A proof of Ringel’s conjecture
A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H . One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree....
Saved in:
Published in | Geometric and functional analysis Vol. 31; no. 3; pp. 663 - 720 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A typical decomposition question asks whether the edges of some graph
G
can be partitioned into disjoint copies of another graph
H
. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with
n
edges packs
2
n
+
1
times into the complete graph
K
2
n
+
1
. In this paper, we prove this conjecture for large
n
. |
---|---|
AbstractList | A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with n edges packs 2n+1 times into the complete graph K2n+1. In this paper, we prove this conjecture for large n. A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H . One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with n edges packs $$2n+1$$ 2 n + 1 times into the complete graph $$K_{2n+1}$$ K 2 n + 1 . In this paper, we prove this conjecture for large n . A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H . One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with n edges packs 2 n + 1 times into the complete graph K 2 n + 1 . In this paper, we prove this conjecture for large n . |
Author | Montgomery, R. Pokrovskiy, A. Sudakov, B. |
Author_xml | – sequence: 1 givenname: R. surname: Montgomery fullname: Montgomery, R. organization: School of Mathematics, University of Birmingham – sequence: 2 givenname: A. surname: Pokrovskiy fullname: Pokrovskiy, A. organization: Department of Mathematics, University College London – sequence: 3 givenname: B. surname: Sudakov fullname: Sudakov, B. email: benjamin.sudakov@math.ethz.ch organization: Department of Mathematics, ETH |
BookMark | eNp9kMFKAzEURYNUsK3-gKsB19GXZDKZLEtRKxQEUXAXMmkiM4yTmqQLd_6Gv-eXmDqC4KIQeFnc897lzNBk8INF6JzAJQEQVxEAmMRACQbgosL0CE1JSQHXUsAk_4FUuCzZ8wmaxdjlOOcln6JiUWyD967I76EdXmz_9fEZC-OHzpq0C_YUHTvdR3v2O-fo6eb6cbnC6_vbu-VijQ2rWMJaaEFB1NTJjXBGko3mtiGuko2hUouyzG2cFaThGsAxbbnjTjvWVFoyKtgcXYx7c523nY1JdX4XhnxSUS4o5SCrfaoeUyb4GIN1yrRJp9YPKei2VwTU3ocafajsQ_34UDSj9B-6De2rDu-HITZCMYeznfDX6gD1DbObc60 |
CitedBy_id | crossref_primary_10_1093_imrn_rnaf045 crossref_primary_10_1007_s00493_020_4640_9 crossref_primary_10_1007_s11856_024_2685_y crossref_primary_10_1016_j_dam_2022_07_030 crossref_primary_10_1112_plms_12552 crossref_primary_10_1007_s40687_022_00335_1 crossref_primary_10_1002_jgt_23100 crossref_primary_10_1002_jgt_23211 crossref_primary_10_1016_j_disc_2022_112906 crossref_primary_10_1007_s00222_025_01328_x crossref_primary_10_1016_j_laa_2024_06_001 crossref_primary_10_1007_s11856_022_2447_7 crossref_primary_10_1016_j_jctb_2025_01_003 crossref_primary_10_1016_j_disc_2023_113697 crossref_primary_10_1016_j_jctb_2022_09_004 crossref_primary_10_1002_rsa_21216 crossref_primary_10_1090_tran_8685 |
Cites_doi | 10.1017/S0963548305007042 10.1016/j.aim.2019.106793 10.1007/s11856-017-1504-0 10.1016/j.aim.2019.106739 10.1112/plms.12245 10.4171/JEMS/909 10.1090/tran/7411 10.1002/rsa.20906 10.4171/JEMS/982 10.1016/j.jctb.2016.03.003 10.1007/s11856-015-1277-2 10.1017/S0963548397003106 10.1016/S0012-365X(03)00296-6 10.1016/S0167-5060(08)70809-4 10.1007/s11856-017-1592-x 10.1016/0095-8956(91)90007-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00039-021-00576-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1420-8970 |
EndPage | 720 |
ExternalDocumentID | 10_1007_s00039_021_00576_2 |
GrantInformation_xml | – fundername: ETH Zurich |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OK1 P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-a7a720782f9d7fc91da5eb1f69bc29a744142fe71b5a00f3ae5f5faf3b6a93273 |
IEDL.DBID | U2A |
ISSN | 1016-443X |
IngestDate | Fri Jul 25 11:08:49 EDT 2025 Tue Jul 01 02:31:07 EDT 2025 Thu Apr 24 22:52:13 EDT 2025 Fri Feb 21 02:47:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-a7a720782f9d7fc91da5eb1f69bc29a744142fe71b5a00f3ae5f5faf3b6a93273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s00039-021-00576-2 |
PQID | 2572250967 |
PQPubID | 2044207 |
PageCount | 58 |
ParticipantIDs | proquest_journals_2572250967 crossref_citationtrail_10_1007_s00039_021_00576_2 crossref_primary_10_1007_s00039_021_00576_2 springer_journals_10_1007_s00039_021_00576_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | GAFA |
PublicationTitle | Geometric and functional analysis |
PublicationTitleAbbrev | Geom. Funct. Anal |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Rödl, Ruciński, Szemerédi (CR21) 2006; 15 Kim, Kühn, Osthus, Tyomkyn (CR14) 2019; 371 Krivelevich (CR15) 1997; 6 Erdős, Gyárfás, Pyber (CR6) 1991; 51 Adamaszek, Allen, Grosu, Hladký (CR1) 2020; 56 CR13 CR11 CR10 Montgomery, Pokrovskiy, Sudakov (CR19) 2020; 22 Joos, Kim, Kühn, Osthus (CR12) 2019; 21 Ferber, Lee, Mousset (CR7) 2017; 219 CR2 Alon, Pokrovskiy, Sudakov (CR4) 2017; 222 CR8 Gallian (CR9) 2009; 16 CR23 Montgomery (CR17) 2019; 356 CR22 Allen, Böttcher, Hladký, Piguet (CR3) 2019; 354 CR20 Woźniak (CR24) 2004; 276 Messuti, Rödl, Schacht (CR16) 2016; 119 Montgomery, Pokrovskiy, Sudakov (CR18) 2019; 119 Böttcher, Hladký, Piguet, Taraz (CR5) 2016; 211 Yap (CR25) 1988; 38 N Alon (576_CR4) 2017; 222 R Montgomery (576_CR19) 2020; 22 A Ferber (576_CR7) 2017; 219 576_CR13 H Yap (576_CR25) 1988; 38 M Woźniak (576_CR24) 2004; 276 576_CR10 576_CR11 576_CR2 JA Gallian (576_CR9) 2009; 16 S Messuti (576_CR16) 2016; 119 576_CR8 P Allen (576_CR3) 2019; 354 F Joos (576_CR12) 2019; 21 J Böttcher (576_CR5) 2016; 211 V Rödl (576_CR21) 2006; 15 M Krivelevich (576_CR15) 1997; 6 R Montgomery (576_CR18) 2019; 119 A Adamaszek (576_CR1) 2020; 56 576_CR20 576_CR23 576_CR22 J Kim (576_CR14) 2019; 371 R Montgomery (576_CR17) 2019; 356 P Erdős (576_CR6) 1991; 51 |
References_xml | – ident: CR22 – volume: 15 start-page: 229 year: 2006 end-page: 251 ident: CR21 article-title: A dirac-type theorem for 3-uniform hypergraphs publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548305007042 – volume: 356 start-page: 106793 year: 2019 ident: CR17 article-title: Spanning trees in random graphs publication-title: Advances in Mathematics doi: 10.1016/j.aim.2019.106793 – volume: 219 start-page: 959 issue: 2 year: 2017 end-page: 982 ident: CR7 article-title: Packing spanning graphs from separable families publication-title: Israel Journal of Mathematics doi: 10.1007/s11856-017-1504-0 – ident: CR2 – volume: 354 start-page: 106739 year: 2019 ident: CR3 article-title: Packing degenerate graphs publication-title: Advances in Mathematics doi: 10.1016/j.aim.2019.106739 – ident: CR10 – volume: 119 start-page: 899 issue: 4 year: 2019 end-page: 959 ident: CR18 article-title: Decompositions into spanning rainbow structures publication-title: Proceedings of the London Mathematical Society doi: 10.1112/plms.12245 – ident: CR8 – volume: 16 start-page: 1 issue: 6 year: 2009 end-page: 219 ident: CR9 article-title: A dynamic survey of graph labeling publication-title: The Electronic Journal of Combinatorics – ident: CR23 – volume: 21 start-page: 3573 issue: 12 year: 2019 end-page: 3647 ident: CR12 article-title: Optimal packings of bounded degree trees publication-title: Journal of the European Mathematical Society doi: 10.4171/JEMS/909 – volume: 371 start-page: 4655 issue: 7 year: 2019 end-page: 4742 ident: CR14 article-title: A blow-up lemma for approximate decompositions publication-title: Trans. Amer. Math. Soc. doi: 10.1090/tran/7411 – volume: 56 start-page: 948 issue: 4 year: 2020 end-page: 987 ident: CR1 article-title: Almost all trees are almost graceful publication-title: Random Structures & Algorithms doi: 10.1002/rsa.20906 – volume: 22 start-page: 3101 year: 2020 end-page: 3132 ident: CR19 article-title: Embedding rainbow trees with applications to graph labelling and decomposition publication-title: J. European Math. Soc. doi: 10.4171/JEMS/982 – volume: 119 start-page: 245 year: 2016 end-page: 265 ident: CR16 article-title: Packing minor-closed families of graphs into complete graphs publication-title: Journal of Combinatorial Theory, Series B doi: 10.1016/j.jctb.2016.03.003 – volume: 211 start-page: 391 issue: 1 year: 2016 end-page: 446 ident: CR5 article-title: An approximate version of the tree packing conjecture publication-title: Israel Journal of Mathematics doi: 10.1007/s11856-015-1277-2 – volume: 6 start-page: 337 issue: 3 year: 1997 end-page: 347 ident: CR15 article-title: Triangle factors in random graphs publication-title: Combinatorics, Probability and Computing doi: 10.1017/S0963548397003106 – volume: 276 start-page: 379 year: 2004 end-page: 391 ident: CR24 article-title: Packing of graphs and permutations—a survey publication-title: Discrete Mathematics doi: 10.1016/S0012-365X(03)00296-6 – ident: CR13 – ident: CR11 – volume: 38 start-page: 395 year: 1988 end-page: 404 ident: CR25 article-title: Packing of graphs—a survey publication-title: Annals of Discrete Mathematics doi: 10.1016/S0167-5060(08)70809-4 – volume: 222 start-page: 317 issue: 1 year: 2017 end-page: 331 ident: CR4 article-title: Random subgraphs of properly edge-coloured complete graphs and long rainbow cycles publication-title: Israel Journal of Mathematics doi: 10.1007/s11856-017-1592-x – volume: 51 start-page: 90 issue: 1 year: 1991 end-page: 95 ident: CR6 article-title: Vertex coverings by monochromatic cycles and trees publication-title: Journal of Combinatorial Theory, Series B doi: 10.1016/0095-8956(91)90007-7 – ident: CR20 – volume: 21 start-page: 3573 issue: 12 year: 2019 ident: 576_CR12 publication-title: Journal of the European Mathematical Society doi: 10.4171/JEMS/909 – ident: 576_CR22 – volume: 38 start-page: 395 year: 1988 ident: 576_CR25 publication-title: Annals of Discrete Mathematics doi: 10.1016/S0167-5060(08)70809-4 – volume: 22 start-page: 3101 year: 2020 ident: 576_CR19 publication-title: J. European Math. Soc. doi: 10.4171/JEMS/982 – volume: 15 start-page: 229 year: 2006 ident: 576_CR21 publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548305007042 – volume: 276 start-page: 379 year: 2004 ident: 576_CR24 publication-title: Discrete Mathematics doi: 10.1016/S0012-365X(03)00296-6 – ident: 576_CR2 – volume: 356 start-page: 106793 year: 2019 ident: 576_CR17 publication-title: Advances in Mathematics doi: 10.1016/j.aim.2019.106793 – ident: 576_CR10 – ident: 576_CR8 – volume: 222 start-page: 317 issue: 1 year: 2017 ident: 576_CR4 publication-title: Israel Journal of Mathematics doi: 10.1007/s11856-017-1592-x – ident: 576_CR20 – volume: 119 start-page: 899 issue: 4 year: 2019 ident: 576_CR18 publication-title: Proceedings of the London Mathematical Society doi: 10.1112/plms.12245 – volume: 119 start-page: 245 year: 2016 ident: 576_CR16 publication-title: Journal of Combinatorial Theory, Series B doi: 10.1016/j.jctb.2016.03.003 – ident: 576_CR23 – volume: 51 start-page: 90 issue: 1 year: 1991 ident: 576_CR6 publication-title: Journal of Combinatorial Theory, Series B doi: 10.1016/0095-8956(91)90007-7 – volume: 6 start-page: 337 issue: 3 year: 1997 ident: 576_CR15 publication-title: Combinatorics, Probability and Computing doi: 10.1017/S0963548397003106 – volume: 211 start-page: 391 issue: 1 year: 2016 ident: 576_CR5 publication-title: Israel Journal of Mathematics doi: 10.1007/s11856-015-1277-2 – volume: 219 start-page: 959 issue: 2 year: 2017 ident: 576_CR7 publication-title: Israel Journal of Mathematics doi: 10.1007/s11856-017-1504-0 – volume: 56 start-page: 948 issue: 4 year: 2020 ident: 576_CR1 publication-title: Random Structures & Algorithms doi: 10.1002/rsa.20906 – ident: 576_CR11 – ident: 576_CR13 – volume: 354 start-page: 106739 year: 2019 ident: 576_CR3 publication-title: Advances in Mathematics doi: 10.1016/j.aim.2019.106739 – volume: 16 start-page: 1 issue: 6 year: 2009 ident: 576_CR9 publication-title: The Electronic Journal of Combinatorics – volume: 371 start-page: 4655 issue: 7 year: 2019 ident: 576_CR14 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/tran/7411 |
SSID | ssj0005545 |
Score | 2.474271 |
Snippet | A typical decomposition question asks whether the edges of some graph
G
can be partitioned into disjoint copies of another graph
H
. One of the oldest and best... A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H. One of the oldest and best... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 663 |
SubjectTerms | Analysis Decomposition Graph theory Mathematics Mathematics and Statistics |
Title | A proof of Ringel’s conjecture |
URI | https://link.springer.com/article/10.1007/s00039-021-00576-2 https://www.proquest.com/docview/2572250967 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5Bu8DATwFRKFUGNrCUxHHcjGnVUoHogKhUpshx7AGhFpGy8xq8Hk_C2XVSgQAJKVKG2Decz3ff5f4AzmOJKDwqEuIXPCcRU5T0WM6J5BqtqdIoRjZBdhKPp9H1jM1cUVhZZbtXIUmrqetiN1tHSkxKgamgjAkq3iYzvjtK8TRM14kdzI4mNm4piSI6c6UyP9P4ao7WGPNbWNRam9Ee7DiY6KWrc92HDTVvwa6DjJ67kGULtm_rtqvlAXiph7QX2sPnztB9-nh7Lz10eR9XoYJDmI6G94MxcSMQiKQxXRLBBQ-NFddJwbVMgkIw1K46TnIZJoIjmIlCrXiQM-H7mgrFNNNC0zwWiMw4PYLGfDFXx-CxALGNCvCGa9MlzDfDp2QvQcAoVI9S2oag4kQmXX9wM6biKas7G1vuZci9zHIvC9twUe95XnXH-HN1p2Jw5m5KmaHKQJWCjhRvw2XF9PXn36md_G_5KWyF9tzND5QONJYvr-oM8cQy70IzHfX7E_O-ergZdmFzEA-6Vqg-AUS-wJ8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED6hMgADPwVEoUAGNrCUxHbcjFVFVaDtgFqpm-Uk9oCqtiJl5zV4PZ6Es-u2ogIkpGyxb7ic777Lnb8DuElyROGsSElYiIwwrilp8EyQXBiMptqgGbkG2X7SGbLHER95mhx7F2ajfm_JPm2t0jYS2HuTCUF3u80wU7bte62ktW7n4G4gsU1GCWN05C_I_CzjexBaI8uNYqiLMe1D2PfgMGguvuYRbOlJFQ48UAz8MSyrsNdbka2WxxA0A5Q9NQE-z1bu-PP9owww0X1ZFAhOYNi-H7Q6xA8-IDlN6JwooURsY7dJC2HyNCoUR59qkjTL41QJhDAsNlpEGVdhaKjS3HCjDM0ShXhM0FOoTKYTfQYBjxDR6AjPtbHcYKEdOZU3UoSJSjcopTWIlpqQuWcFt8MpxnLFZ-y0J1F70mlPxjW4Xe2ZLTgx_lxdXypY-vNRSnQU6EgwfRI1uFsqff36d2nn_1t-DTudQa8ruw_9pwvYjZ0N2F8odajMX9_0JSKKeXblTOkLILS7hA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kgujBR1WsVs3Bmy5tstlscyzV4rOIWOht2SS7BylpMfHu3_Dv-Uuc3TyqooKQWzYDmczjm8wL4CSIEYX7SUi6CY-IzxQlPRZxEnON3lRpFCNbIDsKLsf-9YRNPnXx22r3KiVZ9DSYKU1p3pknulM3vtmeUmLKC0w3ZUDQCC9jpGITtYNgsCjyYHZNsQlRie_TSdk28zONr65pgTe_pUit5xluwnoJGZ1-8Y23YEmlTdgo4aNTKmfWhLW7egRrtg1O30HaM-3g9WDoTt9f3zIH3_OpSBvswHh48Ti4JOU6BBLTgOZEcsk949F1mHAdh24iGVpaHYRR7IWSI7DxPa24GzHZ7WoqFdNMS02jQCJK43QXGuksVXvgMBdxjnJR27WZGNY1i6jiXojgUaoepbQFbsUJEZezws3Kiqmopxxb7gnknrDcE14LTutn5sWkjD9PtysGi1JrMoHmA80LBlW8BWcV0xe3f6e2_7_jx7Byfz4Ut1ejmwNY9awImP8qbWjkzy_qEGFGHh1ZSfoAeLPDyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proof+of+Ringel%E2%80%99s+conjecture&rft.jtitle=Geometric+and+functional+analysis&rft.au=Montgomery%2C+R.&rft.au=Pokrovskiy%2C+A.&rft.au=Sudakov%2C+B.&rft.date=2021-06-01&rft.pub=Springer+International+Publishing&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=31&rft.issue=3&rft.spage=663&rft.epage=720&rft_id=info:doi/10.1007%2Fs00039-021-00576-2&rft.externalDocID=10_1007_s00039_021_00576_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon |