Carbon fiber paper supported interlayer space enlarged Ni2Fe-LDHs improved OER electrocatalytic activity
Herein, a series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards...
Saved in:
Published in | Electrochimica acta Vol. 258; pp. 554 - 560 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
20.12.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-4686 1873-3859 |
DOI | 10.1016/j.electacta.2017.11.098 |
Cover
Abstract | Herein, a series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards oxygen evolution reaction (OER) in alkaline medium was investigated. The results demonstrate that the OER activity improvement is mainly related to the increased interlayer distance from 0.76 nm to 2.49 nm depending on the intercalated amount of SDS in Ni2Fe-LDH, and resulting in the enhanced superior surface characteristics (e.g., larger specific surface area, bigger pore size and pore volume). Among all the samples, the Ni2Fe-SDS-LDH/CFP (molar ratio SDS/Fe = 1.5) showed the best OER performance (η@10 mA cm−2 = 289 mV, Tafel slope = 39 mV dec−1) comparable with the commercial IrO2 catalyst, which corresponded to the largest interlayer space of 2.49 nm.
A series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards oxygen evolution reaction (OER) in alkaline medium was investigated. The results demonstrate that the OER activity improvement is mainly related to the increased interlayer distance from 0.76 nm to 2.49 nm, depending on the intercalation amount of SDS in the Ni2Fe-LDH. Among all samples, the Ni2Fe-SDS-LDH/CFP (molar ratio SDS/Fe = 1.5) showed the best OER performance (η@10 mA cm−2 = 289 mV, Tafel slope = 39 mV dec−1) comparable with the commercial IrO2 catalyst, which corresponded to the largest interlayer space of 2.49 nm. [Display omitted]
•SDS intercalated Ni2Fe-LDHs with different interlayer distances were prepared.•OER activity of Ni2Fe-SDS-LDH/CFP were related with the interlayer distance.•Electrocatalytic performance is higher than commercial IrO2 in alkaline medium. |
---|---|
AbstractList | Herein, a series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards oxygen evolution reaction (OER) in alkaline medium was investigated. The results demonstrate that the OER activity improvement is mainly related to the increased interlayer distance from 0.76 nm to 2.49 nm depending on the intercalated amount of SDS in Ni2Fe-LDH, and resulting in the enhanced superior surface characteristics (e.g., larger specific surface area, bigger pore size and pore volume). Among all the samples, the Ni2Fe-SDS-LDH/CFP (molar ratio SDS/Fe = 1.5) showed the best OER performance (η@10 mA cm−2 = 289 mV, Tafel slope = 39 mV dec−1) comparable with the commercial IrO2 catalyst, which corresponded to the largest interlayer space of 2.49 nm.
A series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards oxygen evolution reaction (OER) in alkaline medium was investigated. The results demonstrate that the OER activity improvement is mainly related to the increased interlayer distance from 0.76 nm to 2.49 nm, depending on the intercalation amount of SDS in the Ni2Fe-LDH. Among all samples, the Ni2Fe-SDS-LDH/CFP (molar ratio SDS/Fe = 1.5) showed the best OER performance (η@10 mA cm−2 = 289 mV, Tafel slope = 39 mV dec−1) comparable with the commercial IrO2 catalyst, which corresponded to the largest interlayer space of 2.49 nm. [Display omitted]
•SDS intercalated Ni2Fe-LDHs with different interlayer distances were prepared.•OER activity of Ni2Fe-SDS-LDH/CFP were related with the interlayer distance.•Electrocatalytic performance is higher than commercial IrO2 in alkaline medium. |
Author | Zhong, Haihong Li, Lin Cheng, Xiaokang Alonso-Vante, Nicolas Xu, Hantao Tang, Pinggui Li, Dianqing Feng, Yongjun |
Author_xml | – sequence: 1 givenname: Haihong surname: Zhong fullname: Zhong, Haihong organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China – sequence: 2 givenname: Xiaokang surname: Cheng fullname: Cheng, Xiaokang organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China – sequence: 3 givenname: Hantao surname: Xu fullname: Xu, Hantao organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China – sequence: 4 givenname: Lin surname: Li fullname: Li, Lin organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China – sequence: 5 givenname: Dianqing surname: Li fullname: Li, Dianqing organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China – sequence: 6 givenname: Pinggui surname: Tang fullname: Tang, Pinggui organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China – sequence: 7 givenname: Nicolas surname: Alonso-Vante fullname: Alonso-Vante, Nicolas organization: IC2MP, UMR-CNRS 7285, University of Poitiers, F-86022 Poitiers Cedex, France – sequence: 8 givenname: Yongjun surname: Feng fullname: Feng, Yongjun email: yjfeng@mail.buct.edu.cn organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China |
BookMark | eNqNUMFKAzEQDVLBWv0G9wd2TTbbZPfgodTWCsWC6DnMZmc1ZbtZkljo35ta8eBFYZiBN_Meb94lGfW2R0JuGM0YZeJ2m2GHOkCsLKdMZoxltCrPyJiVkqe8nFYjMqaU8bQQpbggl95vKaVSSDom73Nwte2T1tTokgGG2P3HMFgXsElMH9B1cDiCA2hMsO_AvcXNk8mXmK7vVz4xu8HZfcQ2i-fky4uzGgJ0h2B0En2ZvQmHK3LeQufx-ntOyOty8TJfpevNw-N8tk41Fzyk0FAqqrasqzqvhWg4a0VRF1DoIq-g5Sxva1lqIVnVQIu5LHiD04JjBUwIkHxC7k662lnvHbZKmwDB2D44MJ1iVB1jU1v1E5s6xqYYUzG2yJe_-IMzO3CHfzBnJybG9_YGnfLaYK-xMS7eq8aaPzU-AQYckU8 |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2022_155785 crossref_primary_10_1007_s00339_021_04614_6 crossref_primary_10_1016_j_jece_2022_108591 crossref_primary_10_1039_D3SE00573A crossref_primary_10_1360_SSC_2022_0242 crossref_primary_10_1016_j_ijhydene_2020_12_110 crossref_primary_10_1149_1945_7111_ab7179 crossref_primary_10_1016_j_molliq_2021_118399 crossref_primary_10_1002_smll_202412576 crossref_primary_10_1016_j_cej_2019_03_041 crossref_primary_10_1016_j_jelechem_2022_116427 crossref_primary_10_1021_acs_inorgchem_1c00011 crossref_primary_10_1016_j_jallcom_2021_160752 crossref_primary_10_1016_j_ijhydene_2022_11_118 crossref_primary_10_1021_acsaem_4c00009 crossref_primary_10_1016_j_apsusc_2018_10_232 crossref_primary_10_1016_j_apsusc_2020_145570 crossref_primary_10_1016_j_crcon_2020_12_007 crossref_primary_10_1039_C9RE00334G crossref_primary_10_1002_cssc_201901364 crossref_primary_10_1016_j_rser_2020_110085 crossref_primary_10_1016_j_ijhydene_2018_10_015 crossref_primary_10_1016_j_electacta_2021_138559 crossref_primary_10_1002_adma_202210871 crossref_primary_10_1002_aenm_202002863 crossref_primary_10_1039_C8QI00189H crossref_primary_10_1016_j_chphma_2022_11_001 crossref_primary_10_1016_j_cclet_2021_12_033 crossref_primary_10_1016_j_jssc_2023_124048 crossref_primary_10_1021_acsaem_1c00262 crossref_primary_10_1016_j_apsusc_2019_03_335 crossref_primary_10_1016_j_cej_2024_158565 crossref_primary_10_1016_j_ijhydene_2022_04_296 crossref_primary_10_1016_j_jpowsour_2019_227058 crossref_primary_10_2139_ssrn_4201952 crossref_primary_10_1021_acs_energyfuels_4c04519 crossref_primary_10_1039_D0SE01253J crossref_primary_10_1002_slct_202404910 crossref_primary_10_1007_s41918_022_00159_1 crossref_primary_10_1021_acssuschemeng_9b06149 crossref_primary_10_1016_j_apsusc_2024_161851 crossref_primary_10_1039_C8QI01148F crossref_primary_10_1038_s41467_022_32769_0 crossref_primary_10_1177_14658011241262747 crossref_primary_10_1002_celc_202400151 crossref_primary_10_1016_j_jallcom_2019_03_067 crossref_primary_10_1016_j_clay_2021_106360 crossref_primary_10_3390_catal11111394 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1016_j_electacta_2020_136339 |
Cites_doi | 10.1021/acsami.6b12100 10.1039/C5TA03394B 10.1016/j.mattod.2015.10.006 10.1039/c2jm16506f 10.1021/acscatal.5b01638 10.1021/acs.chemmater.5b03148 10.1021/am501256x 10.1002/adma.200903328 10.1002/anie.201402822 10.1039/C4DT01924E 10.1021/nl504872s 10.1002/anie.201306588 10.1126/science.1162018 10.1039/C6TA00328A 10.1021/acs.jpclett.5b01650 10.1016/j.nanoen.2017.05.022 10.1039/C4TA01275E 10.1039/C5CC07296D 10.1021/jp8039274 10.1002/aenm.201600116 10.1039/C4EE00436A 10.1002/aenm.201500936 10.1002/anie.201509758 10.1002/adma.201501901 10.1002/adfm.201202786 10.1021/acsami.6b02733 10.1039/C4CY00669K 10.1021/ja407115p 10.1016/j.cej.2008.06.031 10.1039/C5SC02417J 10.1002/admi.201500782 10.1039/C6CS00328A 10.1039/C4CS00470A 10.1039/C4EE03869J 10.1002/ange.201502438 10.1351/pac198557040603 10.1039/c3ra43051k 10.1016/j.electacta.2015.12.059 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.electacta.2017.11.098 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 560 |
ExternalDocumentID | 10_1016_j_electacta_2017_11_098 S0013468617324581 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 |
ID | FETCH-LOGICAL-c363t-ad0069f8b9b2b66d31f64b4a4c429af312fb78c6719dafe2743de543e9a166a73 |
IEDL.DBID | AIKHN |
ISSN | 0013-4686 |
IngestDate | Thu Apr 24 23:00:09 EDT 2025 Thu Jul 03 08:36:19 EDT 2025 Fri Feb 23 02:17:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Layered double hydroxides (LDH) Composite materials Oxygen evolution reaction Interlayer distance Intercalation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-ad0069f8b9b2b66d31f64b4a4c429af312fb78c6719dafe2743de543e9a166a73 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_electacta_2017_11_098 crossref_primary_10_1016_j_electacta_2017_11_098 elsevier_sciencedirect_doi_10_1016_j_electacta_2017_11_098 |
PublicationCentury | 2000 |
PublicationDate | 2017-12-20 |
PublicationDateYYYYMMDD | 2017-12-20 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Zhang, Xiang, Yan, Li (bib26) 2014; 2 Chen, Duan, Bian, Tang, Zheng, Qiao (bib27) 2015; 5 Burke, Enman, Batchellor, Zou, Boettcher (bib11) 2015; 27 Han, Yu, Yang, Zhao, Huang, Liu, Ajayan, Qiu (bib28) 2016; 3 Suen, Hung, Quan, Zhang, Xu, Chen (bib1) 2017; 46 Ma, Cao, Jaroniec, Qiao (bib9) 2016; 55 Tang, Wang, Wang, Li, Huang, Dong, Liu, Li, Lan (bib29) 2016; 6 Sing (bib34) 1985; 57 Liang, Meng, Cabán-Acevedo, Li, Forticaux, Xiu, Wang, Jin (bib18) 2015; 15 Liu, Ma, Cheng (bib2) 2010; 22 Shao, Li, Wei, Evans, Duan (bib20) 2015; 51 Jia, Hu, Qian, Yao, Zhang, Li, Zou (bib21) 2016; 8 Li, He (bib30) 2008; 112 Jiao, Jaroniecb, Qiao (bib5) 2015; 44 Tang, Wang, Wang, Zhang, Tian, Nie, Wei (bib23) 2015; 27 Islam, Guo, Rutman, Benson (bib32) 2013; 3 Li, Shao, An, Wang, Xu, Wei, Evans, Duan (bib33) 2015; 6 Li, He, Evans (bib31) 2008; 144 Tang, Liu, Wu, Liu, Han, Han, Huang, Liu, Kang (bib10) 2014; 6 Vlamidis, Scavetta, Gazzano, Tonelli (bib38) 2016; 188 Zhang, Shao, Zhou, Li, Xiao, Wei (bib22) 2016; 8 Tahir, Pan, Idrees, Zhang, Wang, Zou, Wang (bib4) 2017; 37 Chen, Duan, Bian, Tang, Zheng, Qiao (bib37) 2015; 5 Fabbri, Waltar, Kötz, Schmidt (bib8) 2014; 4 Long, Li, Xiao, Yan, Wang, Chen, Yang (bib24) 2014; 53 Gerken, Shaner, Massé, Porubsky, Stahl (bib14) 2014; 7 McCrory, Jung, Peters, Jaramillo (bib12) 2013; 135 Diaz-Morales, Ledezma-Yanez, Koper, Calle-Vallejo (bib19) 2015; 5 Wesley, Hong, Stoerzinger, Grimaud, Suntivichb, Horn (bib7) 2015; 8 Tang, Wang, Wang, Wei, Zhang (bib17) 2016; 4 Hu, Wang, Hu, Zhou, Chen (bib35) 2012; 22 Katsounaros, Zeradjanin, Zeradjanin, Mayrhofer (bib3) 2014; 53 Wang, Dong, Wang, Zhang, Jin (bib36) 2013; 23 Ledendecker, Krick Calderón, Papp, Steinrück, Antonietti, Shalom (bib16) 2015; 127 Burke, Zou, Enman, Kellon, Gabor, Pledger, Boettcher (bib13) 2015; 6 Tang, Han, Ji, Qiao, Zhou, Liu, Han, Huang, Liu, Kang (bib25) 2014; 43 Han, Zhao, Li (bib39) 2015; 3 Kanan, Nocera (bib15) 2008; 321 Long, Wang, Xiao, An, Yang (bib6) 2016; 19 Fabbri (10.1016/j.electacta.2017.11.098_bib8) 2014; 4 Ma (10.1016/j.electacta.2017.11.098_bib9) 2016; 55 Tang (10.1016/j.electacta.2017.11.098_bib10) 2014; 6 Liang (10.1016/j.electacta.2017.11.098_bib18) 2015; 15 Han (10.1016/j.electacta.2017.11.098_bib39) 2015; 3 Chen (10.1016/j.electacta.2017.11.098_bib27) 2015; 5 Zhang (10.1016/j.electacta.2017.11.098_bib22) 2016; 8 McCrory (10.1016/j.electacta.2017.11.098_bib12) 2013; 135 Gerken (10.1016/j.electacta.2017.11.098_bib14) 2014; 7 Diaz-Morales (10.1016/j.electacta.2017.11.098_bib19) 2015; 5 Tang (10.1016/j.electacta.2017.11.098_bib23) 2015; 27 Tang (10.1016/j.electacta.2017.11.098_bib25) 2014; 43 Li (10.1016/j.electacta.2017.11.098_bib33) 2015; 6 Suen (10.1016/j.electacta.2017.11.098_bib1) 2017; 46 Li (10.1016/j.electacta.2017.11.098_bib31) 2008; 144 Sing (10.1016/j.electacta.2017.11.098_bib34) 1985; 57 Hu (10.1016/j.electacta.2017.11.098_bib35) 2012; 22 Jia (10.1016/j.electacta.2017.11.098_bib21) 2016; 8 Long (10.1016/j.electacta.2017.11.098_bib24) 2014; 53 Long (10.1016/j.electacta.2017.11.098_bib6) 2016; 19 Li (10.1016/j.electacta.2017.11.098_bib26) 2014; 2 Chen (10.1016/j.electacta.2017.11.098_bib37) 2015; 5 Liu (10.1016/j.electacta.2017.11.098_bib2) 2010; 22 Ledendecker (10.1016/j.electacta.2017.11.098_bib16) 2015; 127 Katsounaros (10.1016/j.electacta.2017.11.098_bib3) 2014; 53 Burke (10.1016/j.electacta.2017.11.098_bib11) 2015; 27 Burke (10.1016/j.electacta.2017.11.098_bib13) 2015; 6 Wesley (10.1016/j.electacta.2017.11.098_bib7) 2015; 8 Han (10.1016/j.electacta.2017.11.098_bib28) 2016; 3 Li (10.1016/j.electacta.2017.11.098_bib30) 2008; 112 Tahir (10.1016/j.electacta.2017.11.098_bib4) 2017; 37 Kanan (10.1016/j.electacta.2017.11.098_bib15) 2008; 321 Tang (10.1016/j.electacta.2017.11.098_bib29) 2016; 6 Islam (10.1016/j.electacta.2017.11.098_bib32) 2013; 3 Shao (10.1016/j.electacta.2017.11.098_bib20) 2015; 51 Jiao (10.1016/j.electacta.2017.11.098_bib5) 2015; 44 Vlamidis (10.1016/j.electacta.2017.11.098_bib38) 2016; 188 Tang (10.1016/j.electacta.2017.11.098_bib17) 2016; 4 Wang (10.1016/j.electacta.2017.11.098_bib36) 2013; 23 |
References_xml | – volume: 5 start-page: 5380 year: 2015 ident: bib19 article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: ACS Catal. – volume: 57 start-page: 603 year: 1985 ident: bib34 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface data and porosity (recommendations 1984) publication-title: Pure Appl. Chem. – volume: 51 start-page: 15880 year: 2015 ident: bib20 article-title: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications publication-title: Chem. Commun. – volume: 43 start-page: 15119 year: 2014 ident: bib25 article-title: A high-performance reduced graphene oxide/ZnCo layered double hydroxide electrocatalyst for efficient water oxidation publication-title: Dalton. Trans. – volume: 135 start-page: 16977 year: 2013 ident: bib12 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3737 year: 2015 ident: bib13 article-title: Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy) hydroxides in alkaline media publication-title: J. Phy. Chem. Lett. – volume: 3 start-page: 16348 year: 2015 ident: bib39 article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation publication-title: J. Mater. Chem. A – volume: 8 start-page: 33697 year: 2016 ident: bib22 article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces – volume: 144 start-page: 124 year: 2008 ident: bib31 article-title: Experimental investigation of sheet flexibility of layered double hydroxides: one-pot morphosynthesis of inorganic intercalates publication-title: Chem. Eng. J. – volume: 321 start-page: 1072 year: 2008 ident: bib15 article-title: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co publication-title: Science – volume: 127 start-page: 12538 year: 2015 ident: bib16 article-title: The synthesis of nanostructured Ni publication-title: Angew. Chem. – volume: 6 start-page: 6624 year: 2015 ident: bib33 article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions publication-title: Chem. Sci. – volume: 23 start-page: 2758 year: 2013 ident: bib36 article-title: Layered α-Co(OH) publication-title: Adv. Funct. Mater. – volume: 22 start-page: 28 year: 2010 ident: bib2 article-title: Advanced materials for energy storage publication-title: Adv. Mater. – volume: 5 year: 2015 ident: bib27 article-title: Three-dimensional smart catalyst electrode for oxygen evolution reaction publication-title: Adv. Energy Mater. – volume: 8 start-page: 14527 year: 2016 ident: bib21 article-title: Formation of hierarchical structure composed of (Co/Ni)Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 7549 year: 2015 ident: bib11 article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles publication-title: Chem. Mater. – volume: 5 year: 2015 ident: bib37 article-title: Three-dimensional smart catalyst electrode for oxygen evolution reaction publication-title: Adv. Energy. Mater. – volume: 44 start-page: 2060 year: 2015 ident: bib5 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. – volume: 15 start-page: 1421 year: 2015 ident: bib18 article-title: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis publication-title: Nano Lett. – volume: 4 start-page: 3800 year: 2014 ident: bib8 article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction publication-title: Catal. Sci. Technol. – volume: 53 start-page: 102 year: 2014 ident: bib3 article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 213 year: 2016 ident: bib6 article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage publication-title: Mater. Today – volume: 46 start-page: 337 year: 2017 ident: bib1 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. – volume: 6 year: 2016 ident: bib29 article-title: Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution publication-title: Adv. Energy Mater. – volume: 27 start-page: 4516 year: 2015 ident: bib23 article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity publication-title: Adv. Mater. – volume: 112 start-page: 10909 year: 2008 ident: bib30 article-title: Multiple effects of dodecanesulfonate in the crystal growth control and morphosynthesis of layered double hydroxides publication-title: J. Phys. Chem. C – volume: 2 start-page: 13250 year: 2014 ident: bib26 article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation publication-title: J. Mater. Chem. A – volume: 3 year: 2016 ident: bib28 article-title: Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe-layered double hydroxide assembled on graphene publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 1404 year: 2015 ident: bib7 article-title: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis publication-title: Energy Environ. Sci. – volume: 4 start-page: 3210 year: 2016 ident: bib17 article-title: Guest–host modulation of multi-metallic (oxy) hydroxides for superb water oxidation publication-title: J. Mater. Chem. A – volume: 3 start-page: 24247 year: 2013 ident: bib32 article-title: Immobilization of triazabicyclodecene in surfactant modified Mg/Al layered double hydroxides publication-title: RSC Adv. – volume: 7 start-page: 2376 year: 2014 ident: bib14 article-title: A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal publication-title: Energy Environ. Sci. – volume: 22 start-page: 6010 year: 2012 ident: bib35 article-title: Three-dimensional ordered macroporous IrO publication-title: J. Mater. Chem. – volume: 6 start-page: 7918 year: 2014 ident: bib10 article-title: Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation publication-title: ACS Appl. Mater Interfaces – volume: 37 start-page: 136 year: 2017 ident: bib4 article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review publication-title: Nano Energy – volume: 53 start-page: 7584 year: 2014 ident: bib24 article-title: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 188 start-page: 635 year: 2016 ident: bib38 article-title: Iron vs aluminum based layered double hydroxides as water splitting catalysts publication-title: Electrochim. Acta – volume: 55 start-page: 1138 year: 2016 ident: bib9 article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 33697 year: 2016 ident: 10.1016/j.electacta.2017.11.098_bib22 article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12100 – volume: 3 start-page: 16348 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib39 article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03394B – volume: 19 start-page: 213 year: 2016 ident: 10.1016/j.electacta.2017.11.098_bib6 article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage publication-title: Mater. Today doi: 10.1016/j.mattod.2015.10.006 – volume: 22 start-page: 6010 year: 2012 ident: 10.1016/j.electacta.2017.11.098_bib35 article-title: Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium publication-title: J. Mater. Chem. doi: 10.1039/c2jm16506f – volume: 5 start-page: 5380 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib19 article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.5b01638 – volume: 27 start-page: 7549 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib11 article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03148 – volume: 6 start-page: 7918 year: 2014 ident: 10.1016/j.electacta.2017.11.098_bib10 article-title: Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation publication-title: ACS Appl. Mater Interfaces doi: 10.1021/am501256x – volume: 22 start-page: 28 year: 2010 ident: 10.1016/j.electacta.2017.11.098_bib2 article-title: Advanced materials for energy storage publication-title: Adv. Mater. doi: 10.1002/adma.200903328 – volume: 53 start-page: 7584 year: 2014 ident: 10.1016/j.electacta.2017.11.098_bib24 article-title: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402822 – volume: 43 start-page: 15119 year: 2014 ident: 10.1016/j.electacta.2017.11.098_bib25 article-title: A high-performance reduced graphene oxide/ZnCo layered double hydroxide electrocatalyst for efficient water oxidation publication-title: Dalton. Trans. doi: 10.1039/C4DT01924E – volume: 15 start-page: 1421 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib18 article-title: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis publication-title: Nano Lett. doi: 10.1021/nl504872s – volume: 53 start-page: 102 year: 2014 ident: 10.1016/j.electacta.2017.11.098_bib3 article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306588 – volume: 321 start-page: 1072 year: 2008 ident: 10.1016/j.electacta.2017.11.098_bib15 article-title: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+ publication-title: Science doi: 10.1126/science.1162018 – volume: 4 start-page: 3210 year: 2016 ident: 10.1016/j.electacta.2017.11.098_bib17 article-title: Guest–host modulation of multi-metallic (oxy) hydroxides for superb water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00328A – volume: 6 start-page: 3737 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib13 article-title: Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy) hydroxides in alkaline media publication-title: J. Phy. Chem. Lett. doi: 10.1021/acs.jpclett.5b01650 – volume: 37 start-page: 136 year: 2017 ident: 10.1016/j.electacta.2017.11.098_bib4 article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.022 – volume: 2 start-page: 13250 year: 2014 ident: 10.1016/j.electacta.2017.11.098_bib26 article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01275E – volume: 51 start-page: 15880 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib20 article-title: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications publication-title: Chem. Commun. doi: 10.1039/C5CC07296D – volume: 112 start-page: 10909 year: 2008 ident: 10.1016/j.electacta.2017.11.098_bib30 article-title: Multiple effects of dodecanesulfonate in the crystal growth control and morphosynthesis of layered double hydroxides publication-title: J. Phys. Chem. C doi: 10.1021/jp8039274 – volume: 6 year: 2016 ident: 10.1016/j.electacta.2017.11.098_bib29 article-title: Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600116 – volume: 7 start-page: 2376 year: 2014 ident: 10.1016/j.electacta.2017.11.098_bib14 article-title: A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00436A – volume: 5 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib27 article-title: Three-dimensional smart catalyst electrode for oxygen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500936 – volume: 55 start-page: 1138 year: 2016 ident: 10.1016/j.electacta.2017.11.098_bib9 article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509758 – volume: 27 start-page: 4516 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib23 article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity publication-title: Adv. Mater. doi: 10.1002/adma.201501901 – volume: 23 start-page: 2758 year: 2013 ident: 10.1016/j.electacta.2017.11.098_bib36 article-title: Layered α-Co(OH) 2 nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202786 – volume: 8 start-page: 14527 year: 2016 ident: 10.1016/j.electacta.2017.11.098_bib21 article-title: Formation of hierarchical structure composed of (Co/Ni)Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02733 – volume: 4 start-page: 3800 year: 2014 ident: 10.1016/j.electacta.2017.11.098_bib8 article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY00669K – volume: 135 start-page: 16977 year: 2013 ident: 10.1016/j.electacta.2017.11.098_bib12 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 144 start-page: 124 year: 2008 ident: 10.1016/j.electacta.2017.11.098_bib31 article-title: Experimental investigation of sheet flexibility of layered double hydroxides: one-pot morphosynthesis of inorganic intercalates publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.06.031 – volume: 6 start-page: 6624 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib33 article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions publication-title: Chem. Sci. doi: 10.1039/C5SC02417J – volume: 3 year: 2016 ident: 10.1016/j.electacta.2017.11.098_bib28 article-title: Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe-layered double hydroxide assembled on graphene publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500782 – volume: 46 start-page: 337 year: 2017 ident: 10.1016/j.electacta.2017.11.098_bib1 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 44 start-page: 2060 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib5 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 8 start-page: 1404 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib7 article-title: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03869J – volume: 127 start-page: 12538 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib16 article-title: The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting publication-title: Angew. Chem. doi: 10.1002/ange.201502438 – volume: 57 start-page: 603 year: 1985 ident: 10.1016/j.electacta.2017.11.098_bib34 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface data and porosity (recommendations 1984) publication-title: Pure Appl. Chem. doi: 10.1351/pac198557040603 – volume: 5 year: 2015 ident: 10.1016/j.electacta.2017.11.098_bib37 article-title: Three-dimensional smart catalyst electrode for oxygen evolution reaction publication-title: Adv. Energy. Mater. doi: 10.1002/aenm.201500936 – volume: 3 start-page: 24247 year: 2013 ident: 10.1016/j.electacta.2017.11.098_bib32 article-title: Immobilization of triazabicyclodecene in surfactant modified Mg/Al layered double hydroxides publication-title: RSC Adv. doi: 10.1039/c3ra43051k – volume: 188 start-page: 635 year: 2016 ident: 10.1016/j.electacta.2017.11.098_bib38 article-title: Iron vs aluminum based layered double hydroxides as water splitting catalysts publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.059 |
SSID | ssj0007670 |
Score | 2.4582646 |
Snippet | Herein, a series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 554 |
SubjectTerms | Composite materials Intercalation Interlayer distance Layered double hydroxides (LDH) Oxygen evolution reaction |
Title | Carbon fiber paper supported interlayer space enlarged Ni2Fe-LDHs improved OER electrocatalytic activity |
URI | https://dx.doi.org/10.1016/j.electacta.2017.11.098 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qPagH8Ylv9uA1mmQ3m8SbVKW-KoiF3sJudhcrJQ21Hrz4251Jk2JB8CCEhSwMLLPDPJaZ7wM4lblvktBVEz3KE873PYWBxEP70KHRgdMVSNJjT3b74m4QDVrQaWZhqK2y9v0zn15563rnvNbmeTkc0oxvwIVMMARjUhDR-PVyyFMZtWH58va-25s75FjGfkNkQAILbV4V24zCj9q84jNC9EyT34PUj8BzswHrdcbILmeH2oSWLbZgpdMQtW3B2g9MwW147aiJHhfMUSsIK1WJ6_tHWeGXG0boEJOR-qRNrJYts8WIesEN6w3RYr2Hq-47G1YPDbj3dP3Map6c6pnnE4_AaBKCCCd2oH9z_dLpejWdgpdzyaeeMgRL7BKd6lBLaXjgpNBCiRxjknI8CJ2Ok1zGQWqUs1iucmMjwW2qAilVzHehXYwLuwdMC-srhfcfK0J4ixKdOMwMudXCcKy49kE2-svyGmucKC9GWdNU9pbNFZ-R4rESyVDx--DPBcsZ3MbfIhfNBWULlpNhUPhL-OA_woewSn_U3BL6R9CeTj7sMaYoU30CS2dfwUltiN92AegW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kHqoH8Yn1uQev0SS72aTepCqp1gqi4C3sZnexUtLQ1oP_3pk0KQqCByHksMvAMjvMY5n5PoAzmfsmCV010aM84XzfUxhIPLQPHRodOF2BJD0MZfoi7l6j1xXoNbMw1FZZ-_6FT6-8db1yUWvzohyNaMY34EImGIIxKYho_HpVRFjttWD1qn-fDpcOOZax3xAZkMCPNq-KbUbhR21e8TkhenaT34PUt8BzuwkbdcbIrhaH2oIVW2xDu9cQtW3D-jdMwR1466mpnhTMUSsIK1WJ_9lHWeGXG0boENOx-qRFrJYts8WYesENG47QYr3BdTpjo-qhAdceb55YzZNTPfN84hEYTUIQ4cQuvNzePPdSr6ZT8HIu-dxThmCJXaK7OtRSGh44KbRQIseYpBwPQqfjJJdx0DXKWSxXubGR4LarAilVzPegVUwKuw9MC-srhfcfK0J4ixKdOMwMudXCcKy4OiAb_WV5jTVOlBfjrGkqe8-Wis9I8ViJZKj4DvhLwXIBt_G3yGVzQdkPy8kwKPwlfPAf4VNop88Pg2zQH94fwhrtUKNL6B9Baz79sMeYrsz1SW2OXweK6gU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+fiber+paper+supported+interlayer+space+enlarged+Ni2Fe-LDHs+improved+OER+electrocatalytic+activity&rft.jtitle=Electrochimica+acta&rft.au=Zhong%2C+Haihong&rft.au=Cheng%2C+Xiaokang&rft.au=Xu%2C+Hantao&rft.au=Li%2C+Lin&rft.date=2017-12-20&rft.issn=0013-4686&rft.volume=258&rft.spage=554&rft.epage=560&rft_id=info:doi/10.1016%2Fj.electacta.2017.11.098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2017_11_098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |