end-page: 78 ident: br0060 article-title: Bootstrap robust prescriptive analytics publication-title: Math. Program. – volume: 60 start-page: 1532 year: 2014 end-page: 1551 ident: br0210 article-title: Real-time optimization of personalized assortments publication-title: Manag. Sci. – volume: 62 start-page: 646 year: 2024 end-page: 660 ident: br0370 article-title: Robust portfolio optimization model for electronic coupon allocation publication-title: Inf. Syst. Oper. Res. – volume: 67 start-page: 6055 year: 2021 end-page: 6070 ident: br0160 article-title: The value of personalized pricing publication-title: Manag. Sci. – start-page: 296 year: 2021 end-page: 314 ident: br0280 article-title: Fairness, welfare, and equity in personalized pricing publication-title: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency – volume: 27 start-page: 1 year: 1981 end-page: 18 ident: br0190 article-title: The Lagrangian relaxation method for solving integer programming problems publication-title: Manag. Sci. – year: 2006 ident: br0360 article-title: Single-product pricing via robust optimization publication-title: Optimization Online – volume: 69 start-page: 5830 year: 2023 end-page: 5847 ident: br0100 article-title: Model-free assortment pricing with transaction data publication-title: Manag. Sci. – volume: 53 start-page: 464 year: 2011 end-page: 501 ident: br0040 article-title: Theory and applications of robust optimization publication-title: SIAM Rev. – volume: 36 start-page: 149 year: 2020 ident: 10.1016/j.ejco.2025.100114_br0320 article-title: Uncertainty representation and risk management for direct segmented marketing publication-title: J. Mark. Manag. – volume: 63 start-page: 569 year: 2015 ident: 10.1016/j.ejco.2025.100114_br0380 article-title: First degree price discrimination goes to school publication-title: J. Ind. Econ. doi: 10.1111/joie.12085 – volume: 30 start-page: 3149 year: 2017 ident: 10.1016/j.ejco.2025.100114_br0290 article-title: LightGBM: a highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – volume: 111 start-page: 2741 year: 2022 ident: 10.1016/j.ejco.2025.100114_br0020 article-title: Optimal policy trees publication-title: Mach. Learn. doi: 10.1007/s10994-022-06128-5 – start-page: 569 year: 1992 ident: 10.1016/j.ejco.2025.100114_br0150 article-title: Bootstrap methods: another look at the jackknife – ident: 10.1016/j.ejco.2025.100114_br0390 – volume: 25 start-page: 11711 year: 2021 ident: 10.1016/j.ejco.2025.100114_br0170 article-title: Novel pricing strategies for revenue maximization and demand learning using an exploration–exploitation framework publication-title: Soft Comput. doi: 10.1007/s00500-021-06047-y – volume: 46 start-page: 946 year: 2021 ident: 10.1016/j.ejco.2025.100114_br0140 article-title: Statistics of robust optimization: a generalized empirical likelihood approach publication-title: Math. Oper. Res. doi: 10.1287/moor.2020.1085 – volume: 60 start-page: 770 year: 2014 ident: 10.1016/j.ejco.2025.100114_br0130 article-title: Simultaneously learning and optimizing using controlled variance pricing publication-title: Manag. Sci. doi: 10.1287/mnsc.2013.1788 – volume: 11 year: 2023 ident: 10.1016/j.ejco.2025.100114_br0230 article-title: Prescriptive price optimization using optimal regression trees publication-title: Oper. Res. Perspect. – start-page: 82 year: 2009 ident: 10.1016/j.ejco.2025.100114_br0200 article-title: Lagrangean relaxation for integer programming – volume: 60 start-page: 1532 year: 2014 ident: 10.1016/j.ejco.2025.100114_br0210 article-title: Real-time optimization of personalized assortments publication-title: Manag. Sci. doi: 10.1287/mnsc.2014.1939 – year: 2003 ident: 10.1016/j.ejco.2025.100114_br0090 – volume: 45 start-page: 435 year: 2015 ident: 10.1016/j.ejco.2025.100114_br0180 article-title: Pricing under noisy signaling publication-title: Rev. Quant. Finance Account. doi: 10.1007/s11156-014-0442-8 – volume: 4 start-page: 502 year: 1953 ident: 10.1016/j.ejco.2025.100114_br0300 article-title: Sequential minimax search for a maximum publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1953-0055639-3 – volume: 62 start-page: 646 year: 2024 ident: 10.1016/j.ejco.2025.100114_br0370 article-title: Robust portfolio optimization model for electronic coupon allocation publication-title: Inf. Syst. Oper. Res. – volume: 5 start-page: 203 year: 2003 ident: 10.1016/j.ejco.2025.100114_br0080 article-title: An overview of pricing models for revenue management publication-title: Manuf. Serv. Oper. Manag. doi: 10.1287/msom.5.3.203.16031 – volume: 58 start-page: 595 year: 2010 ident: 10.1016/j.ejco.2025.100114_br0120 article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems publication-title: Oper. Res. doi: 10.1287/opre.1090.0741 – volume: 195 start-page: 39 year: 2022 ident: 10.1016/j.ejco.2025.100114_br0060 article-title: Bootstrap robust prescriptive analytics publication-title: Math. Program. doi: 10.1007/s10107-021-01679-2 – start-page: 1833 year: 2017 ident: 10.1016/j.ejco.2025.100114_br0260 article-title: Optimization beyond prediction: prescriptive price optimization – year: 2006 ident: 10.1016/j.ejco.2025.100114_br0360 article-title: Single-product pricing via robust optimization publication-title: Optimization Online – volume: 11 start-page: 151 year: 2003 ident: 10.1016/j.ejco.2025.100114_br0220 article-title: Lagrangean relaxation publication-title: TOP doi: 10.1007/BF02579036 – volume: 89 start-page: 57 year: 1998 ident: 10.1016/j.ejco.2025.100114_br0010 article-title: Marketing models of consumer heterogeneity publication-title: J. Econom. doi: 10.1016/S0304-4076(98)00055-4 – volume: 69 start-page: 5830 year: 2023 ident: 10.1016/j.ejco.2025.100114_br0100 article-title: Model-free assortment pricing with transaction data publication-title: Manag. Sci. doi: 10.1287/mnsc.2022.4651 – volume: 53 start-page: 453 year: 2021 ident: 10.1016/j.ejco.2025.100114_br0270 article-title: Price discounts and personalized product assortments under multinomial logit choice model: a robust approach publication-title: IISE Trans. doi: 10.1080/24725854.2020.1798036 – volume: 53 start-page: 464 year: 2011 ident: 10.1016/j.ejco.2025.100114_br0040 article-title: Theory and applications of robust optimization publication-title: SIAM Rev. doi: 10.1137/080734510 – volume: 67 start-page: 6055 year: 2021 ident: 10.1016/j.ejco.2025.100114_br0160 article-title: The value of personalized pricing publication-title: Manag. Sci. doi: 10.1287/mnsc.2020.3821 – volume: 27 start-page: 1 year: 1981 ident: 10.1016/j.ejco.2025.100114_br0190 article-title: The Lagrangian relaxation method for solving integer programming problems publication-title: Manag. Sci. doi: 10.1287/mnsc.27.1.1 – start-page: 429 year: 2024 ident: 10.1016/j.ejco.2025.100114_br0410 article-title: Robust portfolio optimization for recommender systems considering uncertainty of estimated statistics – volume: 52 start-page: 35 year: 2004 ident: 10.1016/j.ejco.2025.100114_br0050 article-title: The price of robustness publication-title: Oper. Res. doi: 10.1287/opre.1030.0065 – start-page: 1520 year: 2023 ident: 10.1016/j.ejco.2025.100114_br0110 article-title: Personalized pricing with group fairness constraint – volume: 19 start-page: 49 year: 2025 ident: 10.1016/j.ejco.2025.100114_br0250 article-title: Interpretable price bounds estimation with shape constraints in price optimization publication-title: Rev. Socionetwork Strateg. doi: 10.1007/s12626-024-00176-0 – start-page: 4602 year: 2022 ident: 10.1016/j.ejco.2025.100114_br0350 article-title: Constrained prescriptive trees via column generation – volume: 19 start-page: 165 year: 2013 ident: 10.1016/j.ejco.2025.100114_br0340 article-title: A framework for designing and implementing effective online coupons in tourism and hospitality publication-title: J. Vacat. Mark. doi: 10.1177/1356766712471839 – start-page: 296 year: 2021 ident: 10.1016/j.ejco.2025.100114_br0280 article-title: Fairness, welfare, and equity in personalized pricing – year: 2020 ident: 10.1016/j.ejco.2025.100114_br0420 – volume: vol. 28 year: 2009 ident: 10.1016/j.ejco.2025.100114_br0030 – year: 2019 ident: 10.1016/j.ejco.2025.100114_br0310 – volume: 15 start-page: 321 year: 1996 ident: 10.1016/j.ejco.2025.100114_br0330 article-title: The value of purchase history data in target marketing publication-title: Mark. Sci. doi: 10.1287/mksc.15.4.321 – ident: 10.1016/j.ejco.2025.100114_br0400 – start-page: 946 year: 2021 ident: 10.1016/j.ejco.2025.100114_br0070 article-title: Model distillation for revenue optimization: interpretable personalized pricing – start-page: 31 year: 2023 ident: 10.1016/j.ejco.2025.100114_br0240 article-title: Operating range estimation for price optimization |
SSID | ssj0001507035 |
Score | 2.2782984 |
Snippet | This paper is concerned with personalized pricing models aimed at maximizing the expected revenues or profits for a single item. While it is essential for... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 100114 |
SubjectTerms | Lagrangian decomposition Mixed-integer optimization Personalized pricing Robust optimization |
Title | Robust personalized pricing under uncertainty of purchase probabilities |
URI | https://dx.doi.org/10.1016/j.ejco.2025.100114 https://doaj.org/article/ab1d733850ce409a9fa58266ebd758f2 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQLDAgnqI8Kg9sKCKJ7aQZC6JUVDBUVHSz_ER0aKuSDvDruYsTFBZYWDJEiR195_i7870IuQRWsMYYH8XO-4i7xEVKJ73I9yyQBzeZV3je8fiUDSf8YSqmrVZfGBMWygMH4K7hTZuDHSVi48AWUYVXAlTizGkLqq6vdt-4iFvGVMgPxqWM8YvwR6YRB9qqM2ZCcJebGcz8S0VVgyjhP1ipKt7fIqcW4Qz2yG6tKdJ--MJ9suHmB2SnVT_wkNyPF3r9XtJlo1F_OkuXK3SWv1LMDlvB1QSnf_lBF54usfcTEBfFRjKhRDeYykdkMrh7vh1GdWeEyLCMlZGyPtapL1yqfWEckrwSzhaxVmDRZiIxwMrogvSMc2MEs8YXzOTOOpth9u0x2Zwv5u6E0Mz5lMOux7RJeG6VynnsGWN5YUFUPdshVw0ychkKYMgmMmwmEUeJOMqAY4fcIHjfT2Lx6uoGiFTWIpV_ibRDRAO9rPWAwO8w1Nsvk5_-x-RnZBuHDKcs52SzXK3dBegdpe6Srf5o_DLqVkvtC2JW1tw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+personalized+pricing+under+uncertainty+of+purchase+probabilities&rft.jtitle=EURO+journal+on+computational+optimization&rft.au=Ikeda%2C+Shunnosuke&rft.au=Nishimura%2C+Naoki&rft.au=Sukegawa%2C+Noriyoshi&rft.au=Takano%2C+Yuichi&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=2192-4406&rft.volume=13&rft_id=info:doi/10.1016%2Fj.ejco.2025.100114&rft.externalDocID=S2192440625000115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-4406&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-4406&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-4406&client=summon |