Carbon fiber paper supported interlayer space enlarged Ni2Fe-LDHs improved OER electrocatalytic activity

Herein, a series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 258; pp. 554 - 560
Main Authors Zhong, Haihong, Cheng, Xiaokang, Xu, Hantao, Li, Lin, Li, Dianqing, Tang, Pinggui, Alonso-Vante, Nicolas, Feng, Yongjun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.12.2017
Subjects
Online AccessGet full text
ISSN0013-4686
1873-3859
DOI10.1016/j.electacta.2017.11.098

Cover

Abstract Herein, a series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards oxygen evolution reaction (OER) in alkaline medium was investigated. The results demonstrate that the OER activity improvement is mainly related to the increased interlayer distance from 0.76 nm to 2.49 nm depending on the intercalated amount of SDS in Ni2Fe-LDH, and resulting in the enhanced superior surface characteristics (e.g., larger specific surface area, bigger pore size and pore volume). Among all the samples, the Ni2Fe-SDS-LDH/CFP (molar ratio SDS/Fe = 1.5) showed the best OER performance (η@10 mA cm−2 = 289 mV, Tafel slope = 39 mV dec−1) comparable with the commercial IrO2 catalyst, which corresponded to the largest interlayer space of 2.49 nm. A series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards oxygen evolution reaction (OER) in alkaline medium was investigated. The results demonstrate that the OER activity improvement is mainly related to the increased interlayer distance from 0.76 nm to 2.49 nm, depending on the intercalation amount of SDS in the Ni2Fe-LDH. Among all samples, the Ni2Fe-SDS-LDH/CFP (molar ratio SDS/Fe = 1.5) showed the best OER performance (η@10 mA cm−2 = 289 mV, Tafel slope = 39 mV dec−1) comparable with the commercial IrO2 catalyst, which corresponded to the largest interlayer space of 2.49 nm. [Display omitted] •SDS intercalated Ni2Fe-LDHs with different interlayer distances were prepared.•OER activity of Ni2Fe-SDS-LDH/CFP were related with the interlayer distance.•Electrocatalytic performance is higher than commercial IrO2 in alkaline medium.
AbstractList Herein, a series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards oxygen evolution reaction (OER) in alkaline medium was investigated. The results demonstrate that the OER activity improvement is mainly related to the increased interlayer distance from 0.76 nm to 2.49 nm depending on the intercalated amount of SDS in Ni2Fe-LDH, and resulting in the enhanced superior surface characteristics (e.g., larger specific surface area, bigger pore size and pore volume). Among all the samples, the Ni2Fe-SDS-LDH/CFP (molar ratio SDS/Fe = 1.5) showed the best OER performance (η@10 mA cm−2 = 289 mV, Tafel slope = 39 mV dec−1) comparable with the commercial IrO2 catalyst, which corresponded to the largest interlayer space of 2.49 nm. A series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS) as an interlayer spacer agent, and carbon fiber paper (CFP) as a conductive substrate was tailored. The electrocatalytic performance towards oxygen evolution reaction (OER) in alkaline medium was investigated. The results demonstrate that the OER activity improvement is mainly related to the increased interlayer distance from 0.76 nm to 2.49 nm, depending on the intercalation amount of SDS in the Ni2Fe-LDH. Among all samples, the Ni2Fe-SDS-LDH/CFP (molar ratio SDS/Fe = 1.5) showed the best OER performance (η@10 mA cm−2 = 289 mV, Tafel slope = 39 mV dec−1) comparable with the commercial IrO2 catalyst, which corresponded to the largest interlayer space of 2.49 nm. [Display omitted] •SDS intercalated Ni2Fe-LDHs with different interlayer distances were prepared.•OER activity of Ni2Fe-SDS-LDH/CFP were related with the interlayer distance.•Electrocatalytic performance is higher than commercial IrO2 in alkaline medium.
Author Zhong, Haihong
Li, Lin
Cheng, Xiaokang
Alonso-Vante, Nicolas
Xu, Hantao
Tang, Pinggui
Li, Dianqing
Feng, Yongjun
Author_xml – sequence: 1
  givenname: Haihong
  surname: Zhong
  fullname: Zhong, Haihong
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
– sequence: 2
  givenname: Xiaokang
  surname: Cheng
  fullname: Cheng, Xiaokang
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
– sequence: 3
  givenname: Hantao
  surname: Xu
  fullname: Xu, Hantao
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
– sequence: 4
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
– sequence: 5
  givenname: Dianqing
  surname: Li
  fullname: Li, Dianqing
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
– sequence: 6
  givenname: Pinggui
  surname: Tang
  fullname: Tang, Pinggui
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
– sequence: 7
  givenname: Nicolas
  surname: Alonso-Vante
  fullname: Alonso-Vante, Nicolas
  organization: IC2MP, UMR-CNRS 7285, University of Poitiers, F-86022 Poitiers Cedex, France
– sequence: 8
  givenname: Yongjun
  surname: Feng
  fullname: Feng, Yongjun
  email: yjfeng@mail.buct.edu.cn
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
BookMark eNqNUMFKAzEQDVLBWv0G9wd2TTbbZPfgodTWCsWC6DnMZmc1ZbtZkljo35ta8eBFYZiBN_Meb94lGfW2R0JuGM0YZeJ2m2GHOkCsLKdMZoxltCrPyJiVkqe8nFYjMqaU8bQQpbggl95vKaVSSDom73Nwte2T1tTokgGG2P3HMFgXsElMH9B1cDiCA2hMsO_AvcXNk8mXmK7vVz4xu8HZfcQ2i-fky4uzGgJ0h2B0En2ZvQmHK3LeQufx-ntOyOty8TJfpevNw-N8tk41Fzyk0FAqqrasqzqvhWg4a0VRF1DoIq-g5Sxva1lqIVnVQIu5LHiD04JjBUwIkHxC7k662lnvHbZKmwDB2D44MJ1iVB1jU1v1E5s6xqYYUzG2yJe_-IMzO3CHfzBnJybG9_YGnfLaYK-xMS7eq8aaPzU-AQYckU8
CitedBy_id crossref_primary_10_1016_j_apsusc_2022_155785
crossref_primary_10_1007_s00339_021_04614_6
crossref_primary_10_1016_j_jece_2022_108591
crossref_primary_10_1039_D3SE00573A
crossref_primary_10_1360_SSC_2022_0242
crossref_primary_10_1016_j_ijhydene_2020_12_110
crossref_primary_10_1149_1945_7111_ab7179
crossref_primary_10_1016_j_molliq_2021_118399
crossref_primary_10_1002_smll_202412576
crossref_primary_10_1016_j_cej_2019_03_041
crossref_primary_10_1016_j_jelechem_2022_116427
crossref_primary_10_1021_acs_inorgchem_1c00011
crossref_primary_10_1016_j_jallcom_2021_160752
crossref_primary_10_1016_j_ijhydene_2022_11_118
crossref_primary_10_1021_acsaem_4c00009
crossref_primary_10_1016_j_apsusc_2018_10_232
crossref_primary_10_1016_j_apsusc_2020_145570
crossref_primary_10_1016_j_crcon_2020_12_007
crossref_primary_10_1039_C9RE00334G
crossref_primary_10_1002_cssc_201901364
crossref_primary_10_1016_j_rser_2020_110085
crossref_primary_10_1016_j_ijhydene_2018_10_015
crossref_primary_10_1016_j_electacta_2021_138559
crossref_primary_10_1002_adma_202210871
crossref_primary_10_1002_aenm_202002863
crossref_primary_10_1039_C8QI00189H
crossref_primary_10_1016_j_chphma_2022_11_001
crossref_primary_10_1016_j_cclet_2021_12_033
crossref_primary_10_1016_j_jssc_2023_124048
crossref_primary_10_1021_acsaem_1c00262
crossref_primary_10_1016_j_apsusc_2019_03_335
crossref_primary_10_1016_j_cej_2024_158565
crossref_primary_10_1016_j_ijhydene_2022_04_296
crossref_primary_10_1016_j_jpowsour_2019_227058
crossref_primary_10_2139_ssrn_4201952
crossref_primary_10_1021_acs_energyfuels_4c04519
crossref_primary_10_1039_D0SE01253J
crossref_primary_10_1002_slct_202404910
crossref_primary_10_1007_s41918_022_00159_1
crossref_primary_10_1021_acssuschemeng_9b06149
crossref_primary_10_1016_j_apsusc_2024_161851
crossref_primary_10_1039_C8QI01148F
crossref_primary_10_1038_s41467_022_32769_0
crossref_primary_10_1177_14658011241262747
crossref_primary_10_1002_celc_202400151
crossref_primary_10_1016_j_jallcom_2019_03_067
crossref_primary_10_1016_j_clay_2021_106360
crossref_primary_10_3390_catal11111394
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1016_j_electacta_2020_136339
Cites_doi 10.1021/acsami.6b12100
10.1039/C5TA03394B
10.1016/j.mattod.2015.10.006
10.1039/c2jm16506f
10.1021/acscatal.5b01638
10.1021/acs.chemmater.5b03148
10.1021/am501256x
10.1002/adma.200903328
10.1002/anie.201402822
10.1039/C4DT01924E
10.1021/nl504872s
10.1002/anie.201306588
10.1126/science.1162018
10.1039/C6TA00328A
10.1021/acs.jpclett.5b01650
10.1016/j.nanoen.2017.05.022
10.1039/C4TA01275E
10.1039/C5CC07296D
10.1021/jp8039274
10.1002/aenm.201600116
10.1039/C4EE00436A
10.1002/aenm.201500936
10.1002/anie.201509758
10.1002/adma.201501901
10.1002/adfm.201202786
10.1021/acsami.6b02733
10.1039/C4CY00669K
10.1021/ja407115p
10.1016/j.cej.2008.06.031
10.1039/C5SC02417J
10.1002/admi.201500782
10.1039/C6CS00328A
10.1039/C4CS00470A
10.1039/C4EE03869J
10.1002/ange.201502438
10.1351/pac198557040603
10.1039/c3ra43051k
10.1016/j.electacta.2015.12.059
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.electacta.2017.11.098
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 560
ExternalDocumentID 10_1016_j_electacta_2017_11_098
S0013468617324581
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
ID FETCH-LOGICAL-c363t-ad0069f8b9b2b66d31f64b4a4c429af312fb78c6719dafe2743de543e9a166a73
IEDL.DBID AIKHN
ISSN 0013-4686
IngestDate Thu Apr 24 23:00:09 EDT 2025
Thu Jul 03 08:36:19 EDT 2025
Fri Feb 23 02:17:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Layered double hydroxides (LDH)
Composite materials
Oxygen evolution reaction
Interlayer distance
Intercalation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ad0069f8b9b2b66d31f64b4a4c429af312fb78c6719dafe2743de543e9a166a73
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_electacta_2017_11_098
crossref_primary_10_1016_j_electacta_2017_11_098
elsevier_sciencedirect_doi_10_1016_j_electacta_2017_11_098
PublicationCentury 2000
PublicationDate 2017-12-20
PublicationDateYYYYMMDD 2017-12-20
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-20
  day: 20
PublicationDecade 2010
PublicationTitle Electrochimica acta
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Zhang, Xiang, Yan, Li (bib26) 2014; 2
Chen, Duan, Bian, Tang, Zheng, Qiao (bib27) 2015; 5
Burke, Enman, Batchellor, Zou, Boettcher (bib11) 2015; 27
Han, Yu, Yang, Zhao, Huang, Liu, Ajayan, Qiu (bib28) 2016; 3
Suen, Hung, Quan, Zhang, Xu, Chen (bib1) 2017; 46
Ma, Cao, Jaroniec, Qiao (bib9) 2016; 55
Tang, Wang, Wang, Li, Huang, Dong, Liu, Li, Lan (bib29) 2016; 6
Sing (bib34) 1985; 57
Liang, Meng, Cabán-Acevedo, Li, Forticaux, Xiu, Wang, Jin (bib18) 2015; 15
Liu, Ma, Cheng (bib2) 2010; 22
Shao, Li, Wei, Evans, Duan (bib20) 2015; 51
Jia, Hu, Qian, Yao, Zhang, Li, Zou (bib21) 2016; 8
Li, He (bib30) 2008; 112
Jiao, Jaroniecb, Qiao (bib5) 2015; 44
Tang, Wang, Wang, Zhang, Tian, Nie, Wei (bib23) 2015; 27
Islam, Guo, Rutman, Benson (bib32) 2013; 3
Li, Shao, An, Wang, Xu, Wei, Evans, Duan (bib33) 2015; 6
Li, He, Evans (bib31) 2008; 144
Tang, Liu, Wu, Liu, Han, Han, Huang, Liu, Kang (bib10) 2014; 6
Vlamidis, Scavetta, Gazzano, Tonelli (bib38) 2016; 188
Zhang, Shao, Zhou, Li, Xiao, Wei (bib22) 2016; 8
Tahir, Pan, Idrees, Zhang, Wang, Zou, Wang (bib4) 2017; 37
Chen, Duan, Bian, Tang, Zheng, Qiao (bib37) 2015; 5
Fabbri, Waltar, Kötz, Schmidt (bib8) 2014; 4
Long, Li, Xiao, Yan, Wang, Chen, Yang (bib24) 2014; 53
Gerken, Shaner, Massé, Porubsky, Stahl (bib14) 2014; 7
McCrory, Jung, Peters, Jaramillo (bib12) 2013; 135
Diaz-Morales, Ledezma-Yanez, Koper, Calle-Vallejo (bib19) 2015; 5
Wesley, Hong, Stoerzinger, Grimaud, Suntivichb, Horn (bib7) 2015; 8
Tang, Wang, Wang, Wei, Zhang (bib17) 2016; 4
Hu, Wang, Hu, Zhou, Chen (bib35) 2012; 22
Katsounaros, Zeradjanin, Zeradjanin, Mayrhofer (bib3) 2014; 53
Wang, Dong, Wang, Zhang, Jin (bib36) 2013; 23
Ledendecker, Krick Calderón, Papp, Steinrück, Antonietti, Shalom (bib16) 2015; 127
Burke, Zou, Enman, Kellon, Gabor, Pledger, Boettcher (bib13) 2015; 6
Tang, Han, Ji, Qiao, Zhou, Liu, Han, Huang, Liu, Kang (bib25) 2014; 43
Han, Zhao, Li (bib39) 2015; 3
Kanan, Nocera (bib15) 2008; 321
Long, Wang, Xiao, An, Yang (bib6) 2016; 19
Fabbri (10.1016/j.electacta.2017.11.098_bib8) 2014; 4
Ma (10.1016/j.electacta.2017.11.098_bib9) 2016; 55
Tang (10.1016/j.electacta.2017.11.098_bib10) 2014; 6
Liang (10.1016/j.electacta.2017.11.098_bib18) 2015; 15
Han (10.1016/j.electacta.2017.11.098_bib39) 2015; 3
Chen (10.1016/j.electacta.2017.11.098_bib27) 2015; 5
Zhang (10.1016/j.electacta.2017.11.098_bib22) 2016; 8
McCrory (10.1016/j.electacta.2017.11.098_bib12) 2013; 135
Gerken (10.1016/j.electacta.2017.11.098_bib14) 2014; 7
Diaz-Morales (10.1016/j.electacta.2017.11.098_bib19) 2015; 5
Tang (10.1016/j.electacta.2017.11.098_bib23) 2015; 27
Tang (10.1016/j.electacta.2017.11.098_bib25) 2014; 43
Li (10.1016/j.electacta.2017.11.098_bib33) 2015; 6
Suen (10.1016/j.electacta.2017.11.098_bib1) 2017; 46
Li (10.1016/j.electacta.2017.11.098_bib31) 2008; 144
Sing (10.1016/j.electacta.2017.11.098_bib34) 1985; 57
Hu (10.1016/j.electacta.2017.11.098_bib35) 2012; 22
Jia (10.1016/j.electacta.2017.11.098_bib21) 2016; 8
Long (10.1016/j.electacta.2017.11.098_bib24) 2014; 53
Long (10.1016/j.electacta.2017.11.098_bib6) 2016; 19
Li (10.1016/j.electacta.2017.11.098_bib26) 2014; 2
Chen (10.1016/j.electacta.2017.11.098_bib37) 2015; 5
Liu (10.1016/j.electacta.2017.11.098_bib2) 2010; 22
Ledendecker (10.1016/j.electacta.2017.11.098_bib16) 2015; 127
Katsounaros (10.1016/j.electacta.2017.11.098_bib3) 2014; 53
Burke (10.1016/j.electacta.2017.11.098_bib11) 2015; 27
Burke (10.1016/j.electacta.2017.11.098_bib13) 2015; 6
Wesley (10.1016/j.electacta.2017.11.098_bib7) 2015; 8
Han (10.1016/j.electacta.2017.11.098_bib28) 2016; 3
Li (10.1016/j.electacta.2017.11.098_bib30) 2008; 112
Tahir (10.1016/j.electacta.2017.11.098_bib4) 2017; 37
Kanan (10.1016/j.electacta.2017.11.098_bib15) 2008; 321
Tang (10.1016/j.electacta.2017.11.098_bib29) 2016; 6
Islam (10.1016/j.electacta.2017.11.098_bib32) 2013; 3
Shao (10.1016/j.electacta.2017.11.098_bib20) 2015; 51
Jiao (10.1016/j.electacta.2017.11.098_bib5) 2015; 44
Vlamidis (10.1016/j.electacta.2017.11.098_bib38) 2016; 188
Tang (10.1016/j.electacta.2017.11.098_bib17) 2016; 4
Wang (10.1016/j.electacta.2017.11.098_bib36) 2013; 23
References_xml – volume: 5
  start-page: 5380
  year: 2015
  ident: bib19
  article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction
  publication-title: ACS Catal.
– volume: 57
  start-page: 603
  year: 1985
  ident: bib34
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface data and porosity (recommendations 1984)
  publication-title: Pure Appl. Chem.
– volume: 51
  start-page: 15880
  year: 2015
  ident: bib20
  article-title: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications
  publication-title: Chem. Commun.
– volume: 43
  start-page: 15119
  year: 2014
  ident: bib25
  article-title: A high-performance reduced graphene oxide/ZnCo layered double hydroxide electrocatalyst for efficient water oxidation
  publication-title: Dalton. Trans.
– volume: 135
  start-page: 16977
  year: 2013
  ident: bib12
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3737
  year: 2015
  ident: bib13
  article-title: Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy) hydroxides in alkaline media
  publication-title: J. Phy. Chem. Lett.
– volume: 3
  start-page: 16348
  year: 2015
  ident: bib39
  article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 33697
  year: 2016
  ident: bib22
  article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
– volume: 144
  start-page: 124
  year: 2008
  ident: bib31
  article-title: Experimental investigation of sheet flexibility of layered double hydroxides: one-pot morphosynthesis of inorganic intercalates
  publication-title: Chem. Eng. J.
– volume: 321
  start-page: 1072
  year: 2008
  ident: bib15
  article-title: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co
  publication-title: Science
– volume: 127
  start-page: 12538
  year: 2015
  ident: bib16
  article-title: The synthesis of nanostructured Ni
  publication-title: Angew. Chem.
– volume: 6
  start-page: 6624
  year: 2015
  ident: bib33
  article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
  publication-title: Chem. Sci.
– volume: 23
  start-page: 2758
  year: 2013
  ident: bib36
  article-title: Layered α-Co(OH)
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 28
  year: 2010
  ident: bib2
  article-title: Advanced materials for energy storage
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  ident: bib27
  article-title: Three-dimensional smart catalyst electrode for oxygen evolution reaction
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 14527
  year: 2016
  ident: bib21
  article-title: Formation of hierarchical structure composed of (Co/Ni)Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 7549
  year: 2015
  ident: bib11
  article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles
  publication-title: Chem. Mater.
– volume: 5
  year: 2015
  ident: bib37
  article-title: Three-dimensional smart catalyst electrode for oxygen evolution reaction
  publication-title: Adv. Energy. Mater.
– volume: 44
  start-page: 2060
  year: 2015
  ident: bib5
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 1421
  year: 2015
  ident: bib18
  article-title: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis
  publication-title: Nano Lett.
– volume: 4
  start-page: 3800
  year: 2014
  ident: bib8
  article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
  publication-title: Catal. Sci. Technol.
– volume: 53
  start-page: 102
  year: 2014
  ident: bib3
  article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 213
  year: 2016
  ident: bib6
  article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage
  publication-title: Mater. Today
– volume: 46
  start-page: 337
  year: 2017
  ident: bib1
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
– volume: 6
  year: 2016
  ident: bib29
  article-title: Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 4516
  year: 2015
  ident: bib23
  article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity
  publication-title: Adv. Mater.
– volume: 112
  start-page: 10909
  year: 2008
  ident: bib30
  article-title: Multiple effects of dodecanesulfonate in the crystal growth control and morphosynthesis of layered double hydroxides
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 13250
  year: 2014
  ident: bib26
  article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2016
  ident: bib28
  article-title: Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe-layered double hydroxide assembled on graphene
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 1404
  year: 2015
  ident: bib7
  article-title: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 3210
  year: 2016
  ident: bib17
  article-title: Guest–host modulation of multi-metallic (oxy) hydroxides for superb water oxidation
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 24247
  year: 2013
  ident: bib32
  article-title: Immobilization of triazabicyclodecene in surfactant modified Mg/Al layered double hydroxides
  publication-title: RSC Adv.
– volume: 7
  start-page: 2376
  year: 2014
  ident: bib14
  article-title: A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 6010
  year: 2012
  ident: bib35
  article-title: Three-dimensional ordered macroporous IrO
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 7918
  year: 2014
  ident: bib10
  article-title: Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation
  publication-title: ACS Appl. Mater Interfaces
– volume: 37
  start-page: 136
  year: 2017
  ident: bib4
  article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review
  publication-title: Nano Energy
– volume: 53
  start-page: 7584
  year: 2014
  ident: bib24
  article-title: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 188
  start-page: 635
  year: 2016
  ident: bib38
  article-title: Iron vs aluminum based layered double hydroxides as water splitting catalysts
  publication-title: Electrochim. Acta
– volume: 55
  start-page: 1138
  year: 2016
  ident: bib9
  article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 33697
  year: 2016
  ident: 10.1016/j.electacta.2017.11.098_bib22
  article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12100
– volume: 3
  start-page: 16348
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib39
  article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03394B
– volume: 19
  start-page: 213
  year: 2016
  ident: 10.1016/j.electacta.2017.11.098_bib6
  article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.10.006
– volume: 22
  start-page: 6010
  year: 2012
  ident: 10.1016/j.electacta.2017.11.098_bib35
  article-title: Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16506f
– volume: 5
  start-page: 5380
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib19
  article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01638
– volume: 27
  start-page: 7549
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib11
  article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03148
– volume: 6
  start-page: 7918
  year: 2014
  ident: 10.1016/j.electacta.2017.11.098_bib10
  article-title: Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation
  publication-title: ACS Appl. Mater Interfaces
  doi: 10.1021/am501256x
– volume: 22
  start-page: 28
  year: 2010
  ident: 10.1016/j.electacta.2017.11.098_bib2
  article-title: Advanced materials for energy storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903328
– volume: 53
  start-page: 7584
  year: 2014
  ident: 10.1016/j.electacta.2017.11.098_bib24
  article-title: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402822
– volume: 43
  start-page: 15119
  year: 2014
  ident: 10.1016/j.electacta.2017.11.098_bib25
  article-title: A high-performance reduced graphene oxide/ZnCo layered double hydroxide electrocatalyst for efficient water oxidation
  publication-title: Dalton. Trans.
  doi: 10.1039/C4DT01924E
– volume: 15
  start-page: 1421
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib18
  article-title: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis
  publication-title: Nano Lett.
  doi: 10.1021/nl504872s
– volume: 53
  start-page: 102
  year: 2014
  ident: 10.1016/j.electacta.2017.11.098_bib3
  article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201306588
– volume: 321
  start-page: 1072
  year: 2008
  ident: 10.1016/j.electacta.2017.11.098_bib15
  article-title: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+
  publication-title: Science
  doi: 10.1126/science.1162018
– volume: 4
  start-page: 3210
  year: 2016
  ident: 10.1016/j.electacta.2017.11.098_bib17
  article-title: Guest–host modulation of multi-metallic (oxy) hydroxides for superb water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00328A
– volume: 6
  start-page: 3737
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib13
  article-title: Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy) hydroxides in alkaline media
  publication-title: J. Phy. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01650
– volume: 37
  start-page: 136
  year: 2017
  ident: 10.1016/j.electacta.2017.11.098_bib4
  article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.022
– volume: 2
  start-page: 13250
  year: 2014
  ident: 10.1016/j.electacta.2017.11.098_bib26
  article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01275E
– volume: 51
  start-page: 15880
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib20
  article-title: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07296D
– volume: 112
  start-page: 10909
  year: 2008
  ident: 10.1016/j.electacta.2017.11.098_bib30
  article-title: Multiple effects of dodecanesulfonate in the crystal growth control and morphosynthesis of layered double hydroxides
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8039274
– volume: 6
  year: 2016
  ident: 10.1016/j.electacta.2017.11.098_bib29
  article-title: Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600116
– volume: 7
  start-page: 2376
  year: 2014
  ident: 10.1016/j.electacta.2017.11.098_bib14
  article-title: A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00436A
– volume: 5
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib27
  article-title: Three-dimensional smart catalyst electrode for oxygen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500936
– volume: 55
  start-page: 1138
  year: 2016
  ident: 10.1016/j.electacta.2017.11.098_bib9
  article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509758
– volume: 27
  start-page: 4516
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib23
  article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501901
– volume: 23
  start-page: 2758
  year: 2013
  ident: 10.1016/j.electacta.2017.11.098_bib36
  article-title: Layered α-Co(OH) 2 nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202786
– volume: 8
  start-page: 14527
  year: 2016
  ident: 10.1016/j.electacta.2017.11.098_bib21
  article-title: Formation of hierarchical structure composed of (Co/Ni)Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02733
– volume: 4
  start-page: 3800
  year: 2014
  ident: 10.1016/j.electacta.2017.11.098_bib8
  article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C4CY00669K
– volume: 135
  start-page: 16977
  year: 2013
  ident: 10.1016/j.electacta.2017.11.098_bib12
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 144
  start-page: 124
  year: 2008
  ident: 10.1016/j.electacta.2017.11.098_bib31
  article-title: Experimental investigation of sheet flexibility of layered double hydroxides: one-pot morphosynthesis of inorganic intercalates
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.06.031
– volume: 6
  start-page: 6624
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib33
  article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02417J
– volume: 3
  year: 2016
  ident: 10.1016/j.electacta.2017.11.098_bib28
  article-title: Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe-layered double hydroxide assembled on graphene
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500782
– volume: 46
  start-page: 337
  year: 2017
  ident: 10.1016/j.electacta.2017.11.098_bib1
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 44
  start-page: 2060
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib5
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 8
  start-page: 1404
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib7
  article-title: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03869J
– volume: 127
  start-page: 12538
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib16
  article-title: The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201502438
– volume: 57
  start-page: 603
  year: 1985
  ident: 10.1016/j.electacta.2017.11.098_bib34
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface data and porosity (recommendations 1984)
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198557040603
– volume: 5
  year: 2015
  ident: 10.1016/j.electacta.2017.11.098_bib37
  article-title: Three-dimensional smart catalyst electrode for oxygen evolution reaction
  publication-title: Adv. Energy. Mater.
  doi: 10.1002/aenm.201500936
– volume: 3
  start-page: 24247
  year: 2013
  ident: 10.1016/j.electacta.2017.11.098_bib32
  article-title: Immobilization of triazabicyclodecene in surfactant modified Mg/Al layered double hydroxides
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43051k
– volume: 188
  start-page: 635
  year: 2016
  ident: 10.1016/j.electacta.2017.11.098_bib38
  article-title: Iron vs aluminum based layered double hydroxides as water splitting catalysts
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.059
SSID ssj0007670
Score 2.4582646
Snippet Herein, a series of three-dimensional Ni2Fe-SDS-LDH/CFP non-precious metal electrocatalysts in a simple hydrothermal route using sodium dodecyl sulfonate (SDS)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 554
SubjectTerms Composite materials
Intercalation
Interlayer distance
Layered double hydroxides (LDH)
Oxygen evolution reaction
Title Carbon fiber paper supported interlayer space enlarged Ni2Fe-LDHs improved OER electrocatalytic activity
URI https://dx.doi.org/10.1016/j.electacta.2017.11.098
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qPagH8Ylv9uA1mmQ3m8SbVKW-KoiF3sJudhcrJQ21Hrz4251Jk2JB8CCEhSwMLLPDPJaZ7wM4lblvktBVEz3KE873PYWBxEP70KHRgdMVSNJjT3b74m4QDVrQaWZhqK2y9v0zn15563rnvNbmeTkc0oxvwIVMMARjUhDR-PVyyFMZtWH58va-25s75FjGfkNkQAILbV4V24zCj9q84jNC9EyT34PUj8BzswHrdcbILmeH2oSWLbZgpdMQtW3B2g9MwW147aiJHhfMUSsIK1WJ6_tHWeGXG0boEJOR-qRNrJYts8WIesEN6w3RYr2Hq-47G1YPDbj3dP3Map6c6pnnE4_AaBKCCCd2oH9z_dLpejWdgpdzyaeeMgRL7BKd6lBLaXjgpNBCiRxjknI8CJ2Ok1zGQWqUs1iucmMjwW2qAilVzHehXYwLuwdMC-srhfcfK0J4ixKdOMwMudXCcKy49kE2-svyGmucKC9GWdNU9pbNFZ-R4rESyVDx--DPBcsZ3MbfIhfNBWULlpNhUPhL-OA_woewSn_U3BL6R9CeTj7sMaYoU30CS2dfwUltiN92AegW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kHqoH8Yn1uQev0SS72aTepCqp1gqi4C3sZnexUtLQ1oP_3pk0KQqCByHksMvAMjvMY5n5PoAzmfsmCV010aM84XzfUxhIPLQPHRodOF2BJD0MZfoi7l6j1xXoNbMw1FZZ-_6FT6-8db1yUWvzohyNaMY34EImGIIxKYho_HpVRFjttWD1qn-fDpcOOZax3xAZkMCPNq-KbUbhR21e8TkhenaT34PUt8BzuwkbdcbIrhaH2oIVW2xDu9cQtW3D-jdMwR1466mpnhTMUSsIK1WJ_9lHWeGXG0boENOx-qRFrJYts8WYesENG47QYr3BdTpjo-qhAdceb55YzZNTPfN84hEYTUIQ4cQuvNzePPdSr6ZT8HIu-dxThmCJXaK7OtRSGh44KbRQIseYpBwPQqfjJJdx0DXKWSxXubGR4LarAilVzPegVUwKuw9MC-srhfcfK0J4ixKdOMwMudXCcKy4OiAb_WV5jTVOlBfjrGkqe8-Wis9I8ViJZKj4DvhLwXIBt_G3yGVzQdkPy8kwKPwlfPAf4VNop88Pg2zQH94fwhrtUKNL6B9Baz79sMeYrsz1SW2OXweK6gU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+fiber+paper+supported+interlayer+space+enlarged+Ni2Fe-LDHs+improved+OER+electrocatalytic+activity&rft.jtitle=Electrochimica+acta&rft.au=Zhong%2C+Haihong&rft.au=Cheng%2C+Xiaokang&rft.au=Xu%2C+Hantao&rft.au=Li%2C+Lin&rft.date=2017-12-20&rft.issn=0013-4686&rft.volume=258&rft.spage=554&rft.epage=560&rft_id=info:doi/10.1016%2Fj.electacta.2017.11.098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2017_11_098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon