Efficient perovskite solar cells by metal ion doping

Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challe...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 9; no. 9; pp. 2892 - 2901
Main Authors Wang, Jacob Tse-Wei, Wang, Zhiping, Pathak, Sandeep, Zhang, Wei, deQuilettes, Dane W., Wisnivesky-Rocca-Rivarola, Florencia, Huang, Jian, Nayak, Pabitra K., Patel, Jay B., Mohd Yusof, Hanis A., Vaynzof, Yana, Zhu, Rui, Ramirez, Ivan, Zhang, Jin, Ducati, Caterina, Grovenor, Chris, Johnston, Michael B., Ginger, David S., Nicholas, Robin J., Snaith, Henry J.
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challenges is to eliminate the presence of charge recombination centres throughout the film which have been observed to be most densely located at regions near the grain boundaries. Here, we introduce aluminium acetylacetonate to the perovskite precursor solution, which improves the crystal quality by reducing the microstrain in the polycrystalline film. At the same time, we achieve a reduction in the non-radiative recombination rate, a remarkable improvement in the photoluminescence quantum efficiency (PLQE) and a reduction in the electronic disorder deduced from an Urbach energy of only 12.6 meV in complete devices. As a result, we demonstrate a PCE of 19.1% with negligible hysteresis in planar heterojunction solar cells comprising all organic p and n-type charge collection layers. Our work shows that an additional level of control of perovskite thin film quality is possible via impurity cation doping, and further demonstrates the continuing importance of improving the electronic quality of the perovskite absorber and the nature of the heterojunctions to further improve the solar cell performance.
AbstractList Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challenges is to eliminate the presence of charge recombination centres throughout the film which have been observed to be most densely located at regions near the grain boundaries. Here, we introduce aluminium acetylacetonate to the perovskite precursor solution, which improves the crystal quality by reducing the microstrain in the polycrystalline film. At the same time, we achieve a reduction in the non-radiative recombination rate, a remarkable improvement in the photoluminescence quantum efficiency (PLQE) and a reduction in the electronic disorder deduced from an Urbach energy of only 12.6 meV in complete devices. As a result, we demonstrate a PCE of 19.1% with negligible hysteresis in planar heterojunction solar cells comprising all organic p and n-type charge collection layers. Our work shows that an additional level of control of perovskite thin film quality is possible via impurity cation doping, and further demonstrates the continuing importance of improving the electronic quality of the perovskite absorber and the nature of the heterojunctions to further improve the solar cell performance.
Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challenges is to eliminate the presence of charge recombination centres throughout the film which have been observed to be most densely located at regions near the grain boundaries. Here, we introduce aluminium acetylacetonate to the perovskite precursor solution, which improves the crystal quality by reducing the microstrain in the polycrystalline film. At the same time, we achieve a reduction in the non-radiative recombination rate, a remarkable improvement in the photoluminescence quantum efficiency (PLQE) and a reduction in the electronic disorder deduced from an Urbach energy of only 12.6 meV in complete devices. As a result, we demonstrate a PCE of 19.1% with negligible hysteresis in planar heterojunction solar cells comprising all organic p and n-type charge collection layers. Our work shows that an additional level of control of perovskite thin film quality is possible via impurity cation doping, and further demonstrates the continuing importance of improving the electronic quality of the perovskite absorber and the nature of the heterojunctions to further improve the solar cell performance.
Author Ramirez, Ivan
Huang, Jian
Wang, Zhiping
Patel, Jay B.
Nicholas, Robin J.
Pathak, Sandeep
Zhang, Wei
Wisnivesky-Rocca-Rivarola, Florencia
deQuilettes, Dane W.
Mohd Yusof, Hanis A.
Zhang, Jin
Nayak, Pabitra K.
Ginger, David S.
Wang, Jacob Tse-Wei
Vaynzof, Yana
Johnston, Michael B.
Grovenor, Chris
Snaith, Henry J.
Ducati, Caterina
Zhu, Rui
Author_xml – sequence: 1
  givenname: Jacob Tse-Wei
  surname: Wang
  fullname: Wang, Jacob Tse-Wei
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 2
  givenname: Zhiping
  surname: Wang
  fullname: Wang, Zhiping
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 3
  givenname: Sandeep
  surname: Pathak
  fullname: Pathak, Sandeep
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 4
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 5
  givenname: Dane W.
  surname: deQuilettes
  fullname: deQuilettes, Dane W.
  organization: Department of Chemistry, University of Washington, Seattle, USA
– sequence: 6
  givenname: Florencia
  surname: Wisnivesky-Rocca-Rivarola
  fullname: Wisnivesky-Rocca-Rivarola, Florencia
  organization: Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
– sequence: 7
  givenname: Jian
  surname: Huang
  fullname: Huang, Jian
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 8
  givenname: Pabitra K.
  surname: Nayak
  fullname: Nayak, Pabitra K.
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 9
  givenname: Jay B.
  surname: Patel
  fullname: Patel, Jay B.
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 10
  givenname: Hanis A.
  surname: Mohd Yusof
  fullname: Mohd Yusof, Hanis A.
  organization: Department of Materials, University of Oxford, Oxford, UK
– sequence: 11
  givenname: Yana
  surname: Vaynzof
  fullname: Vaynzof, Yana
  organization: Kirchhoff Institute for Physics (KIP), 69120 Heidelberg, Germany, Centre for Advanced Materials (CAM), 69120 Heidelberg
– sequence: 12
  givenname: Rui
  orcidid: 0000-0001-7631-3589
  surname: Zhu
  fullname: Zhu, Rui
  organization: State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
– sequence: 13
  givenname: Ivan
  surname: Ramirez
  fullname: Ramirez, Ivan
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 14
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 15
  givenname: Caterina
  surname: Ducati
  fullname: Ducati, Caterina
  organization: Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
– sequence: 16
  givenname: Chris
  surname: Grovenor
  fullname: Grovenor, Chris
  organization: Department of Materials, University of Oxford, Oxford, UK
– sequence: 17
  givenname: Michael B.
  surname: Johnston
  fullname: Johnston, Michael B.
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 18
  givenname: David S.
  surname: Ginger
  fullname: Ginger, David S.
  organization: Department of Chemistry, University of Washington, Seattle, USA
– sequence: 19
  givenname: Robin J.
  surname: Nicholas
  fullname: Nicholas, Robin J.
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
– sequence: 20
  givenname: Henry J.
  surname: Snaith
  fullname: Snaith, Henry J.
  organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
BookMark eNqNkE1LxDAQhoMouLt68Rf0KEI1aZqkOepSP2DBi57LNJ1ItNvUJCvsv7fLKoJ48DRzeJ5h3ndODgc_ICFnjF4yyvXVUtY1ZVrqmwMyY0qUuVBUHn7vUhfHZB7jK6WyoErPSFlb64zDIWUjBv8R31zCLPoeQmaw72PWbrM1Jugz54es86MbXk7IkYU-4unXXJDn2_ppeZ-vHu8elter3HDJUw6Gi8qKlrUGOFSc2Qq5AQSFbWdlIWinConQCYRyUoC1jDNdamaYsp3kC3K-vzsG_77BmJq1i7uvYEC_iQ2rSqH0lLD4B1qoqlKV0BNK96gJPsaAtjEuQZripQCubxhtdl02P11OysUvZQxuDWH7F_wJCrx1mg
CitedBy_id crossref_primary_10_3390_cryst8060242
crossref_primary_10_1002_adfm_201706995
crossref_primary_10_1021_acs_chemmater_8b02989
crossref_primary_10_1039_C8TA00457A
crossref_primary_10_1016_j_jallcom_2023_168924
crossref_primary_10_1021_acs_chemmater_6b05159
crossref_primary_10_1039_C6EE02687G
crossref_primary_10_1039_C9TC03490K
crossref_primary_10_1002_aesr_202200143
crossref_primary_10_1021_acs_jpcc_7b06329
crossref_primary_10_1016_j_xcrp_2021_100415
crossref_primary_10_1007_s10854_020_04019_w
crossref_primary_10_1021_acsnano_7b02734
crossref_primary_10_1039_C9SE00513G
crossref_primary_10_1021_jacs_8b09300
crossref_primary_10_1002_admt_201800321
crossref_primary_10_1016_j_jechem_2021_01_037
crossref_primary_10_1007_s00339_019_2877_1
crossref_primary_10_1039_C8SE00127H
crossref_primary_10_1002_admi_202101693
crossref_primary_10_1016_j_solener_2019_09_100
crossref_primary_10_1002_er_6307
crossref_primary_10_1002_adma_201803336
crossref_primary_10_1021_acsami_1c07690
crossref_primary_10_1039_C8TA10094B
crossref_primary_10_1021_acsmaterialslett_0c00308
crossref_primary_10_1002_adma_201902762
crossref_primary_10_1002_solr_202100663
crossref_primary_10_1016_j_mtadv_2022_100213
crossref_primary_10_1002_idm2_12023
crossref_primary_10_1088_1361_6463_abd0ad
crossref_primary_10_1002_adma_201904702
crossref_primary_10_32604_jrm_2023_022773
crossref_primary_10_1002_smll_201704007
crossref_primary_10_1002_slct_201802109
crossref_primary_10_1039_C8TA09026B
crossref_primary_10_1016_j_solmat_2024_112815
crossref_primary_10_1016_j_trechm_2019_04_010
crossref_primary_10_1016_j_rechem_2024_101974
crossref_primary_10_1039_D2TA00617K
crossref_primary_10_1002_admt_202000260
crossref_primary_10_1002_adma_201804771
crossref_primary_10_1021_acsenergylett_9b02810
crossref_primary_10_1039_D3NR06640A
crossref_primary_10_1007_s10854_021_06653_4
crossref_primary_10_1016_j_solmat_2023_112630
crossref_primary_10_1016_j_mtener_2017_09_008
crossref_primary_10_1002_adma_201606608
crossref_primary_10_1039_D2EE02218D
crossref_primary_10_1016_j_nanoen_2022_107579
crossref_primary_10_1016_j_seppur_2024_129228
crossref_primary_10_1021_acs_jpclett_9b01588
crossref_primary_10_1039_D4TC01064G
crossref_primary_10_1016_j_jcrysgro_2025_128091
crossref_primary_10_1088_2040_8986_ac95a8
crossref_primary_10_1016_j_mtener_2018_07_003
crossref_primary_10_1016_j_ijleo_2023_171160
crossref_primary_10_1134_S1063785020030153
crossref_primary_10_1016_j_jtice_2017_09_004
crossref_primary_10_1016_j_solener_2021_04_042
crossref_primary_10_1002_adfm_202307568
crossref_primary_10_1002_aenm_201803241
crossref_primary_10_1039_D2SE01312F
crossref_primary_10_1007_s00339_022_05596_9
crossref_primary_10_1016_j_matpr_2022_03_566
crossref_primary_10_1039_D2TA08827D
crossref_primary_10_1016_j_jechem_2019_11_008
crossref_primary_10_1016_j_nanoen_2018_03_047
crossref_primary_10_3390_app9081678
crossref_primary_10_1039_C8RA01199K
crossref_primary_10_1016_j_jechem_2018_01_027
crossref_primary_10_1021_acs_jpclett_8b00964
crossref_primary_10_1039_C9NR04104D
crossref_primary_10_1002_solr_202100401
crossref_primary_10_1016_j_mtcomm_2020_101216
crossref_primary_10_1021_acs_langmuir_9b02450
crossref_primary_10_2139_ssrn_4198100
crossref_primary_10_1002_aelm_201600470
crossref_primary_10_1016_j_jechem_2022_02_007
crossref_primary_10_1021_acs_jpclett_6b01951
crossref_primary_10_1016_j_chemphys_2018_09_032
crossref_primary_10_1016_j_matchemphys_2020_124179
crossref_primary_10_1016_j_rechem_2024_101875
crossref_primary_10_1021_acsenergylett_8b02179
crossref_primary_10_3390_molecules29092104
crossref_primary_10_1016_j_solener_2021_02_064
crossref_primary_10_1039_C6TA10305G
crossref_primary_10_1002_inf2_12246
crossref_primary_10_1680_jnaen_23_00001
crossref_primary_10_1007_s10853_022_07930_1
crossref_primary_10_1021_acs_jpcc_0c11122
crossref_primary_10_1002_advs_202304733
crossref_primary_10_1016_j_optmat_2021_111806
crossref_primary_10_1039_C7TA05720B
crossref_primary_10_1063_1_5133457
crossref_primary_10_1039_D1NR07438E
crossref_primary_10_1002_advs_201700331
crossref_primary_10_1002_aenm_202001759
crossref_primary_10_1002_smll_201604153
crossref_primary_10_1039_C8TC04231D
crossref_primary_10_1039_D4EE02486A
crossref_primary_10_1021_acs_jpcc_7b06248
crossref_primary_10_1002_adom_202301318
crossref_primary_10_1002_adom_201800979
crossref_primary_10_1016_j_enchem_2020_100032
crossref_primary_10_1002_aenm_201700302
crossref_primary_10_1016_j_nanoen_2020_105249
crossref_primary_10_1002_aenm_202401414
crossref_primary_10_1038_s41586_019_1357_2
crossref_primary_10_1039_D3TC00656E
crossref_primary_10_1021_acsaem_8b00915
crossref_primary_10_1002_chem_201805370
crossref_primary_10_2139_ssrn_3975190
crossref_primary_10_1002_adfm_201705875
crossref_primary_10_1002_admi_201800326
crossref_primary_10_1016_j_jallcom_2024_177394
crossref_primary_10_1038_s41566_022_01024_9
crossref_primary_10_1016_j_jphotochemrev_2021_100405
crossref_primary_10_1039_C7RA11514H
crossref_primary_10_1002_adma_202407098
crossref_primary_10_1002_aenm_202402616
crossref_primary_10_1016_j_nanoen_2020_105237
crossref_primary_10_1002_ange_202211259
crossref_primary_10_1007_s11708_022_0826_8
crossref_primary_10_1016_j_isci_2019_07_044
crossref_primary_10_1016_j_jechem_2021_01_001
crossref_primary_10_1002_aenm_201801234
crossref_primary_10_1038_nenergy_2017_18
crossref_primary_10_1038_s41598_018_24436_6
crossref_primary_10_7498_aps_69_20200795
crossref_primary_10_1021_acs_chemmater_1c00391
crossref_primary_10_1039_C7EE02634J
crossref_primary_10_1002_admi_202002078
crossref_primary_10_1002_eem2_12283
crossref_primary_10_1039_C9SC03829A
crossref_primary_10_1016_j_jechem_2018_12_003
crossref_primary_10_1016_j_jlumin_2022_118788
crossref_primary_10_1016_j_joule_2018_11_017
crossref_primary_10_1021_acsami_3c09835
crossref_primary_10_1063_5_0080087
crossref_primary_10_1002_adfm_201804286
crossref_primary_10_3390_molecules24224039
crossref_primary_10_1002_adom_201701271
crossref_primary_10_1093_oxfmat_itab017
crossref_primary_10_1002_adfm_202411671
crossref_primary_10_1002_adma_201803792
crossref_primary_10_1002_smll_202302700
crossref_primary_10_1016_j_matlet_2023_134427
crossref_primary_10_1021_acs_jpcc_2c08483
crossref_primary_10_1039_D2CS00217E
crossref_primary_10_1002_adfm_201910004
crossref_primary_10_1002_aenm_201700763
crossref_primary_10_1016_j_electacta_2020_136162
crossref_primary_10_1021_acs_jpcc_1c01509
crossref_primary_10_3390_nano14020172
crossref_primary_10_1002_solr_202300070
crossref_primary_10_1016_j_solener_2024_112818
crossref_primary_10_1063_5_0129883
crossref_primary_10_1039_C8NR01717D
crossref_primary_10_1039_D1TC05831B
crossref_primary_10_1039_C6TA08699C
crossref_primary_10_1002_adma_201607039
crossref_primary_10_1002_eem2_12035
crossref_primary_10_1002_adma_201803428
crossref_primary_10_3390_cryst11030295
crossref_primary_10_1016_j_mtener_2017_06_009
crossref_primary_10_1002_adma_202106380
crossref_primary_10_1007_s12274_019_2501_x
crossref_primary_10_1021_acs_analchem_2c05678
crossref_primary_10_1016_j_solmat_2021_111400
crossref_primary_10_1021_jacs_7b01439
crossref_primary_10_1039_D2EE01070D
crossref_primary_10_1039_D3TA03042C
crossref_primary_10_1002_aenm_201802346
crossref_primary_10_1016_j_cej_2025_161388
crossref_primary_10_1016_j_inoche_2025_114007
crossref_primary_10_1002_advs_201700131
crossref_primary_10_1002_adma_202107420
crossref_primary_10_1007_s40843_021_1906_5
crossref_primary_10_1016_j_jpowsour_2019_04_041
crossref_primary_10_1039_D0RA04641H
crossref_primary_10_1016_j_orgel_2021_106080
crossref_primary_10_1016_j_xcrp_2024_102398
crossref_primary_10_1039_C7TA01798G
crossref_primary_10_1016_j_mtcomm_2022_103446
crossref_primary_10_1021_acs_jpclett_8b02178
crossref_primary_10_1002_adma_201705998
crossref_primary_10_1126_science_aan2301
crossref_primary_10_1016_j_joule_2019_05_005
crossref_primary_10_1002_aenm_201601660
crossref_primary_10_1039_D2CS00110A
crossref_primary_10_1021_acsenergylett_7b00290
crossref_primary_10_1021_acsenergylett_4c03334
crossref_primary_10_1021_acs_nanolett_7b00722
crossref_primary_10_1021_acs_nanolett_7b00847
crossref_primary_10_1039_C7RA02496G
crossref_primary_10_1002_solr_202301025
crossref_primary_10_1016_j_jpowsour_2017_08_063
crossref_primary_10_1002_adfm_202110346
crossref_primary_10_1016_j_nanoen_2024_109802
crossref_primary_10_35848_1347_4065_abe276
crossref_primary_10_1016_j_dyepig_2022_110162
crossref_primary_10_1002_aenm_202302555
crossref_primary_10_1002_solr_202400203
crossref_primary_10_1007_s12274_022_4141_9
crossref_primary_10_1002_aenm_201903231
crossref_primary_10_1039_D2CS00278G
crossref_primary_10_1016_j_electacta_2018_10_043
crossref_primary_10_1039_D4SC07759H
crossref_primary_10_1007_s10853_023_08704_z
crossref_primary_10_1109_JPHOTOV_2017_2775156
crossref_primary_10_1039_D0EE01651A
crossref_primary_10_1002_adfm_202303012
crossref_primary_10_1039_C7TA01327B
crossref_primary_10_1039_C9TA09584E
crossref_primary_10_3390_cryst6120157
crossref_primary_10_1002_solr_201800269
crossref_primary_10_1039_C7NR05764D
crossref_primary_10_1016_j_electacta_2017_09_091
crossref_primary_10_1002_advs_202300798
crossref_primary_10_1039_D0MA00866D
crossref_primary_10_3116_16091833_23_2_96_2022
crossref_primary_10_1016_j_solener_2017_01_018
crossref_primary_10_1039_C7TA08327K
crossref_primary_10_1039_C8EE01136B
crossref_primary_10_1002_solr_202400795
crossref_primary_10_1002_adfm_202208694
crossref_primary_10_1088_1361_6463_abb487
crossref_primary_10_1016_j_mattod_2020_05_002
crossref_primary_10_1016_j_heliyon_2022_e11380
crossref_primary_10_1039_C6EE03201J
crossref_primary_10_1021_acsami_9b06427
crossref_primary_10_1016_j_physb_2024_416360
crossref_primary_10_1002_adma_201700159
crossref_primary_10_1021_acsenergylett_0c00801
crossref_primary_10_1016_j_nanoen_2022_107529
crossref_primary_10_1021_acs_chemrev_9b00780
crossref_primary_10_1039_D0TA07567A
crossref_primary_10_1021_acsnano_7b06242
crossref_primary_10_1002_aenm_201701136
crossref_primary_10_1002_solr_202200699
crossref_primary_10_1002_adma_201803514
crossref_primary_10_1016_j_cej_2019_121930
crossref_primary_10_1002_solr_201900227
crossref_primary_10_1039_D3CP06299F
crossref_primary_10_1039_C7NR00355B
crossref_primary_10_1002_admi_202200710
crossref_primary_10_1088_2515_7655_ac01bf
crossref_primary_10_1002_adfm_201905021
crossref_primary_10_1002_anie_202211259
crossref_primary_10_1007_s12200_017_0716_6
crossref_primary_10_1016_j_ijleo_2022_169608
crossref_primary_10_1021_acssuschemeng_0c04289
crossref_primary_10_1039_C9EE01773A
crossref_primary_10_1039_C8TC04525A
crossref_primary_10_1021_acsaem_4c00029
crossref_primary_10_1007_s40820_020_00457_7
crossref_primary_10_1002_smtd_202300095
crossref_primary_10_1002_adma_202402947
crossref_primary_10_1002_smll_202107556
crossref_primary_10_1016_j_surfin_2021_100981
crossref_primary_10_1039_D4EE03801K
crossref_primary_10_3390_molecules24102027
crossref_primary_10_3390_photonics8060209
crossref_primary_10_1016_j_nanoms_2019_10_004
crossref_primary_10_1007_s11664_018_6534_9
crossref_primary_10_1002_adfm_202102124
crossref_primary_10_1002_solr_202000505
crossref_primary_10_1002_solr_202100999
crossref_primary_10_1016_j_heliyon_2024_e23985
crossref_primary_10_1016_j_mser_2022_100710
crossref_primary_10_1016_j_apsusc_2017_08_131
crossref_primary_10_1002_adma_202001479
crossref_primary_10_1038_s41578_019_0125_0
crossref_primary_10_1039_D2TC01646J
crossref_primary_10_1016_j_egyr_2022_08_205
crossref_primary_10_1016_j_isci_2021_103599
crossref_primary_10_1016_j_solener_2021_03_016
crossref_primary_10_1021_acs_jpcc_9b03835
crossref_primary_10_1039_C9NJ02280E
crossref_primary_10_1016_j_jpowsour_2019_04_009
crossref_primary_10_1103_PhysRevApplied_17_024024
crossref_primary_10_1002_adfm_202004933
crossref_primary_10_1016_j_apmt_2021_100946
crossref_primary_10_1021_acsaem_9b00164
crossref_primary_10_1007_s42114_023_00681_w
crossref_primary_10_1002_adom_202100586
crossref_primary_10_1002_aenm_201801403
crossref_primary_10_1039_C8TC05741A
crossref_primary_10_1002_solr_201800075
crossref_primary_10_1039_C8TA05234D
crossref_primary_10_1080_10408347_2022_2096401
crossref_primary_10_1002_adom_201800221
crossref_primary_10_1016_j_nanoen_2018_10_039
crossref_primary_10_3390_app10093061
crossref_primary_10_1021_acsenergylett_0c00872
crossref_primary_10_1002_admi_201801253
crossref_primary_10_1016_j_jallcom_2016_11_125
crossref_primary_10_1021_acs_jpcc_0c02486
crossref_primary_10_1039_C6EE03474H
crossref_primary_10_1039_C9TA06674H
crossref_primary_10_1016_j_apsusc_2019_144769
crossref_primary_10_1021_acsenergylett_8b00576
crossref_primary_10_1016_j_joule_2018_06_017
crossref_primary_10_1016_j_cclet_2022_107883
crossref_primary_10_1088_2053_1583_ac5411
crossref_primary_10_1002_adfm_202203329
crossref_primary_10_1002_solr_201800066
crossref_primary_10_1002_adma_201900428
crossref_primary_10_1016_j_rio_2024_100663
crossref_primary_10_1021_acsenergylett_7b01230
crossref_primary_10_1039_C7TA08824H
crossref_primary_10_1039_D0SE00728E
crossref_primary_10_1039_C6EE02373H
crossref_primary_10_1088_1361_6463_abd728
crossref_primary_10_1039_C6EE03014A
crossref_primary_10_1021_acsami_6b15563
crossref_primary_10_1002_adma_201902037
crossref_primary_10_1002_solr_202000528
crossref_primary_10_1039_C9TA08351K
crossref_primary_10_1021_acsaem_9b00944
crossref_primary_10_1021_acsami_2c01061
crossref_primary_10_1039_C8QI01020J
crossref_primary_10_1016_j_joule_2017_11_015
crossref_primary_10_1021_acs_nanolett_9b02142
crossref_primary_10_1002_eem2_12321
crossref_primary_10_1021_acs_jpcc_8b11674
crossref_primary_10_1039_C8SE00059J
crossref_primary_10_1021_acs_jpclett_7b00008
crossref_primary_10_1002_ente_202000478
crossref_primary_10_1039_D3TA06654A
crossref_primary_10_1016_j_joule_2017_09_009
crossref_primary_10_1002_adma_202312054
crossref_primary_10_1016_j_nanoen_2022_107849
crossref_primary_10_1021_acsami_8b12018
crossref_primary_10_1021_acs_jpclett_0c01975
crossref_primary_10_1039_D2TC01963A
crossref_primary_10_1002_aesr_202000028
crossref_primary_10_1021_acsaelm_9b00528
crossref_primary_10_1016_j_cej_2021_134358
crossref_primary_10_1016_j_jpowsour_2020_229134
crossref_primary_10_1002_adma_202108616
crossref_primary_10_1007_s10854_023_10907_8
crossref_primary_10_1002_adma_201603747
crossref_primary_10_1021_acsaelm_2c01329
crossref_primary_10_1021_acsami_2c02023
crossref_primary_10_1002_aenm_201903013
crossref_primary_10_1016_j_pmatsci_2019_100580
crossref_primary_10_1002_aenm_201902726
crossref_primary_10_1039_C8EE02751J
crossref_primary_10_1016_j_apsusc_2020_146797
crossref_primary_10_1039_C9TA04192C
crossref_primary_10_1039_C9TA08081C
crossref_primary_10_1088_2515_7655_ab78ef
crossref_primary_10_7498_aps_67_20171956
crossref_primary_10_1039_D3TA04604D
crossref_primary_10_1002_aenm_201801892
crossref_primary_10_1140_epjp_s13360_023_03790_z
crossref_primary_10_1021_acsnano_6b08004
crossref_primary_10_1039_C9TC05736F
crossref_primary_10_1002_adfm_202002861
crossref_primary_10_1016_j_orgel_2022_106617
crossref_primary_10_1002_admi_201700043
crossref_primary_10_1002_aenm_202003073
crossref_primary_10_1002_solr_202100295
crossref_primary_10_1016_j_joule_2019_08_006
crossref_primary_10_1039_D0QM00198H
crossref_primary_10_1002_admi_201900474
crossref_primary_10_1126_science_abc4417
Cites_doi 10.1016/j.cplett.2005.09.052
10.1126/science.1228604
10.1103/PhysRevB.92.174103
10.1021/acs.jpclett.5b01645
10.1038/ncomms3761
10.1107/S0021889808031762
10.1021/jz500279b
10.1039/C5EE03874J
10.1021/jz500113x
10.1038/ncomms6784
10.1021/nn5036476
10.1016/0001-6160(53)90006-6
10.1038/nmat3857
10.1103/PhysRevApplied.2.034007
10.1039/c3ee40810h
10.1063/1.4864778
10.1038/nphoton.2013.80
10.1021/ja5079305
10.1021/ja512117e
10.1063/1.359683
10.1038/nmat2400
10.1038/nature12509
10.1126/science.aaa5333
10.1038/ncomms7142
10.1016/S0960-8974(98)00009-6
10.1038/ncomms10030
10.1016/0022-0248(95)00128-X
10.1016/0016-7037(75)90102-7
10.1039/C4SC02211D
10.1039/C4EE03824J
10.1039/C5SC00961H
10.1021/acs.accounts.5b00411
10.1038/srep06071
10.1126/science.aaa6760
10.1021/jz5005285
10.1038/ncomms8081
ContentType Journal Article
DBID AAYXX
CITATION
7ST
7U7
C1K
SOI
7SP
7TB
8FD
FR3
L7M
DOI 10.1039/C6EE01969B
DatabaseName CrossRef
Environment Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Toxicology Abstracts
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 2901
ExternalDocumentID 10_1039_C6EE01969B
GroupedDBID 0-7
0R~
29G
4.4
53G
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
EBS
ECGLT
EE0
EF-
EJD
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
M4U
N9A
O-G
O9-
P2P
R56
RAOCF
RCNCU
ROL
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
7ST
7U7
C1K
SOI
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c363t-ac358f5b1bca3a831f8e3caea7ebdf6250d726ead5ea4c36a1b1319491c17fd63
ISSN 1754-5692
IngestDate Fri Jul 11 08:13:22 EDT 2025
Thu Jul 10 17:34:45 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Tue Jul 01 01:45:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-ac358f5b1bca3a831f8e3caea7ebdf6250d726ead5ea4c36a1b1319491c17fd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7631-3589
PQID 1827887859
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_1845795702
proquest_miscellaneous_1827887859
crossref_citationtrail_10_1039_C6EE01969B
crossref_primary_10_1039_C6EE01969B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy & environmental science
PublicationYear 2016
References Deschler (C6EE01969B-(cit28)/*[position()=1]) 2014; 5
(C6EE01969B-(cit23)/*[position()=1]) 2006
Ball (C6EE01969B-(cit6)/*[position()=1]) 2013; 6
Snaith (C6EE01969B-(cit38)/*[position()=1]) 2014; 5
Williamson (C6EE01969B-(cit19)/*[position()=1]) 1953; 1
Chueh (C6EE01969B-(cit35)/*[position()=1]) 2015; 8
De Yoreo (C6EE01969B-(cit27)/*[position()=1]) 2015; 349
deQuilettes (C6EE01969B-(cit9)/*[position()=1]) 2015; 348
Lee (C6EE01969B-(cit1)/*[position()=1]) 2012; 338
Kieslich (C6EE01969B-(cit15)/*[position()=1]) 2014; 5
Sangwal (C6EE01969B-(cit26)/*[position()=1]) 1998; 36
Pramanick (C6EE01969B-(cit18)/*[position()=1]) 2015; 92
Stranks (C6EE01969B-(cit29)/*[position()=1]) 2014; 2
Agiorgousis (C6EE01969B-(cit8)/*[position()=1]) 2014; 136
Lee (C6EE01969B-(cit16)/*[position()=1]) 2012; 338
De Wolf (C6EE01969B-(cit31)/*[position()=1]) 2014; 5
Song (C6EE01969B-(cit36)/*[position()=1]) 2005; 416
Xu (C6EE01969B-(cit12)/*[position()=1]) 2015; 6
Johnson (C6EE01969B-(cit33)/*[position()=1]) 1995; 78
Tvingstedt (C6EE01969B-(cit32)/*[position()=1]) 2014; 4
Saliba (C6EE01969B-(cit5)/*[position()=1]) 2016; 9
Noel (C6EE01969B-(cit10)/*[position()=1]) 2014; 8
Johnston (C6EE01969B-(cit30)/*[position()=1]) 2015; 49
Berner (C6EE01969B-(cit24)/*[position()=1]) 1975; 39
Liu (C6EE01969B-(cit2)/*[position()=1]) 2013; 501
van Reenen (C6EE01969B-(cit37)/*[position()=1]) 2015; 6
Kieslich (C6EE01969B-(cit22)/*[position()=1]) 2015; 6
Shao (C6EE01969B-(cit13)/*[position()=1]) 2014; 5
Kubota (C6EE01969B-(cit25)/*[position()=1]) 1995; 152
Heo (C6EE01969B-(cit3)/*[position()=1]) 2013; 7
Robinson (C6EE01969B-(cit17)/*[position()=1]) 2009; 8
Yin (C6EE01969B-(cit7)/*[position()=1]) 2014; 104
Jeon (C6EE01969B-(cit4)/*[position()=1]) 2014; 13
Moore (C6EE01969B-(cit21)/*[position()=1]) 2015; 137
Zhang (C6EE01969B-(cit11)/*[position()=1]) 2015; 6
Zhang (C6EE01969B-(cit14)/*[position()=1]) 2015; 6
Docampo (C6EE01969B-(cit34)/*[position()=1]) 2013; 4
Zhao (C6EE01969B-(cit20)/*[position()=1]) 2008; 41
References_xml – volume: 416
  start-page: 42
  year: 2005
  ident: C6EE01969B-(cit36)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.09.052
– volume: 338
  start-page: 643
  year: 2012
  ident: C6EE01969B-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 92
  start-page: 174103
  year: 2015
  ident: C6EE01969B-(cit18)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.174103
– volume: 6
  start-page: 3808
  year: 2015
  ident: C6EE01969B-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01645
– volume: 4
  start-page: 2761
  year: 2013
  ident: C6EE01969B-(cit34)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3761
– volume: 41
  start-page: 1095
  year: 2008
  ident: C6EE01969B-(cit20)/*[position()=1]
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889808031762
– volume: 5
  start-page: 1035
  year: 2014
  ident: C6EE01969B-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500279b
– volume: 9
  start-page: 1989
  year: 2016
  ident: C6EE01969B-(cit5)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03874J
– volume: 5
  start-page: 1511
  year: 2014
  ident: C6EE01969B-(cit38)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500113x
– volume: 5
  start-page: 5784
  year: 2014
  ident: C6EE01969B-(cit13)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6784
– volume: 8
  start-page: 9815
  year: 2014
  ident: C6EE01969B-(cit10)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn5036476
– volume: 1
  start-page: 22
  year: 1953
  ident: C6EE01969B-(cit19)/*[position()=1]
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(53)90006-6
– volume: 13
  start-page: 1
  year: 2014
  ident: C6EE01969B-(cit4)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3857
– volume: 338
  start-page: 643
  year: 2012
  ident: C6EE01969B-(cit16)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 2
  start-page: 034007
  year: 2014
  ident: C6EE01969B-(cit29)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.2.034007
– volume: 6
  start-page: 1739
  year: 2013
  ident: C6EE01969B-(cit6)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40810h
– volume: 104
  start-page: 063903
  year: 2014
  ident: C6EE01969B-(cit7)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4864778
– volume: 7
  start-page: 486
  year: 2013
  ident: C6EE01969B-(cit3)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.80
– volume: 136
  start-page: 14570
  year: 2014
  ident: C6EE01969B-(cit8)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5079305
– volume: 137
  start-page: 2350
  year: 2015
  ident: C6EE01969B-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512117e
– volume: 78
  start-page: 5609
  year: 1995
  ident: C6EE01969B-(cit33)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.359683
– volume: 8
  start-page: 291
  year: 2009
  ident: C6EE01969B-(cit17)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2400
– volume-title: Encyclopedia of Analytical Chemistry
  year: 2006
  ident: C6EE01969B-(cit23)/*[position()=1]
– volume: 501
  start-page: 395
  year: 2013
  ident: C6EE01969B-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12509
– volume: 348
  start-page: 683
  year: 2015
  ident: C6EE01969B-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa5333
– volume: 6
  start-page: 6142
  year: 2015
  ident: C6EE01969B-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7142
– volume: 36
  start-page: 163
  year: 1998
  ident: C6EE01969B-(cit26)/*[position()=1]
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/S0960-8974(98)00009-6
– volume: 6
  start-page: 10030
  year: 2015
  ident: C6EE01969B-(cit11)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10030
– volume: 152
  start-page: 203
  year: 1995
  ident: C6EE01969B-(cit25)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(95)00128-X
– volume: 39
  start-page: 489
  year: 1975
  ident: C6EE01969B-(cit24)/*[position()=1]
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(75)90102-7
– volume: 5
  start-page: 4712
  year: 2014
  ident: C6EE01969B-(cit15)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02211D
– volume: 8
  start-page: 1160
  year: 2015
  ident: C6EE01969B-(cit35)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03824J
– volume: 6
  start-page: 3430
  year: 2015
  ident: C6EE01969B-(cit22)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00961H
– volume: 49
  start-page: 146
  year: 2015
  ident: C6EE01969B-(cit30)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00411
– volume: 4
  start-page: 6071
  year: 2014
  ident: C6EE01969B-(cit32)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep06071
– volume: 349
  start-page: aaa67601
  year: 2015
  ident: C6EE01969B-(cit27)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa6760
– volume: 5
  start-page: 1421
  year: 2014
  ident: C6EE01969B-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5005285
– volume: 6
  start-page: 7081
  year: 2015
  ident: C6EE01969B-(cit12)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8081
SSID ssj0062079
Score 2.6261916
Snippet Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2892
SubjectTerms Charge
Devices
Doping
Electronics
Perovskites
Photovoltaic cells
Semiconductors
Solar cells
Title Efficient perovskite solar cells by metal ion doping
URI https://www.proquest.com/docview/1827887859
https://www.proquest.com/docview/1845795702
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcCh4inKS0ZwQauUJI6d-NhWKVWpyiWrXXGJbGesVsC2alIk-PWMnefSChUu0a7XGW3yWZ9nxp7PhLyzShgbyyoItTEBxhsqUG6PO9PKqhAyacBvkD0Rh_PkaMmX4xmbvrqk0Tvm1411Jf-DKrYhrq5K9h-QHYxiA35GfPGKCOP1VhjnXv_BreY7ue8ftcvEzmoXrM5cQr52vuV3cOWODuTK10atpeLbwj-H_qTgrS-THDFfdEnlI6RPPStqCBZw9uePX07PBvt-Tao5VV_bpLOrU7u4lqLubXQ5h2iac2hpMuVJwEV7it0OTNrSUEy5VU6GkJzyZNbf236VrfVrfB4yJ4dqBIDX8dHjrNWv1J98Lg_mx8dlkS-Lu2QzxmgB6W5z99Pex0U_JYs49KKLw9_udWqZ_DDaXvdM1idm720UD8hWFybQ3Rbzh-QOrB6R-xPxyMckGdCnI_rUo089-lT_pB59iujTFv0nZH6QF_uHQXcGRmCYYE2gDOOZ5TrSRjGVschmwIwClYKuLAavYZXGAumAg0rwFhXpCFk1kZGJUlsJ9pRsrM5X8IzQEBR615wllkHixOwVkrmNVCYwZIaMb5P3_fOXphOId-eUfCv9RgUmy32R5_5d7W2Tt0Pfi1YW5cZeb_rXWCJruWdXKzi_qkuMat021ozLv_VJeCpxRMXPb2HnBbk3jtSXZKO5vIJX6C82-nU3Gn4DmExtbA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+perovskite+solar+cells+by+metal+ion+doping&rft.jtitle=Energy+%26+environmental+science&rft.au=Wang%2C+Jacob+Tse-Wei&rft.au=Wang%2C+Zhiping&rft.au=Pathak%2C+Sandeep&rft.au=Zhang%2C+Wei&rft.date=2016-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=9&rft.issue=9&rft.spage=2892&rft.epage=2901&rft_id=info:doi/10.1039%2Fc6ee01969b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon