A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods
Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in su...
Saved in:
Published in | Applied mathematical modelling Vol. 37; no. 9; pp. 6437 - 6445 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radiometric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector Análysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters). |
---|---|
AbstractList | Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radiometric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector Análysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters). Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radiometric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector AnA!lysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters). Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radiometric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector Analysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters). |
Author | Ebadi, Hamid Ahmadi, Farshid Farnood Sadeghi, Vahid |
Author_xml | – sequence: 1 givenname: Vahid surname: Sadeghi fullname: Sadeghi, Vahid email: vahid.sadeghi.1985@gmail.com organization: Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, No. 1346, Vali-Asr Street, Mirdamad Cross, Tehran, Iran – sequence: 2 givenname: Hamid surname: Ebadi fullname: Ebadi, Hamid email: ebadi@kntu.ac.ir organization: Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, No. 1346, Vali-Asr Street, Mirdamad Cross, Tehran, Iran – sequence: 3 givenname: Farshid Farnood surname: Ahmadi fullname: Ahmadi, Farshid Farnood email: farshid_farnood@yahoo.com organization: Department of Geomatics Engineering, Faculty of Civil Engineering, Tabriz University, 29 Bahman Boulevard, Tabriz, Iran |
BookMark | eNqFUbtOAzEQdBEkCPABdC5pctjnO18iqijiJSFoQKKzHN86cTjbwfaBoOTLcRIqilCtZndmpJ0ZooHzDhA6o6SghPKLVSHXtigJZQWhBSF8gI4II81oQqqXQzSMcUUIqTM6Qt9T7OADW99Ch7UPWPbJW5mMws4HKzvzlYF32Gts-y6ZBHbtg-xwlAm6LmNsrFxAxH00boGnIRltlMmMB-jDdqQPH16xdC3OzkvY2ueDhbT0bTxBB1p2EU5_5zF6vr56mt2O7h9v7mbT-5FinKWRVHpCxkrXoErV1NCqspasbGA-lrwGqoDzSld1K2Heai3Hej5htWa04psVY8fofOe7Dv6th5iENVHlH6QD30dBeUNZNSk5_59aZ2bDxmWVqc2OqoKPMYAWyqRtZClI0wlKxKYUsRK5FLEpRRAqcilZSf8o1yFHGT73ai53GshBvRsIIioDTkFrAqgkWm_2qH8AvR-tbg |
CitedBy_id | crossref_primary_10_3390_s22134716 crossref_primary_10_1080_01431161_2021_1934912 crossref_primary_10_1109_JSTARS_2018_2871373 crossref_primary_10_3390_rs9111163 crossref_primary_10_1007_s12145_021_00757_5 crossref_primary_10_1007_s11223_021_00331_w crossref_primary_10_4236_eng_2023_152007 crossref_primary_10_1016_j_isprsjprs_2017_08_002 crossref_primary_10_3390_rs14081777 crossref_primary_10_1016_j_matdes_2014_06_005 crossref_primary_10_1109_TGRS_2020_2995394 crossref_primary_10_1109_JSTARS_2023_3288973 crossref_primary_10_1109_TGRS_2021_3063151 crossref_primary_10_1016_j_matdes_2015_05_055 crossref_primary_10_1080_10095020_2020_1785958 crossref_primary_10_3390_app9214543 crossref_primary_10_1080_01431161_2022_2102951 crossref_primary_10_3390_app13042525 crossref_primary_10_3390_rs10091388 crossref_primary_10_3390_rs13050933 crossref_primary_10_1080_10106049_2022_2060316 crossref_primary_10_1080_01431161_2016_1249306 crossref_primary_10_1117_1_JRS_12_015005 crossref_primary_10_52547_jgst_12_3_125 crossref_primary_10_1088_1755_1315_1391_1_012018 crossref_primary_10_1117_1_JRS_12_045018 crossref_primary_10_1016_j_apm_2014_11_024 crossref_primary_10_1109_JSTARS_2024_3402812 crossref_primary_10_1109_JSTARS_2020_2971857 crossref_primary_10_1016_j_isprsjprs_2015_06_003 crossref_primary_10_1080_00167223_2018_1495090 crossref_primary_10_1109_TGRS_2019_2914397 crossref_primary_10_1007_s12517_017_3072_3 crossref_primary_10_1007_s41062_021_00598_7 crossref_primary_10_3390_rs13112068 crossref_primary_10_1016_j_measurement_2018_05_097 crossref_primary_10_29252_jgit_6_1_155 crossref_primary_10_3390_rs13193990 crossref_primary_10_1080_01431161_2016_1213922 crossref_primary_10_1007_s12145_021_00657_8 crossref_primary_10_3390_rs10030432 crossref_primary_10_3390_rs13163125 |
Cites_doi | 10.3844/jcssp.2010.1027.1036 10.1016/0034-4257(88)90116-2 10.1016/0034-4257(91)90062-B 10.1016/j.inffus.2004.12.002 10.1016/j.rse.2005.09.008 10.5589/m07-028 10.1007/1-4020-3968-9 10.1016/0034-4257(88)90019-3 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. |
Copyright_xml | – notice: 2013 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
DOI | 10.1016/j.apm.2013.01.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Architecture |
EndPage | 6445 |
ExternalDocumentID | 10_1016_j_apm_2013_01_006 S0307904X13000280 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AAOAW AAQFI AAXUO ABAOU ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSW SSZ T5K TN5 WH7 ZMT ~02 ~G- AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB G-2 HZ~ MVM R2- SEW SSH WUQ XJT XPP 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c363t-acf908cf5ec2c75edc25a327eb8a65e1ce664f45daebdffa8fb935f3146daeb33 |
IEDL.DBID | IXB |
ISSN | 0307-904X |
IngestDate | Fri Jul 11 10:19:26 EDT 2025 Fri Jul 11 10:13:46 EDT 2025 Tue Jul 01 02:00:45 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Fri Feb 23 02:30:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Change Vector Analysis (CVA) Relative Radiometric Normalization Principal Component Analysis (PCA) Artificial Neural Network Multi-temporal satellite images |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-acf908cf5ec2c75edc25a327eb8a65e1ce664f45daebdffa8fb935f3146daeb33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0307904X13000280 |
PQID | 1513473824 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1671349266 proquest_miscellaneous_1513473824 crossref_citationtrail_10_1016_j_apm_2013_01_006 crossref_primary_10_1016_j_apm_2013_01_006 elsevier_sciencedirect_doi_10_1016_j_apm_2013_01_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 2013-05-00 20130501 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematical modelling |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Biday, Bhosle (b0005) 2010; 6 Chavez (b0010) 1988; 24 C.P. Lo, X. Yang, Some practical considerations of relative radiometric normalization of multidate Landsat MSS data for land use change detection. in: Proceedings of ASPRS/RTI 1998 Annual Convention, Tampa, Florida, 1998, pp. 1184–1193. Helmert, Ruefenacht (b0030) 2007; 33 Hall, Strebel, Nickeson, Goetz (b0025) 1991; 35 C. Salvaggio, Radiometric scene normalization utilizing statistically invariant features, in: Proceedings of Workshop Atmospheric Correction of Landsat Imagery, Defense Landsat Program Office, Torrance, California, 1993, pp.155–159. Eric, Richard (b0020) 1984; 22 Elvidge, Yuan, Ridgeway, Lunetta (b0015) 1995; 61 J.R. Jensen, (Ed.), Urban/Suburban Land Use Analysis, in: R.N. Colwell (editor-in-chief), Manual of Remote Sensing, American Society of Photogrammetry, Falls Church, USA, 1983. Yang, Lo (b0080) 2000; 66 Richards, Jia (b0055) 2006 Jain, Mao, Mohiuddin (b0040) 1996; 29 Schott, Salvaggio, Volchok (b0070) 1988; 26 Im, Jensen (b0035) 2005; 99 Ya’allah, Saradjian (b0075) 2005; 6 Duda, Hart, Stork (b0060) 2001 10.1016/j.apm.2013.01.006_b0050 Biday (10.1016/j.apm.2013.01.006_b0005) 2010; 6 Im (10.1016/j.apm.2013.01.006_b0035) 2005; 99 Ya’allah (10.1016/j.apm.2013.01.006_b0075) 2005; 6 Helmert (10.1016/j.apm.2013.01.006_b0030) 2007; 33 Chavez (10.1016/j.apm.2013.01.006_b0010) 1988; 24 10.1016/j.apm.2013.01.006_b0065 Elvidge (10.1016/j.apm.2013.01.006_b0015) 1995; 61 10.1016/j.apm.2013.01.006_b0045 Richards (10.1016/j.apm.2013.01.006_b0055) 2006 Yang (10.1016/j.apm.2013.01.006_b0080) 2000; 66 Jain (10.1016/j.apm.2013.01.006_b0040) 1996; 29 Schott (10.1016/j.apm.2013.01.006_b0070) 1988; 26 Eric (10.1016/j.apm.2013.01.006_b0020) 1984; 22 Duda (10.1016/j.apm.2013.01.006_b0060) 2001 Hall (10.1016/j.apm.2013.01.006_b0025) 1991; 35 |
References_xml | – volume: 26 start-page: 1 year: 1988 end-page: 16 ident: b0070 article-title: Radiometric scene normalization using pseudo-invariant features publication-title: Remote Sens. Environ. – reference: C.P. Lo, X. Yang, Some practical considerations of relative radiometric normalization of multidate Landsat MSS data for land use change detection. in: Proceedings of ASPRS/RTI 1998 Annual Convention, Tampa, Florida, 1998, pp. 1184–1193. – volume: 61 start-page: 1255 year: 1995 end-page: 1260 ident: b0015 article-title: Relative radiometric normalization of landsat multispectral scanner (MSS) data using an automatic scattergram-controlled regression publication-title: Photogramm. Eng. Remote Sens. – volume: 35 start-page: 11 year: 1991 end-page: 27 ident: b0025 article-title: Radiometric rectification: toward a common radiometric response among multidate, multisensor images publication-title: Remote Sens. Environ. – volume: 6 start-page: 940 year: 2010 end-page: 949 ident: b0005 article-title: Radiometric correction of multitemporal satellite imagery publication-title: J. Comput. Sci. – reference: J.R. Jensen, (Ed.), Urban/Suburban Land Use Analysis, in: R.N. Colwell (editor-in-chief), Manual of Remote Sensing, American Society of Photogrammetry, Falls Church, USA, 1983. – reference: C. Salvaggio, Radiometric scene normalization utilizing statistically invariant features, in: Proceedings of Workshop Atmospheric Correction of Landsat Imagery, Defense Landsat Program Office, Torrance, California, 1993, pp.155–159. – year: 2006 ident: b0055 article-title: Remote Sensing Digital Image Analysis – volume: 99 start-page: 326 year: 2005 end-page: 340 ident: b0035 article-title: Change detection model based on neighborhood correlation image analysis and decision tree classification publication-title: Remote Sens. Environ. – volume: 22 start-page: 256 year: 1984 end-page: 263 ident: b0020 article-title: A physically-based transformation of thematic mapper data-the TM tasseled cap publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2001 ident: b0060 article-title: Pattern Classification – volume: 33 start-page: 325 year: 2007 end-page: 340 ident: b0030 article-title: A comparison of radiometric normalization methods when filling cloud gaps in landsat imagery publication-title: Can. J. Remote Sens. – volume: 24 start-page: 459 year: 1988 end-page: 479 ident: b0010 article-title: An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data publication-title: Remote Sens. Environ. – volume: 6 start-page: 235 year: 2005 end-page: 241 ident: b0075 article-title: Automatic normalization of satellite images using unchanged pixels within urban areas publication-title: Inf. Fusion – volume: 29 start-page: 31 year: 1996 end-page: 44 ident: b0040 article-title: Artificial neural network: a tutorial publication-title: J. Comput. Sci. – volume: 66 start-page: 967 year: 2000 end-page: 980 ident: b0080 article-title: Relative radiometric normalization performance for change detection from multi-date satellite images publication-title: Photogramm. Eng. Remote Sens. – volume: 22 start-page: 256 issue: 3 year: 1984 ident: 10.1016/j.apm.2013.01.006_b0020 article-title: A physically-based transformation of thematic mapper data-the TM tasseled cap publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 6 start-page: 940 year: 2010 ident: 10.1016/j.apm.2013.01.006_b0005 article-title: Radiometric correction of multitemporal satellite imagery publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2010.1027.1036 – volume: 26 start-page: 1 year: 1988 ident: 10.1016/j.apm.2013.01.006_b0070 article-title: Radiometric scene normalization using pseudo-invariant features publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90116-2 – volume: 35 start-page: 11 year: 1991 ident: 10.1016/j.apm.2013.01.006_b0025 article-title: Radiometric rectification: toward a common radiometric response among multidate, multisensor images publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90062-B – volume: 6 start-page: 235 year: 2005 ident: 10.1016/j.apm.2013.01.006_b0075 article-title: Automatic normalization of satellite images using unchanged pixels within urban areas publication-title: Inf. Fusion doi: 10.1016/j.inffus.2004.12.002 – volume: 99 start-page: 326 year: 2005 ident: 10.1016/j.apm.2013.01.006_b0035 article-title: Change detection model based on neighborhood correlation image analysis and decision tree classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.09.008 – ident: 10.1016/j.apm.2013.01.006_b0045 – ident: 10.1016/j.apm.2013.01.006_b0065 – volume: 29 start-page: 31 year: 1996 ident: 10.1016/j.apm.2013.01.006_b0040 article-title: Artificial neural network: a tutorial publication-title: J. Comput. Sci. – volume: 61 start-page: 1255 year: 1995 ident: 10.1016/j.apm.2013.01.006_b0015 article-title: Relative radiometric normalization of landsat multispectral scanner (MSS) data using an automatic scattergram-controlled regression publication-title: Photogramm. Eng. Remote Sens. – ident: 10.1016/j.apm.2013.01.006_b0050 – volume: 33 start-page: 325 issue: 4 year: 2007 ident: 10.1016/j.apm.2013.01.006_b0030 article-title: A comparison of radiometric normalization methods when filling cloud gaps in landsat imagery publication-title: Can. J. Remote Sens. doi: 10.5589/m07-028 – year: 2006 ident: 10.1016/j.apm.2013.01.006_b0055 doi: 10.1007/1-4020-3968-9 – volume: 24 start-page: 459 year: 1988 ident: 10.1016/j.apm.2013.01.006_b0010 article-title: An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90019-3 – volume: 66 start-page: 967 year: 2000 ident: 10.1016/j.apm.2013.01.006_b0080 article-title: Relative radiometric normalization performance for change detection from multi-date satellite images publication-title: Photogramm. Eng. Remote Sens. – year: 2001 ident: 10.1016/j.apm.2013.01.006_b0060 |
SSID | ssj0005904 |
Score | 2.2464721 |
Snippet | Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6437 |
SubjectTerms | Adjustment Architecture Artificial Neural Network Artificial neural networks Change Vector Analysis (CVA) Learning theory Mathematical models Multi-temporal satellite images Neural networks Pixels Principal Component Analysis (PCA) Relative Radiometric Normalization |
Title | A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods |
URI | https://dx.doi.org/10.1016/j.apm.2013.01.006 https://www.proquest.com/docview/1513473824 https://www.proquest.com/docview/1671349266 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4XJYD4rVaXpWROCGFxrHjJMeCQAUEF0DqzXIce9VVSSuSXjnwy5lxkiJWqAdOkRxbjjz25y-amW8IOUUJNhMxFwAAR4FgugjyjImASwt_BzrMU435zvcPcvgsbkfxaIVcdrkwGFbZYn-D6R6t25Z-u5r92Xjcf8TtmYVihA4ZdBACDnOR-iS-0cVnmEcWik4MEXt3nk0f46VnmIzOuFfuxKJH399N_6G0v3qut8hmyxnpoPmsbbJiyx2ycb8QXK12yfuAAj-mvq4NBR5K9bye-pe0RFY6adMt6dRRH0PYSlJNaKW9Jmdt6fgFsKWiGAn_10_WiEtQ1O_wDx8wTnVZ0JfF3PCiKUJd7ZHn66uny2HQllcIDJe8DrRxWZgaF1sTmSS2hYlizaPEgn1kbJmxUgon4kLbvHBOpy7PeOw4YCs2cf6brJXT0v4hFE5a7jKbiQIYIMrT5AVLEgbkMNc2ZXyfhN3CKtNqj2MJjInqgsz-KbCFQluokCmwxT45WwyZNcIbyzqLzlrqy-5RcDEsG3bSWVbBqUJXiS7tdF4p4EFcJDyNxJI-stF2lPLgZ9Mfkl-RL66B4ZNHZK1-ndtjoDh13iOr52-sR9YHN3fDh57f0R9THP_C |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELX4OEAPCApVgdIaiRNStHHsOMmRoqKlsHvpIu3Nchy7WrSbrJrsH-gvZ8ZJFhWhPfQUybHlyGOPXzRv3hByhRJsJmIuAAccBYLpIsgzJgIuLfwd6DBPNeY7j8Zy-CR-TuPpFrntc2GQVtn5_tane2_dtQy61RwsZ7PBL9yeWSimGJDBAOE22QU0kGD9hvvp91eeRxaKXg0Ru_ehTU_y0kvMRmfcS3di1aP3L6c3btrfPXeH5KADjfSm_a4jsmXLj-TDaK24Wh-TvzcUADL1hW0oAFGqV03lX9ISYem8y7eklaOeRNhpUs1prb0oZ2PpbAHOpaZIhf_tJ2vVJSgKePiHZ4xTXRZ0sZ4bXrRVqOsT8nT3Y3I7DLr6CoHhkjeBNi4LU-NiayKTxLYwUax5lFgwkIwtM1ZK4URcaJsXzunU5RmPHQfnik2cfyI7ZVXaz4TCUctdZjNRAAREfZq8YEnCAB3m2qaMn5KwX1hlOvFxrIExVz3L7FmBLRTaQoVMgS1OyfV6yLJV3tjUWfTWUv9sHwU3w6Zhl71lFRwrjJXo0larWgEQ4iLhaSQ29JGtuKOUZ_83_TeyN5yMHtXj_fjhnOxHvtIGcim_kJ3mz8peAN5p8q9-P78AI18AZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+model+for+automatic+normalization+of+multitemporal+satellite+images+using+Artificial+Neural+Network+and+mathematical+methods&rft.jtitle=Applied+mathematical+modelling&rft.au=Sadeghi%2C+Vahid&rft.au=Ebadi%2C+Hamid&rft.au=Ahmadi%2C+Farshid+Farnood&rft.date=2013-05-01&rft.issn=0307-904X&rft.volume=37&rft.issue=9&rft.spage=6437&rft.epage=6445&rft_id=info:doi/10.1016%2Fj.apm.2013.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2013_01_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |