Many-body interactions in photo-excited lead iodide perovskite

Lead halide perovskite is emerging as a promising semiconductor material for thin film solar cells. Despite a large number of recent photophysical studies, the nature of photo-excitation in lead halide perovskite remains a subject of debate. Here we use transient absorption spectroscopy to re-examin...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 3; no. 17; pp. 9285 - 9290
Main Authors Trinh, M. Tuan, Wu, Xiaoxi, Niesner, Daniel, Zhu, X.-Y.
Format Journal Article
LanguageEnglish
Published 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lead halide perovskite is emerging as a promising semiconductor material for thin film solar cells. Despite a large number of recent photophysical studies, the nature of photo-excitation in lead halide perovskite remains a subject of debate. Here we use transient absorption spectroscopy to re-examine lead halide perovskite thin films that have been reported to give very high solar cell efficiencies. We focus on many-body interactions that are manifested in (1) the transient Stark effect exerted by hot carriers on subsequent e–h pair generation; and (2) the Auger recombination due to three-body carrier–carrier interactions. These observations establish the dominance of free carriers from above band-gap excitation in lead halide perovskite. We also suggest the effective dynamic screening of charge carriers, likely due to orientational freedom of methylammonium cations in the perovskite lattice, and the presence of negligible charge carrier trapping in lead halide perovskite thin films grown in the presence of chloride precursors.
AbstractList Lead halide perovskite is emerging as a promising semiconductor material for thin film solar cells. Despite a large number of recent photophysical studies, the nature of photo-excitation in lead halide perovskite remains a subject of debate. Here we use transient absorption spectroscopy to re-examine lead halide perovskite thin films that have been reported to give very high solar cell efficiencies. We focus on many-body interactions that are manifested in (1) the transient Stark effect exerted by hot carriers on subsequent e-h pair generation; and (2) the Auger recombination due to three-body carrier-carrier interactions. These observations establish the dominance of free carriers from above band-gap excitation in lead halide perovskite. We also suggest the effective dynamic screening of charge carriers, likely due to orientational freedom of methylammonium cations in the perovskite lattice, and the presence of negligible charge carrier trapping in lead halide perovskite thin films grown in the presence of chloride precursors.
Author Niesner, Daniel
Zhu, X.-Y.
Trinh, M. Tuan
Wu, Xiaoxi
Author_xml – sequence: 1
  givenname: M. Tuan
  surname: Trinh
  fullname: Trinh, M. Tuan
  organization: Department of Chemistry, Columbia University, New York, USA
– sequence: 2
  givenname: Xiaoxi
  surname: Wu
  fullname: Wu, Xiaoxi
  organization: Department of Chemistry, Columbia University, New York, USA
– sequence: 3
  givenname: Daniel
  surname: Niesner
  fullname: Niesner, Daniel
  organization: Department of Chemistry, Columbia University, New York, USA
– sequence: 4
  givenname: X.-Y.
  surname: Zhu
  fullname: Zhu, X.-Y.
  organization: Department of Chemistry, Columbia University, New York, USA
BookMark eNqFkN9LwzAQx4NMcM69-Bf0UYTqJWmS5kUYc_6AiS_zuaTtFaNdU5NO3H9vxkRBBO_l7r587rj7HpNR5zok5JTCBQWuL-diNQMKml8fkDEDAanKtBx913l-RKYhvECMHEBqPSZXD6bbpqWrt4ntBvSmGqzrQmyS_tkNLsWPyg5YJy2aOrGutjUmPXr3Hl6jfkIOG9MGnH7lCXm6Wazmd-ny8fZ-PlumFZd8SE0G2HBJTSVEpjnTssZ4VEaVohK5pqBUVlYSG5ZHkWEpSslYKUAiGjB8Qs72e3vv3jYYhmJtQ4Vtazp0m1AwzpQWSkjxL0plLnIulGYRhT1aeReCx6aIv5qdAYM3ti0oFDtjix9j48j5r5He27Xx27_gTywIeF0
CitedBy_id crossref_primary_10_1021_jacs_3c05974
crossref_primary_10_1038_s41467_022_33935_0
crossref_primary_10_1016_j_apsusc_2023_157128
crossref_primary_10_1021_acs_chemrev_6b00136
crossref_primary_10_1016_j_synthmet_2017_08_007
crossref_primary_10_1021_acs_nanolett_7b04520
crossref_primary_10_1016_j_optmat_2020_109957
crossref_primary_10_3390_s16091351
crossref_primary_10_1002_smtd_202400425
crossref_primary_10_1002_aenm_202202813
crossref_primary_10_1021_acs_jpcc_4c00595
crossref_primary_10_1039_D0TA09530C
crossref_primary_10_1002_aenm_201601660
crossref_primary_10_1039_D0RA05766E
crossref_primary_10_1002_smll_202301831
crossref_primary_10_1021_acs_jpcc_6b08022
crossref_primary_10_1088_1361_6463_ad5603
crossref_primary_10_1039_C5CP07360J
crossref_primary_10_1021_acs_chemrev_2c00843
crossref_primary_10_1515_nanoph_2021_0411
crossref_primary_10_1021_acsaem_9b00486
crossref_primary_10_1002_chem_201900310
crossref_primary_10_1002_adma_201802486
crossref_primary_10_1002_advs_201800664
crossref_primary_10_1021_acsphotonics_2c00287
crossref_primary_10_1021_jacs_7b09508
crossref_primary_10_1002_adma_201604781
crossref_primary_10_1021_acsphotonics_7b00713
crossref_primary_10_1021_acs_jpclett_9b02959
crossref_primary_10_1002_aenm_201900084
crossref_primary_10_1039_C8RA00579F
crossref_primary_10_1021_acsenergylett_8b01227
crossref_primary_10_1039_C9CC02668A
crossref_primary_10_1002_qute_202100052
crossref_primary_10_1021_acs_jpclett_7b03343
crossref_primary_10_1021_acsnano_8b01570
crossref_primary_10_1002_eom2_12268
crossref_primary_10_1126_sciadv_ads3706
crossref_primary_10_1039_D0CE01469A
crossref_primary_10_1021_acs_jpclett_9b01583
crossref_primary_10_1039_D3CC04297A
crossref_primary_10_1021_acsnano_2c09256
crossref_primary_10_1021_acs_jpca_9b08852
crossref_primary_10_1016_j_trechm_2020_10_010
crossref_primary_10_1063_5_0130512
crossref_primary_10_1021_acsphotonics_7b00282
crossref_primary_10_1021_acsaem_3c00146
crossref_primary_10_1021_acsphotonics_4c01545
crossref_primary_10_1126_sciadv_abq2321
crossref_primary_10_1021_acs_jpcc_1c05513
crossref_primary_10_1021_acs_jpclett_2c03389
crossref_primary_10_1126_sciadv_abd3160
crossref_primary_10_1021_acs_jpclett_1c03894
crossref_primary_10_1039_D4TC00466C
crossref_primary_10_1007_s11468_020_01125_7
crossref_primary_10_1021_acs_jpclett_9b03818
crossref_primary_10_1021_acs_jpclett_0c03044
crossref_primary_10_1021_acsphotonics_3c01791
crossref_primary_10_1109_JPHOTOV_2020_2976032
crossref_primary_10_1016_j_solener_2015_07_040
crossref_primary_10_1021_acs_jpcc_7b03992
crossref_primary_10_3390_ma13010242
crossref_primary_10_1063_1_4982971
crossref_primary_10_1002_cphc_201700896
crossref_primary_10_1021_acs_chemmater_2c00845
crossref_primary_10_1016_j_jcrysgro_2016_09_013
crossref_primary_10_3390_nano10101897
crossref_primary_10_1146_annurev_physchem_040215_112222
crossref_primary_10_1007_s10854_023_11086_2
crossref_primary_10_1021_acs_jpcc_8b03529
crossref_primary_10_1038_s41377_018_0100_3
crossref_primary_10_1002_adom_202403531
crossref_primary_10_1021_acs_jpcc_0c10140
crossref_primary_10_1021_acsami_0c07095
crossref_primary_10_1021_jacs_6b09257
crossref_primary_10_1002_aenm_201600502
crossref_primary_10_1002_pssb_201800265
crossref_primary_10_1002_smll_202402557
crossref_primary_10_1021_acs_nanolett_9b04491
crossref_primary_10_1002_ange_202316898
crossref_primary_10_1021_acsami_8b14988
crossref_primary_10_1002_cssc_201600210
crossref_primary_10_1002_celc_201801701
crossref_primary_10_1039_C6SC05211H
crossref_primary_10_1002_adom_202201832
crossref_primary_10_1021_acs_jpcc_1c01318
crossref_primary_10_1038_nphoton_2017_36
crossref_primary_10_1038_srep29442
crossref_primary_10_1021_jacs_3c05533
crossref_primary_10_1002_solr_201700062
crossref_primary_10_1021_acs_jpclett_6b01425
crossref_primary_10_1088_0953_8984_28_7_074004
crossref_primary_10_1021_acs_jpclett_1c02102
crossref_primary_10_1002_anie_202316898
crossref_primary_10_1021_acs_jpclett_6b01308
crossref_primary_10_1021_jacs_4c09706
crossref_primary_10_1021_acs_chemmater_6b03054
crossref_primary_10_1002_adom_202001016
crossref_primary_10_1063_1_4990802
crossref_primary_10_1021_acs_jpcc_9b02748
crossref_primary_10_1021_acsnano_0c06380
crossref_primary_10_1021_acsanm_3c01900
crossref_primary_10_1002_adom_201700839
crossref_primary_10_1002_adma_201801996
crossref_primary_10_1021_acs_jpcc_8b00476
crossref_primary_10_1038_s41578_018_0065_0
crossref_primary_10_1021_acs_jpcc_2c02682
crossref_primary_10_3390_nano11092321
crossref_primary_10_1021_acs_jpclett_2c01453
crossref_primary_10_1002_adom_201800221
crossref_primary_10_1002_smll_202408541
crossref_primary_10_1109_JSTQE_2017_2713638
crossref_primary_10_1021_acs_nanolett_7b02834
crossref_primary_10_1016_j_jmst_2022_05_038
crossref_primary_10_1039_C5CP06603D
crossref_primary_10_1002_adfm_202501623
crossref_primary_10_1016_j_rser_2023_114187
crossref_primary_10_1021_acs_jpcc_8b09390
crossref_primary_10_1103_PhysRevB_109_235303
crossref_primary_10_1002_cphc_201800547
crossref_primary_10_1021_acsnano_9b04085
crossref_primary_10_1039_C5EE03806E
crossref_primary_10_1088_2515_7639_ad229a
crossref_primary_10_1021_acs_nanolett_0c01079
crossref_primary_10_1021_acsphotonics_0c00677
crossref_primary_10_1021_acs_jpclett_2c00626
crossref_primary_10_1021_jacsau_2c00581
crossref_primary_10_1039_D0CP03780J
crossref_primary_10_1016_j_electacta_2023_142812
crossref_primary_10_1002_adom_202300370
crossref_primary_10_1039_C9NR06297A
crossref_primary_10_1021_acsphotonics_8b00285
crossref_primary_10_1021_acs_jpclett_6b00781
crossref_primary_10_1039_C5TA09643J
crossref_primary_10_1364_OL_44_000658
crossref_primary_10_1002_aenm_202404547
crossref_primary_10_1002_pssa_201600246
crossref_primary_10_1039_C9DT03469B
crossref_primary_10_1021_acs_jpclett_5b02462
crossref_primary_10_1021_jacs_6b08880
crossref_primary_10_1126_science_aam7744
Cites_doi 10.1021/nl503279x
10.1021/jp503337a
10.1021/nn504856g
10.1021/ja512833n
10.1038/nmat4065
10.1021/jz5005285
10.1103/PhysRev.93.632
10.1021/ja102334h
10.1002/adma.201305172
10.1021/nl503057g
10.1021/jp502696w
10.1103/PhysRevApplied.2.034007
10.1126/science.1243167
10.1063/1.3238269
10.1038/nature12340
10.1126/science.1228604
10.1038/ncomms6049
10.1021/ja412583t
10.1038/nature12509
10.1126/science.1254050
10.1021/jp311124c
10.1038/nnano.2014.149
10.1021/nl403368y
10.1038/nphoton.2014.284
10.1088/0370-1301/67/10/306
10.1021/cm402919x
10.1021/ja506624n
10.1021/jz4023865
10.1021/jz5011169
10.1039/C3EE43161D
10.1016/S0921-4526(01)01400-4
10.1038/nmat3911
10.1146/annurev.physchem.48.1.213
10.1038/srep00591
10.1038/nphoton.2014.171
10.1016/S0038-1098(03)00566-0
10.1021/ja809598r
10.1038/nphoton.2014.82
10.1126/science.1243982
10.1103/PhysRevLett.53.2433
10.1021/ic401215x
10.1038/ncomms4586
10.1021/jz500858a
10.1021/nl500544c
10.1103/PhysRevLett.80.4943
ContentType Journal Article
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/C5TA01093D
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 9290
ExternalDocumentID 10_1039_C5TA01093D
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c363t-a40ef361ac55493296de205417716e3910774bc6ef284172eb5b622b506eea0a3
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 14:19:45 EDT 2025
Fri Jul 11 16:13:55 EDT 2025
Tue Jul 01 04:17:50 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-a40ef361ac55493296de205417716e3910774bc6ef284172eb5b622b506eea0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1685835792
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_2327957565
proquest_miscellaneous_1685835792
crossref_citationtrail_10_1039_C5TA01093D
crossref_primary_10_1039_C5TA01093D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2015
References Wachter (C5TA01093D-(cit34)/*[position()=1]) 2002; 314
Juarez-Perez (C5TA01093D-(cit39)/*[position()=1]) 2014; 5
Yamada (C5TA01093D-(cit25)/*[position()=1]) 2014; 136
Cappel (C5TA01093D-(cit36)/*[position()=1]) 2010; 132
Burschka (C5TA01093D-(cit6)/*[position()=1]) 2013; 499
Xing (C5TA01093D-(cit8)/*[position()=1]) 2014; 13
Sun (C5TA01093D-(cit20)/*[position()=1]) 2014; 7
Manzke (C5TA01093D-(cit35)/*[position()=1]) 1998; 80
Even (C5TA01093D-(cit41)/*[position()=1]) 2014; 118
Tan (C5TA01093D-(cit22)/*[position()=1]) 2014; 9
Kim (C5TA01093D-(cit2)/*[position()=1]) 2012; 2
Manser (C5TA01093D-(cit14)/*[position()=1]) 2014; 8
Yamada (C5TA01093D-(cit43)/*[position()=1]) 2009; 95
Ponseca Jr (C5TA01093D-(cit18)/*[position()=1]) 2014; 136
Saba (C5TA01093D-(cit17)/*[position()=1]) 2014; 5
Trinh (C5TA01093D-(cit29)/*[position()=1]) 2013; 13
Moss (C5TA01093D-(cit32)/*[position()=1]) 1954; 67
Tanaka (C5TA01093D-(cit19)/*[position()=1]) 2003; 127
Peyghambarian (C5TA01093D-(cit33)/*[position()=1]) 1984; 53
Zhou (C5TA01093D-(cit7)/*[position()=1]) 2014; 345
Landsberg (C5TA01093D-(cit42)/*[position()=1]) 1991
Lee (C5TA01093D-(cit3)/*[position()=1]) 2012; 338
Zhang (C5TA01093D-(cit24)/*[position()=1]) 2014; 14
Sutherland (C5TA01093D-(cit23)/*[position()=1]) 2014; 8
D'Innocenzo (C5TA01093D-(cit13)/*[position()=1]) 2014; 5
Stranks (C5TA01093D-(cit10)/*[position()=1]) 2013; 342
Savenije (C5TA01093D-(cit15)/*[position()=1]) 2014; 5
Dar (C5TA01093D-(cit27)/*[position()=1]) 2014; 14
Giorgi (C5TA01093D-(cit30)/*[position()=1]) 2013; 4
Deschler (C5TA01093D-(cit21)/*[position()=1]) 2014; 5
Kojima (C5TA01093D-(cit1)/*[position()=1]) 2009; 131
Xing (C5TA01093D-(cit9)/*[position()=1]) 2013; 342
Wehrenfennig (C5TA01093D-(cit12)/*[position()=1]) 2014; 26
Even (C5TA01093D-(cit28)/*[position()=1]) 2014; 118
Colella (C5TA01093D-(cit46)/*[position()=1]) 2013; 25
Stoumpos (C5TA01093D-(cit11)/*[position()=1]) 2013; 52
Bublitz (C5TA01093D-(cit38)/*[position()=1]) 1997; 48
Wu (C5TA01093D-(cit45)/*[position()=1]) 2015; 137
Roiati (C5TA01093D-(cit37)/*[position()=1]) 2014; 14
Stranks (C5TA01093D-(cit16)/*[position()=1]) 2014; 2
Liu (C5TA01093D-(cit4)/*[position()=1]) 2013; 501
Hao (C5TA01093D-(cit5)/*[position()=1]) 2014; 8
Burstein (C5TA01093D-(cit31)/*[position()=1]) 1954; 93
Trinh (C5TA01093D-(cit44)/*[position()=1]) 2013; 117
Zhao (C5TA01093D-(cit47)/*[position()=1]) 2014; 118
Grätzel (C5TA01093D-(cit26)/*[position()=1]) 2014; 13
Lin (C5TA01093D-(cit40)/*[position()=1]) 2015; 9
References_xml – volume: 14
  start-page: 6991
  year: 2014
  ident: C5TA01093D-(cit27)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl503279x
– volume: 118
  start-page: 11566
  year: 2014
  ident: C5TA01093D-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503337a
– volume: 8
  start-page: 0947
  year: 2014
  ident: C5TA01093D-(cit23)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn504856g
– volume: 137
  start-page: 2089
  year: 2015
  ident: C5TA01093D-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512833n
– volume: 13
  start-page: 838
  year: 2014
  ident: C5TA01093D-(cit26)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4065
– volume: 5
  start-page: 1421
  year: 2014
  ident: C5TA01093D-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5005285
– volume: 118
  start-page: 11566
  year: 2014
  ident: C5TA01093D-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503337a
– volume: 93
  start-page: 632
  year: 1954
  ident: C5TA01093D-(cit31)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.93.632
– volume: 132
  start-page: 9096
  year: 2010
  ident: C5TA01093D-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102334h
– volume: 26
  start-page: 1584
  year: 2014
  ident: C5TA01093D-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305172
– volume: 14
  start-page: 5995
  year: 2014
  ident: C5TA01093D-(cit24)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl503057g
– volume: 118
  start-page: 9412
  year: 2014
  ident: C5TA01093D-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp502696w
– volume: 2
  start-page: 034007
  year: 2014
  ident: C5TA01093D-(cit16)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.2.034007
– volume: 342
  start-page: 344
  year: 2013
  ident: C5TA01093D-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1243167
– volume: 95
  start-page: 121112
  year: 2009
  ident: C5TA01093D-(cit43)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3238269
– volume: 499
  start-page: 316
  year: 2013
  ident: C5TA01093D-(cit6)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12340
– volume: 338
  start-page: 643
  year: 2012
  ident: C5TA01093D-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1228604
– volume-title: Recombination in Semiconductors
  year: 1991
  ident: C5TA01093D-(cit42)/*[position()=1]
– volume: 5
  start-page: 5049
  year: 2014
  ident: C5TA01093D-(cit17)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6049
– volume: 136
  start-page: 5189
  year: 2014
  ident: C5TA01093D-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja412583t
– volume: 501
  start-page: 395
  year: 2013
  ident: C5TA01093D-(cit4)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12509
– volume: 345
  start-page: 542
  year: 2014
  ident: C5TA01093D-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 117
  start-page: 5963
  year: 2013
  ident: C5TA01093D-(cit44)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp311124c
– volume: 9
  start-page: 687
  year: 2014
  ident: C5TA01093D-(cit22)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.149
– volume: 13
  start-page: 6091
  year: 2013
  ident: C5TA01093D-(cit29)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl403368y
– volume: 9
  start-page: 106
  year: 2015
  ident: C5TA01093D-(cit40)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.284
– volume: 67
  start-page: 775
  year: 1954
  ident: C5TA01093D-(cit32)/*[position()=1]
  publication-title: Proc. Phys. Soc., London, Sect. B
  doi: 10.1088/0370-1301/67/10/306
– volume: 25
  start-page: 4613
  year: 2013
  ident: C5TA01093D-(cit46)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm402919x
– volume: 136
  start-page: 11610
  year: 2014
  ident: C5TA01093D-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506624n
– volume: 4
  start-page: 4213
  year: 2013
  ident: C5TA01093D-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4023865
– volume: 5
  start-page: 2390
  year: 2014
  ident: C5TA01093D-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5011169
– volume: 7
  start-page: 399
  year: 2014
  ident: C5TA01093D-(cit20)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43161D
– volume: 314
  start-page: 309
  year: 2002
  ident: C5TA01093D-(cit34)/*[position()=1]
  publication-title: Phys. B
  doi: 10.1016/S0921-4526(01)01400-4
– volume: 13
  start-page: 476
  year: 2014
  ident: C5TA01093D-(cit8)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3911
– volume: 48
  start-page: 213
  year: 1997
  ident: C5TA01093D-(cit38)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.48.1.213
– volume: 2
  start-page: 591
  year: 2012
  ident: C5TA01093D-(cit2)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00591
– volume: 8
  start-page: 737
  year: 2014
  ident: C5TA01093D-(cit14)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.171
– volume: 127
  start-page: 619
  year: 2003
  ident: C5TA01093D-(cit19)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(03)00566-0
– volume: 131
  start-page: 6050
  year: 2009
  ident: C5TA01093D-(cit1)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 8
  start-page: 489
  year: 2014
  ident: C5TA01093D-(cit5)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.82
– volume: 342
  start-page: 341
  year: 2013
  ident: C5TA01093D-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 53
  start-page: 2433
  year: 1984
  ident: C5TA01093D-(cit33)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.2433
– volume: 52
  start-page: 9019
  year: 2013
  ident: C5TA01093D-(cit11)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic401215x
– volume: 5
  start-page: 3586
  year: 2014
  ident: C5TA01093D-(cit13)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4586
– volume: 5
  start-page: 2189
  year: 2014
  ident: C5TA01093D-(cit15)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500858a
– volume: 14
  start-page: 2168
  year: 2014
  ident: C5TA01093D-(cit37)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl500544c
– volume: 80
  start-page: 4943
  year: 1998
  ident: C5TA01093D-(cit35)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4943
SSID ssj0000800699
Score 2.4882545
Snippet Lead halide perovskite is emerging as a promising semiconductor material for thin film solar cells. Despite a large number of recent photophysical studies, the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 9285
SubjectTerms Carriers
cations
Charge carriers
Chlorides
films (materials)
Halides
lead
Perovskites
photochemical reactions
Photovoltaic cells
screening
semiconductors
Solar cells
spectroscopy
Thin films
Title Many-body interactions in photo-excited lead iodide perovskite
URI https://www.proquest.com/docview/1685835792
https://www.proquest.com/docview/2327957565
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLwXBBVUJSVw78QWpWhYtiOWUFeUUOc5EG2mVoDZBCz-DX8zYzqvQlRYuUeq4aeP5Mv5m7Jkh5BXloGK0Zd0Y7Q00UArlCilyN4-jmOU0U9JukP3MT86WH9dsPZv9muxaapvMUz_3xpX8j1SxDeWqo2T_QbLDTbEBz1G-eEQJ4_FaMj7FN9nN6vyHyfqwsTEKdmP4ed3ULlwqwygvUJCLss7LHHSe4vr7Vvtsr-ClSGHtf1-ovhict1jZuJ7-iskTbqMGjeO9j8LSG20HH32yKSvjtDn1Fkk7ovBLqxvXpawvy3FZBLZd6I0Neh8d2ra35371ph6KgE08FEaRhT7zdc5Sq2dh2mar2faamE4BF03UqghtXZ9uikZK5-9V_z7V2VOPWLLSK3703TjJ9Qv7f8x9w45EsxZPRTp-9wY5CNH0COfkYHWcfPg0eO40x-amMOnwYH3eWyrejDfYZTq7E71hL8kdcrsTr7OyGLpLZlDdI7cmySjvk7cDmpwpmvCDs4MmR6PJsWhyRjQ9IGfvj5OjE7erruEqymnjyqUPBeWBVMgokcULngM-0DKI0IQGijQSLYNMcSiQwSDNhYxlPAwz5nMA6Uv6kMyruoJHxFGRygUPZQBonQKTGQeRKySzUDBVLOND8rofiVR1qed1BZSL9O9hPyQvh77fbMKVvb1e9AOa4pugF7lkBXW7TQNdUIGySIRX90ErIhJop3D2-Fq_9oTcHHH9lMybTQvPkIs22fMOHL8B3Q2JAg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many-body+interactions+in+photo-excited+lead+iodide+perovskite&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Trinh%2C+M.+Tuan&rft.au=Wu%2C+Xiaoxi&rft.au=Niesner%2C+Daniel&rft.au=Zhu%2C+X.-Y.&rft.date=2015-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=3&rft.issue=17&rft.spage=9285&rft.epage=9290&rft_id=info:doi/10.1039%2FC5TA01093D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C5TA01093D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon