The Navier–Stokes equations with the Neumann boundary condition in an infinite cylinder

We prove unique existence of local-in-time smooth solutions of the Navier–Stokes equations for initial data in L p and p ∈ [ 3 , ∞ ) in an infinite cylinder, subject to the Neumann boundary condition.

Saved in:
Bibliographic Details
Published inManuscripta mathematica Vol. 160; no. 3-4; pp. 359 - 383
Main Author Abe, K.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We prove unique existence of local-in-time smooth solutions of the Navier–Stokes equations for initial data in L p and p ∈ [ 3 , ∞ ) in an infinite cylinder, subject to the Neumann boundary condition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-018-01102-9