Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication
•Silica coated DDAB-CsPbBr3 QDs exhibit better properties than regular CsPbBr3.•High performance warm WLEDs based on modified CsPbBr3 QDs are realized.•Visible light communication exhibits a typical low-pass frequency response. Owing to their superior optical and electronic properties, all inorganic...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 419; p. 129551 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Silica coated DDAB-CsPbBr3 QDs exhibit better properties than regular CsPbBr3.•High performance warm WLEDs based on modified CsPbBr3 QDs are realized.•Visible light communication exhibits a typical low-pass frequency response.
Owing to their superior optical and electronic properties, all inorganic metal halide CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (QDs) are regarded as excellent candidates for various optoelectronic applications. However, the instability of such materials greatly hampers their practical applications. In this work, silica-coated didodecyldimethylammonium bromide (DDAB) capped CsPbBr3 QDs are prepared via a facile method at room temperature. The as-prepared DDAB-CsPbBr3/SiO2 QDs composites demonstrate an effectively improved photoluminescence quantum yield (PLQY) and stability against ethanol and heat. Moreover, the green DDAB-CsPbBr3/SiO2 QDs composites and red InAgZnS QDs are applied as color-converting layers on a blue LED chip for warm white light-emitting diodes (WLEDs). Such WLEDs exhibit an excellent luminescent performance with a color rendering index (CRI) of 88, a color coordinate of (0.41, 0.38), a correlated color temperature (CCT) of 3209 K, and a high power efficiency of 63.4 lm W−1. Besides, such WLEDs are used for visible light communication (VLC), exhibiting a typical low-pass frequency response, with a corresponding −3 dB bandwidth of about 1.5 MHz. By applying orthogonal frequency division multiplexing (OFDM) with a bit loading, a maximum achievable rate of the VLC system reaches 5.9 Mbps, which is almost four times of their measured −3 dB bandwidth. These results demonstrate the potential of prepared DDAB-CsPbBr3/SiO2 QDs composites not only in high-performance WLEDs, but also as an excitation light source to achieve VLC. |
---|---|
AbstractList | •Silica coated DDAB-CsPbBr3 QDs exhibit better properties than regular CsPbBr3.•High performance warm WLEDs based on modified CsPbBr3 QDs are realized.•Visible light communication exhibits a typical low-pass frequency response.
Owing to their superior optical and electronic properties, all inorganic metal halide CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (QDs) are regarded as excellent candidates for various optoelectronic applications. However, the instability of such materials greatly hampers their practical applications. In this work, silica-coated didodecyldimethylammonium bromide (DDAB) capped CsPbBr3 QDs are prepared via a facile method at room temperature. The as-prepared DDAB-CsPbBr3/SiO2 QDs composites demonstrate an effectively improved photoluminescence quantum yield (PLQY) and stability against ethanol and heat. Moreover, the green DDAB-CsPbBr3/SiO2 QDs composites and red InAgZnS QDs are applied as color-converting layers on a blue LED chip for warm white light-emitting diodes (WLEDs). Such WLEDs exhibit an excellent luminescent performance with a color rendering index (CRI) of 88, a color coordinate of (0.41, 0.38), a correlated color temperature (CCT) of 3209 K, and a high power efficiency of 63.4 lm W−1. Besides, such WLEDs are used for visible light communication (VLC), exhibiting a typical low-pass frequency response, with a corresponding −3 dB bandwidth of about 1.5 MHz. By applying orthogonal frequency division multiplexing (OFDM) with a bit loading, a maximum achievable rate of the VLC system reaches 5.9 Mbps, which is almost four times of their measured −3 dB bandwidth. These results demonstrate the potential of prepared DDAB-CsPbBr3/SiO2 QDs composites not only in high-performance WLEDs, but also as an excitation light source to achieve VLC. |
ArticleNumber | 129551 |
Author | Zang, Zhigang Chen, Chen Guan, Hongling Li, Xianwen Cao, Siliang Liu, Min Cai, Wensi Zhao, Shuangyi |
Author_xml | – sequence: 1 givenname: Xianwen surname: Li fullname: Li, Xianwen organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China – sequence: 2 givenname: Wensi orcidid: 0000-0003-4096-6929 surname: Cai fullname: Cai, Wensi organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China – sequence: 3 givenname: Hongling surname: Guan fullname: Guan, Hongling organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China – sequence: 4 givenname: Shuangyi surname: Zhao fullname: Zhao, Shuangyi organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China – sequence: 5 givenname: Siliang surname: Cao fullname: Cao, Siliang organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China – sequence: 6 givenname: Chen orcidid: 0000-0003-2541-6283 surname: Chen fullname: Chen, Chen email: c.chen@cqu.edu.cn organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China – sequence: 7 givenname: Min surname: Liu fullname: Liu, Min organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China – sequence: 8 givenname: Zhigang orcidid: 0000-0003-1632-503X surname: Zang fullname: Zang, Zhigang email: zangzg@cqu.edu.cn organization: Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, PR China |
BookMark | eNp9kE1OwzAQhS1UJNrCAdj5Ain-SZNGrKACilQJFrC2HHvSTpXEYLtFvQOHJmm7YtHVG-nNNz9vRAata4GQW84mnPHsbjMxsJkIJviEi2I65RdkyGe5TKTgYtDVcjZNZkWaX5FRCBvGWFbwYkh-F7ha13saoi5roPPwXj56Sb-3uo3bhloXAy07G2s0OjFOR2xXVLeW1rjqpXEWq86L6FpaOU9_1hihd9cxgQbjAbDoLIQDt8OA_apDBzWuabbtib8ml5WuA9ycdEw-n58-5otk-fbyOn9YJkZmMiY6ZbYoTJVCalhepHIGgsvSWsvSqqp4yrXQZSGy3IIRhttcM82gNADTrJS5HJP8ONd4F4KHShmMhwui11grzlQfqtqoLlTVh6qOoXYk_0d-eWy0359l7o8MdC_tELwKBqE1YNGDico6PEP_AcjUlWA |
CitedBy_id | crossref_primary_10_1002_lpor_202100736 crossref_primary_10_1016_j_jcis_2024_10_193 crossref_primary_10_1021_acsaom_4c00449 crossref_primary_10_1021_acsanm_2c04974 crossref_primary_10_1002_adom_202302726 crossref_primary_10_1364_OL_518687 crossref_primary_10_1016_j_ceramint_2024_08_032 crossref_primary_10_1002_lpor_202400758 crossref_primary_10_7498_aps_73_20240247 crossref_primary_10_1007_s11227_024_06834_y crossref_primary_10_1088_1361_6463_ac3172 crossref_primary_10_1039_D2TC00824F crossref_primary_10_1016_j_jlumin_2023_119905 crossref_primary_10_1021_acsami_2c09711 crossref_primary_10_1039_D1TC03244E crossref_primary_10_1039_D2CC05965G crossref_primary_10_1002_adfm_202104634 crossref_primary_10_1016_j_jlumin_2024_120462 crossref_primary_10_1007_s11356_023_27591_0 crossref_primary_10_1088_1361_6463_ac7264 crossref_primary_10_1016_j_cplett_2022_140180 crossref_primary_10_1039_D1TC01798E crossref_primary_10_1063_5_0147303 crossref_primary_10_3389_fchem_2022_845206 crossref_primary_10_1007_s10854_023_10172_9 crossref_primary_10_1016_j_optmat_2022_113308 crossref_primary_10_1021_jacs_2c13527 crossref_primary_10_1063_5_0200465 crossref_primary_10_1016_j_cej_2021_131556 crossref_primary_10_1364_OL_447781 crossref_primary_10_1002_slct_202300176 crossref_primary_10_1016_j_optmat_2022_113398 crossref_primary_10_1039_D2NA00774F crossref_primary_10_1002_lpor_202100278 crossref_primary_10_1364_PRJ_450483 crossref_primary_10_3390_photonics10060648 crossref_primary_10_1002_admi_202400401 crossref_primary_10_1039_D3RA07998H crossref_primary_10_1016_j_cej_2022_140038 crossref_primary_10_1021_acsanm_2c02496 crossref_primary_10_1080_02670836_2022_2151090 crossref_primary_10_1016_j_esci_2022_100089 crossref_primary_10_1007_s40843_024_3134_1 crossref_primary_10_1111_jace_20159 crossref_primary_10_1149_2162_8777_ac28e4 crossref_primary_10_1016_j_matchemphys_2021_125281 crossref_primary_10_1007_s10853_022_07367_6 crossref_primary_10_1021_acsami_1c07647 crossref_primary_10_3389_femat_2022_891983 crossref_primary_10_1007_s00339_022_05553_6 crossref_primary_10_1007_s11664_021_09167_1 crossref_primary_10_1021_acs_jpcc_3c05055 crossref_primary_10_1039_D2QM01355J crossref_primary_10_1039_D4NJ01737D crossref_primary_10_1016_j_cej_2022_135014 crossref_primary_10_1063_5_0234793 crossref_primary_10_1364_OE_477993 crossref_primary_10_1021_acsaom_4c00020 crossref_primary_10_1039_D2TC00653G crossref_primary_10_1088_1361_6528_acd00a crossref_primary_10_1007_s11128_023_03854_0 crossref_primary_10_1016_j_optmat_2022_112120 crossref_primary_10_1039_D4TC05224B crossref_primary_10_1021_acsanm_2c04655 crossref_primary_10_1016_j_cej_2021_132391 crossref_primary_10_1016_j_cej_2022_134693 crossref_primary_10_3390_nano12132243 crossref_primary_10_1016_j_apmate_2022_100036 crossref_primary_10_1016_j_optmat_2024_115874 crossref_primary_10_1021_acsanm_3c01625 crossref_primary_10_1016_j_mtelec_2023_100057 crossref_primary_10_1016_j_nanoms_2022_03_003 crossref_primary_10_1364_OE_502064 crossref_primary_10_3390_nano12152535 crossref_primary_10_1021_acs_jpclett_3c01148 crossref_primary_10_1002_eom2_12184 crossref_primary_10_1016_j_apsusc_2023_157970 crossref_primary_10_1016_j_saa_2024_124742 crossref_primary_10_1021_acs_jpcc_2c03932 crossref_primary_10_1016_j_cej_2022_135270 crossref_primary_10_1039_D2MA00503D crossref_primary_10_1002_adfm_202300583 crossref_primary_10_1021_acsanm_1c02376 crossref_primary_10_1063_5_0172087 crossref_primary_10_1088_1361_6528_ac15c7 crossref_primary_10_1016_j_ceramint_2024_10_043 crossref_primary_10_1007_s40843_022_2304_2 crossref_primary_10_1002_smll_202309902 crossref_primary_10_1007_s11356_023_26728_5 crossref_primary_10_1002_adom_202303051 crossref_primary_10_1016_j_ceramint_2024_11_477 crossref_primary_10_1002_eom2_12296 crossref_primary_10_1016_j_ceramint_2022_01_264 crossref_primary_10_1186_s11671_023_03812_w crossref_primary_10_1088_1361_6528_aca9d8 crossref_primary_10_1002_inf2_12559 crossref_primary_10_1021_acsenergylett_4c00803 crossref_primary_10_1016_j_apsusc_2021_150941 crossref_primary_10_1039_D3RA00636K crossref_primary_10_1002_lpor_202200276 crossref_primary_10_1016_j_cej_2023_145797 crossref_primary_10_1007_s12274_023_5489_1 crossref_primary_10_1016_j_jre_2024_12_015 crossref_primary_10_1016_j_matdes_2022_111307 crossref_primary_10_1021_acs_inorgchem_3c01834 crossref_primary_10_1039_D2CC06458H crossref_primary_10_1016_j_mtchem_2024_102270 crossref_primary_10_1039_D3CE00432E crossref_primary_10_1016_j_cej_2023_144906 crossref_primary_10_1002_adfm_202109472 crossref_primary_10_1088_2515_7639_ac618f crossref_primary_10_3390_app13137529 crossref_primary_10_1016_j_mssp_2025_109290 crossref_primary_10_1002_adfm_202305858 crossref_primary_10_1002_bio_4491 crossref_primary_10_1088_1742_6596_2243_1_012049 crossref_primary_10_1016_j_snb_2024_136189 |
Cites_doi | 10.1002/anie.201703264 10.1021/jacs.6b03134 10.1021/jacs.7b10647 10.1002/adma.201600784 10.1021/jacs.5b13101 10.1002/adma.201604510 10.1002/anie.201602787 10.1364/PRJ.391703 10.1039/C6CC01500J 10.1021/acsami.9b07818 10.1002/adfm.201600109 10.1002/smll.201900484 10.1039/D0CC01193B 10.1021/acs.jpcc.0c03004 10.1021/acsami.7b06436 10.1002/adma.201900767 10.1021/acs.nanolett.5b02404 10.1021/la052822l 10.1021/jacs.7b11003 10.1016/j.micromeso.2008.04.030 10.1002/smll.201901173 10.1021/jacs.5b05602 10.1126/science.aam7093 10.1006/jcis.2000.7224 10.1021/nl5048779 10.1016/j.jlumin.2021.117884 10.1021/acs.chemmater.7b02669 10.1021/acsenergylett.9b00140 10.1002/aenm.201500963 10.1021/acsami.7b17166 10.1016/j.nanoen.2019.104279 10.1002/adma.201603081 10.1039/C6NR03428D 10.1002/anie.201603698 10.1364/PRJ.399845 10.1002/adma.201600064 10.1021/acsnano.6b07374 10.1021/acs.nanolett.7b02896 10.1002/anie.201703703 10.1021/acsami.7b18964 10.1038/s41586-018-0576-2 10.1002/adfm.201701121 10.1021/acsami.7b14471 10.1021/acsenergylett.8b01909 10.1088/1361-6528/aac00b 10.1002/adfm.201000428 10.1016/j.cej.2020.126066 10.1002/adma.201502567 10.1039/C5CC08643D 10.1021/ar300230s 10.1021/acsnano.8b04209 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.129551 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_129551 S1385894721011384 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c363t-a40d99cf4e4c079438e213bddd04fff141a2ab9267dec2c1d7a0a0ebcee56b373 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 22:50:50 EDT 2025 Tue Jul 01 04:27:26 EDT 2025 Fri Feb 23 02:43:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Warm white light-emitting diodes CsPbBr3 quantum dots DDAB capped Silica-coated Visible light communication |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-a40d99cf4e4c079438e213bddd04fff141a2ab9267dec2c1d7a0a0ebcee56b373 |
ORCID | 0000-0003-2541-6283 0000-0003-4096-6929 0000-0003-1632-503X |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2021_129551 crossref_primary_10_1016_j_cej_2021_129551 elsevier_sciencedirect_doi_10_1016_j_cej_2021_129551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou, Yuan, Wang, Xu, Wang, Li, Zheng, Fan, Li, Sun, Pan (b0120) 2017; 11 Ramasamy, Lim, Kim, Lee, Lee, Lee (b0020) 2016; 52 Yang, Li, Wu, Wei, Qin, Zhang, Sun, Li, Wang, Zeng (b0235) 2019; 7 Nedelcu, Protesescu, Yakunin, Bodnarchuk, Grotevent, Kovalenko (b0030) 2015; 15 Pan, Shang, Yin, De Bastiani, Peng, Dursun, Sinatra, El-Zohry, Hedhili, Emwas, Mohammed, Ning, Bakr (b0060) 2018; 140 Song, Li, Li, Xu, Dong, Zeng (b0095) 2015; 27 Imran, Ijaz, Goldoni, Maggioni, Petralanda, Prato, Almeida, Infante, Manna (b0135) 2019; 4 DuBose, Kamat (b0160) 2020; 124 Zhu, Wu, Riaz, Dai (b0165) 2021; 233 Mo, Shi, Cai, Zhao, Yan, Du, Zang (b0195) 2020; 8 Li, Rivarola, Davis, Bai, Jellicoe, de la Peña, Hou, Ducati, Gao, Friend, Greenham, Tan (b0100) 2016; 28 Kovalenko, Protesescu, Bodnarchuk (b0070) 2017; 358 Leijtens, Eperon, Noel, Habisreutinger, Petrozza, Snaith (b0090) 2015; 5 Li, Hofman, Li, Davis, Tung, Wu, Zheng (b0200) 2018; 28 Zhang, Sun, Song, Jiang, Dong, Wang (b0255) 2006; 22 Zhong, Cao, Hu, Yang, Chen, Li, Wu, Zhang (b0225) 2018; 12 He, Liu, Zhang, Liao, Yao, Fu (b0010) 2017; 29 Zhang, Lee, Ge, Zaera, Yin (b0170) 2010; 20 Lv, Xu, Fang, Luo, Xu, Liu, Wang, Zhang, Yang, Hu, Dong (b0015) 2016; 8 Zhao, Zhang, Zang (b0075) 2020; 56 Liu, Zhang, Yang, Li (b0210) 2008; 116 Loiudice, Saris, Oveisi, Alexander, Buonsanti (b0205) 2017; 56 Akkerman, D’Innocenzo, Accornero, Scarpellini, Petrozza, Prato, Manna (b0005) 2015; 137 Guan, Zhao, Wang, Yan, Wang, Zang (b0270) 2020; 67 Pan, Quan, Zhao, Peng, Murali, Sarmah, Yuan, Sinatra, Alyami, Liu, Yassitepe, Yang, Voznyy, Comin, Hedhili, Mohammed, Lu, Kim, Sargent, Bakr (b0125) 2016; 28 Xu, Chen, Song, Li, Xue, Dong, Cai, Shan, Han, Zeng (b0190) 2017; 9 Sun, Zhang, Ruan, Yin, Wang, Wang, Yu (b0245) 2016; 28 Shao, Bai, Pan, Cui, Zhu, Zhai, Liu, Dong, Xu, Song (b0220) 2018; 29 Zhang, Yang, Bekenstein, Yu, Gibson, Wong, Eaton, Kornienko, Kong, Lai, Alivisatos, Leone, Yang (b0045) 2016; 138 Cao, Wang, Tian, Guo, Wei, Chen, Miao, Zou, Pan, He, Cao, Ke, Xu, Wang, Yang, Du, Fu, Kong, Dai, Jin, Li, Li, Peng, Wang, Huang (b0085) 2018; 562 Mondal, De, Samanta (b0240) 2019; 4 White, Tripp (b0250) 2000; 232 Yan, Zhao, Wang, Zang (b0155) 2020; 8 Wang, Wu, Li, Yao, Qian, Yu (b0105) 2016; 55 Liu, Zhang, Fan, Chen, Tang, Zhao, lv, Lin, Guo, Zhang, Liu (b0065) 2018; 10 Wu, Hu, Xu, Jiang, Chen, Zhong, Yang, Liu, Zhao, Sun, Zhang, Yin (b0115) 2017; 17 Hu, Wu, Tan, Zhong, Chen, Qiu, Yang, Sun, Zhang, Yin (b0050) 2018; 140 Woo, Kim, Bae, Kim, Kim, Lee, Jeong (b0260) 2017; 29 Li, Kong, Huang, Li (b0055) 2017; 56 Li, Xu, Wang, Song, Chen, Xue, Dong, Cai, Shan, Han, Zeng (b0025) 2017; 29 Yan, Shi, Zang, Zhao, Du, Leng (b0150) 2020; 401 Yang, Li, Zhou, Zhang, Meng, Wu, Wang, Zeng (b0145) 2019; 31 Zhang, Lee, Joo, Zaera, Yin (b0175) 2013; 46 Yan, Shi, Zang, Zhou, Liu, Zhang, Du, Leng, Tang (b0140) 2019; 15 Wang, Lin, Tang, Singh, Tong, Chen, Lee, Tsai, Liu (b0180) 2016; 55 Huang, Li, Kong, Zhu, Shan, Li (b0215) 2016; 138 Tang, Chen, Liu, Du, Yao, Huang, Chen, Yang, Shi, Hu, Zang, Chen, Leng (b0230) 2019; 15 Chen, Fang, Chen (b0185) 2017; 9 Tan, Zou, Wu, Huang, Yang, Chen, Ban, Wu, Wu, Bai, Song, Zhang, Sun (b0130) 2018; 10 Protesescu, Yakunin, Bodnarchuk, Krieg, Caputo, Hendon, Yang, Walsh, Kovalenko (b0035) 2015; 15 Li, Wu, Zhang, Cai, Gu, Song, Zeng (b0080) 2016; 26 Zheng, Bi, Huang, Binks, Tian (b0265) 2019; 11 Chen, Zou, Wu, Pan, Yang, Hu, Tan, Zhong, Xu, Liu, Sun, Zhang (b0110) 2017; 27 Wei, Yang, Kang, Wang, Huang, Pan (b0040) 2016; 52 Yang (10.1016/j.cej.2021.129551_b0145) 2019; 31 Song (10.1016/j.cej.2021.129551_b0095) 2015; 27 Li (10.1016/j.cej.2021.129551_b0080) 2016; 26 Sun (10.1016/j.cej.2021.129551_b0245) 2016; 28 Zhang (10.1016/j.cej.2021.129551_b0045) 2016; 138 He (10.1016/j.cej.2021.129551_b0010) 2017; 29 Loiudice (10.1016/j.cej.2021.129551_b0205) 2017; 56 White (10.1016/j.cej.2021.129551_b0250) 2000; 232 Li (10.1016/j.cej.2021.129551_b0200) 2018; 28 Shao (10.1016/j.cej.2021.129551_b0220) 2018; 29 Zheng (10.1016/j.cej.2021.129551_b0265) 2019; 11 Huang (10.1016/j.cej.2021.129551_b0215) 2016; 138 Zhang (10.1016/j.cej.2021.129551_b0170) 2010; 20 Wu (10.1016/j.cej.2021.129551_b0115) 2017; 17 Ramasamy (10.1016/j.cej.2021.129551_b0020) 2016; 52 Zhang (10.1016/j.cej.2021.129551_b0255) 2006; 22 Zhong (10.1016/j.cej.2021.129551_b0225) 2018; 12 Tan (10.1016/j.cej.2021.129551_b0130) 2018; 10 Mo (10.1016/j.cej.2021.129551_b0195) 2020; 8 Pan (10.1016/j.cej.2021.129551_b0060) 2018; 140 Yan (10.1016/j.cej.2021.129551_b0155) 2020; 8 Mondal (10.1016/j.cej.2021.129551_b0240) 2019; 4 Wang (10.1016/j.cej.2021.129551_b0180) 2016; 55 Liu (10.1016/j.cej.2021.129551_b0210) 2008; 116 Hu (10.1016/j.cej.2021.129551_b0050) 2018; 140 Chen (10.1016/j.cej.2021.129551_b0185) 2017; 9 Liu (10.1016/j.cej.2021.129551_b0065) 2018; 10 Kovalenko (10.1016/j.cej.2021.129551_b0070) 2017; 358 Zhou (10.1016/j.cej.2021.129551_b0120) 2017; 11 Pan (10.1016/j.cej.2021.129551_b0125) 2016; 28 Li (10.1016/j.cej.2021.129551_b0025) 2017; 29 Zhang (10.1016/j.cej.2021.129551_b0175) 2013; 46 Yan (10.1016/j.cej.2021.129551_b0150) 2020; 401 Wang (10.1016/j.cej.2021.129551_b0105) 2016; 55 Guan (10.1016/j.cej.2021.129551_b0270) 2020; 67 Yan (10.1016/j.cej.2021.129551_b0140) 2019; 15 Akkerman (10.1016/j.cej.2021.129551_b0005) 2015; 137 Leijtens (10.1016/j.cej.2021.129551_b0090) 2015; 5 Tang (10.1016/j.cej.2021.129551_b0230) 2019; 15 Protesescu (10.1016/j.cej.2021.129551_b0035) 2015; 15 Zhu (10.1016/j.cej.2021.129551_b0165) 2021; 233 Lv (10.1016/j.cej.2021.129551_b0015) 2016; 8 Li (10.1016/j.cej.2021.129551_b0055) 2017; 56 Cao (10.1016/j.cej.2021.129551_b0085) 2018; 562 Wei (10.1016/j.cej.2021.129551_b0040) 2016; 52 DuBose (10.1016/j.cej.2021.129551_b0160) 2020; 124 Xu (10.1016/j.cej.2021.129551_b0190) 2017; 9 Yang (10.1016/j.cej.2021.129551_b0235) 2019; 7 Nedelcu (10.1016/j.cej.2021.129551_b0030) 2015; 15 Chen (10.1016/j.cej.2021.129551_b0110) 2017; 27 Zhao (10.1016/j.cej.2021.129551_b0075) 2020; 56 Li (10.1016/j.cej.2021.129551_b0100) 2016; 28 Woo (10.1016/j.cej.2021.129551_b0260) 2017; 29 Imran (10.1016/j.cej.2021.129551_b0135) 2019; 4 |
References_xml | – volume: 22 start-page: 2838 year: 2006 end-page: 2843 ident: b0255 article-title: Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis characterization, and self-assembly publication-title: Langmuir – volume: 56 start-page: 8134 year: 2017 end-page: 8138 ident: b0055 article-title: Highly luminescent and ultrastable CsPbBr publication-title: Angew. Chem. Int. Edit. – volume: 46 start-page: 1816 year: 2013 end-page: 1824 ident: b0175 article-title: Core-shell nanostructured catalysts publication-title: Acc. Chem. Res – volume: 12 start-page: 8579 year: 2018 end-page: 8587 ident: b0225 article-title: One-pot synthesis of highly stable CsPbBr publication-title: ACS Nano – volume: 28 start-page: 3528 year: 2016 end-page: 3534 ident: b0100 article-title: Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method publication-title: Adv. Mater. – volume: 233 year: 2021 ident: b0165 article-title: Stable silica coated DDAB-CsPbX publication-title: J. Lumin. – volume: 8 start-page: 1605 year: 2020 ident: b0195 article-title: Room temperature synthesis of stable silica-coated CsPbBr publication-title: Photonics Res. – volume: 20 start-page: 2201 year: 2010 end-page: 2214 ident: b0170 article-title: Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts publication-title: Adv. Funct. Mater. – volume: 140 start-page: 406 year: 2018 end-page: 412 ident: b0050 article-title: Interfacial synthesis of highly stable CsPbX publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 7 year: 2018 ident: b0200 article-title: Photoelectrochemically active and environmentally stable CsPbBr publication-title: Adv. Funct. Mater. – volume: 10 start-page: 13053 year: 2018 end-page: 13061 ident: b0065 article-title: Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in Air publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 26556 year: 2017 end-page: 26564 ident: b0190 article-title: Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 1900484 year: 2019 ident: b0230 article-title: Ultrathin, core-shell structured SiO publication-title: Small – volume: 137 start-page: 10276 year: 2015 end-page: 10281 ident: b0005 article-title: Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 5749 year: 2016 end-page: 5752 ident: b0215 article-title: Enhancing the stability of CH publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 8 year: 2017 ident: b0010 article-title: Patterning multicolored microdisk laser arrays of cesium lead halide perovskite publication-title: Adv. Mater. – volume: 140 start-page: 562 year: 2018 end-page: 565 ident: b0060 article-title: Bidentate ligand-passivated CsPbI publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 5635 year: 2015 end-page: 5640 ident: b0030 article-title: Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX publication-title: Nano lett. – volume: 17 start-page: 5799 year: 2017 end-page: 5804 ident: b0115 article-title: From nonluminescent Cs publication-title: Nano Lett. – volume: 67 start-page: 9 year: 2020 ident: b0270 article-title: Room temperature synthesis of stable single silica-coated CsPbBr 3 quantum dots combining tunable red emission of Ag-In-Zn-S for High-CRI white light-emitting diodes publication-title: Nano Energy – volume: 28 start-page: 8718 year: 2016 end-page: 8725 ident: b0125 article-title: Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering publication-title: Adv. Mater. – volume: 5 start-page: 23 year: 2015 ident: b0090 article-title: Stability of metal halide perovskite solar cells publication-title: Adv. Energy Mater. – volume: 10 start-page: 3784 year: 2018 end-page: 3792 ident: b0130 article-title: Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 10088 year: 2016 end-page: 10094 ident: b0245 article-title: Efficient and stable white leds with silica-coated inorganic perovskite quantum dots publication-title: Adv. Mater. – volume: 9 start-page: 40477 year: 2017 end-page: 40487 ident: b0185 article-title: Silica-coated Mn-doped CsPb(Cl/Br) publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 1189 year: 2017 end-page: 1195 ident: b0120 article-title: Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section publication-title: ACS Nano – volume: 52 start-page: 2067 year: 2016 end-page: 2070 ident: b0020 article-title: All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications publication-title: Chem. Commun. – volume: 8 start-page: 1086 year: 2020 ident: b0155 article-title: Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr publication-title: Photonics Res. – volume: 55 start-page: 7924 year: 2016 end-page: 7929 ident: b0180 article-title: Mesoporous silica particles integrated with all-inorganic CsPbBr publication-title: Angew. Chem. Int. Edit. – volume: 8 start-page: 13589 year: 2016 end-page: 13596 ident: b0015 article-title: Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors publication-title: Nanoscale – volume: 358 start-page: 745 year: 2017 end-page: 750 ident: b0070 article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals publication-title: Science – volume: 52 start-page: 7265 year: 2016 end-page: 7268 ident: b0040 article-title: Room-temperature and gram-scale synthesis of CsPbX publication-title: Chem. Commun. – volume: 26 start-page: 2435 year: 2016 end-page: 2445 ident: b0080 article-title: CsPbX publication-title: Adv. Funct. Mater. – volume: 56 start-page: 5811 year: 2020 end-page: 5814 ident: b0075 article-title: Room-temperature doping of ytterbium into efficient near-infrared emission CsPbBr publication-title: Chem. Commun. – volume: 29 start-page: 9 year: 2017 ident: b0025 article-title: 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr publication-title: Adv. Mater. – volume: 124 start-page: 12990 year: 2020 end-page: 12998 ident: b0160 article-title: Surface chemistry matters. How ligands influence excited state interactions between CsPbBr publication-title: J. Phys. Chem. C – volume: 29 start-page: 7088 year: 2017 end-page: 7092 ident: b0260 article-title: Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation publication-title: Chem. Mater. – volume: 15 start-page: 1901173 year: 2019 ident: b0140 article-title: Ultrastable CsPbBr publication-title: Small – volume: 116 start-page: 330 year: 2008 end-page: 338 ident: b0210 article-title: Structural control of mesoporous silicas with large nanopores in a mild buffer solution publication-title: Microporous Mesoporous Mater. – volume: 4 start-page: 32 year: 2019 end-page: 39 ident: b0240 article-title: Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals publication-title: ACS Energy Lett. – volume: 15 start-page: 3692 year: 2015 end-page: 3696 ident: b0035 article-title: Nanocrystals of cesium lead halide perovskites (CsPbX publication-title: Nano lett. – volume: 232 start-page: 400 year: 2000 end-page: 407 ident: b0250 article-title: Reaction of (3-Aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces publication-title: J. Colloid Interface Sci. – volume: 4 start-page: 819 year: 2019 end-page: 824 ident: b0135 article-title: Simultaneous cationic and anionic ligand exchange For colloidally stable CsPbBr publication-title: ACS Energy Lett. – volume: 29 year: 2018 ident: b0220 article-title: Highly efficient and stable blue-emitting CsPbBr(3)@SiO(2) nanospheres through low temperature synthesis for nanoprinting and WLED publication-title: Nanotechnology – volume: 11 start-page: 25410 year: 2019 end-page: 25416 ident: b0265 article-title: Stable and strong emission CsPbBr 3 quantum dots by surface engineering for high-performance optoelectronic films publication-title: ACS Appl. Mater. Interfaces – volume: 401 year: 2020 ident: b0150 article-title: Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr publication-title: Chem. Eng. J. – volume: 31 start-page: 1900767 year: 2019 ident: b0145 article-title: CsPbBr publication-title: Adv. Mater. – volume: 562 start-page: 249 year: 2018 end-page: 253 ident: b0085 article-title: Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures publication-title: Nature – volume: 27 start-page: 1701121 year: 2017 ident: b0110 article-title: Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire publication-title: Adv. Funct. Mater. – volume: 138 start-page: 7236 year: 2016 end-page: 7239 ident: b0045 article-title: Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 8328 year: 2016 end-page: 8332 ident: b0105 article-title: Large-Scale synthesis of highly luminescent perovskite-related CsPb publication-title: Angew. Chem. Int. Edit. – volume: 27 start-page: 7162 year: 2015 end-page: 7167 ident: b0095 article-title: Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX publication-title: Adv. Mater. – volume: 56 start-page: 10696 year: 2017 end-page: 10701 ident: b0205 article-title: CsPbBr publication-title: Angew. Chem. Int. Edit. – volume: 7 start-page: 10 year: 2019 ident: b0235 article-title: Surface halogen compensation for robust performance enhancements of CsPbX publication-title: Adv. Opt. Mater. – volume: 56 start-page: 8134 issue: 28 year: 2017 ident: 10.1016/j.cej.2021.129551_b0055 article-title: Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201703264 – volume: 138 start-page: 7236 issue: 23 year: 2016 ident: 10.1016/j.cej.2021.129551_b0045 article-title: Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03134 – volume: 140 start-page: 562 issue: 2 year: 2018 ident: 10.1016/j.cej.2021.129551_b0060 article-title: Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10647 – volume: 28 start-page: 8718 issue: 39 year: 2016 ident: 10.1016/j.cej.2021.129551_b0125 article-title: Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering publication-title: Adv. Mater. doi: 10.1002/adma.201600784 – volume: 138 start-page: 5749 issue: 18 year: 2016 ident: 10.1016/j.cej.2021.129551_b0215 article-title: Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “Waterless” toluene publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13101 – volume: 29 start-page: 8 year: 2017 ident: 10.1016/j.cej.2021.129551_b0010 article-title: Patterning multicolored microdisk laser arrays of cesium lead halide perovskite publication-title: Adv. Mater. doi: 10.1002/adma.201604510 – volume: 55 start-page: 8328 issue: 29 year: 2016 ident: 10.1016/j.cej.2021.129551_b0105 article-title: Large-Scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201602787 – volume: 8 start-page: 1086 issue: 7 year: 2020 ident: 10.1016/j.cej.2021.129551_b0155 article-title: Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr3 quantum dots publication-title: Photonics Res. doi: 10.1364/PRJ.391703 – volume: 52 start-page: 7265 issue: 45 year: 2016 ident: 10.1016/j.cej.2021.129551_b0040 article-title: Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields publication-title: Chem. Commun. doi: 10.1039/C6CC01500J – volume: 11 start-page: 25410 issue: 28 year: 2019 ident: 10.1016/j.cej.2021.129551_b0265 article-title: Stable and strong emission CsPbBr 3 quantum dots by surface engineering for high-performance optoelectronic films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07818 – volume: 26 start-page: 2435 year: 2016 ident: 10.1016/j.cej.2021.129551_b0080 article-title: CsPbX3 Quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600109 – volume: 15 start-page: 1900484 year: 2019 ident: 10.1016/j.cej.2021.129551_b0230 article-title: Ultrathin, core-shell structured SiO2 coated Mn2+-doped perovskite quantum dots for bright white light-emitting diodes publication-title: Small doi: 10.1002/smll.201900484 – volume: 56 start-page: 5811 year: 2020 ident: 10.1016/j.cej.2021.129551_b0075 article-title: Room-temperature doping of ytterbium into efficient near-infrared emission CsPbBr1.5Cl1.5 perovskite quantum dots publication-title: Chem. Commun. doi: 10.1039/D0CC01193B – volume: 124 start-page: 12990 issue: 24 year: 2020 ident: 10.1016/j.cej.2021.129551_b0160 article-title: Surface chemistry matters. How ligands influence excited state interactions between CsPbBr3 and methyl viologen publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c03004 – volume: 9 start-page: 26556 issue: 31 year: 2017 ident: 10.1016/j.cej.2021.129551_b0190 article-title: Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06436 – volume: 31 start-page: 1900767 year: 2019 ident: 10.1016/j.cej.2021.129551_b0145 article-title: CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification publication-title: Adv. Mater. doi: 10.1002/adma.201900767 – volume: 15 start-page: 5635 issue: 8 year: 2015 ident: 10.1016/j.cej.2021.129551_b0030 article-title: Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I) publication-title: Nano lett. doi: 10.1021/acs.nanolett.5b02404 – volume: 22 start-page: 2838 year: 2006 ident: 10.1016/j.cej.2021.129551_b0255 article-title: Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis characterization, and self-assembly publication-title: Langmuir doi: 10.1021/la052822l – volume: 140 start-page: 406 issue: 1 year: 2018 ident: 10.1016/j.cej.2021.129551_b0050 article-title: Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11003 – volume: 116 start-page: 330 issue: 1-3 year: 2008 ident: 10.1016/j.cej.2021.129551_b0210 article-title: Structural control of mesoporous silicas with large nanopores in a mild buffer solution publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.04.030 – volume: 15 start-page: 1901173 year: 2019 ident: 10.1016/j.cej.2021.129551_b0140 article-title: Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification publication-title: Small doi: 10.1002/smll.201901173 – volume: 137 start-page: 10276 issue: 32 year: 2015 ident: 10.1016/j.cej.2021.129551_b0005 article-title: Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05602 – volume: 358 start-page: 745 issue: 6364 year: 2017 ident: 10.1016/j.cej.2021.129551_b0070 article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals publication-title: Science doi: 10.1126/science.aam7093 – volume: 232 start-page: 400 issue: 2 year: 2000 ident: 10.1016/j.cej.2021.129551_b0250 article-title: Reaction of (3-Aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.7224 – volume: 15 start-page: 3692 year: 2015 ident: 10.1016/j.cej.2021.129551_b0035 article-title: Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut publication-title: Nano lett. doi: 10.1021/nl5048779 – volume: 233 year: 2021 ident: 10.1016/j.cej.2021.129551_b0165 article-title: Stable silica coated DDAB-CsPbX3 quantum dots and their application for white light-emitting diodes publication-title: J. Lumin. doi: 10.1016/j.jlumin.2021.117884 – volume: 29 start-page: 7088 issue: 17 year: 2017 ident: 10.1016/j.cej.2021.129551_b0260 article-title: Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02669 – volume: 4 start-page: 819 issue: 4 year: 2019 ident: 10.1016/j.cej.2021.129551_b0135 article-title: Simultaneous cationic and anionic ligand exchange For colloidally stable CsPbBr3 nanocrystals publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00140 – volume: 7 start-page: 10 year: 2019 ident: 10.1016/j.cej.2021.129551_b0235 article-title: Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots publication-title: Adv. Opt. Mater. – volume: 5 start-page: 23 year: 2015 ident: 10.1016/j.cej.2021.129551_b0090 article-title: Stability of metal halide perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500963 – volume: 10 start-page: 3784 issue: 4 year: 2018 ident: 10.1016/j.cej.2021.129551_b0130 article-title: Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17166 – volume: 67 start-page: 9 year: 2020 ident: 10.1016/j.cej.2021.129551_b0270 article-title: Room temperature synthesis of stable single silica-coated CsPbBr 3 quantum dots combining tunable red emission of Ag-In-Zn-S for High-CRI white light-emitting diodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104279 – volume: 28 start-page: 10088 issue: 45 year: 2016 ident: 10.1016/j.cej.2021.129551_b0245 article-title: Efficient and stable white leds with silica-coated inorganic perovskite quantum dots publication-title: Adv. Mater. doi: 10.1002/adma.201603081 – volume: 8 start-page: 13589 issue: 28 year: 2016 ident: 10.1016/j.cej.2021.129551_b0015 article-title: Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors publication-title: Nanoscale doi: 10.1039/C6NR03428D – volume: 55 start-page: 7924 issue: 28 year: 2016 ident: 10.1016/j.cej.2021.129551_b0180 article-title: Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201603698 – volume: 8 start-page: 1605 issue: 10 year: 2020 ident: 10.1016/j.cej.2021.129551_b0195 article-title: Room temperature synthesis of stable silica-coated CsPbBr3 quantum dots for amplified spontaneous emission publication-title: Photonics Res. doi: 10.1364/PRJ.399845 – volume: 28 start-page: 3528 issue: 18 year: 2016 ident: 10.1016/j.cej.2021.129551_b0100 article-title: Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method publication-title: Adv. Mater. doi: 10.1002/adma.201600064 – volume: 11 start-page: 1189 issue: 2 year: 2017 ident: 10.1016/j.cej.2021.129551_b0120 article-title: Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section publication-title: ACS Nano doi: 10.1021/acsnano.6b07374 – volume: 29 start-page: 9 year: 2017 ident: 10.1016/j.cej.2021.129551_b0025 article-title: 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control publication-title: Adv. Mater. – volume: 17 start-page: 5799 year: 2017 ident: 10.1016/j.cej.2021.129551_b0115 article-title: From nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02896 – volume: 56 start-page: 10696 issue: 36 year: 2017 ident: 10.1016/j.cej.2021.129551_b0205 article-title: CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201703703 – volume: 10 start-page: 13053 issue: 15 year: 2018 ident: 10.1016/j.cej.2021.129551_b0065 article-title: Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in Air publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18964 – volume: 562 start-page: 249 issue: 7726 year: 2018 ident: 10.1016/j.cej.2021.129551_b0085 article-title: Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures publication-title: Nature doi: 10.1038/s41586-018-0576-2 – volume: 27 start-page: 1701121 issue: 23 year: 2017 ident: 10.1016/j.cej.2021.129551_b0110 article-title: Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701121 – volume: 9 start-page: 40477 year: 2017 ident: 10.1016/j.cej.2021.129551_b0185 article-title: Silica-coated Mn-doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: exciton-to-Mn energy transfer and blue-excitable solid-state lighting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14471 – volume: 4 start-page: 32 issue: 1 year: 2019 ident: 10.1016/j.cej.2021.129551_b0240 article-title: Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01909 – volume: 29 year: 2018 ident: 10.1016/j.cej.2021.129551_b0220 article-title: Highly efficient and stable blue-emitting CsPbBr(3)@SiO(2) nanospheres through low temperature synthesis for nanoprinting and WLED publication-title: Nanotechnology doi: 10.1088/1361-6528/aac00b – volume: 20 start-page: 2201 issue: 14 year: 2010 ident: 10.1016/j.cej.2021.129551_b0170 article-title: Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000428 – volume: 401 year: 2020 ident: 10.1016/j.cej.2021.129551_b0150 article-title: Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@SiO2 sphere publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126066 – volume: 28 start-page: 7 year: 2018 ident: 10.1016/j.cej.2021.129551_b0200 article-title: Photoelectrochemically active and environmentally stable CsPbBr3/TiO2Core/Shell nanocrystals publication-title: Adv. Funct. Mater. – volume: 27 start-page: 7162 issue: 44 year: 2015 ident: 10.1016/j.cej.2021.129551_b0095 article-title: Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) publication-title: Adv. Mater. doi: 10.1002/adma.201502567 – volume: 52 start-page: 2067 issue: 10 year: 2016 ident: 10.1016/j.cej.2021.129551_b0020 article-title: All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications publication-title: Chem. Commun. doi: 10.1039/C5CC08643D – volume: 46 start-page: 1816 issue: 8 year: 2013 ident: 10.1016/j.cej.2021.129551_b0175 article-title: Core-shell nanostructured catalysts publication-title: Acc. Chem. Res doi: 10.1021/ar300230s – volume: 12 start-page: 8579 issue: 8 year: 2018 ident: 10.1016/j.cej.2021.129551_b0225 article-title: One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.8b04209 |
SSID | ssj0006919 |
Score | 2.6334462 |
Snippet | •Silica coated DDAB-CsPbBr3 QDs exhibit better properties than regular CsPbBr3.•High performance warm WLEDs based on modified CsPbBr3 QDs are realized.•Visible... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 129551 |
SubjectTerms | CsPbBr3 quantum dots DDAB capped Silica-coated Visible light communication Warm white light-emitting diodes |
Title | Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication |
URI | https://dx.doi.org/10.1016/j.cej.2021.129551 |
Volume | 419 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QuMAB8RTjpRw4IYU1TdrQI0ygwcSEeIjdqrwKRXsA24S48Av40cRpC0MCDpyiNrZaxVZsx58dhHYpMzJjXBETqYRwFUoitWIki4U_9Q-UhULh807cuuFn3ag7g5pVLQzAKsu9v9jT_W5dvmmUq9l4zPPGFYWcVsJdCON0lB1AT1DOBWj5_tsXzCNO_OUeQEyAuspseoyXtg8uRAzpvrN6UUR_tk1T9uZkES2UjiI-LP5lCc3YwTKan2ofuILeAaTRe8XOwVM9i5ujC3X0zPDTxK3WpI9dvDnCyk3ncDBH9FACxBnLgcG9_A6G_tAAUsgLBzvvFb9AUgFm78fE9nOPicYmHxo78nxQiQ6f8hRYTxeXrKKbk-PrZouUtysQzWI2JpIHJkl0xi3XAbSJO7AhZcoYE_AsyyinMpQqCWNhrA41NUIGMrDKWdUoVkywNVQbDAd2HWHJoImNsaEQzigKpjKIIkUoNXVswtRRUK1rqsvW43ADRi-tMGYPqRNFCqJIC1HU0d4ny2PRd-MvYl4JK_2mPKmzC7-zbfyPbRPNwVMBNNtCtfHzxG47z2Ssdrzq7aDZw9N2qwNj-_K2_QFmC-aT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAAOiFUJax_ggtQZ92J3fOAAgWhCFiGRSLmZ3gyOZgmZGUW58AX8DT9IVduGQQIOSDlZcrvsdleplu5XVQDPhAq2VtrxkLuSayctt94pXhcm7fpnLlKi8P5BMTzS747z4xX43ufCEKyy0_2tTk_aursz6FZzcNo0gw-CzrRKjSEMyqja1B2ycjdenGPcNnu58waZ_FzK7beHW0PetRbgXhVqzq3OQln6WkftM6qRthmlUC6EkOm6roUWVlpXysKE6KUXwdjMZtGhSckLp4zC916BqxrVBbVN2Pj6C1dSlKmbCM2O0_T6o9QEKvPxBGNSKTbQzOa5-LMxXDJw27fgZueZslftz9-GlTi5AzeW6hXehW-EChldMPQo3Siyrdl79_pMsS8LZM9izDDAnTGHww3tBHI_tYSpZnYS2Kj5RJfxNBA0KUkDQ3eZndMpBo1-nvM4bhIIm4VmGuIs0VHqO30qPcH8cjbLPTi6lDW_D6uT6SSuAbOKquaEKI1BK2yUqylsNdJ6gWQmrEPWr2vlu1rn1HJjVPWgtpMKWVERK6qWFevw4ifJaVvo418P655Z1W_SWqEh-jvZg_8jewrXhof7e9XezsHuQ7hOIy3K7RGszs8W8TG6RXP3JIkhg4-XLfc_AFRcIns |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+stable+CsPbBr3+quantum+dots+by+silica-coating+and+ligand+modification+for+white+light-emitting+diodes+and+visible+light+communication&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Li%2C+Xianwen&rft.au=Cai%2C+Wensi&rft.au=Guan%2C+Hongling&rft.au=Zhao%2C+Shuangyi&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=419&rft_id=info:doi/10.1016%2Fj.cej.2021.129551&rft.externalDocID=S1385894721011384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |