CO2 Hydrogenation to Methanol over Copper Catalysts: Learning from Syngas Conversion
Much of the seminal work on the fundamentals of methanol synthesis from syngas over Cu/ZnO/Al 2 O 3 catalysts was carried out by Spencer and co-workers. Their work addressed key questions relating to the reaction mechanism and the nature of the active sites. The findings of these studies, many of wh...
Saved in:
Published in | Topics in catalysis Vol. 64; no. 17-20; pp. 974 - 983 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1022-5528 1572-9028 |
DOI | 10.1007/s11244-021-01427-y |
Cover
Loading…
Abstract | Much of the seminal work on the fundamentals of methanol synthesis from syngas over Cu/ZnO/Al
2
O
3
catalysts was carried out by Spencer and co-workers. Their work addressed key questions relating to the reaction mechanism and the nature of the active sites. The findings of these studies, many of which have since been validated and refined using modern computational and experimental techniques, are now informing the selection and design of catalyst systems for CO
2
utilisation by hydrogenation to methanol. |
---|---|
AbstractList | Much of the seminal work on the fundamentals of methanol synthesis from syngas over Cu/ZnO/Al
2
O
3
catalysts was carried out by Spencer and co-workers. Their work addressed key questions relating to the reaction mechanism and the nature of the active sites. The findings of these studies, many of which have since been validated and refined using modern computational and experimental techniques, are now informing the selection and design of catalyst systems for CO
2
utilisation by hydrogenation to methanol. Much of the seminal work on the fundamentals of methanol synthesis from syngas over Cu/ZnO/Al2O3 catalysts was carried out by Spencer and co-workers. Their work addressed key questions relating to the reaction mechanism and the nature of the active sites. The findings of these studies, many of which have since been validated and refined using modern computational and experimental techniques, are now informing the selection and design of catalyst systems for CO2 utilisation by hydrogenation to methanol. |
Author | Golunski, Stan Burch, Robbie |
Author_xml | – sequence: 1 givenname: Stan orcidid: 0000-0001-7980-8624 surname: Golunski fullname: Golunski, Stan – sequence: 2 givenname: Robbie surname: Burch fullname: Burch, Robbie organization: CenTACat, School of Chemistry & Chemical Engineering, Queen’s University Belfast |
BookMark | eNp9kE9LwzAYh4MouE2_gKeC52rypk1bb1LUCZMdnOeQpmnt6JKaZEK_vdkqCB52et_D83v_PHN0ro1WCN0QfEcwzu4dIZAkMQYSY5JAFo9naEbSDOICQ34eegwQpynkl2ju3BYHMiuKGdqUa4iWY21Nq7TwndGRN9Gb8p9Cmz4y38pGpRmGQxFe9KPz7iFaKWF1p9uosWYXvY-6FS5gOtAujLhCF43onbr-rQv08fy0KZfxav3yWj6uYkkZ9bEoKpZLqJqqZrnIKEgQaUZZkTSyolBXNKU49AywKlLB6rrBTKYyK7DALKN0gW6nuYM1X3vlPN-avdVhJQcWhBCGCQQqnyhpjXNWNVx2_viqt6LrOcH84JBPDnkww48O-Rii8C862G4n7Hg6RKeQC7Bulf276kTqB0RvhrA |
CitedBy_id | crossref_primary_10_1021_acscatal_3c02149 crossref_primary_10_1021_acscatal_2c01099 crossref_primary_10_1016_j_ijhydene_2024_02_176 crossref_primary_10_3390_nano12213877 crossref_primary_10_3390_catal12070793 crossref_primary_10_1007_s11244_022_01708_0 crossref_primary_10_1002_ange_202303939 crossref_primary_10_1007_s10562_023_04437_5 crossref_primary_10_1016_j_ccr_2021_213982 crossref_primary_10_1016_j_enconman_2023_116755 crossref_primary_10_1007_s11426_023_1995_6 crossref_primary_10_1002_anie_202303939 crossref_primary_10_1016_j_cej_2025_159953 crossref_primary_10_1002_cctc_202301496 crossref_primary_10_1016_j_cattod_2022_08_005 crossref_primary_10_1007_s10562_024_04756_1 crossref_primary_10_1007_s11244_023_01814_7 |
Cites_doi | 10.1016/S0039-6028(87)81129-9 10.1023/A:1019017931794 10.3390/catal9030275 10.1039/ft9908602683 10.3390/ma12233902 10.1016/0021-9517(82)90040-9 10.1039/C6CP00967K 10.1016/j.jcat.2015.01.021 10.1039/C9CS00614A 10.1016/0920-5861(91)80009-X 10.1016/j.eng.2019.07.007 10.1016/S0360-0564(08)60455-1 10.1016/j.jcat.2015.12.005 10.1016/0021-9517(87)90094-7 10.1039/C8CY00304A 10.1016/j.rser.2015.12.112 10.1002/cctc.201900401 10.1016/S0166-9834(00)80103-7 10.1016/j.apenergy.2015.07.067 10.1016/j.rser.2020.109927 10.1039/DC9898700107 10.1038/s41467-019-13638-9 10.1021/cs200055d 10.1023/A:1019181715731 10.1016/j.eng.2020.07.005 10.1038/nature16935 10.1016/j.apcata.2015.06.014 10.1016/j.jcat.2008.07.004 10.1007/BF00816307 10.1038/s41467-020-17631-5 10.1006/jcat.1998.1964 10.1039/C6FD00202A 10.1016/0920-5861(95)00240-5 10.1126/science.1219831 10.1039/c3cy00573a 10.1002/anie.200702600 10.1023/A:1023588322846 10.1243/PIME_PROC_1993_207_158_02 10.1016/S0166-9834(00)84123-8 10.1002/cctc.201601692 10.1016/0926-860X(92)80125-V 10.1080/03602458008066535 10.1023/A:1022663125977 10.1023/A:1016696022840 10.1039/ft9908603151 10.1016/S0166-9834(00)81226-9 10.1002/cctc.201000017 10.1126/science.aal3573 10.1021/acs.iecr.9b01898 10.1016/j.rser.2019.109547 10.1016/j.jcou.2017.11.008 10.1038/ncomms13057 10.1007/BF00772093 10.1021/acs.chemrev.6b00816 10.1021/ie990078s 10.1016/S0926-860X(01)00650-0 10.1002/9783527627806.ch11 10.1039/C7EE02342A 10.1016/j.jcat.2005.04.026 10.1016/S0039-6028(87)81127-5 10.1002/cssc.202002054 10.1016/j.petlm.2018.12.007 10.1039/C8RA03291B 10.1039/f19898503537 10.1021/acscatal.0c03661 10.1016/S0039-6028(87)80264-9 10.1016/j.petlm.2016.11.003 10.1595/205651321X16063027322661 10.1016/0021-9517(89)90362-X 10.1039/C6SC04130B 10.1016/j.jcat.2015.04.035 10.1002/anie.201603368 10.1007/s40974-020-00156-4 10.1039/f19878302193 10.1039/f19817703023 10.1016/j.cattod.2018.03.046 10.1016/S0039-6028(87)81128-7 10.1016/S0926-860X(00)00854-1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11244-021-01427-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-9028 |
EndPage | 983 |
ExternalDocumentID | 10_1007_s11244_021_01427_y |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-a9b68c2bfbd68a732c2a573694fcb32db35304fc620e95a6ddf06c5c790a06733 |
IEDL.DBID | U2A |
ISSN | 1022-5528 |
IngestDate | Fri Jul 25 11:05:50 EDT 2025 Tue Jul 01 01:10:52 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Fri Feb 21 02:47:15 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17-20 |
Keywords | Cu/ZnO/Al Cu catalysts CO hydrogenation Methanol synthesis O |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-a9b68c2bfbd68a732c2a573694fcb32db35304fc620e95a6ddf06c5c790a06733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7980-8624 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s11244-021-01427-y.pdf |
PQID | 2612416012 |
PQPubID | 2043828 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2612416012 crossref_citationtrail_10_1007_s11244_021_01427_y crossref_primary_10_1007_s11244_021_01427_y springer_journals_10_1007_s11244_021_01427_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Topics in catalysis |
PublicationTitleAbbrev | Top Catal |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Stancin, Mikulcic, Wang, Duic (CR4) 2020; 128 Sun, Metcalfe, Sahibzada (CR77) 1999; 38 Strangeland, Li, Yu (CR84) 2020; 5 Baltes, Vukojević, Schüth (CR39) 2008; 258 van den Berg, Prieto, Korpershoek, van der Wal, van Bunningen, Lægsgaard-Jørgensen, de Jongh, de Jong (CR52) 2016; 7 Olah, Goeppert, Surya Prakash (CR17) 2009 Spencer (CR59) 1999; 8 Waller, Stirling, Stone, Spencer (CR36) 1989; 87 Kattel, Ramírez, Chen, Rodriguez, Liu (CR66) 2017; 355 O’Neill (CR1) 2020; 6 Spencer (CR64) 1987; 192 Baumgarten, Lentes-Wagner, Wagner (CR60) 1989; 117 Fernandez-Dacosta, Stojcheva, Ramirez (CR9) 2018; 23 Fujitani, Saito, Kanai, Kakumoto, Watanabe, Nakamura, Uchijima (CR45) 1994; 25 Burch, Golunski, Spencer (CR46) 1990; 5 Li, Tsang (CR19) 2018; 8 Hayward, Smith, Kondrat, Bowker, Hutchings (CR43) 2017; 9 Bridger, Spencer, Twigg (CR25) 1996 Hiolski (CR2) 2019; 5 CR3 Behrens, Furche, Kasatkin, Trunschke, Busser, Muhler, Kniep, Fischer, Schlögl (CR72) 2010; 2 Twigg, Spencer (CR71) 2001; 212 Perez-Fortes, Schoneberger, Boulamanti, Tzimas (CR10) 2016; 161 Chinchen, Spencer (CR35) 1991; 10 Spencer (CR62) 1987; 192 Bui (CR6) 2018; 11 Kowalewicz (CR12) 1993; 207 Laudenschleger, Ruland, Muhler (CR51) 2020; 11 Nakamura, Uchijima, Kanai, Fujitani (CR65) 1996; 28 Chinchen, Waugh, Whan (CR34) 1986; 25 Kasatkin, Kurr, Kniep, Trunschke, Schlögl (CR49) 2007; 46 Lunkenbein, Girgsdies, Kandemir, Thomas, Behrens, Schlögl, Frei (CR50) 2016; 55 Le Valant, Comminges, Tisseraud, Canaff, Pinard, Pouilloux (CR68) 2015; 324 Smith, Kondrat, Chater, Yeo, Shaw, Lu, Bartley, Taylor, Spencer, Kiely, Kelly, Park, Hutchings (CR74) 2017; 8 Wu, Saito, Takeuchi, Watanabe (CR79) 2001; 218 Fichtl, Schlereth, Jacobsen, Kasatkin, Schumann, Behrens, Schlögl, Hinrichsen (CR81) 2015; 502 Raza, Gholami, Rezaee, Rasouli, Rabiei (CR7) 2019; 5 Burch, Golunski, Spencer (CR47) 1990; 86 Grabow, Mavrikakis (CR56) 2011; 1 Alper, Yuksel Orhan (CR8) 2017; 3 Spencer (CR63) 1987; 192 Chinchen, Spencer, Waugh, Whan (CR26) 1987; 83 Zabilskiy, Sushkevich, Newton, van Bokhoven (CR67) 2020; 10 Satterfield (CR24) 1991 Bowker, Houghton, Waugh (CR54) 1981; 77 Álvarez, Bansode, Urakawa, Bavykina, Wezendonk, Makkee, Gascon, Kapteijn (CR18) 2017; 117 Kung (CR30) 1980; 22 Kurtz, Wilmer, Genger, Hinrichsen, Muhler (CR41) 2003; 86 Bowker (CR55) 2019; 11 CR15 Günter, Ressler, Bems, Büscher, Genger, Hinrichsen, Muhler, Schlögl (CR40) 2001; 71 CR14 CR13 CR11 Klier (CR31) 1982; 31 Liu, Yi, Wang, Guo, Bogaerts (CR20) 2019; 9 Behrens, Studt, Kasatkin, Kühl, Hävecker, Abild-Pedersen, Zander, Girgsdies, Kurr, Tovar, Fischer, Nørskov, Schlögl (CR53) 2012; 336 Chinchen, Denny, Parker, Spencer, Whan (CR27) 1987; 30 Tisseraud, Comminges, Belin, Ahouari, Soualah, Pouilloux, Le Valant (CR69) 2015; 330 Chinchen, Plant, Spencer, Whan (CR28) 1987; 184 Chinchen, Hay, Vandervell, Waugh (CR33) 1987; 103 Chinchen, Denny, Jennings, Spencer, Waugh (CR29) 1988; 36 Nakamura, Choi, Fujitani (CR48) 2003; 22 Dennison, Packer, Spencer (CR58) 1989; 85 Zhong, Yang, Wu, Liang, Huang, Zhang (CR22) 2020; 49 Kandemir, Friedrich, Parker, Studt, Lennon, Schlögl, Behrens (CR57) 2016; 18 Styring, Dowson (CR85) 2021; 65 Martin, Pérez-Ramírez (CR80) 2013; 3 Klier, Chatikavanij, Herman, Simmons (CR32) 1982; 74 Spencer (CR44) 1999; 60 Sahibzada, Metcalfe, Chadwick (CR78) 1998; 174 Rhodes, Bell (CR42) 2005; 223 Sha, Han, Tang, Wang, Li (CR23) 2020; 13 Kondrat, Smith, Carter, Hayward, Pudge, Shaw, Spencer, Bartley, Taylor, Hutchings (CR75) 2017; 197 Pollard, Spencer, Thomas, Williams, Holt, Jennings (CR37) 1992; 85 Spencer, Burch, Golunski (CR61) 1990; 86 Prašnikar, Pavlišič, Ruiz-Zepeda, Kovač, Likozar (CR82) 2019; 58 Guil-López, Mota, Llorente, Millán, Pawelec, Fierro, Navarro (CR83) 2019; 12 Vakulchuk, Overland, Scholten (CR5) 2020; 122 Tisseraud, Comminges, Pronier, Pouilloux, Le Valant (CR70) 2016; 343 Kondrat, Smith, Wells, Chater, Carter, Morgan, Fiordaliso, Wagner, Davies, Lu, Bartley, Taylor, Spencer, Kiely, Kelly, Park, Rosseinsky, Hutchings (CR73) 2016; 531 Hosseini, Wahid (CR16) 2016; 57 Kondrat, Smith, Lu, Bartley, Taylor, Spencer, Kelly, Park, Kiely, Hutchings (CR76) 2018; 317 Ye, Ding, Gong, Argyle, Zhong, Wang, Russell, Xu, Russell, Li, Fan, Yao (CR21) 2019; 10 Mota, Guil-Lopez, Pawelec, Fierro, Navarro (CR38) 2018; 8 1427_CR11 I Kasatkin (1427_CR49) 2007; 46 E Hiolski (1427_CR2) 2019; 5 MS Spencer (1427_CR64) 1987; 192 1427_CR15 F Sha (1427_CR23) 2020; 13 K Klier (1427_CR32) 1982; 74 D Laudenschleger (1427_CR51) 2020; 11 1427_CR13 MS Spencer (1427_CR44) 1999; 60 1427_CR14 M Zabilskiy (1427_CR67) 2020; 10 M Bowker (1427_CR55) 2019; 11 C Tisseraud (1427_CR69) 2015; 330 K Strangeland (1427_CR84) 2020; 5 R Burch (1427_CR46) 1990; 5 H Stancin (1427_CR4) 2020; 128 AM Pollard (1427_CR37) 1992; 85 PJ Smith (1427_CR74) 2017; 8 M Sahibzada (1427_CR78) 1998; 174 CN Satterfield (1427_CR24) 1991 R-P Ye (1427_CR21) 2019; 10 SA Kondrat (1427_CR76) 2018; 317 C Baltes (1427_CR39) 2008; 258 JS Hayward (1427_CR43) 2017; 9 MS Spencer (1427_CR59) 1999; 8 MS Spencer (1427_CR62) 1987; 192 A Álvarez (1427_CR18) 2017; 117 E Baumgarten (1427_CR60) 1989; 117 O Martin (1427_CR80) 2013; 3 C Fernandez-Dacosta (1427_CR9) 2018; 23 D Waller (1427_CR36) 1989; 87 P Styring (1427_CR85) 2021; 65 R Guil-López (1427_CR83) 2019; 12 S O’Neill (1427_CR1) 2020; 6 K Klier (1427_CR31) 1982; 31 MM-J Li (1427_CR19) 2018; 8 GW Bridger (1427_CR25) 1996 J Wu (1427_CR79) 2001; 218 GC Chinchen (1427_CR33) 1987; 103 SA Kondrat (1427_CR73) 2016; 531 M Bowker (1427_CR54) 1981; 77 A Raza (1427_CR7) 2019; 5 J Nakamura (1427_CR48) 2003; 22 GC Chinchen (1427_CR29) 1988; 36 M Behrens (1427_CR72) 2010; 2 GC Chinchen (1427_CR28) 1987; 184 T Lunkenbein (1427_CR50) 2016; 55 SE Hosseini (1427_CR16) 2016; 57 MB Fichtl (1427_CR81) 2015; 502 M Behrens (1427_CR53) 2012; 336 J Nakamura (1427_CR65) 1996; 28 MS Spencer (1427_CR63) 1987; 192 MM Günter (1427_CR40) 2001; 71 M Liu (1427_CR20) 2019; 9 J Zhong (1427_CR22) 2020; 49 R Vakulchuk (1427_CR5) 2020; 122 M Kurtz (1427_CR41) 2003; 86 A Prašnikar (1427_CR82) 2019; 58 A Kowalewicz (1427_CR12) 1993; 207 C Tisseraud (1427_CR70) 2016; 343 S Kattel (1427_CR66) 2017; 355 T Kandemir (1427_CR57) 2016; 18 E Alper (1427_CR8) 2017; 3 HH Kung (1427_CR30) 1980; 22 N Mota (1427_CR38) 2018; 8 R Burch (1427_CR47) 1990; 86 SA Kondrat (1427_CR75) 2017; 197 1427_CR3 LC Grabow (1427_CR56) 2011; 1 A Le Valant (1427_CR68) 2015; 324 R van den Berg (1427_CR52) 2016; 7 MD Rhodes (1427_CR42) 2005; 223 JT Sun (1427_CR77) 1999; 38 M Bui (1427_CR6) 2018; 11 M Perez-Fortes (1427_CR10) 2016; 161 GC Chinchen (1427_CR35) 1991; 10 GC Chinchen (1427_CR27) 1987; 30 MV Twigg (1427_CR71) 2001; 212 GA Olah (1427_CR17) 2009 PR Dennison (1427_CR58) 1989; 85 T Fujitani (1427_CR45) 1994; 25 GC Chinchen (1427_CR34) 1986; 25 MS Spencer (1427_CR61) 1990; 86 GC Chinchen (1427_CR26) 1987; 83 |
References_xml | – volume: 192 start-page: 323 year: 1987 end-page: 328 ident: CR62 article-title: α-Brass formation in copper/zinc oxide catalysts: I. Bulk equilibrium concentrations of zinc under methanol synthesis and water-gas shift reaction conditions publication-title: Surf Sci – volume: 8 start-page: 3450 year: 2018 end-page: 3464 ident: CR19 article-title: Bimetallic catalysts for green methanol production via CO and renewable hydrogen: a mini-review and prospects publication-title: Catal Sci Technol – volume: 258 start-page: 334 year: 2008 end-page: 344 ident: CR39 article-title: Correlations between synthesis, precursor, and catalyst structure and activity of a large set of Cu/ZnO/Al O catalysts for methanol synthesis publication-title: J Catal – start-page: 185 year: 2009 end-page: 231 ident: CR17 article-title: Methanol and dimethyl ether as fuels and energy carriers publication-title: Beyond oil and gas: the methanol economy – volume: 25 start-page: 101 year: 1986 end-page: 107 ident: CR34 article-title: The activity and state of the copper surface in methanol synthesis catalysis publication-title: Appl Catal – volume: 85 start-page: 1 year: 1992 end-page: 11 ident: CR37 article-title: Georgeite and azurite as precursors in the preparation of co-precipitated copper/zinc oxide catalysts publication-title: Appl Catal A – volume: 12 start-page: 3902 year: 2019 ident: CR83 article-title: Methanol synthesis from CO : a review of the latest developments in heterogeneous catalysis publication-title: Materials – volume: 8 start-page: 259 year: 1999 end-page: 266 ident: CR59 article-title: The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and water-gas shift reaction publication-title: Top Catal – volume: 531 start-page: 83 year: 2016 end-page: 87 ident: CR73 article-title: Stable amorphous georgeite as a precursor to a high-activity catalyst publication-title: Nature – volume: 74 start-page: 343 year: 1982 end-page: 360 ident: CR32 article-title: Catalytic synthesis of methanol from CO/H : IV. The effects of carbon dioxide publication-title: J Catal – volume: 174 start-page: 111 year: 1998 end-page: 118 ident: CR78 article-title: Methanol synthesis from CO/CO /H over Cu/ZnO/Al O at differential and finite conversions publication-title: J Catal – volume: 13 start-page: 6160 year: 2020 end-page: 6181 ident: CR23 article-title: Hydrogenation of carbon dioxide to methanol over non-Cu-based heterogeneous catalysts publication-title: ChemSusChem – volume: 212 start-page: 161 year: 2001 end-page: 174 ident: CR71 article-title: Deactivation of supported copper metal catalysts for hydrogenation reactions publication-title: Appl Catal A – volume: 128 start-page: 109927 year: 2020 ident: CR4 article-title: A review on alternative fuels in future energy systems publication-title: Renew Sustain Energy Rev – volume: 8 start-page: 2436 year: 2017 end-page: 2447 ident: CR74 article-title: A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation publication-title: Chem Sci – start-page: 419 year: 1991 end-page: 470 ident: CR24 article-title: Chapter 10—synthesis gas and associated processes publication-title: Heterogeneous catalysis in industrial practice – volume: 192 start-page: 336 year: 1987 end-page: 343 ident: CR64 article-title: α-brass formation in copper/zinc oxide catalysts: III. Surface segregation of zinc in α-brass publication-title: Surf Sci – volume: 71 start-page: 37 year: 2001 end-page: 44 ident: CR40 article-title: Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis publication-title: Catal Lett – volume: 87 start-page: 107 year: 1989 end-page: 120 ident: CR36 article-title: Copper-zinc oxide catalysts: activity in relation to precursor structure and morphology publication-title: Faraday Discuss Chem Soc – volume: 86 start-page: 77 year: 2003 end-page: 80 ident: CR41 article-title: Deactivation of supported copper catalysts for methanol synthesis publication-title: Catal Lett – volume: 317 start-page: 12 year: 2018 end-page: 20 ident: CR76 article-title: Preparation of a highly active ternary Cu–Zn–Al oxide methanol synthesis catalyst by supercritical CO anti-solvent precipitation publication-title: Catal Today – volume: 11 start-page: 4238 year: 2019 end-page: 4246 ident: CR55 article-title: Methanol synthesis from CO hydrogenation publication-title: ChemCatChem – volume: 324 start-page: 41 year: 2015 end-page: 49 ident: CR68 article-title: The Cu–ZnO synergy in methanol synthesis from CO , part 1: origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ZnO mechanical mixtures publication-title: J Catal – volume: 9 start-page: 275 year: 2019 ident: CR20 article-title: Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis publication-title: Catalysts – volume: 22 start-page: 277 year: 2003 end-page: 285 ident: CR48 article-title: On the issue of active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts publication-title: Top Catal – volume: 58 start-page: 13021 year: 2019 end-page: 13029 ident: CR82 article-title: Mechanisms of copper-based catalyst deactivation during CO reduction to methanol publication-title: Ind Eng Chem Res – ident: CR15 – volume: 122 start-page: 109547 year: 2020 ident: CR5 article-title: Renewable energy and geopolitics: a review publication-title: Renew Sustain Energy Rev – volume: 502 start-page: 262 year: 2015 end-page: 270 ident: CR81 article-title: Kinetics of deactivation of Cu/ZnO/Al O methanol synthesis catalysts publication-title: Appl Catal A – ident: CR11 – volume: 8 start-page: 20619 year: 2018 end-page: 20629 ident: CR38 article-title: Highly active Cu/ZnO-Al catalyst for methanol synthesis: effect of aging on its structure and activity publication-title: RSC Adv – volume: 65 start-page: 170 year: 2021 end-page: 179 ident: CR85 article-title: Oxygenated transport fuels from carbon dioxide—driving towards net zero publication-title: Johns Matthey Technol Rev – volume: 336 start-page: 893 year: 2012 end-page: 897 ident: CR53 article-title: The active site of methanol synthesis over Cu/ZnO/Al O industrial catalysts publication-title: Science – volume: 55 start-page: 12708 year: 2016 end-page: 12712 ident: CR50 article-title: Bridging the time gap: a copper/zinc oxide/aluminium oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales publication-title: Angew Chem Int Ed – volume: 86 start-page: 3151 year: 1990 end-page: 3152S ident: CR61 article-title: Gas-phase transport of hydrogen atoms in methanol synthesis over copper/zinc oxide catalysts? publication-title: J Chem Soc Faraday Trans – volume: 223 start-page: 198 year: 2005 end-page: 209 ident: CR42 article-title: The effects of zirconia morphology on methanol synthesis from CO and H over Cu/ZrO catalysts: Part 1. Steady-state studies publication-title: J Catal – volume: 9 start-page: 1655 year: 2017 end-page: 1662 ident: CR43 article-title: The effects of secondary oxides on copper-based catalysts for green methanol synthesis publication-title: ChemCatChem – volume: 85 start-page: 3537 year: 1989 end-page: 3560 ident: CR58 article-title: H and C nuclear magnetic resonance investigations of the Cu/Zn/Al oxide methanol synthesis catalyst publication-title: J Chem Soc Faraday Trans 1 – volume: 5 start-page: 600 year: 2019 end-page: 602 ident: CR2 article-title: Climate change: losing ground? publication-title: Engineering – volume: 103 start-page: 79 year: 1987 end-page: 86 ident: CR33 article-title: The measurement of copper surface areas by reactive chromatography publication-title: J Catal – volume: 86 start-page: 2683 year: 1990 end-page: 2691 ident: CR47 article-title: The role of copper and zinc oxide in methanol synthesis catalysts publication-title: J Chem Soc Faraday Trans – volume: 355 start-page: 1296 year: 2017 end-page: 1299 ident: CR66 article-title: Active sites for CO hydrogenation to methanol on Cu/ZnO catalysts publication-title: Science – volume: 18 start-page: 17253 year: 2016 end-page: 17258 ident: CR57 article-title: Different routes to methanol: inelastic neutron scattering spectroscopy of adsorbates on supported catalysts publication-title: Phys Chem Chem Phys – volume: 197 start-page: 287 year: 2017 end-page: 307 ident: CR75 article-title: The effect of sodium species on methanol synthesis and water–gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite publication-title: Faraday Discuss – volume: 5 start-page: 335 year: 2019 end-page: 340 ident: CR7 article-title: Significant aspects of carbon capture and storage—a review publication-title: Petroleum – volume: 31 start-page: 243 year: 1982 end-page: 313 ident: CR31 article-title: Methanol synthesis publication-title: Adv Catal – ident: CR14 – volume: 83 start-page: 2193 year: 1987 end-page: 2212 ident: CR26 article-title: Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalysts publication-title: J Chem Soc Faraday Trans 1 – volume: 7 start-page: 13057 year: 2016 ident: CR52 article-title: Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis publication-title: Nat Comm – start-page: 441 year: 1996 end-page: 468 ident: CR25 article-title: Chapter 9—methanol synthesis publication-title: Catalyst handbook – volume: 11 start-page: 3898 year: 2020 ident: CR51 article-title: Identifying the nature of active sites in methanol synthesis over Cu/ZnO/Al O catalysts publication-title: Nat Comm – volume: 343 start-page: 106 year: 2016 end-page: 114 ident: CR70 article-title: The Cu–ZnO synergy in methanol synthesis part 3: impact of the composition of a selective Cu@ZnOx core–shell catalyst on methanol rate explained by experimental studies and a concentric spheres model publication-title: J Catal – volume: 57 start-page: 850 year: 2016 end-page: 866 ident: CR16 article-title: Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development publication-title: Renew Sustain Energy Rev – volume: 5 start-page: 55 year: 1990 end-page: 60 ident: CR46 article-title: The role of hydrogen in methanol synthesis over copper catalysts publication-title: Catal Lett – volume: 38 start-page: 3868 year: 1999 end-page: 3872 ident: CR77 article-title: Deactivation of Cu/ZnO/Al O methanol synthesis catalyst by sintering publication-title: Ind Eng Chem Res – volume: 77 start-page: 3023 year: 1981 end-page: 3036 ident: CR54 article-title: Mechanism and kinetics of methanol synthesis on zinc oxide publication-title: J Chem Soc Faraday Trans 1 – volume: 10 start-page: 293 year: 1991 end-page: 301 ident: CR35 article-title: Sensitive and insensitive reactions on copper catalysts: the water-gas shift reaction and methanol synthesis from carbon dioxide publication-title: Catal Today – volume: 117 start-page: 533 year: 1989 end-page: 541 ident: CR60 article-title: Hydrogen spillover through gas phase transport of hydrogen atoms publication-title: J Catal – volume: 161 start-page: 718 year: 2016 end-page: 732 ident: CR10 article-title: Methanol synthesis using captured CO as raw material: techno-economic and environmental assessment publication-title: Appl Energy – volume: 60 start-page: 45 year: 1999 end-page: 49 ident: CR44 article-title: The role of surface oxygen on copper metal in catalysts for the synthesis of methanol publication-title: Catal Lett – volume: 3 start-page: 3343 year: 2013 end-page: 3352 ident: CR80 article-title: New and revisited insights into the promotion of methanol synthesis catalysts by CO publication-title: Catal Sci Technol – volume: 207 start-page: 43 year: 1993 end-page: 52 ident: CR12 article-title: Methanol as a fuel for spark ignition engines: a review and analysis publication-title: Proc Inst Mech Eng D – volume: 28 start-page: 223 year: 1996 end-page: 230 ident: CR65 article-title: The role of ZnO in Cu/ZnO methanol synthesis catalysts publication-title: Catal Today – volume: 25 start-page: 271 year: 1994 end-page: 276 ident: CR45 article-title: The role of metal oxides in promoting a copper catalyst for methanol synthesis publication-title: Catal Lett – volume: 22 start-page: 235 year: 1980 end-page: 259 ident: CR30 article-title: Methanol synthesis publication-title: Catal Rev Sci Eng – volume: 6 start-page: 958 year: 2020 end-page: 959 ident: CR1 article-title: Global CO emissions level off in 2019, with a drop predicted in 2020 publication-title: Engineering – volume: 3 start-page: 109 year: 2017 end-page: 126 ident: CR8 article-title: CO utilization: developments in conversion processes publication-title: Petroleum – volume: 10 start-page: 5698 year: 2019 ident: CR21 article-title: CO hydrogenation to high-value products via heterogeneous catalysis publication-title: Nat Commun – volume: 11 start-page: 1062 year: 2018 end-page: 1176 ident: CR6 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energy Environ Sci – volume: 184 start-page: L370 year: 1987 end-page: 374 ident: CR28 article-title: Co-adsorption of oxygen and carbon dioxide on copper metal in a copper/zinc oxide/alumina catalyst publication-title: Surf Sci – volume: 218 start-page: 235 year: 2001 end-page: 240 ident: CR79 article-title: The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO -rich feed and from a CO-rich feed publication-title: Appl Catal A – volume: 117 start-page: 9804 year: 2017 end-page: 9838 ident: CR18 article-title: Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalysed CO hydrogenation processes publication-title: Chem Rev – volume: 10 start-page: 14240 year: 2020 end-page: 14244 ident: CR67 article-title: Copper–zinc alloy-free synthesis of methanol from carbon dioxide over Cu/ZnO/faujasite publication-title: ACS Catal – ident: CR3 – volume: 36 start-page: 1 year: 1988 end-page: 65 ident: CR29 article-title: Synthesis of methanol. Part 1: catalysts and kinetics publication-title: Appl Catal – volume: 2 start-page: 816 year: 2010 end-page: 818 ident: CR72 article-title: The Potential of microstructural optimization in metal/oxide Catalysts: higher intrinsic activity of copper by partial embedding of copper nanoparticles publication-title: ChemCatChem – volume: 5 start-page: 272 year: 2020 end-page: 285 ident: CR84 article-title: CO hydrogenation to methanol: the structure-activity relationships of different catalyst systems publication-title: Energy Ecol Environ – ident: CR13 – volume: 192 start-page: 329 year: 1987 end-page: 335 ident: CR63 article-title: α-brass formation in copper/zinc oxide catalysts: II. Diffusion of zinc in copper and α-brass under reaction conditions publication-title: Surf Sci – volume: 1 start-page: 365 year: 2011 end-page: 384 ident: CR56 article-title: Mechanism of methanol synthesis on Cu through CO and CO hydrogenation publication-title: ACS Catal – volume: 49 start-page: 1385 year: 2020 end-page: 1413 ident: CR22 article-title: State of the art and perspectives in heterogeneous catalysis of CO hydrogenation to methanol publication-title: Chem Soc Rev – volume: 30 start-page: 333 year: 1987 end-page: 338 ident: CR27 article-title: Mechanism of methanol synthesis from CO /CO/H mixtures over copper/zinc oxide/alumina catalysts: use of C-labelled reactants publication-title: Appl Catal – volume: 46 start-page: 7324 year: 2007 end-page: 7327 ident: CR49 article-title: Role of lattice strain and defects in copper particles on the activity Cu/ZnO/Al O catalysts for methanol synthesis publication-title: Angew Chem Int Ed – volume: 23 start-page: 128 year: 2018 end-page: 142 ident: CR9 article-title: Closing carbon cycles: evaluating the performance of multi-product CO utilisation and storage configurations in a refinery publication-title: J CO2 Util – volume: 330 start-page: 533 year: 2015 end-page: 544 ident: CR69 article-title: The Cu–ZnO synergy in methanol synthesis from CO2, part 2: origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu–ZnO coprecipitate catalysts publication-title: J Catal – volume: 192 start-page: 336 year: 1987 ident: 1427_CR64 publication-title: Surf Sci doi: 10.1016/S0039-6028(87)81129-9 – volume: 60 start-page: 45 year: 1999 ident: 1427_CR44 publication-title: Catal Lett doi: 10.1023/A:1019017931794 – volume: 9 start-page: 275 year: 2019 ident: 1427_CR20 publication-title: Catalysts doi: 10.3390/catal9030275 – volume: 86 start-page: 2683 year: 1990 ident: 1427_CR47 publication-title: J Chem Soc Faraday Trans doi: 10.1039/ft9908602683 – volume: 12 start-page: 3902 year: 2019 ident: 1427_CR83 publication-title: Materials doi: 10.3390/ma12233902 – volume: 74 start-page: 343 year: 1982 ident: 1427_CR32 publication-title: J Catal doi: 10.1016/0021-9517(82)90040-9 – volume: 18 start-page: 17253 year: 2016 ident: 1427_CR57 publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP00967K – volume: 324 start-page: 41 year: 2015 ident: 1427_CR68 publication-title: J Catal doi: 10.1016/j.jcat.2015.01.021 – volume: 49 start-page: 1385 year: 2020 ident: 1427_CR22 publication-title: Chem Soc Rev doi: 10.1039/C9CS00614A – volume: 10 start-page: 293 year: 1991 ident: 1427_CR35 publication-title: Catal Today doi: 10.1016/0920-5861(91)80009-X – volume: 5 start-page: 600 year: 2019 ident: 1427_CR2 publication-title: Engineering doi: 10.1016/j.eng.2019.07.007 – volume: 31 start-page: 243 year: 1982 ident: 1427_CR31 publication-title: Adv Catal doi: 10.1016/S0360-0564(08)60455-1 – volume: 343 start-page: 106 year: 2016 ident: 1427_CR70 publication-title: J Catal doi: 10.1016/j.jcat.2015.12.005 – volume: 103 start-page: 79 year: 1987 ident: 1427_CR33 publication-title: J Catal doi: 10.1016/0021-9517(87)90094-7 – volume: 8 start-page: 3450 year: 2018 ident: 1427_CR19 publication-title: Catal Sci Technol doi: 10.1039/C8CY00304A – volume: 57 start-page: 850 year: 2016 ident: 1427_CR16 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.112 – volume: 11 start-page: 4238 year: 2019 ident: 1427_CR55 publication-title: ChemCatChem doi: 10.1002/cctc.201900401 – volume: 36 start-page: 1 year: 1988 ident: 1427_CR29 publication-title: Appl Catal doi: 10.1016/S0166-9834(00)80103-7 – ident: 1427_CR3 – volume: 161 start-page: 718 year: 2016 ident: 1427_CR10 publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.07.067 – volume: 128 start-page: 109927 year: 2020 ident: 1427_CR4 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.109927 – volume: 87 start-page: 107 year: 1989 ident: 1427_CR36 publication-title: Faraday Discuss Chem Soc doi: 10.1039/DC9898700107 – volume: 10 start-page: 5698 year: 2019 ident: 1427_CR21 publication-title: Nat Commun doi: 10.1038/s41467-019-13638-9 – volume: 1 start-page: 365 year: 2011 ident: 1427_CR56 publication-title: ACS Catal doi: 10.1021/cs200055d – volume: 8 start-page: 259 year: 1999 ident: 1427_CR59 publication-title: Top Catal doi: 10.1023/A:1019181715731 – volume: 6 start-page: 958 year: 2020 ident: 1427_CR1 publication-title: Engineering doi: 10.1016/j.eng.2020.07.005 – volume: 531 start-page: 83 year: 2016 ident: 1427_CR73 publication-title: Nature doi: 10.1038/nature16935 – volume: 502 start-page: 262 year: 2015 ident: 1427_CR81 publication-title: Appl Catal A doi: 10.1016/j.apcata.2015.06.014 – ident: 1427_CR11 – volume: 258 start-page: 334 year: 2008 ident: 1427_CR39 publication-title: J Catal doi: 10.1016/j.jcat.2008.07.004 – ident: 1427_CR15 – volume: 25 start-page: 271 year: 1994 ident: 1427_CR45 publication-title: Catal Lett doi: 10.1007/BF00816307 – volume: 11 start-page: 3898 year: 2020 ident: 1427_CR51 publication-title: Nat Comm doi: 10.1038/s41467-020-17631-5 – volume: 174 start-page: 111 year: 1998 ident: 1427_CR78 publication-title: J Catal doi: 10.1006/jcat.1998.1964 – volume: 197 start-page: 287 year: 2017 ident: 1427_CR75 publication-title: Faraday Discuss doi: 10.1039/C6FD00202A – volume: 28 start-page: 223 year: 1996 ident: 1427_CR65 publication-title: Catal Today doi: 10.1016/0920-5861(95)00240-5 – volume: 336 start-page: 893 year: 2012 ident: 1427_CR53 publication-title: Science doi: 10.1126/science.1219831 – volume: 3 start-page: 3343 year: 2013 ident: 1427_CR80 publication-title: Catal Sci Technol doi: 10.1039/c3cy00573a – volume: 46 start-page: 7324 year: 2007 ident: 1427_CR49 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200702600 – volume: 22 start-page: 277 year: 2003 ident: 1427_CR48 publication-title: Top Catal doi: 10.1023/A:1023588322846 – volume: 207 start-page: 43 year: 1993 ident: 1427_CR12 publication-title: Proc Inst Mech Eng D doi: 10.1243/PIME_PROC_1993_207_158_02 – volume: 30 start-page: 333 year: 1987 ident: 1427_CR27 publication-title: Appl Catal doi: 10.1016/S0166-9834(00)84123-8 – volume: 9 start-page: 1655 year: 2017 ident: 1427_CR43 publication-title: ChemCatChem doi: 10.1002/cctc.201601692 – volume: 85 start-page: 1 year: 1992 ident: 1427_CR37 publication-title: Appl Catal A doi: 10.1016/0926-860X(92)80125-V – volume: 22 start-page: 235 year: 1980 ident: 1427_CR30 publication-title: Catal Rev Sci Eng doi: 10.1080/03602458008066535 – volume: 86 start-page: 77 year: 2003 ident: 1427_CR41 publication-title: Catal Lett doi: 10.1023/A:1022663125977 – volume: 71 start-page: 37 year: 2001 ident: 1427_CR40 publication-title: Catal Lett doi: 10.1023/A:1016696022840 – volume: 86 start-page: 3151 year: 1990 ident: 1427_CR61 publication-title: J Chem Soc Faraday Trans doi: 10.1039/ft9908603151 – volume: 25 start-page: 101 year: 1986 ident: 1427_CR34 publication-title: Appl Catal doi: 10.1016/S0166-9834(00)81226-9 – volume: 2 start-page: 816 year: 2010 ident: 1427_CR72 publication-title: ChemCatChem doi: 10.1002/cctc.201000017 – volume: 355 start-page: 1296 year: 2017 ident: 1427_CR66 publication-title: Science doi: 10.1126/science.aal3573 – volume: 58 start-page: 13021 year: 2019 ident: 1427_CR82 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.9b01898 – ident: 1427_CR14 – volume: 122 start-page: 109547 year: 2020 ident: 1427_CR5 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109547 – volume: 23 start-page: 128 year: 2018 ident: 1427_CR9 publication-title: J CO2 Util doi: 10.1016/j.jcou.2017.11.008 – volume: 7 start-page: 13057 year: 2016 ident: 1427_CR52 publication-title: Nat Comm doi: 10.1038/ncomms13057 – volume: 5 start-page: 55 year: 1990 ident: 1427_CR46 publication-title: Catal Lett doi: 10.1007/BF00772093 – volume: 117 start-page: 9804 year: 2017 ident: 1427_CR18 publication-title: Chem Rev doi: 10.1021/acs.chemrev.6b00816 – volume: 38 start-page: 3868 year: 1999 ident: 1427_CR77 publication-title: Ind Eng Chem Res doi: 10.1021/ie990078s – volume: 218 start-page: 235 year: 2001 ident: 1427_CR79 publication-title: Appl Catal A doi: 10.1016/S0926-860X(01)00650-0 – start-page: 185 volume-title: Beyond oil and gas: the methanol economy year: 2009 ident: 1427_CR17 doi: 10.1002/9783527627806.ch11 – volume: 11 start-page: 1062 year: 2018 ident: 1427_CR6 publication-title: Energy Environ Sci doi: 10.1039/C7EE02342A – start-page: 419 volume-title: Heterogeneous catalysis in industrial practice year: 1991 ident: 1427_CR24 – volume: 223 start-page: 198 year: 2005 ident: 1427_CR42 publication-title: J Catal doi: 10.1016/j.jcat.2005.04.026 – volume: 192 start-page: 323 year: 1987 ident: 1427_CR62 publication-title: Surf Sci doi: 10.1016/S0039-6028(87)81127-5 – volume: 13 start-page: 6160 year: 2020 ident: 1427_CR23 publication-title: ChemSusChem doi: 10.1002/cssc.202002054 – volume: 5 start-page: 335 year: 2019 ident: 1427_CR7 publication-title: Petroleum doi: 10.1016/j.petlm.2018.12.007 – volume: 8 start-page: 20619 year: 2018 ident: 1427_CR38 publication-title: RSC Adv doi: 10.1039/C8RA03291B – volume: 85 start-page: 3537 year: 1989 ident: 1427_CR58 publication-title: J Chem Soc Faraday Trans 1 doi: 10.1039/f19898503537 – volume: 10 start-page: 14240 year: 2020 ident: 1427_CR67 publication-title: ACS Catal doi: 10.1021/acscatal.0c03661 – ident: 1427_CR13 – volume: 184 start-page: L370 year: 1987 ident: 1427_CR28 publication-title: Surf Sci doi: 10.1016/S0039-6028(87)80264-9 – volume: 3 start-page: 109 year: 2017 ident: 1427_CR8 publication-title: Petroleum doi: 10.1016/j.petlm.2016.11.003 – volume: 65 start-page: 170 year: 2021 ident: 1427_CR85 publication-title: Johns Matthey Technol Rev doi: 10.1595/205651321X16063027322661 – start-page: 441 volume-title: Catalyst handbook year: 1996 ident: 1427_CR25 – volume: 117 start-page: 533 year: 1989 ident: 1427_CR60 publication-title: J Catal doi: 10.1016/0021-9517(89)90362-X – volume: 8 start-page: 2436 year: 2017 ident: 1427_CR74 publication-title: Chem Sci doi: 10.1039/C6SC04130B – volume: 330 start-page: 533 year: 2015 ident: 1427_CR69 publication-title: J Catal doi: 10.1016/j.jcat.2015.04.035 – volume: 55 start-page: 12708 year: 2016 ident: 1427_CR50 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201603368 – volume: 5 start-page: 272 year: 2020 ident: 1427_CR84 publication-title: Energy Ecol Environ doi: 10.1007/s40974-020-00156-4 – volume: 83 start-page: 2193 year: 1987 ident: 1427_CR26 publication-title: J Chem Soc Faraday Trans 1 doi: 10.1039/f19878302193 – volume: 77 start-page: 3023 year: 1981 ident: 1427_CR54 publication-title: J Chem Soc Faraday Trans 1 doi: 10.1039/f19817703023 – volume: 317 start-page: 12 year: 2018 ident: 1427_CR76 publication-title: Catal Today doi: 10.1016/j.cattod.2018.03.046 – volume: 192 start-page: 329 year: 1987 ident: 1427_CR63 publication-title: Surf Sci doi: 10.1016/S0039-6028(87)81128-7 – volume: 212 start-page: 161 year: 2001 ident: 1427_CR71 publication-title: Appl Catal A doi: 10.1016/S0926-860X(00)00854-1 |
SSID | ssj0021799 |
Score | 2.451449 |
Snippet | Much of the seminal work on the fundamentals of methanol synthesis from syngas over Cu/ZnO/Al
2
O
3
catalysts was carried out by Spencer and co-workers. Their... Much of the seminal work on the fundamentals of methanol synthesis from syngas over Cu/ZnO/Al2O3 catalysts was carried out by Spencer and co-workers. Their... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 974 |
SubjectTerms | Aluminum oxide Carbon dioxide Catalysis Catalysts Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Copper Copper converters Hydrogenation Industrial Chemistry/Chemical Engineering Methanol Original Paper Pharmacy Physical Chemistry Reaction mechanisms Synthesis gas Zinc oxide |
Title | CO2 Hydrogenation to Methanol over Copper Catalysts: Learning from Syngas Conversion |
URI | https://link.springer.com/article/10.1007/s11244-021-01427-y https://www.proquest.com/docview/2612416012 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UDnoxfkYUSQ_etMlo127zBgtINOBBSPC0dF3HhWyETZP99_aNDaJRE09dsrceXl_3vn8PoduuMfJd17aJJT1tHBSmiIxjmygae9qRxqAosfTGEzGa2U9zPq-awrK62r1OSZZ_6l2zG6giAiUFxqynDin2UZOD726keEZ7WzcLMM7KHCe4WZy6VavMz3t8VUc7G_NbWrTUNsNjdFSZibi3OdcTtKeTU3Tg19PZztDUf6F4VETr1EhAyV2cp3isIRKeLjEUZmI_Xa1ggQhNkeXZA67QVBcYukrwa5EsZGbIko9N1OwczYaDqT8i1YQEophgOZFeKFxFwziMhCsdRhWV3GHCs2MVMhqFjDPLPAtqaY9LEUWxJRRXjmdJmFDDLlAjSRN9iXDXVa4IKXUAoJ4ZjaV4pGPI9lqOdkXcQt2aUYGq4MNhisUy2AEfA3MDw9ygZG5QtNDd9pvVBjzjT-p2zf-gukhZAAhnNggUbaH7-kx2r3_f7ep_5NfokIJYlIUqbdTI1-_6xpgbedhBzd6w35_A-vj2POiU0vYJC9nM8Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEN1oPdSL8TNWq-7Bm5LQXVgWbw2xqdrWg23SG1mWpZcGmoIm_Ht3tlCiURNPkDDsYXZg3uzMvEHotqdBPueOY9nCVzpAodISSeJYkiS-8oQGFIZLbzxhw5nzPHfnVVNYXle71ylJ86dumt3AFVlQUqBhPfGschftaTDAoZBrRvrbMAs4zkyOE8Isl_CqVebnNb66owZjfkuLGm8zOEQHFUzE_c2-HqEdlR6jdlBPZztB0-CV4GEZrzNtAUa7uMjwWMFJeLbEUJiJg2y1gguc0JR5kT_gik11gaGrBL-V6ULkWiz92JyanaLZ4HEaDK1qQoIlKaOFJfyIcUmiJIoZFx4lkgjXo8x3EhlREkfUpba-Z8RWvitYHCc2k670fFvAhBp6hlpplqpzhHtcchYR4gFBPdUeS7qxSiDba3uKs6SDerWiQlnRh8MUi2XYEB-DckOt3NAoNyw76G77zmpDnvGndLfWf1h9SHkIDGcOGBTpoPt6T5rHv6928T_xG9QeTsejcPQ0eblE-wRMxBStdFGrWL-rKw09iujaWNonAjfM1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN5oTdSL8RmrVffgTUnpLizgrUGb-mg1sU16I8uy20sDpEUT_r07FIoaNfEECcMevh2YmZ2ZbxC67Ggn33UtyzC5J3WAQoXBlbIMQZQnHa4dioJLbzBk_bH1MLEnn7r4i2r3KiW57GkAlqY4a6eRateNb2CWDCgv0C4-cYx8HW3o33EH9HpMuquQC_jOinwnhFw2ccu2mZ_X-Gqaan_zW4q0sDy9XbRTuoy4u9zjPbQm43205VeT2g7QyH8muJ9H80RrQ4E0zhI8kHAqnswwFGliP0lTuMBpTb7IFje4ZFadYugwwa95POULLRa_L0_QDtG4dzfy-0Y5LcEQlNHM4F7IXEFCFUbM5Q4lgnDbocyzlAgpiUJqU1PfM2JKz-YsipTJhC0cz-QwrYYeoUacxPIY4Y4rXBYS4gBZPdXWS9iRVJD5NR3pMtVEnQqoQJRU4jDRYhbUJMgAbqDBDQpwg7yJrlbvpEsijT-lWxX-QflRLQJgO7NAuUgTXVd7Uj_-fbWT_4lfoM2X217wdD98PEXbBDSkqF9poUY2f5Nn2gvJwvNC0T4AJDfREA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+Hydrogenation+to+Methanol+over+Copper+Catalysts%3A+Learning+from+Syngas+Conversion&rft.jtitle=Topics+in+catalysis&rft.au=Golunski%2C+Stan&rft.au=Burch%2C+Robbie&rft.date=2021-12-01&rft.pub=Springer+US&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=64&rft.issue=17-20&rft.spage=974&rft.epage=983&rft_id=info:doi/10.1007%2Fs11244-021-01427-y&rft.externalDocID=10_1007_s11244_021_01427_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon |