A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods

Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in su...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematical modelling Vol. 37; no. 9; pp. 6437 - 6445
Main Authors Sadeghi, Vahid, Ebadi, Hamid, Ahmadi, Farshid Farnood
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radiometric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector Análysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters).
AbstractList Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radiometric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector Análysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters).
Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radiometric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector AnA!lysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters).
Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radiometric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector Analysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters).
Author Ebadi, Hamid
Ahmadi, Farshid Farnood
Sadeghi, Vahid
Author_xml – sequence: 1
  givenname: Vahid
  surname: Sadeghi
  fullname: Sadeghi, Vahid
  email: vahid.sadeghi.1985@gmail.com
  organization: Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, No. 1346, Vali-Asr Street, Mirdamad Cross, Tehran, Iran
– sequence: 2
  givenname: Hamid
  surname: Ebadi
  fullname: Ebadi, Hamid
  email: ebadi@kntu.ac.ir
  organization: Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, No. 1346, Vali-Asr Street, Mirdamad Cross, Tehran, Iran
– sequence: 3
  givenname: Farshid Farnood
  surname: Ahmadi
  fullname: Ahmadi, Farshid Farnood
  email: farshid_farnood@yahoo.com
  organization: Department of Geomatics Engineering, Faculty of Civil Engineering, Tabriz University, 29 Bahman Boulevard, Tabriz, Iran
BookMark eNqFUbtOAzEQdBEkCPABdC5pctjnO18iqijiJSFoQKKzHN86cTjbwfaBoOTLcRIqilCtZndmpJ0ZooHzDhA6o6SghPKLVSHXtigJZQWhBSF8gI4II81oQqqXQzSMcUUIqTM6Qt9T7OADW99Ch7UPWPbJW5mMws4HKzvzlYF32Gts-y6ZBHbtg-xwlAm6LmNsrFxAxH00boGnIRltlMmMB-jDdqQPH16xdC3OzkvY2ueDhbT0bTxBB1p2EU5_5zF6vr56mt2O7h9v7mbT-5FinKWRVHpCxkrXoErV1NCqspasbGA-lrwGqoDzSld1K2Heai3Hej5htWa04psVY8fofOe7Dv6th5iENVHlH6QD30dBeUNZNSk5_59aZ2bDxmWVqc2OqoKPMYAWyqRtZClI0wlKxKYUsRK5FLEpRRAqcilZSf8o1yFHGT73ai53GshBvRsIIioDTkFrAqgkWm_2qH8AvR-tbg
CitedBy_id crossref_primary_10_3390_s22134716
crossref_primary_10_1080_01431161_2021_1934912
crossref_primary_10_1109_JSTARS_2018_2871373
crossref_primary_10_3390_rs9111163
crossref_primary_10_1007_s12145_021_00757_5
crossref_primary_10_1007_s11223_021_00331_w
crossref_primary_10_4236_eng_2023_152007
crossref_primary_10_1016_j_isprsjprs_2017_08_002
crossref_primary_10_3390_rs14081777
crossref_primary_10_1016_j_matdes_2014_06_005
crossref_primary_10_1109_TGRS_2020_2995394
crossref_primary_10_1109_JSTARS_2023_3288973
crossref_primary_10_1109_TGRS_2021_3063151
crossref_primary_10_1016_j_matdes_2015_05_055
crossref_primary_10_1080_10095020_2020_1785958
crossref_primary_10_3390_app9214543
crossref_primary_10_1080_01431161_2022_2102951
crossref_primary_10_3390_app13042525
crossref_primary_10_3390_rs10091388
crossref_primary_10_3390_rs13050933
crossref_primary_10_1080_10106049_2022_2060316
crossref_primary_10_1080_01431161_2016_1249306
crossref_primary_10_1117_1_JRS_12_015005
crossref_primary_10_52547_jgst_12_3_125
crossref_primary_10_1088_1755_1315_1391_1_012018
crossref_primary_10_1117_1_JRS_12_045018
crossref_primary_10_1016_j_apm_2014_11_024
crossref_primary_10_1109_JSTARS_2024_3402812
crossref_primary_10_1109_JSTARS_2020_2971857
crossref_primary_10_1016_j_isprsjprs_2015_06_003
crossref_primary_10_1080_00167223_2018_1495090
crossref_primary_10_1109_TGRS_2019_2914397
crossref_primary_10_1007_s12517_017_3072_3
crossref_primary_10_1007_s41062_021_00598_7
crossref_primary_10_3390_rs13112068
crossref_primary_10_1016_j_measurement_2018_05_097
crossref_primary_10_29252_jgit_6_1_155
crossref_primary_10_3390_rs13193990
crossref_primary_10_1080_01431161_2016_1213922
crossref_primary_10_1007_s12145_021_00657_8
crossref_primary_10_3390_rs10030432
crossref_primary_10_3390_rs13163125
Cites_doi 10.3844/jcssp.2010.1027.1036
10.1016/0034-4257(88)90116-2
10.1016/0034-4257(91)90062-B
10.1016/j.inffus.2004.12.002
10.1016/j.rse.2005.09.008
10.5589/m07-028
10.1007/1-4020-3968-9
10.1016/0034-4257(88)90019-3
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2013.01.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Architecture
EndPage 6445
ExternalDocumentID 10_1016_j_apm_2013_01_006
S0307904X13000280
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AAXUO
ABAOU
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
ZMT
~02
~G-
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
G-2
HZ~
MVM
R2-
SEW
SSH
WUQ
XJT
XPP
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-acf908cf5ec2c75edc25a327eb8a65e1ce664f45daebdffa8fb935f3146daeb33
IEDL.DBID IXB
ISSN 0307-904X
IngestDate Fri Jul 11 10:19:26 EDT 2025
Fri Jul 11 10:13:46 EDT 2025
Tue Jul 01 02:00:45 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Fri Feb 23 02:30:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Change Vector Analysis (CVA)
Relative Radiometric Normalization
Principal Component Analysis (PCA)
Artificial Neural Network
Multi-temporal satellite images
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-acf908cf5ec2c75edc25a327eb8a65e1ce664f45daebdffa8fb935f3146daeb33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0307904X13000280
PQID 1513473824
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671349266
proquest_miscellaneous_1513473824
crossref_citationtrail_10_1016_j_apm_2013_01_006
crossref_primary_10_1016_j_apm_2013_01_006
elsevier_sciencedirect_doi_10_1016_j_apm_2013_01_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
2013-05-00
20130501
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematical modelling
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Biday, Bhosle (b0005) 2010; 6
Chavez (b0010) 1988; 24
C.P. Lo, X. Yang, Some practical considerations of relative radiometric normalization of multidate Landsat MSS data for land use change detection. in: Proceedings of ASPRS/RTI 1998 Annual Convention, Tampa, Florida, 1998, pp. 1184–1193.
Helmert, Ruefenacht (b0030) 2007; 33
Hall, Strebel, Nickeson, Goetz (b0025) 1991; 35
C. Salvaggio, Radiometric scene normalization utilizing statistically invariant features, in: Proceedings of Workshop Atmospheric Correction of Landsat Imagery, Defense Landsat Program Office, Torrance, California, 1993, pp.155–159.
Eric, Richard (b0020) 1984; 22
Elvidge, Yuan, Ridgeway, Lunetta (b0015) 1995; 61
J.R. Jensen, (Ed.), Urban/Suburban Land Use Analysis, in: R.N. Colwell (editor-in-chief), Manual of Remote Sensing, American Society of Photogrammetry, Falls Church, USA, 1983.
Yang, Lo (b0080) 2000; 66
Richards, Jia (b0055) 2006
Jain, Mao, Mohiuddin (b0040) 1996; 29
Schott, Salvaggio, Volchok (b0070) 1988; 26
Im, Jensen (b0035) 2005; 99
Ya’allah, Saradjian (b0075) 2005; 6
Duda, Hart, Stork (b0060) 2001
10.1016/j.apm.2013.01.006_b0050
Biday (10.1016/j.apm.2013.01.006_b0005) 2010; 6
Im (10.1016/j.apm.2013.01.006_b0035) 2005; 99
Ya’allah (10.1016/j.apm.2013.01.006_b0075) 2005; 6
Helmert (10.1016/j.apm.2013.01.006_b0030) 2007; 33
Chavez (10.1016/j.apm.2013.01.006_b0010) 1988; 24
10.1016/j.apm.2013.01.006_b0065
Elvidge (10.1016/j.apm.2013.01.006_b0015) 1995; 61
10.1016/j.apm.2013.01.006_b0045
Richards (10.1016/j.apm.2013.01.006_b0055) 2006
Yang (10.1016/j.apm.2013.01.006_b0080) 2000; 66
Jain (10.1016/j.apm.2013.01.006_b0040) 1996; 29
Schott (10.1016/j.apm.2013.01.006_b0070) 1988; 26
Eric (10.1016/j.apm.2013.01.006_b0020) 1984; 22
Duda (10.1016/j.apm.2013.01.006_b0060) 2001
Hall (10.1016/j.apm.2013.01.006_b0025) 1991; 35
References_xml – volume: 26
  start-page: 1
  year: 1988
  end-page: 16
  ident: b0070
  article-title: Radiometric scene normalization using pseudo-invariant features
  publication-title: Remote Sens. Environ.
– reference: C.P. Lo, X. Yang, Some practical considerations of relative radiometric normalization of multidate Landsat MSS data for land use change detection. in: Proceedings of ASPRS/RTI 1998 Annual Convention, Tampa, Florida, 1998, pp. 1184–1193.
– volume: 61
  start-page: 1255
  year: 1995
  end-page: 1260
  ident: b0015
  article-title: Relative radiometric normalization of landsat multispectral scanner (MSS) data using an automatic scattergram-controlled regression
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 35
  start-page: 11
  year: 1991
  end-page: 27
  ident: b0025
  article-title: Radiometric rectification: toward a common radiometric response among multidate, multisensor images
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 940
  year: 2010
  end-page: 949
  ident: b0005
  article-title: Radiometric correction of multitemporal satellite imagery
  publication-title: J. Comput. Sci.
– reference: J.R. Jensen, (Ed.), Urban/Suburban Land Use Analysis, in: R.N. Colwell (editor-in-chief), Manual of Remote Sensing, American Society of Photogrammetry, Falls Church, USA, 1983.
– reference: C. Salvaggio, Radiometric scene normalization utilizing statistically invariant features, in: Proceedings of Workshop Atmospheric Correction of Landsat Imagery, Defense Landsat Program Office, Torrance, California, 1993, pp.155–159.
– year: 2006
  ident: b0055
  article-title: Remote Sensing Digital Image Analysis
– volume: 99
  start-page: 326
  year: 2005
  end-page: 340
  ident: b0035
  article-title: Change detection model based on neighborhood correlation image analysis and decision tree classification
  publication-title: Remote Sens. Environ.
– volume: 22
  start-page: 256
  year: 1984
  end-page: 263
  ident: b0020
  article-title: A physically-based transformation of thematic mapper data-the TM tasseled cap
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2001
  ident: b0060
  article-title: Pattern Classification
– volume: 33
  start-page: 325
  year: 2007
  end-page: 340
  ident: b0030
  article-title: A comparison of radiometric normalization methods when filling cloud gaps in landsat imagery
  publication-title: Can. J. Remote Sens.
– volume: 24
  start-page: 459
  year: 1988
  end-page: 479
  ident: b0010
  article-title: An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 235
  year: 2005
  end-page: 241
  ident: b0075
  article-title: Automatic normalization of satellite images using unchanged pixels within urban areas
  publication-title: Inf. Fusion
– volume: 29
  start-page: 31
  year: 1996
  end-page: 44
  ident: b0040
  article-title: Artificial neural network: a tutorial
  publication-title: J. Comput. Sci.
– volume: 66
  start-page: 967
  year: 2000
  end-page: 980
  ident: b0080
  article-title: Relative radiometric normalization performance for change detection from multi-date satellite images
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 22
  start-page: 256
  issue: 3
  year: 1984
  ident: 10.1016/j.apm.2013.01.006_b0020
  article-title: A physically-based transformation of thematic mapper data-the TM tasseled cap
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 6
  start-page: 940
  year: 2010
  ident: 10.1016/j.apm.2013.01.006_b0005
  article-title: Radiometric correction of multitemporal satellite imagery
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2010.1027.1036
– volume: 26
  start-page: 1
  year: 1988
  ident: 10.1016/j.apm.2013.01.006_b0070
  article-title: Radiometric scene normalization using pseudo-invariant features
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90116-2
– volume: 35
  start-page: 11
  year: 1991
  ident: 10.1016/j.apm.2013.01.006_b0025
  article-title: Radiometric rectification: toward a common radiometric response among multidate, multisensor images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90062-B
– volume: 6
  start-page: 235
  year: 2005
  ident: 10.1016/j.apm.2013.01.006_b0075
  article-title: Automatic normalization of satellite images using unchanged pixels within urban areas
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2004.12.002
– volume: 99
  start-page: 326
  year: 2005
  ident: 10.1016/j.apm.2013.01.006_b0035
  article-title: Change detection model based on neighborhood correlation image analysis and decision tree classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.09.008
– ident: 10.1016/j.apm.2013.01.006_b0045
– ident: 10.1016/j.apm.2013.01.006_b0065
– volume: 29
  start-page: 31
  year: 1996
  ident: 10.1016/j.apm.2013.01.006_b0040
  article-title: Artificial neural network: a tutorial
  publication-title: J. Comput. Sci.
– volume: 61
  start-page: 1255
  year: 1995
  ident: 10.1016/j.apm.2013.01.006_b0015
  article-title: Relative radiometric normalization of landsat multispectral scanner (MSS) data using an automatic scattergram-controlled regression
  publication-title: Photogramm. Eng. Remote Sens.
– ident: 10.1016/j.apm.2013.01.006_b0050
– volume: 33
  start-page: 325
  issue: 4
  year: 2007
  ident: 10.1016/j.apm.2013.01.006_b0030
  article-title: A comparison of radiometric normalization methods when filling cloud gaps in landsat imagery
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m07-028
– year: 2006
  ident: 10.1016/j.apm.2013.01.006_b0055
  doi: 10.1007/1-4020-3968-9
– volume: 24
  start-page: 459
  year: 1988
  ident: 10.1016/j.apm.2013.01.006_b0010
  article-title: An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90019-3
– volume: 66
  start-page: 967
  year: 2000
  ident: 10.1016/j.apm.2013.01.006_b0080
  article-title: Relative radiometric normalization performance for change detection from multi-date satellite images
  publication-title: Photogramm. Eng. Remote Sens.
– year: 2001
  ident: 10.1016/j.apm.2013.01.006_b0060
SSID ssj0005904
Score 2.2464721
Snippet Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6437
SubjectTerms Adjustment
Architecture
Artificial Neural Network
Artificial neural networks
Change Vector Analysis (CVA)
Learning theory
Mathematical models
Multi-temporal satellite images
Neural networks
Pixels
Principal Component Analysis (PCA)
Relative Radiometric Normalization
Title A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods
URI https://dx.doi.org/10.1016/j.apm.2013.01.006
https://www.proquest.com/docview/1513473824
https://www.proquest.com/docview/1671349266
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4XJYD4rVaXpWROCGFxrHjJMeCQAUEF0DqzXIce9VVSSuSXjnwy5lxkiJWqAdOkRxbjjz25y-amW8IOUUJNhMxFwAAR4FgugjyjImASwt_BzrMU435zvcPcvgsbkfxaIVcdrkwGFbZYn-D6R6t25Z-u5r92Xjcf8TtmYVihA4ZdBACDnOR-iS-0cVnmEcWik4MEXt3nk0f46VnmIzOuFfuxKJH399N_6G0v3qut8hmyxnpoPmsbbJiyx2ycb8QXK12yfuAAj-mvq4NBR5K9bye-pe0RFY6adMt6dRRH0PYSlJNaKW9Jmdt6fgFsKWiGAn_10_WiEtQ1O_wDx8wTnVZ0JfF3PCiKUJd7ZHn66uny2HQllcIDJe8DrRxWZgaF1sTmSS2hYlizaPEgn1kbJmxUgon4kLbvHBOpy7PeOw4YCs2cf6brJXT0v4hFE5a7jKbiQIYIMrT5AVLEgbkMNc2ZXyfhN3CKtNqj2MJjInqgsz-KbCFQluokCmwxT45WwyZNcIbyzqLzlrqy-5RcDEsG3bSWVbBqUJXiS7tdF4p4EFcJDyNxJI-stF2lPLgZ9Mfkl-RL66B4ZNHZK1-ndtjoDh13iOr52-sR9YHN3fDh57f0R9THP_C
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELX4OEAPCApVgdIaiRNStHHsOMmRoqKlsHvpIu3Nchy7WrSbrJrsH-gvZ8ZJFhWhPfQUybHlyGOPXzRv3hByhRJsJmIuAAccBYLpIsgzJgIuLfwd6DBPNeY7j8Zy-CR-TuPpFrntc2GQVtn5_tane2_dtQy61RwsZ7PBL9yeWSimGJDBAOE22QU0kGD9hvvp91eeRxaKXg0Ru_ehTU_y0kvMRmfcS3di1aP3L6c3btrfPXeH5KADjfSm_a4jsmXLj-TDaK24Wh-TvzcUADL1hW0oAFGqV03lX9ISYem8y7eklaOeRNhpUs1prb0oZ2PpbAHOpaZIhf_tJ2vVJSgKePiHZ4xTXRZ0sZ4bXrRVqOsT8nT3Y3I7DLr6CoHhkjeBNi4LU-NiayKTxLYwUax5lFgwkIwtM1ZK4URcaJsXzunU5RmPHQfnik2cfyI7ZVXaz4TCUctdZjNRAAREfZq8YEnCAB3m2qaMn5KwX1hlOvFxrIExVz3L7FmBLRTaQoVMgS1OyfV6yLJV3tjUWfTWUv9sHwU3w6Zhl71lFRwrjJXo0larWgEQ4iLhaSQ29JGtuKOUZ_83_TeyN5yMHtXj_fjhnOxHvtIGcim_kJ3mz8peAN5p8q9-P78AI18AZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+model+for+automatic+normalization+of+multitemporal+satellite+images+using+Artificial+Neural+Network+and+mathematical+methods&rft.jtitle=Applied+mathematical+modelling&rft.au=Sadeghi%2C+Vahid&rft.au=Ebadi%2C+Hamid&rft.au=Ahmadi%2C+Farshid+Farnood&rft.date=2013-05-01&rft.issn=0307-904X&rft.volume=37&rft.issue=9&rft.spage=6437&rft.epage=6445&rft_id=info:doi/10.1016%2Fj.apm.2013.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2013_01_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon