Efficient perovskite solar cells by metal ion doping
Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challe...
Saved in:
Published in | Energy & environmental science Vol. 9; no. 9; pp. 2892 - 2901 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challenges is to eliminate the presence of charge recombination centres throughout the film which have been observed to be most densely located at regions near the grain boundaries. Here, we introduce aluminium acetylacetonate to the perovskite precursor solution, which improves the crystal quality by reducing the microstrain in the polycrystalline film. At the same time, we achieve a reduction in the non-radiative recombination rate, a remarkable improvement in the photoluminescence quantum efficiency (PLQE) and a reduction in the electronic disorder deduced from an Urbach energy of only 12.6 meV in complete devices. As a result, we demonstrate a PCE of 19.1% with negligible hysteresis in planar heterojunction solar cells comprising all organic p and n-type charge collection layers. Our work shows that an additional level of control of perovskite thin film quality is possible
via
impurity cation doping, and further demonstrates the continuing importance of improving the electronic quality of the perovskite absorber and the nature of the heterojunctions to further improve the solar cell performance. |
---|---|
AbstractList | Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challenges is to eliminate the presence of charge recombination centres throughout the film which have been observed to be most densely located at regions near the grain boundaries. Here, we introduce aluminium acetylacetonate to the perovskite precursor solution, which improves the crystal quality by reducing the microstrain in the polycrystalline film. At the same time, we achieve a reduction in the non-radiative recombination rate, a remarkable improvement in the photoluminescence quantum efficiency (PLQE) and a reduction in the electronic disorder deduced from an Urbach energy of only 12.6 meV in complete devices. As a result, we demonstrate a PCE of 19.1% with negligible hysteresis in planar heterojunction solar cells comprising all organic p and n-type charge collection layers. Our work shows that an additional level of control of perovskite thin film quality is possible
via
impurity cation doping, and further demonstrates the continuing importance of improving the electronic quality of the perovskite absorber and the nature of the heterojunctions to further improve the solar cell performance. Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challenges is to eliminate the presence of charge recombination centres throughout the film which have been observed to be most densely located at regions near the grain boundaries. Here, we introduce aluminium acetylacetonate to the perovskite precursor solution, which improves the crystal quality by reducing the microstrain in the polycrystalline film. At the same time, we achieve a reduction in the non-radiative recombination rate, a remarkable improvement in the photoluminescence quantum efficiency (PLQE) and a reduction in the electronic disorder deduced from an Urbach energy of only 12.6 meV in complete devices. As a result, we demonstrate a PCE of 19.1% with negligible hysteresis in planar heterojunction solar cells comprising all organic p and n-type charge collection layers. Our work shows that an additional level of control of perovskite thin film quality is possible via impurity cation doping, and further demonstrates the continuing importance of improving the electronic quality of the perovskite absorber and the nature of the heterojunctions to further improve the solar cell performance. |
Author | Ramirez, Ivan Huang, Jian Wang, Zhiping Patel, Jay B. Nicholas, Robin J. Pathak, Sandeep Zhang, Wei Wisnivesky-Rocca-Rivarola, Florencia deQuilettes, Dane W. Mohd Yusof, Hanis A. Zhang, Jin Nayak, Pabitra K. Ginger, David S. Wang, Jacob Tse-Wei Vaynzof, Yana Johnston, Michael B. Grovenor, Chris Snaith, Henry J. Ducati, Caterina Zhu, Rui |
Author_xml | – sequence: 1 givenname: Jacob Tse-Wei surname: Wang fullname: Wang, Jacob Tse-Wei organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 2 givenname: Zhiping surname: Wang fullname: Wang, Zhiping organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 3 givenname: Sandeep surname: Pathak fullname: Pathak, Sandeep organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 4 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 5 givenname: Dane W. surname: deQuilettes fullname: deQuilettes, Dane W. organization: Department of Chemistry, University of Washington, Seattle, USA – sequence: 6 givenname: Florencia surname: Wisnivesky-Rocca-Rivarola fullname: Wisnivesky-Rocca-Rivarola, Florencia organization: Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK – sequence: 7 givenname: Jian surname: Huang fullname: Huang, Jian organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 8 givenname: Pabitra K. surname: Nayak fullname: Nayak, Pabitra K. organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 9 givenname: Jay B. surname: Patel fullname: Patel, Jay B. organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 10 givenname: Hanis A. surname: Mohd Yusof fullname: Mohd Yusof, Hanis A. organization: Department of Materials, University of Oxford, Oxford, UK – sequence: 11 givenname: Yana surname: Vaynzof fullname: Vaynzof, Yana organization: Kirchhoff Institute for Physics (KIP), 69120 Heidelberg, Germany, Centre for Advanced Materials (CAM), 69120 Heidelberg – sequence: 12 givenname: Rui orcidid: 0000-0001-7631-3589 surname: Zhu fullname: Zhu, Rui organization: State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, China – sequence: 13 givenname: Ivan surname: Ramirez fullname: Ramirez, Ivan organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 14 givenname: Jin surname: Zhang fullname: Zhang, Jin organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 15 givenname: Caterina surname: Ducati fullname: Ducati, Caterina organization: Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK – sequence: 16 givenname: Chris surname: Grovenor fullname: Grovenor, Chris organization: Department of Materials, University of Oxford, Oxford, UK – sequence: 17 givenname: Michael B. surname: Johnston fullname: Johnston, Michael B. organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 18 givenname: David S. surname: Ginger fullname: Ginger, David S. organization: Department of Chemistry, University of Washington, Seattle, USA – sequence: 19 givenname: Robin J. surname: Nicholas fullname: Nicholas, Robin J. organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK – sequence: 20 givenname: Henry J. surname: Snaith fullname: Snaith, Henry J. organization: Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK |
BookMark | eNqNkE1LxDAQhoMouLt68Rf0KEI1aZqkOepSP2DBi57LNJ1ItNvUJCvsv7fLKoJ48DRzeJ5h3ndODgc_ICFnjF4yyvXVUtY1ZVrqmwMyY0qUuVBUHn7vUhfHZB7jK6WyoErPSFlb64zDIWUjBv8R31zCLPoeQmaw72PWbrM1Jugz54es86MbXk7IkYU-4unXXJDn2_ppeZ-vHu8elter3HDJUw6Gi8qKlrUGOFSc2Qq5AQSFbWdlIWinConQCYRyUoC1jDNdamaYsp3kC3K-vzsG_77BmJq1i7uvYEC_iQ2rSqH0lLD4B1qoqlKV0BNK96gJPsaAtjEuQZripQCubxhtdl02P11OysUvZQxuDWH7F_wJCrx1mg |
CitedBy_id | crossref_primary_10_3390_cryst8060242 crossref_primary_10_1002_adfm_201706995 crossref_primary_10_1021_acs_chemmater_8b02989 crossref_primary_10_1039_C8TA00457A crossref_primary_10_1016_j_jallcom_2023_168924 crossref_primary_10_1021_acs_chemmater_6b05159 crossref_primary_10_1039_C6EE02687G crossref_primary_10_1039_C9TC03490K crossref_primary_10_1002_aesr_202200143 crossref_primary_10_1021_acs_jpcc_7b06329 crossref_primary_10_1016_j_xcrp_2021_100415 crossref_primary_10_1007_s10854_020_04019_w crossref_primary_10_1021_acsnano_7b02734 crossref_primary_10_1039_C9SE00513G crossref_primary_10_1021_jacs_8b09300 crossref_primary_10_1002_admt_201800321 crossref_primary_10_1016_j_jechem_2021_01_037 crossref_primary_10_1007_s00339_019_2877_1 crossref_primary_10_1039_C8SE00127H crossref_primary_10_1002_admi_202101693 crossref_primary_10_1016_j_solener_2019_09_100 crossref_primary_10_1002_er_6307 crossref_primary_10_1002_adma_201803336 crossref_primary_10_1021_acsami_1c07690 crossref_primary_10_1039_C8TA10094B crossref_primary_10_1021_acsmaterialslett_0c00308 crossref_primary_10_1002_adma_201902762 crossref_primary_10_1002_solr_202100663 crossref_primary_10_1016_j_mtadv_2022_100213 crossref_primary_10_1002_idm2_12023 crossref_primary_10_1088_1361_6463_abd0ad crossref_primary_10_1002_adma_201904702 crossref_primary_10_32604_jrm_2023_022773 crossref_primary_10_1002_smll_201704007 crossref_primary_10_1002_slct_201802109 crossref_primary_10_1039_C8TA09026B crossref_primary_10_1016_j_solmat_2024_112815 crossref_primary_10_1016_j_trechm_2019_04_010 crossref_primary_10_1016_j_rechem_2024_101974 crossref_primary_10_1039_D2TA00617K crossref_primary_10_1002_admt_202000260 crossref_primary_10_1002_adma_201804771 crossref_primary_10_1021_acsenergylett_9b02810 crossref_primary_10_1039_D3NR06640A crossref_primary_10_1007_s10854_021_06653_4 crossref_primary_10_1016_j_solmat_2023_112630 crossref_primary_10_1016_j_mtener_2017_09_008 crossref_primary_10_1002_adma_201606608 crossref_primary_10_1039_D2EE02218D crossref_primary_10_1016_j_nanoen_2022_107579 crossref_primary_10_1016_j_seppur_2024_129228 crossref_primary_10_1021_acs_jpclett_9b01588 crossref_primary_10_1039_D4TC01064G crossref_primary_10_1016_j_jcrysgro_2025_128091 crossref_primary_10_1088_2040_8986_ac95a8 crossref_primary_10_1016_j_mtener_2018_07_003 crossref_primary_10_1016_j_ijleo_2023_171160 crossref_primary_10_1134_S1063785020030153 crossref_primary_10_1016_j_jtice_2017_09_004 crossref_primary_10_1016_j_solener_2021_04_042 crossref_primary_10_1002_adfm_202307568 crossref_primary_10_1002_aenm_201803241 crossref_primary_10_1039_D2SE01312F crossref_primary_10_1007_s00339_022_05596_9 crossref_primary_10_1016_j_matpr_2022_03_566 crossref_primary_10_1039_D2TA08827D crossref_primary_10_1016_j_jechem_2019_11_008 crossref_primary_10_1016_j_nanoen_2018_03_047 crossref_primary_10_3390_app9081678 crossref_primary_10_1039_C8RA01199K crossref_primary_10_1016_j_jechem_2018_01_027 crossref_primary_10_1021_acs_jpclett_8b00964 crossref_primary_10_1039_C9NR04104D crossref_primary_10_1002_solr_202100401 crossref_primary_10_1016_j_mtcomm_2020_101216 crossref_primary_10_1021_acs_langmuir_9b02450 crossref_primary_10_2139_ssrn_4198100 crossref_primary_10_1002_aelm_201600470 crossref_primary_10_1016_j_jechem_2022_02_007 crossref_primary_10_1021_acs_jpclett_6b01951 crossref_primary_10_1016_j_chemphys_2018_09_032 crossref_primary_10_1016_j_matchemphys_2020_124179 crossref_primary_10_1016_j_rechem_2024_101875 crossref_primary_10_1021_acsenergylett_8b02179 crossref_primary_10_3390_molecules29092104 crossref_primary_10_1016_j_solener_2021_02_064 crossref_primary_10_1039_C6TA10305G crossref_primary_10_1002_inf2_12246 crossref_primary_10_1680_jnaen_23_00001 crossref_primary_10_1007_s10853_022_07930_1 crossref_primary_10_1021_acs_jpcc_0c11122 crossref_primary_10_1002_advs_202304733 crossref_primary_10_1016_j_optmat_2021_111806 crossref_primary_10_1039_C7TA05720B crossref_primary_10_1063_1_5133457 crossref_primary_10_1039_D1NR07438E crossref_primary_10_1002_advs_201700331 crossref_primary_10_1002_aenm_202001759 crossref_primary_10_1002_smll_201604153 crossref_primary_10_1039_C8TC04231D crossref_primary_10_1039_D4EE02486A crossref_primary_10_1021_acs_jpcc_7b06248 crossref_primary_10_1002_adom_202301318 crossref_primary_10_1002_adom_201800979 crossref_primary_10_1016_j_enchem_2020_100032 crossref_primary_10_1002_aenm_201700302 crossref_primary_10_1016_j_nanoen_2020_105249 crossref_primary_10_1002_aenm_202401414 crossref_primary_10_1038_s41586_019_1357_2 crossref_primary_10_1039_D3TC00656E crossref_primary_10_1021_acsaem_8b00915 crossref_primary_10_1002_chem_201805370 crossref_primary_10_2139_ssrn_3975190 crossref_primary_10_1002_adfm_201705875 crossref_primary_10_1002_admi_201800326 crossref_primary_10_1016_j_jallcom_2024_177394 crossref_primary_10_1038_s41566_022_01024_9 crossref_primary_10_1016_j_jphotochemrev_2021_100405 crossref_primary_10_1039_C7RA11514H crossref_primary_10_1002_adma_202407098 crossref_primary_10_1002_aenm_202402616 crossref_primary_10_1016_j_nanoen_2020_105237 crossref_primary_10_1002_ange_202211259 crossref_primary_10_1007_s11708_022_0826_8 crossref_primary_10_1016_j_isci_2019_07_044 crossref_primary_10_1016_j_jechem_2021_01_001 crossref_primary_10_1002_aenm_201801234 crossref_primary_10_1038_nenergy_2017_18 crossref_primary_10_1038_s41598_018_24436_6 crossref_primary_10_7498_aps_69_20200795 crossref_primary_10_1021_acs_chemmater_1c00391 crossref_primary_10_1039_C7EE02634J crossref_primary_10_1002_admi_202002078 crossref_primary_10_1002_eem2_12283 crossref_primary_10_1039_C9SC03829A crossref_primary_10_1016_j_jechem_2018_12_003 crossref_primary_10_1016_j_jlumin_2022_118788 crossref_primary_10_1016_j_joule_2018_11_017 crossref_primary_10_1021_acsami_3c09835 crossref_primary_10_1063_5_0080087 crossref_primary_10_1002_adfm_201804286 crossref_primary_10_3390_molecules24224039 crossref_primary_10_1002_adom_201701271 crossref_primary_10_1093_oxfmat_itab017 crossref_primary_10_1002_adfm_202411671 crossref_primary_10_1002_adma_201803792 crossref_primary_10_1002_smll_202302700 crossref_primary_10_1016_j_matlet_2023_134427 crossref_primary_10_1021_acs_jpcc_2c08483 crossref_primary_10_1039_D2CS00217E crossref_primary_10_1002_adfm_201910004 crossref_primary_10_1002_aenm_201700763 crossref_primary_10_1016_j_electacta_2020_136162 crossref_primary_10_1021_acs_jpcc_1c01509 crossref_primary_10_3390_nano14020172 crossref_primary_10_1002_solr_202300070 crossref_primary_10_1016_j_solener_2024_112818 crossref_primary_10_1063_5_0129883 crossref_primary_10_1039_C8NR01717D crossref_primary_10_1039_D1TC05831B crossref_primary_10_1039_C6TA08699C crossref_primary_10_1002_adma_201607039 crossref_primary_10_1002_eem2_12035 crossref_primary_10_1002_adma_201803428 crossref_primary_10_3390_cryst11030295 crossref_primary_10_1016_j_mtener_2017_06_009 crossref_primary_10_1002_adma_202106380 crossref_primary_10_1007_s12274_019_2501_x crossref_primary_10_1021_acs_analchem_2c05678 crossref_primary_10_1016_j_solmat_2021_111400 crossref_primary_10_1021_jacs_7b01439 crossref_primary_10_1039_D2EE01070D crossref_primary_10_1039_D3TA03042C crossref_primary_10_1002_aenm_201802346 crossref_primary_10_1016_j_cej_2025_161388 crossref_primary_10_1016_j_inoche_2025_114007 crossref_primary_10_1002_advs_201700131 crossref_primary_10_1002_adma_202107420 crossref_primary_10_1007_s40843_021_1906_5 crossref_primary_10_1016_j_jpowsour_2019_04_041 crossref_primary_10_1039_D0RA04641H crossref_primary_10_1016_j_orgel_2021_106080 crossref_primary_10_1016_j_xcrp_2024_102398 crossref_primary_10_1039_C7TA01798G crossref_primary_10_1016_j_mtcomm_2022_103446 crossref_primary_10_1021_acs_jpclett_8b02178 crossref_primary_10_1002_adma_201705998 crossref_primary_10_1126_science_aan2301 crossref_primary_10_1016_j_joule_2019_05_005 crossref_primary_10_1002_aenm_201601660 crossref_primary_10_1039_D2CS00110A crossref_primary_10_1021_acsenergylett_7b00290 crossref_primary_10_1021_acsenergylett_4c03334 crossref_primary_10_1021_acs_nanolett_7b00722 crossref_primary_10_1021_acs_nanolett_7b00847 crossref_primary_10_1039_C7RA02496G crossref_primary_10_1002_solr_202301025 crossref_primary_10_1016_j_jpowsour_2017_08_063 crossref_primary_10_1002_adfm_202110346 crossref_primary_10_1016_j_nanoen_2024_109802 crossref_primary_10_35848_1347_4065_abe276 crossref_primary_10_1016_j_dyepig_2022_110162 crossref_primary_10_1002_aenm_202302555 crossref_primary_10_1002_solr_202400203 crossref_primary_10_1007_s12274_022_4141_9 crossref_primary_10_1002_aenm_201903231 crossref_primary_10_1039_D2CS00278G crossref_primary_10_1016_j_electacta_2018_10_043 crossref_primary_10_1039_D4SC07759H crossref_primary_10_1007_s10853_023_08704_z crossref_primary_10_1109_JPHOTOV_2017_2775156 crossref_primary_10_1039_D0EE01651A crossref_primary_10_1002_adfm_202303012 crossref_primary_10_1039_C7TA01327B crossref_primary_10_1039_C9TA09584E crossref_primary_10_3390_cryst6120157 crossref_primary_10_1002_solr_201800269 crossref_primary_10_1039_C7NR05764D crossref_primary_10_1016_j_electacta_2017_09_091 crossref_primary_10_1002_advs_202300798 crossref_primary_10_1039_D0MA00866D crossref_primary_10_3116_16091833_23_2_96_2022 crossref_primary_10_1016_j_solener_2017_01_018 crossref_primary_10_1039_C7TA08327K crossref_primary_10_1039_C8EE01136B crossref_primary_10_1002_solr_202400795 crossref_primary_10_1002_adfm_202208694 crossref_primary_10_1088_1361_6463_abb487 crossref_primary_10_1016_j_mattod_2020_05_002 crossref_primary_10_1016_j_heliyon_2022_e11380 crossref_primary_10_1039_C6EE03201J crossref_primary_10_1021_acsami_9b06427 crossref_primary_10_1016_j_physb_2024_416360 crossref_primary_10_1002_adma_201700159 crossref_primary_10_1021_acsenergylett_0c00801 crossref_primary_10_1016_j_nanoen_2022_107529 crossref_primary_10_1021_acs_chemrev_9b00780 crossref_primary_10_1039_D0TA07567A crossref_primary_10_1021_acsnano_7b06242 crossref_primary_10_1002_aenm_201701136 crossref_primary_10_1002_solr_202200699 crossref_primary_10_1002_adma_201803514 crossref_primary_10_1016_j_cej_2019_121930 crossref_primary_10_1002_solr_201900227 crossref_primary_10_1039_D3CP06299F crossref_primary_10_1039_C7NR00355B crossref_primary_10_1002_admi_202200710 crossref_primary_10_1088_2515_7655_ac01bf crossref_primary_10_1002_adfm_201905021 crossref_primary_10_1002_anie_202211259 crossref_primary_10_1007_s12200_017_0716_6 crossref_primary_10_1016_j_ijleo_2022_169608 crossref_primary_10_1021_acssuschemeng_0c04289 crossref_primary_10_1039_C9EE01773A crossref_primary_10_1039_C8TC04525A crossref_primary_10_1021_acsaem_4c00029 crossref_primary_10_1007_s40820_020_00457_7 crossref_primary_10_1002_smtd_202300095 crossref_primary_10_1002_adma_202402947 crossref_primary_10_1002_smll_202107556 crossref_primary_10_1016_j_surfin_2021_100981 crossref_primary_10_1039_D4EE03801K crossref_primary_10_3390_molecules24102027 crossref_primary_10_3390_photonics8060209 crossref_primary_10_1016_j_nanoms_2019_10_004 crossref_primary_10_1007_s11664_018_6534_9 crossref_primary_10_1002_adfm_202102124 crossref_primary_10_1002_solr_202000505 crossref_primary_10_1002_solr_202100999 crossref_primary_10_1016_j_heliyon_2024_e23985 crossref_primary_10_1016_j_mser_2022_100710 crossref_primary_10_1016_j_apsusc_2017_08_131 crossref_primary_10_1002_adma_202001479 crossref_primary_10_1038_s41578_019_0125_0 crossref_primary_10_1039_D2TC01646J crossref_primary_10_1016_j_egyr_2022_08_205 crossref_primary_10_1016_j_isci_2021_103599 crossref_primary_10_1016_j_solener_2021_03_016 crossref_primary_10_1021_acs_jpcc_9b03835 crossref_primary_10_1039_C9NJ02280E crossref_primary_10_1016_j_jpowsour_2019_04_009 crossref_primary_10_1103_PhysRevApplied_17_024024 crossref_primary_10_1002_adfm_202004933 crossref_primary_10_1016_j_apmt_2021_100946 crossref_primary_10_1021_acsaem_9b00164 crossref_primary_10_1007_s42114_023_00681_w crossref_primary_10_1002_adom_202100586 crossref_primary_10_1002_aenm_201801403 crossref_primary_10_1039_C8TC05741A crossref_primary_10_1002_solr_201800075 crossref_primary_10_1039_C8TA05234D crossref_primary_10_1080_10408347_2022_2096401 crossref_primary_10_1002_adom_201800221 crossref_primary_10_1016_j_nanoen_2018_10_039 crossref_primary_10_3390_app10093061 crossref_primary_10_1021_acsenergylett_0c00872 crossref_primary_10_1002_admi_201801253 crossref_primary_10_1016_j_jallcom_2016_11_125 crossref_primary_10_1021_acs_jpcc_0c02486 crossref_primary_10_1039_C6EE03474H crossref_primary_10_1039_C9TA06674H crossref_primary_10_1016_j_apsusc_2019_144769 crossref_primary_10_1021_acsenergylett_8b00576 crossref_primary_10_1016_j_joule_2018_06_017 crossref_primary_10_1016_j_cclet_2022_107883 crossref_primary_10_1088_2053_1583_ac5411 crossref_primary_10_1002_adfm_202203329 crossref_primary_10_1002_solr_201800066 crossref_primary_10_1002_adma_201900428 crossref_primary_10_1016_j_rio_2024_100663 crossref_primary_10_1021_acsenergylett_7b01230 crossref_primary_10_1039_C7TA08824H crossref_primary_10_1039_D0SE00728E crossref_primary_10_1039_C6EE02373H crossref_primary_10_1088_1361_6463_abd728 crossref_primary_10_1039_C6EE03014A crossref_primary_10_1021_acsami_6b15563 crossref_primary_10_1002_adma_201902037 crossref_primary_10_1002_solr_202000528 crossref_primary_10_1039_C9TA08351K crossref_primary_10_1021_acsaem_9b00944 crossref_primary_10_1021_acsami_2c01061 crossref_primary_10_1039_C8QI01020J crossref_primary_10_1016_j_joule_2017_11_015 crossref_primary_10_1021_acs_nanolett_9b02142 crossref_primary_10_1002_eem2_12321 crossref_primary_10_1021_acs_jpcc_8b11674 crossref_primary_10_1039_C8SE00059J crossref_primary_10_1021_acs_jpclett_7b00008 crossref_primary_10_1002_ente_202000478 crossref_primary_10_1039_D3TA06654A crossref_primary_10_1016_j_joule_2017_09_009 crossref_primary_10_1002_adma_202312054 crossref_primary_10_1016_j_nanoen_2022_107849 crossref_primary_10_1021_acsami_8b12018 crossref_primary_10_1021_acs_jpclett_0c01975 crossref_primary_10_1039_D2TC01963A crossref_primary_10_1002_aesr_202000028 crossref_primary_10_1021_acsaelm_9b00528 crossref_primary_10_1016_j_cej_2021_134358 crossref_primary_10_1016_j_jpowsour_2020_229134 crossref_primary_10_1002_adma_202108616 crossref_primary_10_1007_s10854_023_10907_8 crossref_primary_10_1002_adma_201603747 crossref_primary_10_1021_acsaelm_2c01329 crossref_primary_10_1021_acsami_2c02023 crossref_primary_10_1002_aenm_201903013 crossref_primary_10_1016_j_pmatsci_2019_100580 crossref_primary_10_1002_aenm_201902726 crossref_primary_10_1039_C8EE02751J crossref_primary_10_1016_j_apsusc_2020_146797 crossref_primary_10_1039_C9TA04192C crossref_primary_10_1039_C9TA08081C crossref_primary_10_1088_2515_7655_ab78ef crossref_primary_10_7498_aps_67_20171956 crossref_primary_10_1039_D3TA04604D crossref_primary_10_1002_aenm_201801892 crossref_primary_10_1140_epjp_s13360_023_03790_z crossref_primary_10_1021_acsnano_6b08004 crossref_primary_10_1039_C9TC05736F crossref_primary_10_1002_adfm_202002861 crossref_primary_10_1016_j_orgel_2022_106617 crossref_primary_10_1002_admi_201700043 crossref_primary_10_1002_aenm_202003073 crossref_primary_10_1002_solr_202100295 crossref_primary_10_1016_j_joule_2019_08_006 crossref_primary_10_1039_D0QM00198H crossref_primary_10_1002_admi_201900474 crossref_primary_10_1126_science_abc4417 |
Cites_doi | 10.1016/j.cplett.2005.09.052 10.1126/science.1228604 10.1103/PhysRevB.92.174103 10.1021/acs.jpclett.5b01645 10.1038/ncomms3761 10.1107/S0021889808031762 10.1021/jz500279b 10.1039/C5EE03874J 10.1021/jz500113x 10.1038/ncomms6784 10.1021/nn5036476 10.1016/0001-6160(53)90006-6 10.1038/nmat3857 10.1103/PhysRevApplied.2.034007 10.1039/c3ee40810h 10.1063/1.4864778 10.1038/nphoton.2013.80 10.1021/ja5079305 10.1021/ja512117e 10.1063/1.359683 10.1038/nmat2400 10.1038/nature12509 10.1126/science.aaa5333 10.1038/ncomms7142 10.1016/S0960-8974(98)00009-6 10.1038/ncomms10030 10.1016/0022-0248(95)00128-X 10.1016/0016-7037(75)90102-7 10.1039/C4SC02211D 10.1039/C4EE03824J 10.1039/C5SC00961H 10.1021/acs.accounts.5b00411 10.1038/srep06071 10.1126/science.aaa6760 10.1021/jz5005285 10.1038/ncomms8081 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST 7U7 C1K SOI 7SP 7TB 8FD FR3 L7M |
DOI | 10.1039/C6EE01969B |
DatabaseName | CrossRef Environment Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Toxicology Abstracts Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 2901 |
ExternalDocumentID | 10_1039_C6EE01969B |
GroupedDBID | 0-7 0R~ 29G 4.4 53G 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF CS3 EBS ECGLT EE0 EF- EJD FEDTE GGIMP GNO H13 HVGLF HZ~ H~N J3G J3H J3I L-8 M4U N9A O-G O9- P2P R56 RAOCF RCNCU ROL RPMJG RRC RSCEA RVUXY SKA SLH TOV 7ST 7U7 C1K SOI 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c363t-ac358f5b1bca3a831f8e3caea7ebdf6250d726ead5ea4c36a1b1319491c17fd63 |
ISSN | 1754-5692 |
IngestDate | Fri Jul 11 08:13:22 EDT 2025 Thu Jul 10 17:34:45 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Tue Jul 01 01:45:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c363t-ac358f5b1bca3a831f8e3caea7ebdf6250d726ead5ea4c36a1b1319491c17fd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7631-3589 |
PQID | 1827887859 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1845795702 proquest_miscellaneous_1827887859 crossref_citationtrail_10_1039_C6EE01969B crossref_primary_10_1039_C6EE01969B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Energy & environmental science |
PublicationYear | 2016 |
References | Deschler (C6EE01969B-(cit28)/*[position()=1]) 2014; 5 (C6EE01969B-(cit23)/*[position()=1]) 2006 Ball (C6EE01969B-(cit6)/*[position()=1]) 2013; 6 Snaith (C6EE01969B-(cit38)/*[position()=1]) 2014; 5 Williamson (C6EE01969B-(cit19)/*[position()=1]) 1953; 1 Chueh (C6EE01969B-(cit35)/*[position()=1]) 2015; 8 De Yoreo (C6EE01969B-(cit27)/*[position()=1]) 2015; 349 deQuilettes (C6EE01969B-(cit9)/*[position()=1]) 2015; 348 Lee (C6EE01969B-(cit1)/*[position()=1]) 2012; 338 Kieslich (C6EE01969B-(cit15)/*[position()=1]) 2014; 5 Sangwal (C6EE01969B-(cit26)/*[position()=1]) 1998; 36 Pramanick (C6EE01969B-(cit18)/*[position()=1]) 2015; 92 Stranks (C6EE01969B-(cit29)/*[position()=1]) 2014; 2 Agiorgousis (C6EE01969B-(cit8)/*[position()=1]) 2014; 136 Lee (C6EE01969B-(cit16)/*[position()=1]) 2012; 338 De Wolf (C6EE01969B-(cit31)/*[position()=1]) 2014; 5 Song (C6EE01969B-(cit36)/*[position()=1]) 2005; 416 Xu (C6EE01969B-(cit12)/*[position()=1]) 2015; 6 Johnson (C6EE01969B-(cit33)/*[position()=1]) 1995; 78 Tvingstedt (C6EE01969B-(cit32)/*[position()=1]) 2014; 4 Saliba (C6EE01969B-(cit5)/*[position()=1]) 2016; 9 Noel (C6EE01969B-(cit10)/*[position()=1]) 2014; 8 Johnston (C6EE01969B-(cit30)/*[position()=1]) 2015; 49 Berner (C6EE01969B-(cit24)/*[position()=1]) 1975; 39 Liu (C6EE01969B-(cit2)/*[position()=1]) 2013; 501 van Reenen (C6EE01969B-(cit37)/*[position()=1]) 2015; 6 Kieslich (C6EE01969B-(cit22)/*[position()=1]) 2015; 6 Shao (C6EE01969B-(cit13)/*[position()=1]) 2014; 5 Kubota (C6EE01969B-(cit25)/*[position()=1]) 1995; 152 Heo (C6EE01969B-(cit3)/*[position()=1]) 2013; 7 Robinson (C6EE01969B-(cit17)/*[position()=1]) 2009; 8 Yin (C6EE01969B-(cit7)/*[position()=1]) 2014; 104 Jeon (C6EE01969B-(cit4)/*[position()=1]) 2014; 13 Moore (C6EE01969B-(cit21)/*[position()=1]) 2015; 137 Zhang (C6EE01969B-(cit11)/*[position()=1]) 2015; 6 Zhang (C6EE01969B-(cit14)/*[position()=1]) 2015; 6 Docampo (C6EE01969B-(cit34)/*[position()=1]) 2013; 4 Zhao (C6EE01969B-(cit20)/*[position()=1]) 2008; 41 |
References_xml | – volume: 416 start-page: 42 year: 2005 ident: C6EE01969B-(cit36)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.09.052 – volume: 338 start-page: 643 year: 2012 ident: C6EE01969B-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1228604 – volume: 92 start-page: 174103 year: 2015 ident: C6EE01969B-(cit18)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.174103 – volume: 6 start-page: 3808 year: 2015 ident: C6EE01969B-(cit37)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01645 – volume: 4 start-page: 2761 year: 2013 ident: C6EE01969B-(cit34)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3761 – volume: 41 start-page: 1095 year: 2008 ident: C6EE01969B-(cit20)/*[position()=1] publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889808031762 – volume: 5 start-page: 1035 year: 2014 ident: C6EE01969B-(cit31)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500279b – volume: 9 start-page: 1989 year: 2016 ident: C6EE01969B-(cit5)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03874J – volume: 5 start-page: 1511 year: 2014 ident: C6EE01969B-(cit38)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500113x – volume: 5 start-page: 5784 year: 2014 ident: C6EE01969B-(cit13)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6784 – volume: 8 start-page: 9815 year: 2014 ident: C6EE01969B-(cit10)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn5036476 – volume: 1 start-page: 22 year: 1953 ident: C6EE01969B-(cit19)/*[position()=1] publication-title: Acta Metall. doi: 10.1016/0001-6160(53)90006-6 – volume: 13 start-page: 1 year: 2014 ident: C6EE01969B-(cit4)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3857 – volume: 338 start-page: 643 year: 2012 ident: C6EE01969B-(cit16)/*[position()=1] publication-title: Science doi: 10.1126/science.1228604 – volume: 2 start-page: 034007 year: 2014 ident: C6EE01969B-(cit29)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.2.034007 – volume: 6 start-page: 1739 year: 2013 ident: C6EE01969B-(cit6)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40810h – volume: 104 start-page: 063903 year: 2014 ident: C6EE01969B-(cit7)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4864778 – volume: 7 start-page: 486 year: 2013 ident: C6EE01969B-(cit3)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.80 – volume: 136 start-page: 14570 year: 2014 ident: C6EE01969B-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5079305 – volume: 137 start-page: 2350 year: 2015 ident: C6EE01969B-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512117e – volume: 78 start-page: 5609 year: 1995 ident: C6EE01969B-(cit33)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.359683 – volume: 8 start-page: 291 year: 2009 ident: C6EE01969B-(cit17)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2400 – volume-title: Encyclopedia of Analytical Chemistry year: 2006 ident: C6EE01969B-(cit23)/*[position()=1] – volume: 501 start-page: 395 year: 2013 ident: C6EE01969B-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/nature12509 – volume: 348 start-page: 683 year: 2015 ident: C6EE01969B-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa5333 – volume: 6 start-page: 6142 year: 2015 ident: C6EE01969B-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7142 – volume: 36 start-page: 163 year: 1998 ident: C6EE01969B-(cit26)/*[position()=1] publication-title: Prog. Cryst. Growth Charact. Mater. doi: 10.1016/S0960-8974(98)00009-6 – volume: 6 start-page: 10030 year: 2015 ident: C6EE01969B-(cit11)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10030 – volume: 152 start-page: 203 year: 1995 ident: C6EE01969B-(cit25)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(95)00128-X – volume: 39 start-page: 489 year: 1975 ident: C6EE01969B-(cit24)/*[position()=1] publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(75)90102-7 – volume: 5 start-page: 4712 year: 2014 ident: C6EE01969B-(cit15)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC02211D – volume: 8 start-page: 1160 year: 2015 ident: C6EE01969B-(cit35)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03824J – volume: 6 start-page: 3430 year: 2015 ident: C6EE01969B-(cit22)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC00961H – volume: 49 start-page: 146 year: 2015 ident: C6EE01969B-(cit30)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00411 – volume: 4 start-page: 6071 year: 2014 ident: C6EE01969B-(cit32)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep06071 – volume: 349 start-page: aaa67601 year: 2015 ident: C6EE01969B-(cit27)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa6760 – volume: 5 start-page: 1421 year: 2014 ident: C6EE01969B-(cit28)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5005285 – volume: 6 start-page: 7081 year: 2015 ident: C6EE01969B-(cit12)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8081 |
SSID | ssj0062079 |
Score | 2.6261916 |
Snippet | Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2892 |
SubjectTerms | Charge Devices Doping Electronics Perovskites Photovoltaic cells Semiconductors Solar cells |
Title | Efficient perovskite solar cells by metal ion doping |
URI | https://www.proquest.com/docview/1827887859 https://www.proquest.com/docview/1845795702 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcCh4inKS0ZwQauUJI6d-NhWKVWpyiWrXXGJbGesVsC2alIk-PWMnefSChUu0a7XGW3yWZ9nxp7PhLyzShgbyyoItTEBxhsqUG6PO9PKqhAyacBvkD0Rh_PkaMmX4xmbvrqk0Tvm1411Jf-DKrYhrq5K9h-QHYxiA35GfPGKCOP1VhjnXv_BreY7ue8ftcvEzmoXrM5cQr52vuV3cOWODuTK10atpeLbwj-H_qTgrS-THDFfdEnlI6RPPStqCBZw9uePX07PBvt-Tao5VV_bpLOrU7u4lqLubXQ5h2iac2hpMuVJwEV7it0OTNrSUEy5VU6GkJzyZNbf236VrfVrfB4yJ4dqBIDX8dHjrNWv1J98Lg_mx8dlkS-Lu2QzxmgB6W5z99Pex0U_JYs49KKLw9_udWqZ_DDaXvdM1idm720UD8hWFybQ3Rbzh-QOrB6R-xPxyMckGdCnI_rUo089-lT_pB59iujTFv0nZH6QF_uHQXcGRmCYYE2gDOOZ5TrSRjGVschmwIwClYKuLAavYZXGAumAg0rwFhXpCFk1kZGJUlsJ9pRsrM5X8IzQEBR615wllkHixOwVkrmNVCYwZIaMb5P3_fOXphOId-eUfCv9RgUmy32R5_5d7W2Tt0Pfi1YW5cZeb_rXWCJruWdXKzi_qkuMat021ozLv_VJeCpxRMXPb2HnBbk3jtSXZKO5vIJX6C82-nU3Gn4DmExtbA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+perovskite+solar+cells+by+metal+ion+doping&rft.jtitle=Energy+%26+environmental+science&rft.au=Wang%2C+Jacob+Tse-Wei&rft.au=Wang%2C+Zhiping&rft.au=Pathak%2C+Sandeep&rft.au=Zhang%2C+Wei&rft.date=2016-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=9&rft.issue=9&rft.spage=2892&rft.epage=2901&rft_id=info:doi/10.1039%2Fc6ee01969b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |