Study regarding the influence of a student’s personality and an LMS usage profile on learning performance using machine learning techniques
Academic performance (AP) is crucial for lifelong success. Unfortunately, many students fail to meet expected academic benchmarks, leading to altered career paths or university dropouts. This issue is particularly pronounced in the early stages of higher education, highlighting the need for the inst...
Saved in:
Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 54; no. 8; pp. 6175 - 6197 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-669X 1573-7497 |
DOI | 10.1007/s10489-024-05483-1 |
Cover
Loading…
Abstract | Academic performance (AP) is crucial for lifelong success. Unfortunately, many students fail to meet expected academic benchmarks, leading to altered career paths or university dropouts. This issue is particularly pronounced in the early stages of higher education, highlighting the need for the instructors of these foundational courses to have access to simple yet effective tools for the early identification of students at high risk of academic failure. In this study, we propose a streamlined conceptual model inspired by the Model of Human Behavior (MHB) to which we have incorporated two dimensions: capacity and willingness. These dimensions are assessed through the definition of three variables: Prior Academic Performance (PAP), Personality and Academic Engagement, whose measurements can easily be obtained by the instructors. Furthermore, we outline a Machine Learning (ML) process that higher education instructors can use to create their own tailored models in order to predict AP and identify risk groups with high levels of transparency and interpretability. The application of our approach to a sample of 322 Spanish undergraduates studying two mathematical subjects at a Spanish university demonstrates its potential to detect failure early in the semester with a precision that is comparable with that of more complex models found in literature. Our tailored model identified that capacity was the primary predictor of AP, with a gain-to-baseline improvement of 21%, and the willingness variables increasing this to 27%. This approach is consistent over time. Implications for instructors are discussed and an open prediction and analysis tool is developed. |
---|---|
AbstractList | Academic performance (AP) is crucial for lifelong success. Unfortunately, many students fail to meet expected academic benchmarks, leading to altered career paths or university dropouts. This issue is particularly pronounced in the early stages of higher education, highlighting the need for the instructors of these foundational courses to have access to simple yet effective tools for the early identification of students at high risk of academic failure. In this study, we propose a streamlined conceptual model inspired by the Model of Human Behavior (MHB) to which we have incorporated two dimensions: capacity and willingness. These dimensions are assessed through the definition of three variables: Prior Academic Performance (PAP), Personality and Academic Engagement, whose measurements can easily be obtained by the instructors. Furthermore, we outline a Machine Learning (ML) process that higher education instructors can use to create their own tailored models in order to predict AP and identify risk groups with high levels of transparency and interpretability. The application of our approach to a sample of 322 Spanish undergraduates studying two mathematical subjects at a Spanish university demonstrates its potential to detect failure early in the semester with a precision that is comparable with that of more complex models found in literature. Our tailored model identified that capacity was the primary predictor of AP, with a gain-to-baseline improvement of 21%, and the willingness variables increasing this to 27%. This approach is consistent over time. Implications for instructors are discussed and an open prediction and analysis tool is developed. |
Author | Rico-Juan, Juan Ramón Macià, Hermenegilda Cachero, Cristina |
Author_xml | – sequence: 1 givenname: Juan Ramón surname: Rico-Juan fullname: Rico-Juan, Juan Ramón organization: Departament of Software and Computing Systems, University of Alicante – sequence: 2 givenname: Cristina surname: Cachero fullname: Cachero, Cristina organization: Departament of Software and Computing Systems, University of Alicante – sequence: 3 givenname: Hermenegilda orcidid: 0000-0003-1462-5274 surname: Macià fullname: Macià, Hermenegilda email: hermenegilda.macia@uclm.es organization: Higher Technical School of Computer Engineering of Albacete, Universidad de Castilla-La Mancha |
BookMark | eNp9kM9KAzEQxoMo2FZfwFPA82qy2e0mRyn-g4qHKngLaXbSpmyzNckeevMFfABfzycxa4WChx6Ggcn3-2byDdGxax0gdEHJFSWkug6UFFxkJC8yUhacZfQIDWhZsawqRHWMBkSkp_FYvJ2iYQgrQghjhA7Q5yx29RZ7WChfW7fAcQnYOtN04DTg1mCFQ5KAi98fXwFvwIfWqcbGLVauToWnTzPcBbUAvPGtsU2iHG5Aedf7JcC0fq16ty70k7XSS-tgL4mgl86-dxDO0IlRTYDzvz5Cr3e3L5OHbPp8_zi5mWaajVnMVE3pvGaCGmGIgVrnc8pYJeZMU2EoiFynOat5XpdacFGqihNhSm0044qXbIQud77p4n5vlKu28-lbQTIy5oUoSlElFd-ptG9D8GCktlFF27rolW0kJbIPX-7Clyl8-Ru-pAnN_6Ebb9fKbw9DbAeFJHYL8PurDlA_PNWdhQ |
CitedBy_id | crossref_primary_10_56294_dm2025468 |
Cites_doi | 10.1016/j.chb.2012.05.019 10.1007/s10212-021-00594-6 10.1016/j.lindif.2012.03.013 10.3390/math10183359 10.1016/j.chb.2014.12.008 10.1089/jpm.2008.9690 10.1111/j.2517-6161.1996.tb02080.x 10.1016/J.PAID.2014.07.011 10.1080/14703297.2018.1502090 10.1016/j.infsof.2010.01.001 10.1037/bul0000219 10.1002/(SICI)1099-0984(199612)10:5<303::AID-PER262>3.0.CO;2-2 10.1037/a0014996 10.1016/j.econedurev.2012.03.005 10.1023/A:1010933404324 10.1023/A:1015630930326 10.1007/s11251-007-9039-0 10.1023/A:1022627411411 10.1007/s11409-020-09231-x 10.5465/amr.1982.4285240 10.3390/educsci11090552 10.5116/ijme.4dfb.8dfd 10.1006/jcss.1997.1504 10.1007/978-3-030-80000-0_28 10.1109/TIT.1967.1053964 10.3102/0002831219843292 10.1007/s11409-014-9128-9 10.1080/02673843.2019.1679202 10.1016/j.inffus.2019.12.012 10.1007/s10639-022-11152-y 10.1016/j.patcog.2019.05.030 10.1002/rev3.3202 10.1348/2044-8279.002004 10.1007/s12564-011-9185-6 10.1080/00401706.1970.10488634 10.1037/a0026838 10.1080/02602938.2014.880400 10.1016/j.procs.2022.12.174 10.1111/jopy.12663 10.1007/s11409-022-09315-w 10.1177/0022022102033005003 10.3724/SP.J.1042.2015.00755 10.1016/j.labeco.2012.05.014 10.3390/app10010354 10.3390/jintelligence6020027 10.2307/3001968 10.1016/j.paid.2006.08.001 10.1109/EDUCON.2015.7096008 10.5872/psiencia/5.2.32 10.3389/fpsyg.2017.00422 10.1162/15324430152748236 10.2766/826962 10.3991/ijet.v15i08.12525 10.1080/10872981.2020.1742964 10.1016/j.asoc.2021.107219 10.1016/j.orp.2023.100292 10.1214/aoms/1177730491 10.1016/j.ipm.2021.102691 10.1002/0471704091 10.1016/0191-8869(95)00007-S 10.1207/s15327043hup1804_3 10.1080/02635143.2021.1997978 10.3390/ijerph182413184 10.1007/s10639-021-10741-7 10.17705/1CAIS.01804 10.1145/2939672.2939785 10.1016/j.dajour.2023.100204 10.1016/j.eswa.2023.122136 10.1017/CBO9780511528446 10.1016/j.caeai.2023.100196 10.23919/SoftCOM55329.2022.9911477 10.22554/ijtel.v5i1.57 10.1007/978-0-387-84858-7 10.1109/ACCESS.2024.3361479 10.1007/s11042-024-18262-4 10.1201/9781315139470 10.1007/s10639-021-10478-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
DOI | 10.1007/s10489-024-05483-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central - New (Subscription) Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database (subscription) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Education |
EISSN | 1573-7497 |
EndPage | 6197 |
ExternalDocumentID | 10_1007_s10489_024_05483_1 |
GrantInformation_xml | – fundername: European Regional Development Fund grantid: UCLM group 2022-GRIN-34113 funderid: http://dx.doi.org/10.13039/501100008530 – fundername: Instituto de Ciencias de la Educación (University od Alicante) grantid: Programa de redes de investigación en docencia universitaria’(Red 5942) |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-ad11bd391f9f0fedc2b13379b3c19f1e92cf0f3d82d5c9895a7809f5cfc38a853 |
IEDL.DBID | BENPR |
ISSN | 0924-669X |
IngestDate | Wed Aug 13 06:40:07 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 03:32:00 EDT 2025 Fri Feb 21 02:41:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Student dropout Observational study Machine Learning (ML) eXplainable Artificial Intelligence (XAI) Academic performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-ad11bd391f9f0fedc2b13379b3c19f1e92cf0f3d82d5c9895a7809f5cfc38a853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1462-5274 |
OpenAccessLink | https://link.springer.com/10.1007/s10489-024-05483-1 |
PQID | 3068494597 |
PQPubID | 326365 |
PageCount | 23 |
ParticipantIDs | proquest_journals_3068494597 crossref_citationtrail_10_1007_s10489_024_05483_1 crossref_primary_10_1007_s10489_024_05483_1 springer_journals_10_1007_s10489_024_05483_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240400 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Boston |
PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
PublicationTitleAbbrev | Appl Intell |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Breiman (CR17) 2001; 45 CR39 CR36 CR34 CR33 CR32 CR76 CR31 Laidra, Pullmann, Allik (CR51) 2007; 42 CR75 CR73 CR72 Alhadabi, Karpinski (CR3) 2020; 25 CR71 Cover, Hart (CR25) 1967; 13 Vedel (CR86) 2014; 71 Hoffman (CR46) 2021; 269 Ortiz-Lozano, Rua-Vieites, Bilbao-Calabuig, Casadesús-Fa (CR63) 2018; 57 Blumberg, Pringle (CR16) 1982; 7 Hoerl, Kennard (CR45) 1970; 12 Tibshirani (CR84) 1996; 58 CR4 CR5 CR7 CR9 CR48 MacKay (CR59) 1994; 100 Cruz, da Silva, Capretz (CR26) 2015; 46 CR47 CR44 CR88 CR43 CR87 CR42 CR85 Yu, Jiang, Du, Gong (CR94) 2019; 94 CR40 CR81 Pérez-González, Filella, Soldevila, Faiad, Sanchez-Ruiz (CR69) 2022; 17 CR80 Carlson, Morrison (CR21) 2009; 12 Heckman, Kautz (CR41) 2012; 19 Cyrenne, Chan (CR27) 2012; 31 Webster, Yang (CR89) 2012; 13 Del Valle, Duffy (CR30) 2009; 37 Azevedo (CR6) 2020; 15 Barredo Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, Garcia, Gil-Lopez, Molina, Benjamins, Chatila, Herrera (CR8) 2020; 58 CR19 Galla, Shulman, Plummer, Gardner, Hutt, Goyer, D’Mello, Finn, Duckworth (CR38) 2019; 56 CR18 Mammadov (CR60) 2022; 90 Tavakol, Dennick (CR82) 2011; 2 De Feyter, Caers, Vigna, Berings (CR28) 2012; 22 CR15 Schaufeli, Martinez, Pinto, Salanova, Bakker (CR77) 2002; 33 CR57 CR56 CR11 CR55 Li, XU, CHEN, FAN (CR52) 2015; 23 Feldt, Angelis, Torkar, Samuelsson (CR35) 2010; 52 CR53 Albreiki, Zaki, Alashwal (CR2) 2021; 11 CR95 CR50 CR93 Behr, Giese, Teguim Kamdjou, Theune (CR13) 2020; 8 Terzis, Moridis, Economides (CR83) 2012; 28 CR90 Freund, Schapire (CR37) 1997; 55 De Raad, Schouwenburg (CR29) 1996; 10 Wilcoxon (CR91) 1945; 1 Cortes, Vapnik (CR24) 1995; 20 Batool, Rashid, Nisar, Kim, Kwon, Hussain (CR10) 2023; 28 Yucel, Bird, Young, Blanksby (CR96) 2014; 39 John, Naumann, Soto (CR49) 2008; 3 Wolters, Hussain (CR92) 2015; 10 Bergold, Steinmayr (CR14) 2018; 6 Caprara, Vecchione, Alessandri, Gerbino, Barbaranelli (CR20) 2011; 81 CR68 CR23 CR67 CR22 CR66 López-Zambrano, Lara, Romero (CR54) 2020; 10 CR65 Schaufeli, Salanova, González-Romá, Bakker (CR78) 2022; 3 CR64 Poropat (CR70) 2009; 135 MacCann, Jiang, Brown, Double, Bucich, Minbashian (CR58) 2020; 146 CR62 Affuso, Zannone, Esposito, Pannone, Miranda, De Angelis, Aquilar, Dragone, Bacchini (CR1) 2023; 38 CR61 Segura, Mello, Hernández (CR79) 2022; 10 Richardson, Abraham, Bond (CR74) 2012; 138 Beckham, Akeh, Mitaart, Moniaga (CR12) 2023; 216 B De Raad (5483_CR29) 1996; 10 NR Beckham (5483_CR12) 2023; 216 GV Caprara (5483_CR20) 2011; 81 WB Schaufeli (5483_CR77) 2002; 33 5483_CR61 M Tavakol (5483_CR82) 2011; 2 T De Feyter (5483_CR28) 2012; 22 5483_CR68 5483_CR22 5483_CR66 5483_CR23 5483_CR67 5483_CR64 MD Carlson (5483_CR21) 2009; 12 5483_CR65 P Cyrenne (5483_CR27) 2012; 31 5483_CR62 X Yu (5483_CR94) 2019; 94 M Richardson (5483_CR74) 2012; 138 S Batool (5483_CR10) 2023; 28 C MacCann (5483_CR58) 2020; 146 R Tibshirani (5483_CR84) 1996; 58 C Cortes (5483_CR24) 1995; 20 WB Schaufeli (5483_CR78) 2022; 3 S Cruz (5483_CR26) 2015; 46 A Alhadabi (5483_CR3) 2020; 25 5483_CR93 A Barredo Arrieta (5483_CR8) 2020; 58 5483_CR9 5483_CR50 CA Wolters (5483_CR92) 2015; 10 5483_CR4 5483_CR5 5483_CR90 5483_CR7 AE Hoerl (5483_CR45) 1970; 12 J López-Zambrano (5483_CR54) 2020; 10 5483_CR57 S Mammadov (5483_CR60) 2022; 90 5483_CR11 5483_CR55 5483_CR56 5483_CR53 V Terzis (5483_CR83) 2012; 28 5483_CR95 JJ Heckman (5483_CR41) 2012; 19 BJ Webster (5483_CR89) 2012; 13 5483_CR19 TM Cover (5483_CR25) 1967; 13 5483_CR18 5483_CR15 M Blumberg (5483_CR16) 1982; 7 L Breiman (5483_CR17) 2001; 45 Y Freund (5483_CR37) 1997; 55 BM Galla (5483_CR38) 2019; 56 S Bergold (5483_CR14) 2018; 6 5483_CR80 5483_CR81 M Segura (5483_CR79) 2022; 10 5483_CR47 5483_CR44 5483_CR88 5483_CR42 5483_CR43 5483_CR87 5483_CR40 D Hoffman (5483_CR46) 2021; 269 AE Poropat (5483_CR70) 2009; 135 DJ MacKay (5483_CR59) 1994; 100 5483_CR85 F Wilcoxon (5483_CR91) 1945; 1 5483_CR48 A Vedel (5483_CR86) 2014; 71 OP John (5483_CR49) 2008; 3 R Azevedo (5483_CR6) 2020; 15 5483_CR71 5483_CR72 H Li (5483_CR52) 2015; 23 R Feldt (5483_CR35) 2010; 52 JM Ortiz-Lozano (5483_CR63) 2018; 57 JC Pérez-González (5483_CR69) 2022; 17 5483_CR36 5483_CR33 R Yucel (5483_CR96) 2014; 39 G Affuso (5483_CR1) 2023; 38 5483_CR34 5483_CR31 K Laidra (5483_CR51) 2007; 42 5483_CR75 5483_CR32 5483_CR76 A Behr (5483_CR13) 2020; 8 5483_CR73 B Albreiki (5483_CR2) 2021; 11 R Del Valle (5483_CR30) 2009; 37 5483_CR39 |
References_xml | – ident: CR22 – volume: 28 start-page: 1985 issue: 5 year: 2012 end-page: 1996 ident: CR83 article-title: How student’s personality traits affect Computer Based Assessment Acceptance: Integrating BFI with CBAAM publication-title: Comput Hum Behav doi: 10.1016/j.chb.2012.05.019 – volume: 38 start-page: 1 issue: 1 year: 2023 end-page: 23 ident: CR1 article-title: The effects of teacher support, parental monitoring, motivation and self-efficacy on academic performance over time publication-title: Eur J Psychol Educ doi: 10.1007/s10212-021-00594-6 – ident: CR68 – ident: CR93 – ident: CR4 – volume: 22 start-page: 439 issue: 4 year: 2012 end-page: 448 ident: CR28 article-title: Unraveling the impact of the Big Five personality traits on academic performance: The moderating and mediating effects of self-efficacy and academic motivation publication-title: Learn Individ Differ doi: 10.1016/j.lindif.2012.03.013 – ident: CR39 – ident: CR87 – volume: 10 start-page: 3359 issue: 18 year: 2022 ident: CR79 article-title: machine learning prediction of university student dropout: does preference play a key role publication-title: Mathematics doi: 10.3390/math10183359 – volume: 46 start-page: 94 year: 2015 end-page: 113 ident: CR26 article-title: Forty years of research on personality in software engineering: A mapping study publication-title: Comput Hum Behav doi: 10.1016/j.chb.2014.12.008 – volume: 12 start-page: 77 issue: 1 year: 2009 end-page: 82 ident: CR21 article-title: Study design, precision, and validity in observational studies publication-title: J Palliat Med doi: 10.1089/jpm.2008.9690 – ident: CR61 – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 ident: CR84 article-title: Regression Shrinkage and Selection via the Lasso publication-title: J R Stat Soc: Series B (Methodol) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 71 start-page: 66 year: 2014 end-page: 76 ident: CR86 article-title: The Big Five and tertiary academic performance: A systematic review and meta-analysis publication-title: Pers Individ Differ doi: 10.1016/J.PAID.2014.07.011 – volume: 57 start-page: 74 issue: 1 year: 2018 end-page: 85 ident: CR63 article-title: University student retention: Best time and data to identify undergraduate students at risk of dropout publication-title: Innov Educ Teach Int doi: 10.1080/14703297.2018.1502090 – ident: CR80 – volume: 52 start-page: 611 issue: 6 year: 2010 end-page: 624 ident: CR35 article-title: Links between the personalities, views and attitudes of software engineers publication-title: Inf Software Technol doi: 10.1016/j.infsof.2010.01.001 – volume: 146 start-page: 150 issue: 2 year: 2020 ident: CR58 article-title: Emotional intelligence predicts academic performance: A meta-analysis publication-title: Psychol Bull doi: 10.1037/bul0000219 – volume: 10 start-page: 303 issue: 5 year: 1996 end-page: 336 ident: CR29 article-title: Personality in learning and education: A review publication-title: European J Personal doi: 10.1002/(SICI)1099-0984(199612)10:5<303::AID-PER262>3.0.CO;2-2 – volume: 135 start-page: 322 issue: 2 year: 2009 ident: CR70 article-title: A meta-analysis of the five-factor model of personality and academic performance publication-title: Psychol Bull doi: 10.1037/a0014996 – ident: CR42 – volume: 31 start-page: 524 issue: 5 year: 2012 end-page: 542 ident: CR27 article-title: High school grades and university performance: A case study publication-title: Econ Educ Rev doi: 10.1016/j.econedurev.2012.03.005 – ident: CR71 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR17 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: CR19 – volume: 3 start-page: 71 year: 2022 end-page: 92 ident: CR78 article-title: The measurement of engagement and burnout: A two sample confirmatory factor analytic approach publication-title: J Happiness Stud doi: 10.1023/A:1015630930326 – volume: 37 start-page: 129 year: 2009 end-page: 149 ident: CR30 article-title: Online learning: Learner characteristics and their approaches to managing learning publication-title: Instr Sci doi: 10.1007/s11251-007-9039-0 – ident: CR67 – ident: CR75 – ident: CR15 – ident: CR88 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR24 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1023/A:1022627411411 – ident: CR50 – volume: 15 start-page: 91 year: 2020 end-page: 98 ident: CR6 article-title: Reflections on the field of metacognition: Issues, challenges, and opportunities publication-title: Metacognition Learn doi: 10.1007/s11409-020-09231-x – ident: CR11 – ident: CR9 – ident: CR57 – ident: CR32 – volume: 7 start-page: 560 issue: 4 year: 1982 end-page: 569 ident: CR16 article-title: The missing opportunity in organizational research: Some implications for a theory of work performance publication-title: Acad Manag Rev doi: 10.5465/amr.1982.4285240 – ident: CR36 – ident: CR85 – ident: CR5 – ident: CR81 – volume: 11 start-page: 552 issue: 9 year: 2021 ident: CR2 article-title: A systematic literature review of student’performance prediction using machine learning techniques publication-title: Educ Sci doi: 10.3390/educsci11090552 – volume: 2 start-page: 53 year: 2011 ident: CR82 article-title: Making sense of Cronbach’s alpha publication-title: Int J Med Educ doi: 10.5116/ijme.4dfb.8dfd – volume: 55 start-page: 119 issue: 1 year: 1997 end-page: 139 ident: CR37 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – ident: CR64 – volume: 269 start-page: 232 year: 2021 end-page: 240 ident: CR46 article-title: The APS and undergraduate performance in construction economics in south africa publication-title: Lect Notes Netw Syst doi: 10.1007/978-3-030-80000-0_28 – volume: 13 start-page: 21 issue: 1 year: 1967 end-page: 27 ident: CR25 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1967.1053964 – volume: 56 start-page: 2077 issue: 6 year: 2019 end-page: 2115 ident: CR38 article-title: Why high school grades are better predictors of on-time college graduation than are admissions test scores: the roles of self-regulation and cognitive ability publication-title: Am Educ Res J doi: 10.3102/0002831219843292 – ident: CR95 – ident: CR18 – ident: CR43 – ident: CR66 – ident: CR47 – ident: CR72 – ident: CR53 – volume: 10 start-page: 293 year: 2015 end-page: 311 ident: CR92 article-title: Investigating grit and its relations with college students’ self-regulated learning and academic achievement publication-title: Metacognition Learn doi: 10.1007/s11409-014-9128-9 – volume: 25 start-page: 519 issue: 1 year: 2020 end-page: 535 ident: CR3 article-title: Grit, self-efficacy, achievement orientation goals, and academic performance in University students publication-title: Int J Adolesc Youth doi: 10.1080/02673843.2019.1679202 – ident: CR33 – volume: 58 start-page: 82 year: 2020 end-page: 115 ident: CR8 article-title: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.12.012 – ident: CR56 – volume: 28 start-page: 905 issue: 1 year: 2023 end-page: 971 ident: CR10 article-title: Educational data mining to predict students’ academic performance: A survey study publication-title: Educ Inf Technol doi: 10.1007/s10639-022-11152-y – ident: CR40 – volume: 94 start-page: 96 year: 2019 end-page: 109 ident: CR94 article-title: A cross-domain collaborative filtering algorithm with expanding user and item features via the latent factor space of auxiliary domains publication-title: Pattern Recognit doi: 10.1016/j.patcog.2019.05.030 – volume: 8 start-page: 614 issue: 2 year: 2020 end-page: 652 ident: CR13 article-title: Dropping out of university: a literature review publication-title: Rev Educ doi: 10.1002/rev3.3202 – ident: CR23 – volume: 81 start-page: 78 issue: 1 year: 2011 end-page: 96 ident: CR20 article-title: The contribution of personality traits and self-efficacy beliefs to academic achievement: A longitudinal study publication-title: Br J Educ Psychol doi: 10.1348/2044-8279.002004 – volume: 13 start-page: 359 issue: 2 year: 2012 end-page: 368 ident: CR89 article-title: Transition, induction and goal achievement: first-year experiences of hong kong undergraduates publication-title: Asia Pac Educ Rev doi: 10.1007/s12564-011-9185-6 – volume: 12 start-page: 55 issue: 1 year: 1970 end-page: 67 ident: CR45 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – ident: CR44 – volume: 138 start-page: 353 issue: 2 year: 2012 ident: CR74 article-title: Psychological correlates of university students’ academic performance: a systematic review and meta-analysis publication-title: Psychol Bull doi: 10.1037/a0026838 – ident: CR48 – ident: CR73 – ident: CR65 – ident: CR90 – volume: 39 start-page: 971 issue: 8 year: 2014 end-page: 986 ident: CR96 article-title: The road to self-assessment: exemplar marking before peer review develops first-year students’ capacity to judge the quality of a scientific report publication-title: Assess & Eval High Educ doi: 10.1080/02602938.2014.880400 – volume: 216 start-page: 597 year: 2023 end-page: 603 ident: CR12 article-title: Determining factors that affect student performance using various machine learning methods publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2022.12.174 – volume: 3 start-page: 114 year: 2008 end-page: 158 ident: CR49 article-title: Paradigm shift to the integrative big five trait taxonomy publication-title: Handbook of Personality: Theory and Research – ident: CR31 – volume: 90 start-page: 222 issue: 2 year: 2022 end-page: 255 ident: CR60 article-title: Big Five personality traits and academic performance: A meta-analysis publication-title: J Personal doi: 10.1111/jopy.12663 – volume: 17 start-page: 1141 issue: 3 year: 2022 end-page: 1165 ident: CR69 article-title: Integrating self-regulated learning and individual differences in the prediction of university academic achievement across a three-year-long degree publication-title: Metacognition Learn doi: 10.1007/s11409-022-09315-w – volume: 33 start-page: 464 issue: 5 year: 2002 end-page: 481 ident: CR77 article-title: Burnout and engagement in university students: A cross-national study publication-title: Journal of cross-cultural psychology doi: 10.1177/0022022102033005003 – volume: 23 start-page: 755 issue: 5 year: 2015 ident: CR52 article-title: A reliability meta-analysis for 44 items big five inventory: Based on the reliability generalization methodology publication-title: Adv Psychol Sci doi: 10.3724/SP.J.1042.2015.00755 – ident: CR34 – ident: CR55 – volume: 19 start-page: 451 issue: 4 year: 2012 end-page: 464 ident: CR41 article-title: Hard evidence on soft skills publication-title: Labour Econ doi: 10.1016/j.labeco.2012.05.014 – ident: CR7 – ident: CR76 – volume: 10 start-page: 354 issue: 1 year: 2020 ident: CR54 article-title: Towards portability of models for predicting students’ final performance in university courses starting from moodle logs publication-title: Appl Sci doi: 10.3390/app10010354 – volume: 6 start-page: 27 issue: 2 year: 2018 ident: CR14 article-title: Personality and intelligence interact in the prediction of academic achievement publication-title: J Intell doi: 10.3390/jintelligence6020027 – volume: 100 start-page: 1053 issue: 2 year: 1994 end-page: 1062 ident: CR59 article-title: Bayesian nonlinear modeling for the prediction competition publication-title: ASHRAE Trans – ident: CR62 – volume: 1 start-page: 80 issue: 6 year: 1945 end-page: 83 ident: CR91 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bull doi: 10.2307/3001968 – volume: 42 start-page: 441 issue: 3 year: 2007 end-page: 451 ident: CR51 article-title: Personality and intelligence as predictors of academic achievement: A cross-sectional study from elementary to secondary school publication-title: Pers Individ Differ doi: 10.1016/j.paid.2006.08.001 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 5483_CR91 publication-title: Biometrics Bull doi: 10.2307/3001968 – volume: 42 start-page: 441 issue: 3 year: 2007 ident: 5483_CR51 publication-title: Pers Individ Differ doi: 10.1016/j.paid.2006.08.001 – volume: 52 start-page: 611 issue: 6 year: 2010 ident: 5483_CR35 publication-title: Inf Software Technol doi: 10.1016/j.infsof.2010.01.001 – ident: 5483_CR50 doi: 10.1109/EDUCON.2015.7096008 – ident: 5483_CR68 doi: 10.5872/psiencia/5.2.32 – volume: 12 start-page: 77 issue: 1 year: 2009 ident: 5483_CR21 publication-title: J Palliat Med doi: 10.1089/jpm.2008.9690 – ident: 5483_CR43 – volume: 94 start-page: 96 year: 2019 ident: 5483_CR94 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2019.05.030 – ident: 5483_CR62 – ident: 5483_CR64 doi: 10.3389/fpsyg.2017.00422 – volume: 10 start-page: 354 issue: 1 year: 2020 ident: 5483_CR54 publication-title: Appl Sci doi: 10.3390/app10010354 – volume: 31 start-page: 524 issue: 5 year: 2012 ident: 5483_CR27 publication-title: Econ Educ Rev doi: 10.1016/j.econedurev.2012.03.005 – ident: 5483_CR85 doi: 10.1162/15324430152748236 – volume: 12 start-page: 55 issue: 1 year: 1970 ident: 5483_CR45 publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 10 start-page: 293 year: 2015 ident: 5483_CR92 publication-title: Metacognition Learn doi: 10.1007/s11409-014-9128-9 – volume: 100 start-page: 1053 issue: 2 year: 1994 ident: 5483_CR59 publication-title: ASHRAE Trans – volume: 13 start-page: 359 issue: 2 year: 2012 ident: 5483_CR89 publication-title: Asia Pac Educ Rev doi: 10.1007/s12564-011-9185-6 – ident: 5483_CR11 – ident: 5483_CR88 doi: 10.2766/826962 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 5483_CR24 publication-title: Mach Learn doi: 10.1023/A:1022627411411 – ident: 5483_CR15 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 5483_CR17 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 5483_CR65 – ident: 5483_CR72 doi: 10.3991/ijet.v15i08.12525 – volume: 135 start-page: 322 issue: 2 year: 2009 ident: 5483_CR70 publication-title: Psychol Bull doi: 10.1037/a0014996 – volume: 28 start-page: 1985 issue: 5 year: 2012 ident: 5483_CR83 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2012.05.019 – ident: 5483_CR36 – ident: 5483_CR44 – ident: 5483_CR93 doi: 10.1080/10872981.2020.1742964 – ident: 5483_CR57 – ident: 5483_CR80 doi: 10.1016/j.asoc.2021.107219 – ident: 5483_CR53 doi: 10.1016/j.orp.2023.100292 – volume: 23 start-page: 755 issue: 5 year: 2015 ident: 5483_CR52 publication-title: Adv Psychol Sci doi: 10.3724/SP.J.1042.2015.00755 – ident: 5483_CR61 doi: 10.1214/aoms/1177730491 – ident: 5483_CR95 doi: 10.1016/j.ipm.2021.102691 – volume: 81 start-page: 78 issue: 1 year: 2011 ident: 5483_CR20 publication-title: Br J Educ Psychol doi: 10.1348/2044-8279.002004 – volume: 269 start-page: 232 year: 2021 ident: 5483_CR46 publication-title: Lect Notes Netw Syst doi: 10.1007/978-3-030-80000-0_28 – ident: 5483_CR90 doi: 10.1002/0471704091 – ident: 5483_CR5 doi: 10.1016/0191-8869(95)00007-S – volume: 22 start-page: 439 issue: 4 year: 2012 ident: 5483_CR28 publication-title: Learn Individ Differ doi: 10.1016/j.lindif.2012.03.013 – ident: 5483_CR9 doi: 10.1207/s15327043hup1804_3 – ident: 5483_CR42 doi: 10.1080/02635143.2021.1997978 – volume: 138 start-page: 353 issue: 2 year: 2012 ident: 5483_CR74 publication-title: Psychol Bull doi: 10.1037/a0026838 – ident: 5483_CR81 – ident: 5483_CR47 – volume: 11 start-page: 552 issue: 9 year: 2021 ident: 5483_CR2 publication-title: Educ Sci doi: 10.3390/educsci11090552 – ident: 5483_CR33 – volume: 38 start-page: 1 issue: 1 year: 2023 ident: 5483_CR1 publication-title: Eur J Psychol Educ doi: 10.1007/s10212-021-00594-6 – ident: 5483_CR87 doi: 10.3390/ijerph182413184 – volume: 56 start-page: 2077 issue: 6 year: 2019 ident: 5483_CR38 publication-title: Am Educ Res J doi: 10.3102/0002831219843292 – ident: 5483_CR39 – volume: 15 start-page: 91 year: 2020 ident: 5483_CR6 publication-title: Metacognition Learn doi: 10.1007/s11409-020-09231-x – ident: 5483_CR34 doi: 10.1007/s10639-021-10741-7 – ident: 5483_CR7 doi: 10.17705/1CAIS.01804 – ident: 5483_CR22 doi: 10.1145/2939672.2939785 – volume: 46 start-page: 94 year: 2015 ident: 5483_CR26 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2014.12.008 – volume: 19 start-page: 451 issue: 4 year: 2012 ident: 5483_CR41 publication-title: Labour Econ doi: 10.1016/j.labeco.2012.05.014 – volume: 17 start-page: 1141 issue: 3 year: 2022 ident: 5483_CR69 publication-title: Metacognition Learn doi: 10.1007/s11409-022-09315-w – volume: 10 start-page: 3359 issue: 18 year: 2022 ident: 5483_CR79 publication-title: Mathematics doi: 10.3390/math10183359 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 5483_CR84 publication-title: J R Stat Soc: Series B (Methodol) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 8 start-page: 614 issue: 2 year: 2020 ident: 5483_CR13 publication-title: Rev Educ doi: 10.1002/rev3.3202 – volume: 146 start-page: 150 issue: 2 year: 2020 ident: 5483_CR58 publication-title: Psychol Bull doi: 10.1037/bul0000219 – ident: 5483_CR48 doi: 10.1016/j.dajour.2023.100204 – ident: 5483_CR23 doi: 10.1016/j.eswa.2023.122136 – volume: 71 start-page: 66 year: 2014 ident: 5483_CR86 publication-title: Pers Individ Differ doi: 10.1016/J.PAID.2014.07.011 – volume: 25 start-page: 519 issue: 1 year: 2020 ident: 5483_CR3 publication-title: Int J Adolesc Youth doi: 10.1080/02673843.2019.1679202 – volume: 216 start-page: 597 year: 2023 ident: 5483_CR12 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2022.12.174 – ident: 5483_CR76 doi: 10.1017/CBO9780511528446 – volume: 6 start-page: 27 issue: 2 year: 2018 ident: 5483_CR14 publication-title: J Intell doi: 10.3390/jintelligence6020027 – ident: 5483_CR19 doi: 10.1016/j.caeai.2023.100196 – ident: 5483_CR32 doi: 10.23919/SoftCOM55329.2022.9911477 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 5483_CR37 publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – ident: 5483_CR55 – volume: 10 start-page: 303 issue: 5 year: 1996 ident: 5483_CR29 publication-title: European J Personal doi: 10.1002/(SICI)1099-0984(199612)10:5<303::AID-PER262>3.0.CO;2-2 – ident: 5483_CR71 doi: 10.22554/ijtel.v5i1.57 – volume: 57 start-page: 74 issue: 1 year: 2018 ident: 5483_CR63 publication-title: Innov Educ Teach Int doi: 10.1080/14703297.2018.1502090 – volume: 58 start-page: 82 year: 2020 ident: 5483_CR8 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.12.012 – ident: 5483_CR40 doi: 10.1007/978-0-387-84858-7 – volume: 90 start-page: 222 issue: 2 year: 2022 ident: 5483_CR60 publication-title: J Personal doi: 10.1111/jopy.12663 – volume: 37 start-page: 129 year: 2009 ident: 5483_CR30 publication-title: Instr Sci doi: 10.1007/s11251-007-9039-0 – volume: 33 start-page: 464 issue: 5 year: 2002 ident: 5483_CR77 publication-title: Journal of cross-cultural psychology doi: 10.1177/0022022102033005003 – ident: 5483_CR67 – volume: 3 start-page: 71 year: 2022 ident: 5483_CR78 publication-title: J Happiness Stud doi: 10.1023/A:1015630930326 – volume: 3 start-page: 114 year: 2008 ident: 5483_CR49 publication-title: Handbook of Personality: Theory and Research – ident: 5483_CR66 doi: 10.1109/ACCESS.2024.3361479 – volume: 28 start-page: 905 issue: 1 year: 2023 ident: 5483_CR10 publication-title: Educ Inf Technol doi: 10.1007/s10639-022-11152-y – ident: 5483_CR4 doi: 10.1007/s11042-024-18262-4 – ident: 5483_CR18 doi: 10.1201/9781315139470 – ident: 5483_CR75 doi: 10.1007/s10639-021-10478-3 – ident: 5483_CR31 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 5483_CR25 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1967.1053964 – ident: 5483_CR56 – ident: 5483_CR73 – volume: 39 start-page: 971 issue: 8 year: 2014 ident: 5483_CR96 publication-title: Assess & Eval High Educ doi: 10.1080/02602938.2014.880400 – volume: 2 start-page: 53 year: 2011 ident: 5483_CR82 publication-title: Int J Med Educ doi: 10.5116/ijme.4dfb.8dfd – volume: 7 start-page: 560 issue: 4 year: 1982 ident: 5483_CR16 publication-title: Acad Manag Rev doi: 10.5465/amr.1982.4285240 |
SSID | ssj0003301 |
Score | 2.367009 |
Snippet | Academic performance (AP) is crucial for lifelong success. Unfortunately, many students fail to meet expected academic benchmarks, leading to altered career... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6175 |
SubjectTerms | Academic achievement Artificial Intelligence Colleges & universities Computer Science Education Higher education Machine learning Machines Manufacturing Mechanical Engineering Personality Processes Students Teachers |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQWVj4RxQKuoENIsVJnMRjhagqRFmgUrfI8U-FBGnVtAMbL8AD8Ho8CefUaQABEkOWxPaQ8_m-T_7ujpAzlUqqWIrcJEdvijAAo0sl2vMFog-tMSb6Njl5cBv3h9H1iI1cUlhZq93rK8nqpP6U7BZZeU8QeQgz0tBDzrPOkLtbId8w6K7OX2ToVZ88ZBZeHPORS5X5eY2v4ajBmN-uRato09smmw4mQndp1x2ypotdslW3YADnkXvk1eoAn2Gmx9bSxRgQz8FD3XgEJgYElMvyle8vbyVMG-wNolD4wM3gDhZWXgaufzdMCnDNJMZ2Qp1YAFYjP4anSn6pmyGrMrDlPhn2ru4v-57rsODJMA7nnlCU5irk1HDjG61kkCNnTXgeSsoN1TyQ-D5UaaCY5ClnIkl9bpg0MkwFRvoD0iomhT4kwJjtsS44DURiQQKPTKxEEJmQKc5M0ia0_tGZdOXHbReMx6wpnGyNk6Fxsso4GW2T89Wc6bL4xp-jO7X9MueIZYaMKI14hLSpTS5qmzaff1_t6H_Dj8lGUG0rq-npkNZ8ttAnCFfm-Wm1Oz8Acw7ikg priority: 102 providerName: Springer Nature |
Title | Study regarding the influence of a student’s personality and an LMS usage profile on learning performance using machine learning techniques |
URI | https://link.springer.com/article/10.1007/s10489-024-05483-1 https://www.proquest.com/docview/3068494597 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEB61yYUL0AIi0EZz6K1YZG2vvXtCaZS0grZCQKRwstb7EyGBE-r0wI0X4AF4PZ6ks846Fkj0YB-8PwfPz367OzMfwIkRmhkuaG9SkjWltACTSeU2GilCH9bSmjjyyclX19nFPH274Itw4FaHsMrWJzaO2qy0PyN_TdBWpDIl_Ptm_T3yrFH-djVQaOxDn1yw4D3on02v33_Y-WLarTecebTLiLJMLkLaTEieS324ELUQbBFJxP5emjq8-c8VabPyzB7DwwAZcbyV8QHs2eoQHrV0DBis89ATMIdgjSfwy8cH_sAbu_QaUC2RcB5-aQlJcOVQYb0ta_nn5-8a1x0mR1UZevDy6iPe-rAzDLzeuKowkEws_YA24QB97PwSvzVhmbbrsisPWz-F-Wz6aXIRBeaFSCdZsomUYaw0iWROupGzRscl7WVzWSaaScesjDV9T4yIDddSSK5yMZKOa6cToQgBPINetarsc0DOPfe6kixWuQcPMnWZUXHqEm4kd_kAWPvTCx3Kknt2jK9FV1DZC6ogQRWNoAo2gNPdmPW2KMe9vY9aWRbBQOuiU6cBvGrl2zX_f7YX98_2Eh7EjUr52J4j6G1ubu0xwZZNOYR9MTsfQn98_vnddBg0lb5Osgm95_H4Dqor7xc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaq9gAXfgqIhQJzgBNExHGc2AeECrTa0t0VglbaW3D8s6oE2aXZCvXGC_AAvEQfiidhnLU3Aoneesgl_jlkfvxNPDMfIU-N0NRwgbFJjdaU4wGMJlXaJFWIPqzFMzH1xcnjSTE8zt9P-XSDXMRaGJ9WGX1i56jNXPt_5C8R2opc5oh_Xy--JZ41yt-uRgqNlVoc2vPvGLK1rw7eoXyfZdn-3tHbYRJYBRLNCrZMlKG0NkxSJ13qrNFZjXFaKWumqXTUykzje2ZEZriWQnJVilQ6rp1mQgnPEoEufwthhkQr2nqzN_nwce37GesIl1OMapKikNNQphOK9XKfnoQjCJMES-jfR2GPb_-5ku1Ouv1b5EaAqLC70qnbZMM22-RmpH-A4A22PeFzSA65Q376fMRzOLUzr3HNDBBXwkkkQIG5AwXtqo3m7x-_Wlj0MQCoxuADo_EnOPNpbhB4xGHeQCC1mPkFscABfK7-DL52aaC2n7JuR9veJcdXIpN7ZLOZN_Y-Ac4917uSNFOlBysyd4VRWe4YN5K7ckBo_OiVDm3QPRvHl6pv4OwFVaGgqk5QFR2Q5-s1i1UTkEtn70RZVsEhtFWvvgPyIsq3H_7_bg8u3-0JuTY8Go-q0cHk8CG5nnXq5fOKdsjm8vTMPkLItKwfBz0F8vmqTeMP6lQo4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrYS48FNALBSYA5wgahzHiX1AqNCuWtquKqDS3oLjn1UlyC7NVqg3XoAH4FX6ODwJ46y9EUj01kMu8c8hM56f-Jv5CHluhKaGC8xNajxNOTpgPFKlTVKF0Ye16BNTX5x8NC72TvL3Ez5ZI5exFsbDKqNN7Ay1mWn_j3wLQ1uRyxzj3y0XYBHHO6M382-JZ5DyN62RTmOpIgf24jumb-3r_R2U9YssG-1-ereXBIaBRLOCLRJlKK0Nk9RJlzprdFZjzlbKmmkqHbUy0_ieGZEZrqWQXJUilY5rp5lQwjNGoPlfL9ErigFZf7s7Pv6w8gOMdeTLKWY4SVHISSjZCYV7uYcq4QiGTIIl9G-32Me6_1zPdl5vdIfcCuEqbC_16y5Zs80GuR2pICBYhg1P_hyAIvfIT49NvIAzO_Xa10wBY0w4jWQoMHOgoF221Pz941cL8z4fANUYfODw6COce8gbBE5xmDUQCC6mfkEsdgCP25_C1w4Savspq9a07X1yci0yeUAGzayxDwlw7nnflaSZ8iKiMneFUVnuGDeSu3JIaPzolQ4t0T0zx5eqb-bsBVWhoKpOUBUdkperNfNlQ5ArZ29GWVbBOLRVr8pD8irKtx_-_26Prt7tGbmBR6I63B8fPCY3s067PMRokwwWZ-f2CUZPi_ppUFMgn6_7ZPwBfgUtDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+regarding+the+influence+of+a+student%E2%80%99s+personality+and+an+LMS+usage+profile+on+learning+performance+using+machine+learning+techniques&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Rico-Juan%2C+Juan+Ram%C3%B3n&rft.au=Cachero%2C+Cristina&rft.au=Maci%C3%A0%2C+Hermenegilda&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=54&rft.issue=8&rft.spage=6175&rft.epage=6197&rft_id=info:doi/10.1007%2Fs10489-024-05483-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |