A proof of Ringel’s conjecture

A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H . One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree....

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 31; no. 3; pp. 663 - 720
Main Authors Montgomery, R., Pokrovskiy, A., Sudakov, B.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H . One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with n edges packs 2 n + 1 times into the complete graph K 2 n + 1 . In this paper, we prove this conjecture for large n .
AbstractList A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with n edges packs 2n+1 times into the complete graph K2n+1. In this paper, we prove this conjecture for large n.
A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H . One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with n edges packs $$2n+1$$ 2 n + 1 times into the complete graph $$K_{2n+1}$$ K 2 n + 1 . In this paper, we prove this conjecture for large n .
A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H . One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with n edges packs 2 n + 1 times into the complete graph K 2 n + 1 . In this paper, we prove this conjecture for large n .
Author Montgomery, R.
Pokrovskiy, A.
Sudakov, B.
Author_xml – sequence: 1
  givenname: R.
  surname: Montgomery
  fullname: Montgomery, R.
  organization: School of Mathematics, University of Birmingham
– sequence: 2
  givenname: A.
  surname: Pokrovskiy
  fullname: Pokrovskiy, A.
  organization: Department of Mathematics, University College London
– sequence: 3
  givenname: B.
  surname: Sudakov
  fullname: Sudakov, B.
  email: benjamin.sudakov@math.ethz.ch
  organization: Department of Mathematics, ETH
BookMark eNp9kMFKAzEURYNUsK3-gKsB19GXZDKZLEtRKxQEUXAXMmkiM4yTmqQLd_6Gv-eXmDqC4KIQeFnc897lzNBk8INF6JzAJQEQVxEAmMRACQbgosL0CE1JSQHXUsAk_4FUuCzZ8wmaxdjlOOcln6JiUWyD967I76EdXmz_9fEZC-OHzpq0C_YUHTvdR3v2O-fo6eb6cbnC6_vbu-VijQ2rWMJaaEFB1NTJjXBGko3mtiGuko2hUouyzG2cFaThGsAxbbnjTjvWVFoyKtgcXYx7c523nY1JdX4XhnxSUS4o5SCrfaoeUyb4GIN1yrRJp9YPKei2VwTU3ocafajsQ_34UDSj9B-6De2rDu-HITZCMYeznfDX6gD1DbObc60
CitedBy_id crossref_primary_10_1093_imrn_rnaf045
crossref_primary_10_1007_s00493_020_4640_9
crossref_primary_10_1007_s11856_024_2685_y
crossref_primary_10_1016_j_dam_2022_07_030
crossref_primary_10_1112_plms_12552
crossref_primary_10_1007_s40687_022_00335_1
crossref_primary_10_1002_jgt_23100
crossref_primary_10_1002_jgt_23211
crossref_primary_10_1016_j_disc_2022_112906
crossref_primary_10_1007_s00222_025_01328_x
crossref_primary_10_1016_j_laa_2024_06_001
crossref_primary_10_1007_s11856_022_2447_7
crossref_primary_10_1016_j_jctb_2025_01_003
crossref_primary_10_1016_j_disc_2023_113697
crossref_primary_10_1016_j_jctb_2022_09_004
crossref_primary_10_1002_rsa_21216
crossref_primary_10_1090_tran_8685
Cites_doi 10.1017/S0963548305007042
10.1016/j.aim.2019.106793
10.1007/s11856-017-1504-0
10.1016/j.aim.2019.106739
10.1112/plms.12245
10.4171/JEMS/909
10.1090/tran/7411
10.1002/rsa.20906
10.4171/JEMS/982
10.1016/j.jctb.2016.03.003
10.1007/s11856-015-1277-2
10.1017/S0963548397003106
10.1016/S0012-365X(03)00296-6
10.1016/S0167-5060(08)70809-4
10.1007/s11856-017-1592-x
10.1016/0095-8956(91)90007-7
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00039-021-00576-2
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1420-8970
EndPage 720
ExternalDocumentID 10_1007_s00039_021_00576_2
GrantInformation_xml – fundername: ETH Zurich
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-a7a720782f9d7fc91da5eb1f69bc29a744142fe71b5a00f3ae5f5faf3b6a93273
IEDL.DBID U2A
ISSN 1016-443X
IngestDate Fri Jul 25 11:08:49 EDT 2025
Tue Jul 01 02:31:07 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
Fri Feb 21 02:47:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-a7a720782f9d7fc91da5eb1f69bc29a744142fe71b5a00f3ae5f5faf3b6a93273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00039-021-00576-2
PQID 2572250967
PQPubID 2044207
PageCount 58
ParticipantIDs proquest_journals_2572250967
crossref_citationtrail_10_1007_s00039_021_00576_2
crossref_primary_10_1007_s00039_021_00576_2
springer_journals_10_1007_s00039_021_00576_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle GAFA
PublicationTitle Geometric and functional analysis
PublicationTitleAbbrev Geom. Funct. Anal
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Rödl, Ruciński, Szemerédi (CR21) 2006; 15
Kim, Kühn, Osthus, Tyomkyn (CR14) 2019; 371
Krivelevich (CR15) 1997; 6
Erdős, Gyárfás, Pyber (CR6) 1991; 51
Adamaszek, Allen, Grosu, Hladký (CR1) 2020; 56
CR13
CR11
CR10
Montgomery, Pokrovskiy, Sudakov (CR19) 2020; 22
Joos, Kim, Kühn, Osthus (CR12) 2019; 21
Ferber, Lee, Mousset (CR7) 2017; 219
CR2
Alon, Pokrovskiy, Sudakov (CR4) 2017; 222
CR8
Gallian (CR9) 2009; 16
CR23
Montgomery (CR17) 2019; 356
CR22
Allen, Böttcher, Hladký, Piguet (CR3) 2019; 354
CR20
Woźniak (CR24) 2004; 276
Messuti, Rödl, Schacht (CR16) 2016; 119
Montgomery, Pokrovskiy, Sudakov (CR18) 2019; 119
Böttcher, Hladký, Piguet, Taraz (CR5) 2016; 211
Yap (CR25) 1988; 38
N Alon (576_CR4) 2017; 222
R Montgomery (576_CR19) 2020; 22
A Ferber (576_CR7) 2017; 219
576_CR13
H Yap (576_CR25) 1988; 38
M Woźniak (576_CR24) 2004; 276
576_CR10
576_CR11
576_CR2
JA Gallian (576_CR9) 2009; 16
S Messuti (576_CR16) 2016; 119
576_CR8
P Allen (576_CR3) 2019; 354
F Joos (576_CR12) 2019; 21
J Böttcher (576_CR5) 2016; 211
V Rödl (576_CR21) 2006; 15
M Krivelevich (576_CR15) 1997; 6
R Montgomery (576_CR18) 2019; 119
A Adamaszek (576_CR1) 2020; 56
576_CR20
576_CR23
576_CR22
J Kim (576_CR14) 2019; 371
R Montgomery (576_CR17) 2019; 356
P Erdős (576_CR6) 1991; 51
References_xml – ident: CR22
– volume: 15
  start-page: 229
  year: 2006
  end-page: 251
  ident: CR21
  article-title: A dirac-type theorem for 3-uniform hypergraphs
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548305007042
– volume: 356
  start-page: 106793
  year: 2019
  ident: CR17
  article-title: Spanning trees in random graphs
  publication-title: Advances in Mathematics
  doi: 10.1016/j.aim.2019.106793
– volume: 219
  start-page: 959
  issue: 2
  year: 2017
  end-page: 982
  ident: CR7
  article-title: Packing spanning graphs from separable families
  publication-title: Israel Journal of Mathematics
  doi: 10.1007/s11856-017-1504-0
– ident: CR2
– volume: 354
  start-page: 106739
  year: 2019
  ident: CR3
  article-title: Packing degenerate graphs
  publication-title: Advances in Mathematics
  doi: 10.1016/j.aim.2019.106739
– ident: CR10
– volume: 119
  start-page: 899
  issue: 4
  year: 2019
  end-page: 959
  ident: CR18
  article-title: Decompositions into spanning rainbow structures
  publication-title: Proceedings of the London Mathematical Society
  doi: 10.1112/plms.12245
– ident: CR8
– volume: 16
  start-page: 1
  issue: 6
  year: 2009
  end-page: 219
  ident: CR9
  article-title: A dynamic survey of graph labeling
  publication-title: The Electronic Journal of Combinatorics
– ident: CR23
– volume: 21
  start-page: 3573
  issue: 12
  year: 2019
  end-page: 3647
  ident: CR12
  article-title: Optimal packings of bounded degree trees
  publication-title: Journal of the European Mathematical Society
  doi: 10.4171/JEMS/909
– volume: 371
  start-page: 4655
  issue: 7
  year: 2019
  end-page: 4742
  ident: CR14
  article-title: A blow-up lemma for approximate decompositions
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/tran/7411
– volume: 56
  start-page: 948
  issue: 4
  year: 2020
  end-page: 987
  ident: CR1
  article-title: Almost all trees are almost graceful
  publication-title: Random Structures & Algorithms
  doi: 10.1002/rsa.20906
– volume: 22
  start-page: 3101
  year: 2020
  end-page: 3132
  ident: CR19
  article-title: Embedding rainbow trees with applications to graph labelling and decomposition
  publication-title: J. European Math. Soc.
  doi: 10.4171/JEMS/982
– volume: 119
  start-page: 245
  year: 2016
  end-page: 265
  ident: CR16
  article-title: Packing minor-closed families of graphs into complete graphs
  publication-title: Journal of Combinatorial Theory, Series B
  doi: 10.1016/j.jctb.2016.03.003
– volume: 211
  start-page: 391
  issue: 1
  year: 2016
  end-page: 446
  ident: CR5
  article-title: An approximate version of the tree packing conjecture
  publication-title: Israel Journal of Mathematics
  doi: 10.1007/s11856-015-1277-2
– volume: 6
  start-page: 337
  issue: 3
  year: 1997
  end-page: 347
  ident: CR15
  article-title: Triangle factors in random graphs
  publication-title: Combinatorics, Probability and Computing
  doi: 10.1017/S0963548397003106
– volume: 276
  start-page: 379
  year: 2004
  end-page: 391
  ident: CR24
  article-title: Packing of graphs and permutations—a survey
  publication-title: Discrete Mathematics
  doi: 10.1016/S0012-365X(03)00296-6
– ident: CR13
– ident: CR11
– volume: 38
  start-page: 395
  year: 1988
  end-page: 404
  ident: CR25
  article-title: Packing of graphs—a survey
  publication-title: Annals of Discrete Mathematics
  doi: 10.1016/S0167-5060(08)70809-4
– volume: 222
  start-page: 317
  issue: 1
  year: 2017
  end-page: 331
  ident: CR4
  article-title: Random subgraphs of properly edge-coloured complete graphs and long rainbow cycles
  publication-title: Israel Journal of Mathematics
  doi: 10.1007/s11856-017-1592-x
– volume: 51
  start-page: 90
  issue: 1
  year: 1991
  end-page: 95
  ident: CR6
  article-title: Vertex coverings by monochromatic cycles and trees
  publication-title: Journal of Combinatorial Theory, Series B
  doi: 10.1016/0095-8956(91)90007-7
– ident: CR20
– volume: 21
  start-page: 3573
  issue: 12
  year: 2019
  ident: 576_CR12
  publication-title: Journal of the European Mathematical Society
  doi: 10.4171/JEMS/909
– ident: 576_CR22
– volume: 38
  start-page: 395
  year: 1988
  ident: 576_CR25
  publication-title: Annals of Discrete Mathematics
  doi: 10.1016/S0167-5060(08)70809-4
– volume: 22
  start-page: 3101
  year: 2020
  ident: 576_CR19
  publication-title: J. European Math. Soc.
  doi: 10.4171/JEMS/982
– volume: 15
  start-page: 229
  year: 2006
  ident: 576_CR21
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548305007042
– volume: 276
  start-page: 379
  year: 2004
  ident: 576_CR24
  publication-title: Discrete Mathematics
  doi: 10.1016/S0012-365X(03)00296-6
– ident: 576_CR2
– volume: 356
  start-page: 106793
  year: 2019
  ident: 576_CR17
  publication-title: Advances in Mathematics
  doi: 10.1016/j.aim.2019.106793
– ident: 576_CR10
– ident: 576_CR8
– volume: 222
  start-page: 317
  issue: 1
  year: 2017
  ident: 576_CR4
  publication-title: Israel Journal of Mathematics
  doi: 10.1007/s11856-017-1592-x
– ident: 576_CR20
– volume: 119
  start-page: 899
  issue: 4
  year: 2019
  ident: 576_CR18
  publication-title: Proceedings of the London Mathematical Society
  doi: 10.1112/plms.12245
– volume: 119
  start-page: 245
  year: 2016
  ident: 576_CR16
  publication-title: Journal of Combinatorial Theory, Series B
  doi: 10.1016/j.jctb.2016.03.003
– ident: 576_CR23
– volume: 51
  start-page: 90
  issue: 1
  year: 1991
  ident: 576_CR6
  publication-title: Journal of Combinatorial Theory, Series B
  doi: 10.1016/0095-8956(91)90007-7
– volume: 6
  start-page: 337
  issue: 3
  year: 1997
  ident: 576_CR15
  publication-title: Combinatorics, Probability and Computing
  doi: 10.1017/S0963548397003106
– volume: 211
  start-page: 391
  issue: 1
  year: 2016
  ident: 576_CR5
  publication-title: Israel Journal of Mathematics
  doi: 10.1007/s11856-015-1277-2
– volume: 219
  start-page: 959
  issue: 2
  year: 2017
  ident: 576_CR7
  publication-title: Israel Journal of Mathematics
  doi: 10.1007/s11856-017-1504-0
– volume: 56
  start-page: 948
  issue: 4
  year: 2020
  ident: 576_CR1
  publication-title: Random Structures & Algorithms
  doi: 10.1002/rsa.20906
– ident: 576_CR11
– ident: 576_CR13
– volume: 354
  start-page: 106739
  year: 2019
  ident: 576_CR3
  publication-title: Advances in Mathematics
  doi: 10.1016/j.aim.2019.106739
– volume: 16
  start-page: 1
  issue: 6
  year: 2009
  ident: 576_CR9
  publication-title: The Electronic Journal of Combinatorics
– volume: 371
  start-page: 4655
  issue: 7
  year: 2019
  ident: 576_CR14
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/tran/7411
SSID ssj0005545
Score 2.474271
Snippet A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H . One of the oldest and best...
A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H. One of the oldest and best...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 663
SubjectTerms Analysis
Decomposition
Graph theory
Mathematics
Mathematics and Statistics
Title A proof of Ringel’s conjecture
URI https://link.springer.com/article/10.1007/s00039-021-00576-2
https://www.proquest.com/docview/2572250967
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5Bu8DATwFRKFUGNrCUxHHcjGnVUoHogKhUpshx7AGhFpGy8xq8Hk_C2XVSgQAJKVKG2Decz3ff5f4AzmOJKDwqEuIXPCcRU5T0WM6J5BqtqdIoRjZBdhKPp9H1jM1cUVhZZbtXIUmrqetiN1tHSkxKgamgjAkq3iYzvjtK8TRM14kdzI4mNm4piSI6c6UyP9P4ao7WGPNbWNRam9Ee7DiY6KWrc92HDTVvwa6DjJ67kGULtm_rtqvlAXiph7QX2sPnztB9-nh7Lz10eR9XoYJDmI6G94MxcSMQiKQxXRLBBQ-NFddJwbVMgkIw1K46TnIZJoIjmIlCrXiQM-H7mgrFNNNC0zwWiMw4PYLGfDFXx-CxALGNCvCGa9MlzDfDp2QvQcAoVI9S2oag4kQmXX9wM6biKas7G1vuZci9zHIvC9twUe95XnXH-HN1p2Jw5m5KmaHKQJWCjhRvw2XF9PXn36md_G_5KWyF9tzND5QONJYvr-oM8cQy70IzHfX7E_O-ergZdmFzEA-6Vqg-AUS-wJ8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED6hMgADPwVEoUAGNrCUxHbcjFVFVaDtgFqpm-Uk9oCqtiJl5zV4PZ6Es-u2ogIkpGyxb7ic777Lnb8DuElyROGsSElYiIwwrilp8EyQXBiMptqgGbkG2X7SGbLHER95mhx7F2ajfm_JPm2t0jYS2HuTCUF3u80wU7bte62ktW7n4G4gsU1GCWN05C_I_CzjexBaI8uNYqiLMe1D2PfgMGguvuYRbOlJFQ48UAz8MSyrsNdbka2WxxA0A5Q9NQE-z1bu-PP9owww0X1ZFAhOYNi-H7Q6xA8-IDlN6JwooURsY7dJC2HyNCoUR59qkjTL41QJhDAsNlpEGVdhaKjS3HCjDM0ShXhM0FOoTKYTfQYBjxDR6AjPtbHcYKEdOZU3UoSJSjcopTWIlpqQuWcFt8MpxnLFZ-y0J1F70mlPxjW4Xe2ZLTgx_lxdXypY-vNRSnQU6EgwfRI1uFsqff36d2nn_1t-DTudQa8ruw_9pwvYjZ0N2F8odajMX9_0JSKKeXblTOkLILS7hA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kgujBR1WsVs3Bmy5tstlscyzV4rOIWOht2SS7BylpMfHu3_Dv-Uuc3TyqooKQWzYDmczjm8wL4CSIEYX7SUi6CY-IzxQlPRZxEnON3lRpFCNbIDsKLsf-9YRNPnXx22r3KiVZ9DSYKU1p3pknulM3vtmeUmLKC0w3ZUDQCC9jpGITtYNgsCjyYHZNsQlRie_TSdk28zONr65pgTe_pUit5xluwnoJGZ1-8Y23YEmlTdgo4aNTKmfWhLW7egRrtg1O30HaM-3g9WDoTt9f3zIH3_OpSBvswHh48Ti4JOU6BBLTgOZEcsk949F1mHAdh24iGVpaHYRR7IWSI7DxPa24GzHZ7WoqFdNMS02jQCJK43QXGuksVXvgMBdxjnJR27WZGNY1i6jiXojgUaoepbQFbsUJEZezws3Kiqmopxxb7gnknrDcE14LTutn5sWkjD9PtysGi1JrMoHmA80LBlW8BWcV0xe3f6e2_7_jx7Byfz4Ut1ejmwNY9awImP8qbWjkzy_qEGFGHh1ZSfoAeLPDyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proof+of+Ringel%E2%80%99s+conjecture&rft.jtitle=Geometric+and+functional+analysis&rft.au=Montgomery%2C+R.&rft.au=Pokrovskiy%2C+A.&rft.au=Sudakov%2C+B.&rft.date=2021-06-01&rft.pub=Springer+International+Publishing&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=31&rft.issue=3&rft.spage=663&rft.epage=720&rft_id=info:doi/10.1007%2Fs00039-021-00576-2&rft.externalDocID=10_1007_s00039_021_00576_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon