A hybrid meta-heuristic algorithm for flowshop robust scheduling under machine breakdown uncertainty

One of the most important assumptions in production scheduling is permanent availability of the machines without any breakdown. In real-world scheduling problems, machines could be unavailable due to various reasons such as preventive maintenance and unpredicted breakdowns. In this paper, a flowshop...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer integrated manufacturing Vol. 29; no. 7; pp. 709 - 719
Main Authors Fazayeli, Mohammad, Aleagha, Mohammad-Reza, Bashirzadeh, Reza, Shafaei, Rasoul
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the most important assumptions in production scheduling is permanent availability of the machines without any breakdown. In real-world scheduling problems, machines could be unavailable due to various reasons such as preventive maintenance and unpredicted breakdowns. In this paper, a flowshop scheduling problem under machine breakdown uncertainty is studied. The machines are subject to breakdown in practice caused by components' wear-out. A proactive scheduling is considered to deal with unpredictable machine breakdown. An effective hybrid meta-heuristic algorithm based on genetic and simulated annealing algorithms is proposed to tackle such an NP-hard problem. To evaluate the performance of the proposed algorithm, its performance in terms of maximising the β-robustness of makespan was compared with six other heuristic and meta-heuristic algorithms. Computational results confirm that the proposed algorithm outperforms the others.
AbstractList One of the most important assumptions in production scheduling is permanent availability of the machines without any breakdown. In real-world scheduling problems, machines could be unavailable due to various reasons such as preventive maintenance and unpredicted breakdowns. In this paper, a flowshop scheduling problem under machine breakdown uncertainty is studied. The machines are subject to breakdown in practice caused by components' wear-out. A proactive scheduling is considered to deal with unpredictable machine breakdown. An effective hybrid meta-heuristic algorithm based on genetic and simulated annealing algorithms is proposed to tackle such an NP-hard problem. To evaluate the performance of the proposed algorithm, its performance in terms of maximising the β-robustness of makespan was compared with six other heuristic and meta-heuristic algorithms. Computational results confirm that the proposed algorithm outperforms the others.
Author Aleagha, Mohammad-Reza
Shafaei, Rasoul
Fazayeli, Mohammad
Bashirzadeh, Reza
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Fazayeli
  fullname: Fazayeli, Mohammad
  email: mohammadfazayeli@mail.kntu.ac.ir
  organization: Department of Industrial Engineering, K.N.T. University of Technology
– sequence: 2
  givenname: Mohammad-Reza
  surname: Aleagha
  fullname: Aleagha, Mohammad-Reza
  organization: Department of Industrial Engineering, K.N.T. University of Technology
– sequence: 3
  givenname: Reza
  surname: Bashirzadeh
  fullname: Bashirzadeh, Reza
  organization: Department of Industrial Engineering, K.N.T. University of Technology
– sequence: 4
  givenname: Rasoul
  surname: Shafaei
  fullname: Shafaei, Rasoul
  organization: Department of Industrial Engineering, K.N.T. University of Technology
BookMark eNqFkF1LwzAUhoNMcJv-BCF_oDNp1rTFG8fwCwRvFLwrp_lYo20ykpTRf2_L5o0XenXg5X1eOM8CzayzCqFrSlaUFOSGlBmlZfqxSgnNxojnJcnP0JwyniaMZOkMzadOMpUu0CKET0IoywoyR3KDm6H2RuJORUga1XsTohEY2p3zJjYd1s5j3bpDaNwee1f3IeIgGiX71tgd7q1UHncgGmMVrr2CL-kOdsyF8hGMjcMlOtfQBnV1ukv0_nD_tn1KXl4fn7ebl0QwzmICecFzDZKtc6mBaCiY4lxzRcp6_EoKDZplol7XKVUs11xmha65TkFnmuecLVF23BXeheCVrvbedOCHipJqUlX9qKomVdVJ1cjd_uKEiRCNs9GDaf-l7460saOqDg7Ot7KKMLTOaw9WmFCxvye-ARUEiF8
CitedBy_id crossref_primary_10_1109_TASE_2023_3246223
crossref_primary_10_1155_2021_5570575
crossref_primary_10_1016_j_simpat_2017_09_001
crossref_primary_10_1016_j_autcon_2024_105712
crossref_primary_10_1080_17477778_2024_2429568
crossref_primary_10_1016_j_jclepro_2022_130541
crossref_primary_10_3390_a14070210
crossref_primary_10_1080_00207543_2024_2361441
crossref_primary_10_1016_j_cie_2019_106026
crossref_primary_10_1016_j_jii_2024_100599
crossref_primary_10_1016_j_asoc_2017_07_016
crossref_primary_10_1016_j_cie_2022_108231
crossref_primary_10_1016_j_orhc_2017_09_004
Cites_doi 10.1016/S0925-5273(98)00155-8
10.1080/09511920802209033
10.1016/0305-0548(90)90001-N
10.1080/095119299130443
10.1007/s00170-010-3149-6
10.1016/S0377-2217(97)00452-9
10.1016/j.engappai.2004.02.008
10.1016/0305-0548(93)E0014-K
10.1016/S0377-2217(97)00396-2
10.1016/j.compchemeng.2007.03.001
10.1016/j.cor.2008.08.008
10.1016/j.ejor.2005.12.009
10.1007/s00170-009-2151-3
10.1016/S0377-2217(02)00908-6
10.1016/j.eswa.2010.12.075
10.1063/1.1699114
ContentType Journal Article
Copyright 2016 Taylor & Francis 2016
Copyright_xml – notice: 2016 Taylor & Francis 2016
DBID AAYXX
CITATION
DOI 10.1080/0951192X.2015.1067907
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1362-3052
EndPage 719
ExternalDocumentID 10_1080_0951192X_2015_1067907
1067907
Genre Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABPPZ
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBO
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EPL
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
M4Z
MK~
ML~
NA5
NX~
O9-
P2P
QWB
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
ID FETCH-LOGICAL-c363t-a7867fad347dfa0fa83e66f6e09b106dcfaf35cb4b21e37f6d58fb6f2af5f6763
ISSN 0951-192X
IngestDate Tue Jul 01 04:09:46 EDT 2025
Thu Apr 24 23:04:40 EDT 2025
Wed Dec 25 09:03:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-a7867fad347dfa0fa83e66f6e09b106dcfaf35cb4b21e37f6d58fb6f2af5f6763
PageCount 11
ParticipantIDs informaworld_taylorfrancis_310_1080_0951192X_2015_1067907
crossref_primary_10_1080_0951192X_2015_1067907
crossref_citationtrail_10_1080_0951192X_2015_1067907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-02
PublicationDateYYYYMMDD 2016-07-02
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-02
  day: 02
PublicationDecade 2010
PublicationTitle International journal of computer integrated manufacturing
PublicationYear 2016
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0010
CIT0001
CIT0012
CIT0011
CIT0014
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
Hadda H. (CIT0003) 2010; 8
CIT0007
CIT0018
CIT0006
CIT0017
Nawaz M. (CIT0009) 1983; 11
CIT0008
References_xml – ident: CIT0002
  doi: 10.1016/S0925-5273(98)00155-8
– ident: CIT0015
  doi: 10.1080/09511920802209033
– ident: CIT0011
  doi: 10.1016/0305-0548(90)90001-N
– volume: 8
  start-page: 87
  year: 2010
  ident: CIT0003
  publication-title: Quarterly Journal of Operations Research
– volume: 11
  start-page: 91
  issue: 1
  year: 1983
  ident: CIT0009
  publication-title: Management Science
– ident: CIT0007
  doi: 10.1080/095119299130443
– ident: CIT0006
  doi: 10.1007/s00170-010-3149-6
– ident: CIT0004
  doi: 10.1016/S0377-2217(97)00452-9
– ident: CIT0010
  doi: 10.1016/j.engappai.2004.02.008
– ident: CIT0013
  doi: 10.1016/0305-0548(93)E0014-K
– ident: CIT0001
  doi: 10.1016/S0377-2217(97)00396-2
– ident: CIT0005
  doi: 10.1016/j.compchemeng.2007.03.001
– ident: CIT0017
  doi: 10.1016/j.cor.2008.08.008
– ident: CIT0014
  doi: 10.1016/j.ejor.2005.12.009
– ident: CIT0016
  doi: 10.1007/s00170-009-2151-3
– ident: CIT0012
  doi: 10.1016/S0377-2217(02)00908-6
– ident: CIT0018
  doi: 10.1016/j.eswa.2010.12.075
– ident: CIT0008
  doi: 10.1063/1.1699114
SSID ssj0013580
Score 2.2037203
Snippet One of the most important assumptions in production scheduling is permanent availability of the machines without any breakdown. In real-world scheduling...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 709
SubjectTerms flowshop
machine breakdown
meta-heuristic algorithm
robust schedule
uncertainty
β-robustness
Title A hybrid meta-heuristic algorithm for flowshop robust scheduling under machine breakdown uncertainty
URI https://www.tandfonline.com/doi/abs/10.1080/0951192X.2015.1067907
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9AIHxCpaFs2Bm-XI8TK2jxGLIqRyKK2IuFjPs9QSSVwltlDzL_lHvPGMN6gK5WJFY82LnfflbfMWQt6KOGBeKH0XUibQQVHcTZNQuFGkUh74XMlE1w6ffmbLi_DTKlpNJj8HWUt1lc_44ca6kv_hKq4hX3WV7B042xHFBfyM_MUrchiv_8TjhVNc64orPQca3ELWpu2yA-vLEp3-YtMkEap1-WNflFfOrszrfeWgP4v6pSlD1xVkO2fTJFRKB71j-C7QLcd1blIFqtGp7zh8OGg6we1siL77hNB5sbUum2jqIDuYwAGupSnJPi0L2GxAdJhbS7g050_tLfdMHvqIgZ77tDuAkIUBRn_rSwEKZEP1DPalTXa0wYw5axJfh_FNNPhcNDpXRj0ZmawLu1AsjYS2DZMYcMYDCRx76UCZx0Ye_6EnbGJlqk9R_ZXO8Itmupleakbwjvty_6YvuyzGedte1ZLJNJnMkrlHjnz0XPwpOVos33_72h9tRc04v-5N27Iy3fD9pucZGUyjdroDQ-j8EXloPRi6MHB8TCZy-4Q8GPS1fErEghpg0jEwaQdMivRpC0xqgEl7YNIGmNQCk3bApANgPiMXHz-cv1u6dpyHywMWVC7ECYsViCCMhQJPQRJIxhSTXprjuwquQAURz8Pcn8sgVkxEicqZ8kFFiqEefE6m23IrXxDKc-nP88DjgqVhAhzQzYlzAI5EUDR6xyRsf7OM2173euTKOruVZ8dk1m27Ms1e_rYhHTIkq5oomzIjcbLg1r0nd_2yl-R-_5d5RabVrpav0SKu8jcWY78AyvS31A
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG_HGA2tKGsdOMlaIqkDpBFK3yK-jiDapWleo_HrsPKAgAQNrorNi-2Lf2d_3HUIXKiLMD3Xg8YQpm6CA9JI4VB6lkEgSSNCx4w7f91jnMbzt0_4CF8bBKl0ODaVQRLFWu5_bHUbXkLhLFxbYyKTvkFm04UTQEkcoX6EJi1wVA-L3Pm8SaFE9rSgn72xqFs9PzXzZn76oly7sO-1NJOsvLuEmL42ZEQ359k3M8X9d2kIbVViKW6UfbaMlne2g9QWxwl2kWngwd_wuPNKGewM9K0WeMR8-5ZNnMxhh2wsMw_x1OsjHeJKL2dRgmz3b3cyR3rHjq03wqIBvamxzcf6i8tfMPpclMMHM99Bj-_rhquNVNRo8SRgxHo9iFgFXJIwUcB94TDRjwLSfCNsLJYEDoVKEImhqEgFTNAbBIOBAgdnFbR8tZ3mmDxCWQgdNQXypWBLGXHIbu0aCc2kbsf7uH6KwnplUVgLmro7GMG3WOqfVIKZuENNqEA9R48NsXCp4_GWQLE57aoqjEyjrnKTkV9ujf9ieo9XOw3037d707o7Rmn3FClxwcIKWzWSmT230Y8RZ4d7vSur6sw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7Iiy-sA1IY0TJzkioCpbxQEkbpG3IahLqtZVBV-PnQVaJODANdFYsT3xzCTvvUHoVEaEeoHyHZZQaQoUEE4SB9IJQ0gE8QWo2HKH7zu0_RTcPIc1mnBcwSptDQ2lUERxVtuXeyihRsSd2azAJCbPFpgVulYDLbF88iVqxcMti8PrfP1ICIvmaUU3eWtTk3h-GmYuPM2Jl86EndY64vUDl2iTrjvR3BXv37Qc_zWjDbRWJaX4vPSiTbSgBltodUaqcBvJc5y9WXYX7ivNnExNSolnzHov-ehVZ31sJoGhl0_HWT7Eo5xPxhqb2tnEMkt5x5atNsL9ArypsKnEWVfm04G5LkpYgn7bQU-tq8eLtlN1aHAEoUQ7LIppBEySIJLAPGAxUZQCVV7CzSykAAYkFDzgflORCKgMY-AUfAYhUHO07aLFQT5QewgLrvwmJ56QNAliJpjJXCPOmDCDGG_3GiioNyYVlXy57aLRS5u1ymm1iKldxLRaxAZyP82GpX7HXwbJ7K6nuvhwAmWXk5T8arv_D9sTtPxw2Urvrju3B2jF3KEFKNg_RIt6NFFHJvXR_Lhw7g862PlX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+meta-heuristic+algorithm+for+flowshop+robust+scheduling+under+machine+breakdown+uncertainty&rft.jtitle=International+journal+of+computer+integrated+manufacturing&rft.au=Fazayeli%2C+Mohammad&rft.au=Aleagha%2C+Mohammad-Reza&rft.au=Bashirzadeh%2C+Reza&rft.au=Shafaei%2C+Rasoul&rft.date=2016-07-02&rft.issn=0951-192X&rft.eissn=1362-3052&rft.volume=29&rft.issue=7&rft.spage=709&rft.epage=719&rft_id=info:doi/10.1080%2F0951192X.2015.1067907&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0951192X_2015_1067907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-192X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-192X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-192X&client=summon