Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication

•Silica coated DDAB-CsPbBr3 QDs exhibit better properties than regular CsPbBr3.•High performance warm WLEDs based on modified CsPbBr3 QDs are realized.•Visible light communication exhibits a typical low-pass frequency response. Owing to their superior optical and electronic properties, all inorganic...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 419; p. 129551
Main Authors Li, Xianwen, Cai, Wensi, Guan, Hongling, Zhao, Shuangyi, Cao, Siliang, Chen, Chen, Liu, Min, Zang, Zhigang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Silica coated DDAB-CsPbBr3 QDs exhibit better properties than regular CsPbBr3.•High performance warm WLEDs based on modified CsPbBr3 QDs are realized.•Visible light communication exhibits a typical low-pass frequency response. Owing to their superior optical and electronic properties, all inorganic metal halide CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (QDs) are regarded as excellent candidates for various optoelectronic applications. However, the instability of such materials greatly hampers their practical applications. In this work, silica-coated didodecyldimethylammonium bromide (DDAB) capped CsPbBr3 QDs are prepared via a facile method at room temperature. The as-prepared DDAB-CsPbBr3/SiO2 QDs composites demonstrate an effectively improved photoluminescence quantum yield (PLQY) and stability against ethanol and heat. Moreover, the green DDAB-CsPbBr3/SiO2 QDs composites and red InAgZnS QDs are applied as color-converting layers on a blue LED chip for warm white light-emitting diodes (WLEDs). Such WLEDs exhibit an excellent luminescent performance with a color rendering index (CRI) of 88, a color coordinate of (0.41, 0.38), a correlated color temperature (CCT) of 3209 K, and a high power efficiency of 63.4 lm W−1. Besides, such WLEDs are used for visible light communication (VLC), exhibiting a typical low-pass frequency response, with a corresponding −3 dB bandwidth of about 1.5 MHz. By applying orthogonal frequency division multiplexing (OFDM) with a bit loading, a maximum achievable rate of the VLC system reaches 5.9 Mbps, which is almost four times of their measured −3 dB bandwidth. These results demonstrate the potential of prepared DDAB-CsPbBr3/SiO2 QDs composites not only in high-performance WLEDs, but also as an excitation light source to achieve VLC.
AbstractList •Silica coated DDAB-CsPbBr3 QDs exhibit better properties than regular CsPbBr3.•High performance warm WLEDs based on modified CsPbBr3 QDs are realized.•Visible light communication exhibits a typical low-pass frequency response. Owing to their superior optical and electronic properties, all inorganic metal halide CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (QDs) are regarded as excellent candidates for various optoelectronic applications. However, the instability of such materials greatly hampers their practical applications. In this work, silica-coated didodecyldimethylammonium bromide (DDAB) capped CsPbBr3 QDs are prepared via a facile method at room temperature. The as-prepared DDAB-CsPbBr3/SiO2 QDs composites demonstrate an effectively improved photoluminescence quantum yield (PLQY) and stability against ethanol and heat. Moreover, the green DDAB-CsPbBr3/SiO2 QDs composites and red InAgZnS QDs are applied as color-converting layers on a blue LED chip for warm white light-emitting diodes (WLEDs). Such WLEDs exhibit an excellent luminescent performance with a color rendering index (CRI) of 88, a color coordinate of (0.41, 0.38), a correlated color temperature (CCT) of 3209 K, and a high power efficiency of 63.4 lm W−1. Besides, such WLEDs are used for visible light communication (VLC), exhibiting a typical low-pass frequency response, with a corresponding −3 dB bandwidth of about 1.5 MHz. By applying orthogonal frequency division multiplexing (OFDM) with a bit loading, a maximum achievable rate of the VLC system reaches 5.9 Mbps, which is almost four times of their measured −3 dB bandwidth. These results demonstrate the potential of prepared DDAB-CsPbBr3/SiO2 QDs composites not only in high-performance WLEDs, but also as an excitation light source to achieve VLC.
ArticleNumber 129551
Author Zang, Zhigang
Chen, Chen
Guan, Hongling
Li, Xianwen
Cao, Siliang
Liu, Min
Cai, Wensi
Zhao, Shuangyi
Author_xml – sequence: 1
  givenname: Xianwen
  surname: Li
  fullname: Li, Xianwen
  organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China
– sequence: 2
  givenname: Wensi
  orcidid: 0000-0003-4096-6929
  surname: Cai
  fullname: Cai, Wensi
  organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China
– sequence: 3
  givenname: Hongling
  surname: Guan
  fullname: Guan, Hongling
  organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China
– sequence: 4
  givenname: Shuangyi
  surname: Zhao
  fullname: Zhao, Shuangyi
  organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China
– sequence: 5
  givenname: Siliang
  surname: Cao
  fullname: Cao, Siliang
  organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China
– sequence: 6
  givenname: Chen
  orcidid: 0000-0003-2541-6283
  surname: Chen
  fullname: Chen, Chen
  email: c.chen@cqu.edu.cn
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
– sequence: 7
  givenname: Min
  surname: Liu
  fullname: Liu, Min
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
– sequence: 8
  givenname: Zhigang
  orcidid: 0000-0003-1632-503X
  surname: Zang
  fullname: Zang, Zhigang
  email: zangzg@cqu.edu.cn
  organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China
BookMark eNp9kE1OwzAQhS1UJNrCAdj5Ain-SZNGrKACilQJFrC2HHvSTpXEYLtFvQOHJmm7YtHVG-nNNz9vRAata4GQW84mnPHsbjMxsJkIJviEi2I65RdkyGe5TKTgYtDVcjZNZkWaX5FRCBvGWFbwYkh-F7ha13saoi5roPPwXj56Sb-3uo3bhloXAy07G2s0OjFOR2xXVLeW1rjqpXEWq86L6FpaOU9_1hihd9cxgQbjAbDoLIQDt8OA_apDBzWuabbtib8ml5WuA9ycdEw-n58-5otk-fbyOn9YJkZmMiY6ZbYoTJVCalhepHIGgsvSWsvSqqp4yrXQZSGy3IIRhttcM82gNADTrJS5HJP8ONd4F4KHShmMhwui11grzlQfqtqoLlTVh6qOoXYk_0d-eWy0359l7o8MdC_tELwKBqE1YNGDico6PEP_AcjUlWA
CitedBy_id crossref_primary_10_1002_lpor_202100736
crossref_primary_10_1016_j_jcis_2024_10_193
crossref_primary_10_1021_acsaom_4c00449
crossref_primary_10_1021_acsanm_2c04974
crossref_primary_10_1002_adom_202302726
crossref_primary_10_1364_OL_518687
crossref_primary_10_1016_j_ceramint_2024_08_032
crossref_primary_10_1002_lpor_202400758
crossref_primary_10_7498_aps_73_20240247
crossref_primary_10_1007_s11227_024_06834_y
crossref_primary_10_1088_1361_6463_ac3172
crossref_primary_10_1039_D2TC00824F
crossref_primary_10_1016_j_jlumin_2023_119905
crossref_primary_10_1021_acsami_2c09711
crossref_primary_10_1039_D1TC03244E
crossref_primary_10_1039_D2CC05965G
crossref_primary_10_1002_adfm_202104634
crossref_primary_10_1016_j_jlumin_2024_120462
crossref_primary_10_1007_s11356_023_27591_0
crossref_primary_10_1088_1361_6463_ac7264
crossref_primary_10_1016_j_cplett_2022_140180
crossref_primary_10_1039_D1TC01798E
crossref_primary_10_1063_5_0147303
crossref_primary_10_3389_fchem_2022_845206
crossref_primary_10_1007_s10854_023_10172_9
crossref_primary_10_1016_j_optmat_2022_113308
crossref_primary_10_1021_jacs_2c13527
crossref_primary_10_1063_5_0200465
crossref_primary_10_1016_j_cej_2021_131556
crossref_primary_10_1364_OL_447781
crossref_primary_10_1002_slct_202300176
crossref_primary_10_1016_j_optmat_2022_113398
crossref_primary_10_1039_D2NA00774F
crossref_primary_10_1002_lpor_202100278
crossref_primary_10_1364_PRJ_450483
crossref_primary_10_3390_photonics10060648
crossref_primary_10_1002_admi_202400401
crossref_primary_10_1039_D3RA07998H
crossref_primary_10_1016_j_cej_2022_140038
crossref_primary_10_1021_acsanm_2c02496
crossref_primary_10_1080_02670836_2022_2151090
crossref_primary_10_1016_j_esci_2022_100089
crossref_primary_10_1007_s40843_024_3134_1
crossref_primary_10_1111_jace_20159
crossref_primary_10_1149_2162_8777_ac28e4
crossref_primary_10_1016_j_matchemphys_2021_125281
crossref_primary_10_1007_s10853_022_07367_6
crossref_primary_10_1021_acsami_1c07647
crossref_primary_10_3389_femat_2022_891983
crossref_primary_10_1007_s00339_022_05553_6
crossref_primary_10_1007_s11664_021_09167_1
crossref_primary_10_1021_acs_jpcc_3c05055
crossref_primary_10_1039_D2QM01355J
crossref_primary_10_1039_D4NJ01737D
crossref_primary_10_1016_j_cej_2022_135014
crossref_primary_10_1063_5_0234793
crossref_primary_10_1364_OE_477993
crossref_primary_10_1021_acsaom_4c00020
crossref_primary_10_1039_D2TC00653G
crossref_primary_10_1088_1361_6528_acd00a
crossref_primary_10_1007_s11128_023_03854_0
crossref_primary_10_1016_j_optmat_2022_112120
crossref_primary_10_1039_D4TC05224B
crossref_primary_10_1021_acsanm_2c04655
crossref_primary_10_1016_j_cej_2021_132391
crossref_primary_10_1016_j_cej_2022_134693
crossref_primary_10_3390_nano12132243
crossref_primary_10_1016_j_apmate_2022_100036
crossref_primary_10_1016_j_optmat_2024_115874
crossref_primary_10_1021_acsanm_3c01625
crossref_primary_10_1016_j_mtelec_2023_100057
crossref_primary_10_1016_j_nanoms_2022_03_003
crossref_primary_10_1364_OE_502064
crossref_primary_10_3390_nano12152535
crossref_primary_10_1021_acs_jpclett_3c01148
crossref_primary_10_1002_eom2_12184
crossref_primary_10_1016_j_apsusc_2023_157970
crossref_primary_10_1016_j_saa_2024_124742
crossref_primary_10_1021_acs_jpcc_2c03932
crossref_primary_10_1016_j_cej_2022_135270
crossref_primary_10_1039_D2MA00503D
crossref_primary_10_1002_adfm_202300583
crossref_primary_10_1021_acsanm_1c02376
crossref_primary_10_1063_5_0172087
crossref_primary_10_1088_1361_6528_ac15c7
crossref_primary_10_1016_j_ceramint_2024_10_043
crossref_primary_10_1007_s40843_022_2304_2
crossref_primary_10_1002_smll_202309902
crossref_primary_10_1007_s11356_023_26728_5
crossref_primary_10_1002_adom_202303051
crossref_primary_10_1016_j_ceramint_2024_11_477
crossref_primary_10_1002_eom2_12296
crossref_primary_10_1016_j_ceramint_2022_01_264
crossref_primary_10_1186_s11671_023_03812_w
crossref_primary_10_1088_1361_6528_aca9d8
crossref_primary_10_1002_inf2_12559
crossref_primary_10_1021_acsenergylett_4c00803
crossref_primary_10_1016_j_apsusc_2021_150941
crossref_primary_10_1039_D3RA00636K
crossref_primary_10_1002_lpor_202200276
crossref_primary_10_1016_j_cej_2023_145797
crossref_primary_10_1007_s12274_023_5489_1
crossref_primary_10_1016_j_jre_2024_12_015
crossref_primary_10_1016_j_matdes_2022_111307
crossref_primary_10_1021_acs_inorgchem_3c01834
crossref_primary_10_1039_D2CC06458H
crossref_primary_10_1016_j_mtchem_2024_102270
crossref_primary_10_1039_D3CE00432E
crossref_primary_10_1016_j_cej_2023_144906
crossref_primary_10_1002_adfm_202109472
crossref_primary_10_1088_2515_7639_ac618f
crossref_primary_10_3390_app13137529
crossref_primary_10_1016_j_mssp_2025_109290
crossref_primary_10_1002_adfm_202305858
crossref_primary_10_1002_bio_4491
crossref_primary_10_1088_1742_6596_2243_1_012049
crossref_primary_10_1016_j_snb_2024_136189
Cites_doi 10.1002/anie.201703264
10.1021/jacs.6b03134
10.1021/jacs.7b10647
10.1002/adma.201600784
10.1021/jacs.5b13101
10.1002/adma.201604510
10.1002/anie.201602787
10.1364/PRJ.391703
10.1039/C6CC01500J
10.1021/acsami.9b07818
10.1002/adfm.201600109
10.1002/smll.201900484
10.1039/D0CC01193B
10.1021/acs.jpcc.0c03004
10.1021/acsami.7b06436
10.1002/adma.201900767
10.1021/acs.nanolett.5b02404
10.1021/la052822l
10.1021/jacs.7b11003
10.1016/j.micromeso.2008.04.030
10.1002/smll.201901173
10.1021/jacs.5b05602
10.1126/science.aam7093
10.1006/jcis.2000.7224
10.1021/nl5048779
10.1016/j.jlumin.2021.117884
10.1021/acs.chemmater.7b02669
10.1021/acsenergylett.9b00140
10.1002/aenm.201500963
10.1021/acsami.7b17166
10.1016/j.nanoen.2019.104279
10.1002/adma.201603081
10.1039/C6NR03428D
10.1002/anie.201603698
10.1364/PRJ.399845
10.1002/adma.201600064
10.1021/acsnano.6b07374
10.1021/acs.nanolett.7b02896
10.1002/anie.201703703
10.1021/acsami.7b18964
10.1038/s41586-018-0576-2
10.1002/adfm.201701121
10.1021/acsami.7b14471
10.1021/acsenergylett.8b01909
10.1088/1361-6528/aac00b
10.1002/adfm.201000428
10.1016/j.cej.2020.126066
10.1002/adma.201502567
10.1039/C5CC08643D
10.1021/ar300230s
10.1021/acsnano.8b04209
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.129551
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_129551
S1385894721011384
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c363t-a40d99cf4e4c079438e213bddd04fff141a2ab9267dec2c1d7a0a0ebcee56b373
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Apr 24 22:50:50 EDT 2025
Tue Jul 01 04:27:26 EDT 2025
Fri Feb 23 02:43:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Warm white light-emitting diodes
CsPbBr3 quantum dots
DDAB capped
Silica-coated
Visible light communication
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-a40d99cf4e4c079438e213bddd04fff141a2ab9267dec2c1d7a0a0ebcee56b373
ORCID 0000-0003-2541-6283
0000-0003-4096-6929
0000-0003-1632-503X
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2021_129551
crossref_primary_10_1016_j_cej_2021_129551
elsevier_sciencedirect_doi_10_1016_j_cej_2021_129551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou, Yuan, Wang, Xu, Wang, Li, Zheng, Fan, Li, Sun, Pan (b0120) 2017; 11
Ramasamy, Lim, Kim, Lee, Lee, Lee (b0020) 2016; 52
Yang, Li, Wu, Wei, Qin, Zhang, Sun, Li, Wang, Zeng (b0235) 2019; 7
Nedelcu, Protesescu, Yakunin, Bodnarchuk, Grotevent, Kovalenko (b0030) 2015; 15
Pan, Shang, Yin, De Bastiani, Peng, Dursun, Sinatra, El-Zohry, Hedhili, Emwas, Mohammed, Ning, Bakr (b0060) 2018; 140
Song, Li, Li, Xu, Dong, Zeng (b0095) 2015; 27
Imran, Ijaz, Goldoni, Maggioni, Petralanda, Prato, Almeida, Infante, Manna (b0135) 2019; 4
DuBose, Kamat (b0160) 2020; 124
Zhu, Wu, Riaz, Dai (b0165) 2021; 233
Mo, Shi, Cai, Zhao, Yan, Du, Zang (b0195) 2020; 8
Li, Rivarola, Davis, Bai, Jellicoe, de la Peña, Hou, Ducati, Gao, Friend, Greenham, Tan (b0100) 2016; 28
Kovalenko, Protesescu, Bodnarchuk (b0070) 2017; 358
Leijtens, Eperon, Noel, Habisreutinger, Petrozza, Snaith (b0090) 2015; 5
Li, Hofman, Li, Davis, Tung, Wu, Zheng (b0200) 2018; 28
Zhang, Sun, Song, Jiang, Dong, Wang (b0255) 2006; 22
Zhong, Cao, Hu, Yang, Chen, Li, Wu, Zhang (b0225) 2018; 12
He, Liu, Zhang, Liao, Yao, Fu (b0010) 2017; 29
Zhang, Lee, Ge, Zaera, Yin (b0170) 2010; 20
Lv, Xu, Fang, Luo, Xu, Liu, Wang, Zhang, Yang, Hu, Dong (b0015) 2016; 8
Zhao, Zhang, Zang (b0075) 2020; 56
Liu, Zhang, Yang, Li (b0210) 2008; 116
Loiudice, Saris, Oveisi, Alexander, Buonsanti (b0205) 2017; 56
Akkerman, D’Innocenzo, Accornero, Scarpellini, Petrozza, Prato, Manna (b0005) 2015; 137
Guan, Zhao, Wang, Yan, Wang, Zang (b0270) 2020; 67
Pan, Quan, Zhao, Peng, Murali, Sarmah, Yuan, Sinatra, Alyami, Liu, Yassitepe, Yang, Voznyy, Comin, Hedhili, Mohammed, Lu, Kim, Sargent, Bakr (b0125) 2016; 28
Xu, Chen, Song, Li, Xue, Dong, Cai, Shan, Han, Zeng (b0190) 2017; 9
Sun, Zhang, Ruan, Yin, Wang, Wang, Yu (b0245) 2016; 28
Shao, Bai, Pan, Cui, Zhu, Zhai, Liu, Dong, Xu, Song (b0220) 2018; 29
Zhang, Yang, Bekenstein, Yu, Gibson, Wong, Eaton, Kornienko, Kong, Lai, Alivisatos, Leone, Yang (b0045) 2016; 138
Cao, Wang, Tian, Guo, Wei, Chen, Miao, Zou, Pan, He, Cao, Ke, Xu, Wang, Yang, Du, Fu, Kong, Dai, Jin, Li, Li, Peng, Wang, Huang (b0085) 2018; 562
Mondal, De, Samanta (b0240) 2019; 4
White, Tripp (b0250) 2000; 232
Yan, Zhao, Wang, Zang (b0155) 2020; 8
Wang, Wu, Li, Yao, Qian, Yu (b0105) 2016; 55
Liu, Zhang, Fan, Chen, Tang, Zhao, lv, Lin, Guo, Zhang, Liu (b0065) 2018; 10
Wu, Hu, Xu, Jiang, Chen, Zhong, Yang, Liu, Zhao, Sun, Zhang, Yin (b0115) 2017; 17
Hu, Wu, Tan, Zhong, Chen, Qiu, Yang, Sun, Zhang, Yin (b0050) 2018; 140
Woo, Kim, Bae, Kim, Kim, Lee, Jeong (b0260) 2017; 29
Li, Kong, Huang, Li (b0055) 2017; 56
Li, Xu, Wang, Song, Chen, Xue, Dong, Cai, Shan, Han, Zeng (b0025) 2017; 29
Yan, Shi, Zang, Zhao, Du, Leng (b0150) 2020; 401
Yang, Li, Zhou, Zhang, Meng, Wu, Wang, Zeng (b0145) 2019; 31
Zhang, Lee, Joo, Zaera, Yin (b0175) 2013; 46
Yan, Shi, Zang, Zhou, Liu, Zhang, Du, Leng, Tang (b0140) 2019; 15
Wang, Lin, Tang, Singh, Tong, Chen, Lee, Tsai, Liu (b0180) 2016; 55
Huang, Li, Kong, Zhu, Shan, Li (b0215) 2016; 138
Tang, Chen, Liu, Du, Yao, Huang, Chen, Yang, Shi, Hu, Zang, Chen, Leng (b0230) 2019; 15
Chen, Fang, Chen (b0185) 2017; 9
Tan, Zou, Wu, Huang, Yang, Chen, Ban, Wu, Wu, Bai, Song, Zhang, Sun (b0130) 2018; 10
Protesescu, Yakunin, Bodnarchuk, Krieg, Caputo, Hendon, Yang, Walsh, Kovalenko (b0035) 2015; 15
Li, Wu, Zhang, Cai, Gu, Song, Zeng (b0080) 2016; 26
Zheng, Bi, Huang, Binks, Tian (b0265) 2019; 11
Chen, Zou, Wu, Pan, Yang, Hu, Tan, Zhong, Xu, Liu, Sun, Zhang (b0110) 2017; 27
Wei, Yang, Kang, Wang, Huang, Pan (b0040) 2016; 52
Yang (10.1016/j.cej.2021.129551_b0145) 2019; 31
Song (10.1016/j.cej.2021.129551_b0095) 2015; 27
Li (10.1016/j.cej.2021.129551_b0080) 2016; 26
Sun (10.1016/j.cej.2021.129551_b0245) 2016; 28
Zhang (10.1016/j.cej.2021.129551_b0045) 2016; 138
He (10.1016/j.cej.2021.129551_b0010) 2017; 29
Loiudice (10.1016/j.cej.2021.129551_b0205) 2017; 56
White (10.1016/j.cej.2021.129551_b0250) 2000; 232
Li (10.1016/j.cej.2021.129551_b0200) 2018; 28
Shao (10.1016/j.cej.2021.129551_b0220) 2018; 29
Zheng (10.1016/j.cej.2021.129551_b0265) 2019; 11
Huang (10.1016/j.cej.2021.129551_b0215) 2016; 138
Zhang (10.1016/j.cej.2021.129551_b0170) 2010; 20
Wu (10.1016/j.cej.2021.129551_b0115) 2017; 17
Ramasamy (10.1016/j.cej.2021.129551_b0020) 2016; 52
Zhang (10.1016/j.cej.2021.129551_b0255) 2006; 22
Zhong (10.1016/j.cej.2021.129551_b0225) 2018; 12
Tan (10.1016/j.cej.2021.129551_b0130) 2018; 10
Mo (10.1016/j.cej.2021.129551_b0195) 2020; 8
Pan (10.1016/j.cej.2021.129551_b0060) 2018; 140
Yan (10.1016/j.cej.2021.129551_b0155) 2020; 8
Mondal (10.1016/j.cej.2021.129551_b0240) 2019; 4
Wang (10.1016/j.cej.2021.129551_b0180) 2016; 55
Liu (10.1016/j.cej.2021.129551_b0210) 2008; 116
Hu (10.1016/j.cej.2021.129551_b0050) 2018; 140
Chen (10.1016/j.cej.2021.129551_b0185) 2017; 9
Liu (10.1016/j.cej.2021.129551_b0065) 2018; 10
Kovalenko (10.1016/j.cej.2021.129551_b0070) 2017; 358
Zhou (10.1016/j.cej.2021.129551_b0120) 2017; 11
Pan (10.1016/j.cej.2021.129551_b0125) 2016; 28
Li (10.1016/j.cej.2021.129551_b0025) 2017; 29
Zhang (10.1016/j.cej.2021.129551_b0175) 2013; 46
Yan (10.1016/j.cej.2021.129551_b0150) 2020; 401
Wang (10.1016/j.cej.2021.129551_b0105) 2016; 55
Guan (10.1016/j.cej.2021.129551_b0270) 2020; 67
Yan (10.1016/j.cej.2021.129551_b0140) 2019; 15
Akkerman (10.1016/j.cej.2021.129551_b0005) 2015; 137
Leijtens (10.1016/j.cej.2021.129551_b0090) 2015; 5
Tang (10.1016/j.cej.2021.129551_b0230) 2019; 15
Protesescu (10.1016/j.cej.2021.129551_b0035) 2015; 15
Zhu (10.1016/j.cej.2021.129551_b0165) 2021; 233
Lv (10.1016/j.cej.2021.129551_b0015) 2016; 8
Li (10.1016/j.cej.2021.129551_b0055) 2017; 56
Cao (10.1016/j.cej.2021.129551_b0085) 2018; 562
Wei (10.1016/j.cej.2021.129551_b0040) 2016; 52
DuBose (10.1016/j.cej.2021.129551_b0160) 2020; 124
Xu (10.1016/j.cej.2021.129551_b0190) 2017; 9
Yang (10.1016/j.cej.2021.129551_b0235) 2019; 7
Nedelcu (10.1016/j.cej.2021.129551_b0030) 2015; 15
Chen (10.1016/j.cej.2021.129551_b0110) 2017; 27
Zhao (10.1016/j.cej.2021.129551_b0075) 2020; 56
Li (10.1016/j.cej.2021.129551_b0100) 2016; 28
Woo (10.1016/j.cej.2021.129551_b0260) 2017; 29
Imran (10.1016/j.cej.2021.129551_b0135) 2019; 4
References_xml – volume: 22
  start-page: 2838
  year: 2006
  end-page: 2843
  ident: b0255
  article-title: Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis characterization, and self-assembly
  publication-title: Langmuir
– volume: 56
  start-page: 8134
  year: 2017
  end-page: 8138
  ident: b0055
  article-title: Highly luminescent and ultrastable CsPbBr
  publication-title: Angew. Chem. Int. Edit.
– volume: 46
  start-page: 1816
  year: 2013
  end-page: 1824
  ident: b0175
  article-title: Core-shell nanostructured catalysts
  publication-title: Acc. Chem. Res
– volume: 12
  start-page: 8579
  year: 2018
  end-page: 8587
  ident: b0225
  article-title: One-pot synthesis of highly stable CsPbBr
  publication-title: ACS Nano
– volume: 28
  start-page: 3528
  year: 2016
  end-page: 3534
  ident: b0100
  article-title: Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method
  publication-title: Adv. Mater.
– volume: 233
  year: 2021
  ident: b0165
  article-title: Stable silica coated DDAB-CsPbX
  publication-title: J. Lumin.
– volume: 8
  start-page: 1605
  year: 2020
  ident: b0195
  article-title: Room temperature synthesis of stable silica-coated CsPbBr
  publication-title: Photonics Res.
– volume: 20
  start-page: 2201
  year: 2010
  end-page: 2214
  ident: b0170
  article-title: Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts
  publication-title: Adv. Funct. Mater.
– volume: 140
  start-page: 406
  year: 2018
  end-page: 412
  ident: b0050
  article-title: Interfacial synthesis of highly stable CsPbX
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 7
  year: 2018
  ident: b0200
  article-title: Photoelectrochemically active and environmentally stable CsPbBr
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 13053
  year: 2018
  end-page: 13061
  ident: b0065
  article-title: Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in Air
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 26556
  year: 2017
  end-page: 26564
  ident: b0190
  article-title: Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 1900484
  year: 2019
  ident: b0230
  article-title: Ultrathin, core-shell structured SiO
  publication-title: Small
– volume: 137
  start-page: 10276
  year: 2015
  end-page: 10281
  ident: b0005
  article-title: Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 5749
  year: 2016
  end-page: 5752
  ident: b0215
  article-title: Enhancing the stability of CH
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 8
  year: 2017
  ident: b0010
  article-title: Patterning multicolored microdisk laser arrays of cesium lead halide perovskite
  publication-title: Adv. Mater.
– volume: 140
  start-page: 562
  year: 2018
  end-page: 565
  ident: b0060
  article-title: Bidentate ligand-passivated CsPbI
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 5635
  year: 2015
  end-page: 5640
  ident: b0030
  article-title: Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX
  publication-title: Nano lett.
– volume: 17
  start-page: 5799
  year: 2017
  end-page: 5804
  ident: b0115
  article-title: From nonluminescent Cs
  publication-title: Nano Lett.
– volume: 67
  start-page: 9
  year: 2020
  ident: b0270
  article-title: Room temperature synthesis of stable single silica-coated CsPbBr 3 quantum dots combining tunable red emission of Ag-In-Zn-S for High-CRI white light-emitting diodes
  publication-title: Nano Energy
– volume: 28
  start-page: 8718
  year: 2016
  end-page: 8725
  ident: b0125
  article-title: Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering
  publication-title: Adv. Mater.
– volume: 5
  start-page: 23
  year: 2015
  ident: b0090
  article-title: Stability of metal halide perovskite solar cells
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 3784
  year: 2018
  end-page: 3792
  ident: b0130
  article-title: Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 10088
  year: 2016
  end-page: 10094
  ident: b0245
  article-title: Efficient and stable white leds with silica-coated inorganic perovskite quantum dots
  publication-title: Adv. Mater.
– volume: 9
  start-page: 40477
  year: 2017
  end-page: 40487
  ident: b0185
  article-title: Silica-coated Mn-doped CsPb(Cl/Br)
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 1189
  year: 2017
  end-page: 1195
  ident: b0120
  article-title: Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section
  publication-title: ACS Nano
– volume: 52
  start-page: 2067
  year: 2016
  end-page: 2070
  ident: b0020
  article-title: All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications
  publication-title: Chem. Commun.
– volume: 8
  start-page: 1086
  year: 2020
  ident: b0155
  article-title: Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr
  publication-title: Photonics Res.
– volume: 55
  start-page: 7924
  year: 2016
  end-page: 7929
  ident: b0180
  article-title: Mesoporous silica particles integrated with all-inorganic CsPbBr
  publication-title: Angew. Chem. Int. Edit.
– volume: 8
  start-page: 13589
  year: 2016
  end-page: 13596
  ident: b0015
  article-title: Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors
  publication-title: Nanoscale
– volume: 358
  start-page: 745
  year: 2017
  end-page: 750
  ident: b0070
  article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
  publication-title: Science
– volume: 52
  start-page: 7265
  year: 2016
  end-page: 7268
  ident: b0040
  article-title: Room-temperature and gram-scale synthesis of CsPbX
  publication-title: Chem. Commun.
– volume: 26
  start-page: 2435
  year: 2016
  end-page: 2445
  ident: b0080
  article-title: CsPbX
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 5811
  year: 2020
  end-page: 5814
  ident: b0075
  article-title: Room-temperature doping of ytterbium into efficient near-infrared emission CsPbBr
  publication-title: Chem. Commun.
– volume: 29
  start-page: 9
  year: 2017
  ident: b0025
  article-title: 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr
  publication-title: Adv. Mater.
– volume: 124
  start-page: 12990
  year: 2020
  end-page: 12998
  ident: b0160
  article-title: Surface chemistry matters. How ligands influence excited state interactions between CsPbBr
  publication-title: J. Phys. Chem. C
– volume: 29
  start-page: 7088
  year: 2017
  end-page: 7092
  ident: b0260
  article-title: Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation
  publication-title: Chem. Mater.
– volume: 15
  start-page: 1901173
  year: 2019
  ident: b0140
  article-title: Ultrastable CsPbBr
  publication-title: Small
– volume: 116
  start-page: 330
  year: 2008
  end-page: 338
  ident: b0210
  article-title: Structural control of mesoporous silicas with large nanopores in a mild buffer solution
  publication-title: Microporous Mesoporous Mater.
– volume: 4
  start-page: 32
  year: 2019
  end-page: 39
  ident: b0240
  article-title: Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals
  publication-title: ACS Energy Lett.
– volume: 15
  start-page: 3692
  year: 2015
  end-page: 3696
  ident: b0035
  article-title: Nanocrystals of cesium lead halide perovskites (CsPbX
  publication-title: Nano lett.
– volume: 232
  start-page: 400
  year: 2000
  end-page: 407
  ident: b0250
  article-title: Reaction of (3-Aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces
  publication-title: J. Colloid Interface Sci.
– volume: 4
  start-page: 819
  year: 2019
  end-page: 824
  ident: b0135
  article-title: Simultaneous cationic and anionic ligand exchange For colloidally stable CsPbBr
  publication-title: ACS Energy Lett.
– volume: 29
  year: 2018
  ident: b0220
  article-title: Highly efficient and stable blue-emitting CsPbBr(3)@SiO(2) nanospheres through low temperature synthesis for nanoprinting and WLED
  publication-title: Nanotechnology
– volume: 11
  start-page: 25410
  year: 2019
  end-page: 25416
  ident: b0265
  article-title: Stable and strong emission CsPbBr 3 quantum dots by surface engineering for high-performance optoelectronic films
  publication-title: ACS Appl. Mater. Interfaces
– volume: 401
  year: 2020
  ident: b0150
  article-title: Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: 1900767
  year: 2019
  ident: b0145
  article-title: CsPbBr
  publication-title: Adv. Mater.
– volume: 562
  start-page: 249
  year: 2018
  end-page: 253
  ident: b0085
  article-title: Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures
  publication-title: Nature
– volume: 27
  start-page: 1701121
  year: 2017
  ident: b0110
  article-title: Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 7236
  year: 2016
  end-page: 7239
  ident: b0045
  article-title: Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 8328
  year: 2016
  end-page: 8332
  ident: b0105
  article-title: Large-Scale synthesis of highly luminescent perovskite-related CsPb
  publication-title: Angew. Chem. Int. Edit.
– volume: 27
  start-page: 7162
  year: 2015
  end-page: 7167
  ident: b0095
  article-title: Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX
  publication-title: Adv. Mater.
– volume: 56
  start-page: 10696
  year: 2017
  end-page: 10701
  ident: b0205
  article-title: CsPbBr
  publication-title: Angew. Chem. Int. Edit.
– volume: 7
  start-page: 10
  year: 2019
  ident: b0235
  article-title: Surface halogen compensation for robust performance enhancements of CsPbX
  publication-title: Adv. Opt. Mater.
– volume: 56
  start-page: 8134
  issue: 28
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0055
  article-title: Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201703264
– volume: 138
  start-page: 7236
  issue: 23
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0045
  article-title: Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03134
– volume: 140
  start-page: 562
  issue: 2
  year: 2018
  ident: 10.1016/j.cej.2021.129551_b0060
  article-title: Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10647
– volume: 28
  start-page: 8718
  issue: 39
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0125
  article-title: Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600784
– volume: 138
  start-page: 5749
  issue: 18
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0215
  article-title: Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “Waterless” toluene
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13101
– volume: 29
  start-page: 8
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0010
  article-title: Patterning multicolored microdisk laser arrays of cesium lead halide perovskite
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604510
– volume: 55
  start-page: 8328
  issue: 29
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0105
  article-title: Large-Scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201602787
– volume: 8
  start-page: 1086
  issue: 7
  year: 2020
  ident: 10.1016/j.cej.2021.129551_b0155
  article-title: Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr3 quantum dots
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.391703
– volume: 52
  start-page: 7265
  issue: 45
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0040
  article-title: Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01500J
– volume: 11
  start-page: 25410
  issue: 28
  year: 2019
  ident: 10.1016/j.cej.2021.129551_b0265
  article-title: Stable and strong emission CsPbBr 3 quantum dots by surface engineering for high-performance optoelectronic films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07818
– volume: 26
  start-page: 2435
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0080
  article-title: CsPbX3 Quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600109
– volume: 15
  start-page: 1900484
  year: 2019
  ident: 10.1016/j.cej.2021.129551_b0230
  article-title: Ultrathin, core-shell structured SiO2 coated Mn2+-doped perovskite quantum dots for bright white light-emitting diodes
  publication-title: Small
  doi: 10.1002/smll.201900484
– volume: 56
  start-page: 5811
  year: 2020
  ident: 10.1016/j.cej.2021.129551_b0075
  article-title: Room-temperature doping of ytterbium into efficient near-infrared emission CsPbBr1.5Cl1.5 perovskite quantum dots
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01193B
– volume: 124
  start-page: 12990
  issue: 24
  year: 2020
  ident: 10.1016/j.cej.2021.129551_b0160
  article-title: Surface chemistry matters. How ligands influence excited state interactions between CsPbBr3 and methyl viologen
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c03004
– volume: 9
  start-page: 26556
  issue: 31
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0190
  article-title: Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06436
– volume: 31
  start-page: 1900767
  year: 2019
  ident: 10.1016/j.cej.2021.129551_b0145
  article-title: CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900767
– volume: 15
  start-page: 5635
  issue: 8
  year: 2015
  ident: 10.1016/j.cej.2021.129551_b0030
  article-title: Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I)
  publication-title: Nano lett.
  doi: 10.1021/acs.nanolett.5b02404
– volume: 22
  start-page: 2838
  year: 2006
  ident: 10.1016/j.cej.2021.129551_b0255
  article-title: Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis characterization, and self-assembly
  publication-title: Langmuir
  doi: 10.1021/la052822l
– volume: 140
  start-page: 406
  issue: 1
  year: 2018
  ident: 10.1016/j.cej.2021.129551_b0050
  article-title: Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11003
– volume: 116
  start-page: 330
  issue: 1-3
  year: 2008
  ident: 10.1016/j.cej.2021.129551_b0210
  article-title: Structural control of mesoporous silicas with large nanopores in a mild buffer solution
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.04.030
– volume: 15
  start-page: 1901173
  year: 2019
  ident: 10.1016/j.cej.2021.129551_b0140
  article-title: Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification
  publication-title: Small
  doi: 10.1002/smll.201901173
– volume: 137
  start-page: 10276
  issue: 32
  year: 2015
  ident: 10.1016/j.cej.2021.129551_b0005
  article-title: Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05602
– volume: 358
  start-page: 745
  issue: 6364
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0070
  article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
  publication-title: Science
  doi: 10.1126/science.aam7093
– volume: 232
  start-page: 400
  issue: 2
  year: 2000
  ident: 10.1016/j.cej.2021.129551_b0250
  article-title: Reaction of (3-Aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.7224
– volume: 15
  start-page: 3692
  year: 2015
  ident: 10.1016/j.cej.2021.129551_b0035
  article-title: Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut
  publication-title: Nano lett.
  doi: 10.1021/nl5048779
– volume: 233
  year: 2021
  ident: 10.1016/j.cej.2021.129551_b0165
  article-title: Stable silica coated DDAB-CsPbX3 quantum dots and their application for white light-emitting diodes
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2021.117884
– volume: 29
  start-page: 7088
  issue: 17
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0260
  article-title: Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02669
– volume: 4
  start-page: 819
  issue: 4
  year: 2019
  ident: 10.1016/j.cej.2021.129551_b0135
  article-title: Simultaneous cationic and anionic ligand exchange For colloidally stable CsPbBr3 nanocrystals
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00140
– volume: 7
  start-page: 10
  year: 2019
  ident: 10.1016/j.cej.2021.129551_b0235
  article-title: Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots
  publication-title: Adv. Opt. Mater.
– volume: 5
  start-page: 23
  year: 2015
  ident: 10.1016/j.cej.2021.129551_b0090
  article-title: Stability of metal halide perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500963
– volume: 10
  start-page: 3784
  issue: 4
  year: 2018
  ident: 10.1016/j.cej.2021.129551_b0130
  article-title: Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17166
– volume: 67
  start-page: 9
  year: 2020
  ident: 10.1016/j.cej.2021.129551_b0270
  article-title: Room temperature synthesis of stable single silica-coated CsPbBr 3 quantum dots combining tunable red emission of Ag-In-Zn-S for High-CRI white light-emitting diodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104279
– volume: 28
  start-page: 10088
  issue: 45
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0245
  article-title: Efficient and stable white leds with silica-coated inorganic perovskite quantum dots
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603081
– volume: 8
  start-page: 13589
  issue: 28
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0015
  article-title: Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors
  publication-title: Nanoscale
  doi: 10.1039/C6NR03428D
– volume: 55
  start-page: 7924
  issue: 28
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0180
  article-title: Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201603698
– volume: 8
  start-page: 1605
  issue: 10
  year: 2020
  ident: 10.1016/j.cej.2021.129551_b0195
  article-title: Room temperature synthesis of stable silica-coated CsPbBr3 quantum dots for amplified spontaneous emission
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.399845
– volume: 28
  start-page: 3528
  issue: 18
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0100
  article-title: Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600064
– volume: 11
  start-page: 1189
  issue: 2
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0120
  article-title: Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07374
– volume: 29
  start-page: 9
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0025
  article-title: 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control
  publication-title: Adv. Mater.
– volume: 17
  start-page: 5799
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0115
  article-title: From nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02896
– volume: 56
  start-page: 10696
  issue: 36
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0205
  article-title: CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201703703
– volume: 10
  start-page: 13053
  issue: 15
  year: 2018
  ident: 10.1016/j.cej.2021.129551_b0065
  article-title: Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in Air
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18964
– volume: 562
  start-page: 249
  issue: 7726
  year: 2018
  ident: 10.1016/j.cej.2021.129551_b0085
  article-title: Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures
  publication-title: Nature
  doi: 10.1038/s41586-018-0576-2
– volume: 27
  start-page: 1701121
  issue: 23
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0110
  article-title: Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701121
– volume: 9
  start-page: 40477
  year: 2017
  ident: 10.1016/j.cej.2021.129551_b0185
  article-title: Silica-coated Mn-doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: exciton-to-Mn energy transfer and blue-excitable solid-state lighting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14471
– volume: 4
  start-page: 32
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2021.129551_b0240
  article-title: Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01909
– volume: 29
  year: 2018
  ident: 10.1016/j.cej.2021.129551_b0220
  article-title: Highly efficient and stable blue-emitting CsPbBr(3)@SiO(2) nanospheres through low temperature synthesis for nanoprinting and WLED
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aac00b
– volume: 20
  start-page: 2201
  issue: 14
  year: 2010
  ident: 10.1016/j.cej.2021.129551_b0170
  article-title: Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000428
– volume: 401
  year: 2020
  ident: 10.1016/j.cej.2021.129551_b0150
  article-title: Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@SiO2 sphere
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126066
– volume: 28
  start-page: 7
  year: 2018
  ident: 10.1016/j.cej.2021.129551_b0200
  article-title: Photoelectrochemically active and environmentally stable CsPbBr3/TiO2Core/Shell nanocrystals
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 7162
  issue: 44
  year: 2015
  ident: 10.1016/j.cej.2021.129551_b0095
  article-title: Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502567
– volume: 52
  start-page: 2067
  issue: 10
  year: 2016
  ident: 10.1016/j.cej.2021.129551_b0020
  article-title: All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08643D
– volume: 46
  start-page: 1816
  issue: 8
  year: 2013
  ident: 10.1016/j.cej.2021.129551_b0175
  article-title: Core-shell nanostructured catalysts
  publication-title: Acc. Chem. Res
  doi: 10.1021/ar300230s
– volume: 12
  start-page: 8579
  issue: 8
  year: 2018
  ident: 10.1016/j.cej.2021.129551_b0225
  article-title: One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04209
SSID ssj0006919
Score 2.6334462
Snippet •Silica coated DDAB-CsPbBr3 QDs exhibit better properties than regular CsPbBr3.•High performance warm WLEDs based on modified CsPbBr3 QDs are realized.•Visible...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129551
SubjectTerms CsPbBr3 quantum dots
DDAB capped
Silica-coated
Visible light communication
Warm white light-emitting diodes
Title Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication
URI https://dx.doi.org/10.1016/j.cej.2021.129551
Volume 419
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QuMAB8RTjpRw4IYU1TdrQI0ygwcSEeIjdqrwKRXsA24S48Av40cRpC0MCDpyiNrZaxVZsx58dhHYpMzJjXBETqYRwFUoitWIki4U_9Q-UhULh807cuuFn3ag7g5pVLQzAKsu9v9jT_W5dvmmUq9l4zPPGFYWcVsJdCON0lB1AT1DOBWj5_tsXzCNO_OUeQEyAuspseoyXtg8uRAzpvrN6UUR_tk1T9uZkES2UjiI-LP5lCc3YwTKan2ofuILeAaTRe8XOwVM9i5ujC3X0zPDTxK3WpI9dvDnCyk3ncDBH9FACxBnLgcG9_A6G_tAAUsgLBzvvFb9AUgFm78fE9nOPicYmHxo78nxQiQ6f8hRYTxeXrKKbk-PrZouUtysQzWI2JpIHJkl0xi3XAbSJO7AhZcoYE_AsyyinMpQqCWNhrA41NUIGMrDKWdUoVkywNVQbDAd2HWHJoImNsaEQzigKpjKIIkUoNXVswtRRUK1rqsvW43ADRi-tMGYPqRNFCqJIC1HU0d4ny2PRd-MvYl4JK_2mPKmzC7-zbfyPbRPNwVMBNNtCtfHzxG47z2Ssdrzq7aDZw9N2qwNj-_K2_QFmC-aT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAAOiFUJax_ggtQZ92J3fOAAgWhCFiGRSLmZ3gyOZgmZGUW58AX8DT9IVduGQQIOSDlZcrvsdleplu5XVQDPhAq2VtrxkLuSayctt94pXhcm7fpnLlKi8P5BMTzS747z4xX43ufCEKyy0_2tTk_aursz6FZzcNo0gw-CzrRKjSEMyqja1B2ycjdenGPcNnu58waZ_FzK7beHW0PetRbgXhVqzq3OQln6WkftM6qRthmlUC6EkOm6roUWVlpXysKE6KUXwdjMZtGhSckLp4zC916BqxrVBbVN2Pj6C1dSlKmbCM2O0_T6o9QEKvPxBGNSKTbQzOa5-LMxXDJw27fgZueZslftz9-GlTi5AzeW6hXehW-EChldMPQo3Siyrdl79_pMsS8LZM9izDDAnTGHww3tBHI_tYSpZnYS2Kj5RJfxNBA0KUkDQ3eZndMpBo1-nvM4bhIIm4VmGuIs0VHqO30qPcH8cjbLPTi6lDW_D6uT6SSuAbOKquaEKI1BK2yUqylsNdJ6gWQmrEPWr2vlu1rn1HJjVPWgtpMKWVERK6qWFevw4ifJaVvo418P655Z1W_SWqEh-jvZg_8jewrXhof7e9XezsHuQ7hOIy3K7RGszs8W8TG6RXP3JIkhg4-XLfc_AFRcIns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+stable+CsPbBr3+quantum+dots+by+silica-coating+and+ligand+modification+for+white+light-emitting+diodes+and+visible+light+communication&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Li%2C+Xianwen&rft.au=Cai%2C+Wensi&rft.au=Guan%2C+Hongling&rft.au=Zhao%2C+Shuangyi&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=419&rft_id=info:doi/10.1016%2Fj.cej.2021.129551&rft.externalDocID=S1385894721011384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon