Cavitation over solid surfaces: microbubble collapse, shock waves, and elastic response
We discuss the interaction of the strongly nonlinear fluid motion induced by the collapse of a vapor microbubble over a planar surface and the elastic dynamics of the underlying solid. The fluid is described using an extension of the Navier-Stokes equations endowed with distributed capillary stresse...
Saved in:
Published in | Meccanica (Milan) Vol. 58; no. 6; pp. 1109 - 1119 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We discuss the interaction of the strongly nonlinear fluid motion induced by the collapse of a vapor microbubble over a planar surface and the elastic dynamics of the underlying solid. The fluid is described using an extension of the Navier-Stokes equations endowed with distributed capillary stresses in the context of a diffuse interface approach. The collapse of the bubble is triggered by overpressure in the liquid and leads to an intense jet that pierces the bubble, changing the bubble topology from spheroidal to toroidal, and impinges the solid wall inducing an intense and strongly localized load. Moreover, at bubble collapse, a compression wave is launched into the liquid surrounding the bubble. By propagating along the solid surface, the compression wave combined with the liquid jet excites the dynamics of the elastic solid, producing a complex system of waves, including, longitudinal, transversal, and Rayleigh waves, propagating in the solid. It is conjectured that the intense deformation of the solid induced by the strongly localized liquid jet may lead to the plastic deformation of the solid producing the surface pitting observed in many applications subject to cavitation-induced material damage. |
---|---|
AbstractList | We discuss the interaction of the strongly nonlinear fluid motion induced by the collapse of a vapor microbubble over a planar surface and the elastic dynamics of the underlying solid. The fluid is described using an extension of the Navier-Stokes equations endowed with distributed capillary stresses in the context of a diffuse interface approach. The collapse of the bubble is triggered by overpressure in the liquid and leads to an intense jet that pierces the bubble, changing the bubble topology from spheroidal to toroidal, and impinges the solid wall inducing an intense and strongly localized load. Moreover, at bubble collapse, a compression wave is launched into the liquid surrounding the bubble. By propagating along the solid surface, the compression wave combined with the liquid jet excites the dynamics of the elastic solid, producing a complex system of waves, including, longitudinal, transversal, and Rayleigh waves, propagating in the solid. It is conjectured that the intense deformation of the solid induced by the strongly localized liquid jet may lead to the plastic deformation of the solid producing the surface pitting observed in many applications subject to cavitation-induced material damage. |
Author | Gallo, Mirko Casciola, Carlo Massimo Abbondanza, Dario |
Author_xml | – sequence: 1 givenname: Dario orcidid: 0000-0001-8303-1993 surname: Abbondanza fullname: Abbondanza, Dario organization: Department of Mechanical and Aerospace Engineering, Sapienza University of Rome – sequence: 2 givenname: Mirko orcidid: 0000-0003-3395-2246 surname: Gallo fullname: Gallo, Mirko organization: Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, School of Architecture, Technology and Engineering, University of Brighton – sequence: 3 givenname: Carlo Massimo orcidid: 0000-0001-8795-4517 surname: Casciola fullname: Casciola, Carlo Massimo email: carlomassimo.casciola@uniroma1.it organization: Department of Mechanical and Aerospace Engineering, Sapienza University of Rome |
BookMark | eNp9kEtLAzEQgINUsD7-gKeA165OkmYf3qT4goIXxWPIZie6dbupmW3Ff2-0BcGDh2FgmG8e3yEb9aFHxk4FnAuA4oKEACEzkClEDnmm99hY6EJmVT4tR2wMIHWWT7U-YIdEC4CEgR6z55ndtIMd2tDzsMHIKXRtw2kdvXVIl3zZuhjqdV13yF3oOrsinHB6De6Nf9gN0oTbvuHYWRpaxyPSKvSEx2zf247wZJeP2NPN9ePsLps_3N7PruaZU7kaMquwdrYSlUIQTSnqaWPBF6kmZJlbgYWsnPRTaDRUpQdRF7WX2qOvlS0xV0fsbDt3FcP7Gmkwi7COfVppZCmLKlegVOqS2670C1FEb1axXdr4aQSYb4FmK9AkgeZHoNEJKv9AbmdqiLbt_kfVFqW0p3_B-HvVP9QXvPKH5A |
CitedBy_id | crossref_primary_10_1017_jfm_2024_925 crossref_primary_10_1016_j_ultsonch_2024_107111 crossref_primary_10_1063_5_0156507 crossref_primary_10_1063_5_0136525 crossref_primary_10_1063_5_0132478 crossref_primary_10_3390_cancers16183181 |
Cites_doi | 10.1515/jnma-2022-0054 10.1126/science.1215985 10.1002/smll.201905375 10.1016/S0161-6420(86)33576-0 10.1146/annurev.fl.11.010179.000343 10.1103/RevModPhys.74.425 10.1017/jfm.2019.844 10.1038/s41598-020-79139-8 10.1080/14786440808635681 10.1017/jfm.2012.461 10.1006/jcph.2000.6692 10.1017/jfm.2020.761 10.1098/rsif.2014.0480 10.1115/1.3657314 10.1111/iej.12804 10.1016/j.triboint.2019.04.040 10.1103/PhysRevLett.114.064501 10.1063/1.5089206 10.1146/annurev.fl.09.010177.001045 10.1146/annurev.fluid.30.1.139 10.1112/plms/s1-17.1.4 10.1039/C8SM00837J 10.1115/1.3657315 10.1103/PhysRevLett.108.184502 10.1063/1.5119794 10.1016/j.triboint.2021.107011 10.1017/S0022112075003448 10.1115/1.3408774 10.1017/S0022112098008738 10.1016/j.ijmultiphaseflow.2016.02.012 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s11012-022-01606-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1572-9648 |
EndPage | 1119 |
ExternalDocumentID | 10_1007_s11012_022_01606_5 |
GrantInformation_xml | – fundername: Università degli Studi di Roma La Sapienza |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z86 Z8M Z8N Z8P Z8S Z8T ZMTXR ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-a3ebca9193e01d81b4da0f7bca1286a1e729c2f40d5098f01b7bf25fefb3a8e63 |
IEDL.DBID | U2A |
ISSN | 0025-6455 |
IngestDate | Fri Jul 25 11:04:12 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Tue Jul 01 03:42:47 EDT 2025 Fri Feb 21 02:43:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Bubble dynamics Elastic waves Phase field method Cavitation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-a3ebca9193e01d81b4da0f7bca1286a1e729c2f40d5098f01b7bf25fefb3a8e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8795-4517 0000-0001-8303-1993 0000-0003-3395-2246 |
OpenAccessLink | https://link.springer.com/10.1007/s11012-022-01606-5 |
PQID | 2827963033 |
PQPubID | 2043742 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2827963033 crossref_primary_10_1007_s11012_022_01606_5 crossref_citationtrail_10_1007_s11012_022_01606_5 springer_journals_10_1007_s11012_022_01606_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Theoretical and Applied Mechanics AIMETA |
PublicationTitle | Meccanica (Milan) |
PublicationTitleAbbrev | Meccanica |
PublicationYear | 2023 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | NoblinXRojasNWestbrookJLlorensCArgentinaMDumaisJThe fern sporangium: a unique catapultScience201233560741322132210.1126/science.1215985 PhilippALauterbornWCavitation erosion by single laser-produced bubblesJ Fluid Mech19983617511610.1017/S00221120980087380925.76012 RobinsonJMacedoRGVerhaagenBVersluisMCooperPVan der SluisLWalmsleyACleaning lateral morphological features of the root canal: the role of streaming and cavitationInt Endodontic J201851556410.1111/iej.12804 SilvaniGScognamiglioCCapriniDMarinoLChinappiMSinibaldiGPeruzziGKianiMFCasciolaCMReversible cavitation-induced junctional opening in an artificial endothelial layerSmall20191551190537510.1002/smll.201905375 ScognamiglioCMagalettiFIzmaylovYGalloMCasciolaCMNoblinXThe detailed acoustic signature of a micro-confined cavitation bubbleSoft matter201814397987799510.1039/C8SM00837J MagalettiFPicanoFChinappiMMarinoLCasciolaCMThe sharp-interface limit of the cahn-hilliard/navier-stokes model for binary fluidsJ Fluid Mech201371495126300805510.1017/jfm.2012.4611284.76116 BiancofioreLGiacopiniMDiniDInterplay between wall slip and cavitation: a complementary variable approachTribol Int201913732433910.1016/j.triboint.2019.04.040 SinibaldiGOcchiconeAAlves PereiraFCapriniDMarinoLMichelottiFCasciolaCLaser induced cavitation: plasma generation and breakdown shockwavePhys Fluids2019311010330210.1063/1.5119794 JametDLebaigueOCoutrisNDelhayeJThe second gradient method for the direct numerical simulation of liquid-vapor flows with phase changeJ Comput Phys20011692624651183652710.1006/jcph.2000.66921047.76098 Gakenheimer, D.: Response of an elastic half space to expanding surface loads (1971) BrennenCECavitation and bubble dynamics2014CambridgeCambridge University Press1302.76002 GalloMMagalettiFCasciolaCMHeterogeneous bubble nucleation dynamicsJ Fluid Mech202190686417671810.1017/jfm.2020.7611461.76456 Stripling, L.: Cavitation in turbopumps-part 2 (1962) Stripling, L., Acosta, A.: Cavitation in turbopumps-part 1 (1962) AndersonDMMcFaddenGBWheelerAADiffuse-interface methods in fluid mechanicsAnnual Rev Fluid Mech1998301139165160962610.1146/annurev.fluid.30.1.1391398.76051 VincentOMarmottantPQuinto-SuPAOhlC-DBirth and growth of cavitation bubbles within water under tension confined in a simple synthetic treePhys Rev Lett20121081818450210.1103/PhysRevLett.108.184502 OcchiconeASinibaldiGDanzNCasciolaCMMichelottiFCavitation bubble wall pressure measurement by an electromagnetic surface wave enhanced pump-probe configurationAppli Phys Lett20191141313410110.1063/1.5089206 HughesTJThe finite element method: linear static and dynamic finite element analysis2012USACourier Corporation Abbondanza D, Gallo M, Casciola CM (2022) Collapse of micro bubbles over an elastoplastic wall. To appear VogelAHentschelWHolzfussJLauterbornWCavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium: Yag lasersOphthalmology198693101259126910.1016/S0161-6420(86)33576-0 PlessetMSProsperettiABubble dynamics and cavitationAnnual Rev Fluid Mech1977914518510.1146/annurev.fl.09.010177.0010450418.76074 MagalettiFGalloMMarinoLCasciolaCMShock-induced collapse of a vapor nanobubble near solid boundariesInt J Multiphase Flow2016843445350928910.1016/j.ijmultiphaseflow.2016.02.012 Dell’IsolaFGouinHRotoliGNucleation of spherical shell-like interfaces by second gradient theory: numerical simulationsEur J Mech-B/Fluids19961545455680887.76008 LauterbornWBolleHExperimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundaryJ Fluid Mech197572239139910.1017/S0022112075003448 DowsonDTaylorCCavitation in bearingsAnnual Rev Fluid Mech1979111356510.1146/annurev.fl.11.010179.000343 GamanielSSDiniDBiancofioreLThe effect of fluid viscoelasticity in lubricated contacts in the presence of cavitationTribol Int202116010701110.1016/j.triboint.2021.107011 GraffKFWave motion in elastic solids2012USACourier Corporation0314.73022 ArndtDBangerthWFederMFehlingMGassmöllerRHeisterTHeltaiLKronbichlerMMaierMMunchPPelteretJ-PStickoSTurcksinBWellsDThe deal ii library, versionJ Numer Math202210.1515/jnma-2022-005407590497 MagalettiFMarinoLCasciolaCMShock wave formation in the collapse of a vapor nanobubblePhys Rev Lett2015114606450110.1103/PhysRevLett.114.064501 RayleighLViii. on the pressure developed in a liquid during the collapse of a spherical cavityLondon, Edinburgh, Dublin Philosoph Magazine J Sci191734200949810.1080/1478644080863568146.1274.01 MagalettiFGalloMCasciolaCMWater cavitation from ambient to high temperaturesScientif Rep2021111110 GalloMMagalettiFCoccoDCasciolaCMNucleation and growth dynamics of vapour bubblesJ Fluid Mech202088387403583310.1017/jfm.2019.8441430.76451 RayleighLOn waves propagated along the plane surface of an elastic solidProc London Math Soc188511411157630210.1112/plms/s1-17.1.417.0962.01 PonomarenkoAVincentOPietrigaACochardHBadelÉMarmottantPUltrasonic emissions reveal individual cavitation bubbles in water-stressed woodJ R Soc Interface201411992014048010.1098/rsif.2014.0480 BrennerMPHilgenfeldtSLohseDSingle-bubble sonoluminescenceRev Modern Phys200274242510.1103/RevModPhys.74.425 A Ponomarenko (1606_CR4) 2014; 11 F Magaletti (1606_CR24) 2015; 114 MP Brenner (1606_CR20) 2002; 74 CE Brennen (1606_CR1) 2014 L Biancofiore (1606_CR12) 2019; 137 A Occhicone (1606_CR17) 2019; 114 M Gallo (1606_CR27) 2021; 906 F Magaletti (1606_CR23) 2013; 714 G Sinibaldi (1606_CR16) 2019; 31 A Philipp (1606_CR15) 1998; 361 L Rayleigh (1606_CR18) 1917; 34 W Lauterborn (1606_CR14) 1975; 72 D Arndt (1606_CR26) 2022 KF Graff (1606_CR34) 2012 1606_CR9 1606_CR10 1606_CR31 1606_CR35 G Silvani (1606_CR8) 2019; 15 M Gallo (1606_CR29) 2020; 883 F Magaletti (1606_CR28) 2021; 11 F Magaletti (1606_CR25) 2016; 84 L Rayleigh (1606_CR33) 1885; 1 MS Plesset (1606_CR19) 1977; 9 X Noblin (1606_CR2) 2012; 335 F Dell’Isola (1606_CR30) 1996; 15 O Vincent (1606_CR5) 2012; 108 SS Gamaniel (1606_CR13) 2021; 160 D Jamet (1606_CR22) 2001; 169 TJ Hughes (1606_CR32) 2012 C Scognamiglio (1606_CR3) 2018; 14 A Vogel (1606_CR7) 1986; 93 DM Anderson (1606_CR21) 1998; 30 J Robinson (1606_CR6) 2018; 51 D Dowson (1606_CR11) 1979; 11 |
References_xml | – reference: PhilippALauterbornWCavitation erosion by single laser-produced bubblesJ Fluid Mech19983617511610.1017/S00221120980087380925.76012 – reference: Gakenheimer, D.: Response of an elastic half space to expanding surface loads (1971) – reference: MagalettiFPicanoFChinappiMMarinoLCasciolaCMThe sharp-interface limit of the cahn-hilliard/navier-stokes model for binary fluidsJ Fluid Mech201371495126300805510.1017/jfm.2012.4611284.76116 – reference: JametDLebaigueOCoutrisNDelhayeJThe second gradient method for the direct numerical simulation of liquid-vapor flows with phase changeJ Comput Phys20011692624651183652710.1006/jcph.2000.66921047.76098 – reference: Dell’IsolaFGouinHRotoliGNucleation of spherical shell-like interfaces by second gradient theory: numerical simulationsEur J Mech-B/Fluids19961545455680887.76008 – reference: VincentOMarmottantPQuinto-SuPAOhlC-DBirth and growth of cavitation bubbles within water under tension confined in a simple synthetic treePhys Rev Lett20121081818450210.1103/PhysRevLett.108.184502 – reference: BiancofioreLGiacopiniMDiniDInterplay between wall slip and cavitation: a complementary variable approachTribol Int201913732433910.1016/j.triboint.2019.04.040 – reference: Stripling, L., Acosta, A.: Cavitation in turbopumps-part 1 (1962) – reference: PlessetMSProsperettiABubble dynamics and cavitationAnnual Rev Fluid Mech1977914518510.1146/annurev.fl.09.010177.0010450418.76074 – reference: GalloMMagalettiFCoccoDCasciolaCMNucleation and growth dynamics of vapour bubblesJ Fluid Mech202088387403583310.1017/jfm.2019.8441430.76451 – reference: GamanielSSDiniDBiancofioreLThe effect of fluid viscoelasticity in lubricated contacts in the presence of cavitationTribol Int202116010701110.1016/j.triboint.2021.107011 – reference: MagalettiFMarinoLCasciolaCMShock wave formation in the collapse of a vapor nanobubblePhys Rev Lett2015114606450110.1103/PhysRevLett.114.064501 – reference: AndersonDMMcFaddenGBWheelerAADiffuse-interface methods in fluid mechanicsAnnual Rev Fluid Mech1998301139165160962610.1146/annurev.fluid.30.1.1391398.76051 – reference: SilvaniGScognamiglioCCapriniDMarinoLChinappiMSinibaldiGPeruzziGKianiMFCasciolaCMReversible cavitation-induced junctional opening in an artificial endothelial layerSmall20191551190537510.1002/smll.201905375 – reference: BrennenCECavitation and bubble dynamics2014CambridgeCambridge University Press1302.76002 – reference: RayleighLViii. on the pressure developed in a liquid during the collapse of a spherical cavityLondon, Edinburgh, Dublin Philosoph Magazine J Sci191734200949810.1080/1478644080863568146.1274.01 – reference: Abbondanza D, Gallo M, Casciola CM (2022) Collapse of micro bubbles over an elastoplastic wall. To appear – reference: MagalettiFGalloMMarinoLCasciolaCMShock-induced collapse of a vapor nanobubble near solid boundariesInt J Multiphase Flow2016843445350928910.1016/j.ijmultiphaseflow.2016.02.012 – reference: HughesTJThe finite element method: linear static and dynamic finite element analysis2012USACourier Corporation – reference: MagalettiFGalloMCasciolaCMWater cavitation from ambient to high temperaturesScientif Rep2021111110 – reference: DowsonDTaylorCCavitation in bearingsAnnual Rev Fluid Mech1979111356510.1146/annurev.fl.11.010179.000343 – reference: OcchiconeASinibaldiGDanzNCasciolaCMMichelottiFCavitation bubble wall pressure measurement by an electromagnetic surface wave enhanced pump-probe configurationAppli Phys Lett20191141313410110.1063/1.5089206 – reference: GalloMMagalettiFCasciolaCMHeterogeneous bubble nucleation dynamicsJ Fluid Mech202190686417671810.1017/jfm.2020.7611461.76456 – reference: ScognamiglioCMagalettiFIzmaylovYGalloMCasciolaCMNoblinXThe detailed acoustic signature of a micro-confined cavitation bubbleSoft matter201814397987799510.1039/C8SM00837J – reference: Stripling, L.: Cavitation in turbopumps-part 2 (1962) – reference: BrennerMPHilgenfeldtSLohseDSingle-bubble sonoluminescenceRev Modern Phys200274242510.1103/RevModPhys.74.425 – reference: SinibaldiGOcchiconeAAlves PereiraFCapriniDMarinoLMichelottiFCasciolaCLaser induced cavitation: plasma generation and breakdown shockwavePhys Fluids2019311010330210.1063/1.5119794 – reference: ArndtDBangerthWFederMFehlingMGassmöllerRHeisterTHeltaiLKronbichlerMMaierMMunchPPelteretJ-PStickoSTurcksinBWellsDThe deal ii library, versionJ Numer Math202210.1515/jnma-2022-005407590497 – reference: RayleighLOn waves propagated along the plane surface of an elastic solidProc London Math Soc188511411157630210.1112/plms/s1-17.1.417.0962.01 – reference: NoblinXRojasNWestbrookJLlorensCArgentinaMDumaisJThe fern sporangium: a unique catapultScience201233560741322132210.1126/science.1215985 – reference: PonomarenkoAVincentOPietrigaACochardHBadelÉMarmottantPUltrasonic emissions reveal individual cavitation bubbles in water-stressed woodJ R Soc Interface201411992014048010.1098/rsif.2014.0480 – reference: VogelAHentschelWHolzfussJLauterbornWCavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium: Yag lasersOphthalmology198693101259126910.1016/S0161-6420(86)33576-0 – reference: RobinsonJMacedoRGVerhaagenBVersluisMCooperPVan der SluisLWalmsleyACleaning lateral morphological features of the root canal: the role of streaming and cavitationInt Endodontic J201851556410.1111/iej.12804 – reference: GraffKFWave motion in elastic solids2012USACourier Corporation0314.73022 – reference: LauterbornWBolleHExperimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundaryJ Fluid Mech197572239139910.1017/S0022112075003448 – year: 2022 ident: 1606_CR26 publication-title: J Numer Math doi: 10.1515/jnma-2022-0054 – volume: 335 start-page: 1322 issue: 6074 year: 2012 ident: 1606_CR2 publication-title: Science doi: 10.1126/science.1215985 – volume: 15 start-page: 545 issue: 4 year: 1996 ident: 1606_CR30 publication-title: Eur J Mech-B/Fluids – volume: 15 start-page: 1905375 issue: 51 year: 2019 ident: 1606_CR8 publication-title: Small doi: 10.1002/smll.201905375 – volume: 93 start-page: 1259 issue: 10 year: 1986 ident: 1606_CR7 publication-title: Ophthalmology doi: 10.1016/S0161-6420(86)33576-0 – volume: 11 start-page: 35 issue: 1 year: 1979 ident: 1606_CR11 publication-title: Annual Rev Fluid Mech doi: 10.1146/annurev.fl.11.010179.000343 – volume: 74 start-page: 425 issue: 2 year: 2002 ident: 1606_CR20 publication-title: Rev Modern Phys doi: 10.1103/RevModPhys.74.425 – volume-title: The finite element method: linear static and dynamic finite element analysis year: 2012 ident: 1606_CR32 – volume: 883 start-page: 87 year: 2020 ident: 1606_CR29 publication-title: J Fluid Mech doi: 10.1017/jfm.2019.844 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 1606_CR28 publication-title: Scientif Rep doi: 10.1038/s41598-020-79139-8 – volume: 34 start-page: 94 issue: 200 year: 1917 ident: 1606_CR18 publication-title: London, Edinburgh, Dublin Philosoph Magazine J Sci doi: 10.1080/14786440808635681 – volume: 714 start-page: 95 year: 2013 ident: 1606_CR23 publication-title: J Fluid Mech doi: 10.1017/jfm.2012.461 – volume-title: Wave motion in elastic solids year: 2012 ident: 1606_CR34 – volume: 169 start-page: 624 issue: 2 year: 2001 ident: 1606_CR22 publication-title: J Comput Phys doi: 10.1006/jcph.2000.6692 – volume: 906 start-page: 86 year: 2021 ident: 1606_CR27 publication-title: J Fluid Mech doi: 10.1017/jfm.2020.761 – volume-title: Cavitation and bubble dynamics year: 2014 ident: 1606_CR1 – volume: 11 start-page: 20140480 issue: 99 year: 2014 ident: 1606_CR4 publication-title: J R Soc Interface doi: 10.1098/rsif.2014.0480 – ident: 1606_CR9 doi: 10.1115/1.3657314 – volume: 51 start-page: 55 year: 2018 ident: 1606_CR6 publication-title: Int Endodontic J doi: 10.1111/iej.12804 – volume: 137 start-page: 324 year: 2019 ident: 1606_CR12 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.04.040 – volume: 114 start-page: 064501 issue: 6 year: 2015 ident: 1606_CR24 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.114.064501 – ident: 1606_CR31 – volume: 114 start-page: 134101 issue: 13 year: 2019 ident: 1606_CR17 publication-title: Appli Phys Lett doi: 10.1063/1.5089206 – volume: 9 start-page: 145 year: 1977 ident: 1606_CR19 publication-title: Annual Rev Fluid Mech doi: 10.1146/annurev.fl.09.010177.001045 – volume: 30 start-page: 139 issue: 1 year: 1998 ident: 1606_CR21 publication-title: Annual Rev Fluid Mech doi: 10.1146/annurev.fluid.30.1.139 – volume: 1 start-page: 4 issue: 1 year: 1885 ident: 1606_CR33 publication-title: Proc London Math Soc doi: 10.1112/plms/s1-17.1.4 – volume: 14 start-page: 7987 issue: 39 year: 2018 ident: 1606_CR3 publication-title: Soft matter doi: 10.1039/C8SM00837J – ident: 1606_CR10 doi: 10.1115/1.3657315 – volume: 108 start-page: 184502 issue: 18 year: 2012 ident: 1606_CR5 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.184502 – volume: 31 start-page: 103302 issue: 10 year: 2019 ident: 1606_CR16 publication-title: Phys Fluids doi: 10.1063/1.5119794 – volume: 160 start-page: 107011 year: 2021 ident: 1606_CR13 publication-title: Tribol Int doi: 10.1016/j.triboint.2021.107011 – volume: 72 start-page: 391 issue: 2 year: 1975 ident: 1606_CR14 publication-title: J Fluid Mech doi: 10.1017/S0022112075003448 – ident: 1606_CR35 doi: 10.1115/1.3408774 – volume: 361 start-page: 75 year: 1998 ident: 1606_CR15 publication-title: J Fluid Mech doi: 10.1017/S0022112098008738 – volume: 84 start-page: 34 year: 2016 ident: 1606_CR25 publication-title: Int J Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2016.02.012 |
SSID | ssj0010005 |
Score | 2.360907 |
Snippet | We discuss the interaction of the strongly nonlinear fluid motion induced by the collapse of a vapor microbubble over a planar surface and the elastic dynamics... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1109 |
SubjectTerms | Automotive Engineering Cavitation Civil Engineering Classical Mechanics Collapse Complex systems Compression waves Engineering Longitudinal waves Mechanical Engineering Overpressure Plastic deformation Rayleigh waves Shock waves Solid surfaces Topology Wave propagation |
Title | Cavitation over solid surfaces: microbubble collapse, shock waves, and elastic response |
URI | https://link.springer.com/article/10.1007/s11012-022-01606-5 https://www.proquest.com/docview/2827963033 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBN2I8phy4sUrp0qQrt61iTCA4MQGnKmkTgTTGtG7j7-N0KQUESJwqtW6q2k78JfliA5ymhsmMU-r5QWa8IAiNp4Rdg2cYX5T0hS5qLN3cisEwuHrgD-5QWF6y3cstyWKkrg672VRUnmWf26xowuOrUOd27o5ePGx3P_YOLAwpC7WKgHN3VObnNr6GowpjftsWLaJNfws2HEwk3aVdt2FFj3dg00FG4jpkvgPrn_IJ7sJ9LBcu5zax1EyCjvWckXw-NZZ5dU5eLP1OzZUaaVJ4wCTXLZI_4aBI3uRC5y0ixxnRCKnxw2S6JNDqPRj2L-7igecqJ3gpE2zmSWY5ThGCM039DJFpkElqQryH4UhIXyOkTtsmoGimqGOor0Jl2txoo5jsaMH2oTZ-HesDIGGqfC5pJ2orG7t0lEoe-R2N0lmUUdkAv1RgkrpftNUtRkmVENkqPUGlJ4XSE96As493JsukGn9KH5d2SVwHyxOcKYY4dlDGGtAqbVU9_r21w_-JH8GaLTC_JIcdQ202nesThCEz1YR6t9_r3drr5eP1RRNWYxE3C198B2kl1iM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RPKgHf6BG_NmDN1ls6doxb4ZoUMGTRG9Lu7XRBJEwwH_f11FAiZp43boue6_t-7r39XsAZ6nlKhOUBizMbBCGkQ20dP_gOcYXrZg0RY2l9oNsdsK7Z_HsZXLcWZiF_P1FzpwAVeA4504LTQZiGVZC3Ck7-l5DNmYZAwc-puVZZSiEPyDzcx_fg9AcWS4kQ4sYc7MFGx4ckquJN7dhyfTKsOmBIvHTMC_D-hcVwR14aqixV9omjpBJcDi9ZiQfDazjW12SN0e60yOtu4YUfu_npkryF1wKyYcam7xKVC8jBoE0vpgMJrRZswudm-vHRjPw9RKClEs-DBR3zKYYIZmhLEM8GmaK2givYRCSihkE0mnNhhSdE9ctZTrStiassZqrupF8D0q9957ZBxKlmglF63FNu4hl4lSJmNUNts7ijKoKsKkBk9R_oqtp0U3mMsjO6AkaPSmMnogKnM-e6U-kNP5sfTT1S-KnVZ7g_jDCFYNyXoHq1Ffz27_3dvC_5qew2nxst5LW7cP9Iay5EvMTetgRlIaDkTlGIDLUJ8UI_ASOz9EI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaI8cyBG6tIlyZduaHBxFscmOBWJU0ikEaZ1m38fZw-GCBA4tqmqWo78Zf6sw1wkFgmNafU8wNtvSAIraeE-wfP0L8o6QuT91i6uRXnveDykT9-yuLP2e5VSLLIaXBVmtLR0UDbo2nimytL5TkmuquQJjw-C3N4UskDtR3R-YgjOEhSNW0VAedl2szPc3x1TVO8-S1Emnue7goslZCRnBQ6XoUZk9ZhuYSPpFycWR0WP9UWXIOHjpyU9beJo2kSNLJnTbLx0DoW1jF5cVQ8NVaqb0huDYPMNEn2hBskeZMTkzWJTDUxCK_xxWRYkGnNOvS6Z_edc6_souAlTLCRJ5njO0UI1Az1NaLUQEtqQ7yGrklI3yC8Tlo2oKiyqG2pr0JlW9waq5hsG8E2oJa-pmYTSJgon0vajlrK-TETJZJHftvgaB1pKhvgVwKMk_ITXaeLfjwtjuyEHqPQ41zoMW_A4cczg6LAxp-jdyq9xOViy2I8NYa4j1DGGtCsdDW9_ftsW_8bvg_zd6fd-Pri9mobFlzf-YIztgO10XBsdhGdjNReboDvrTXZTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cavitation+over+solid+surfaces%3A+microbubble+collapse%2C+shock+waves%2C+and+elastic+response&rft.jtitle=Meccanica+%28Milan%29&rft.au=Abbondanza%2C+Dario&rft.au=Gallo%2C+Mirko&rft.au=Casciola%2C+Carlo+Massimo&rft.date=2023-06-01&rft.issn=0025-6455&rft.eissn=1572-9648&rft.volume=58&rft.issue=6&rft.spage=1109&rft.epage=1119&rft_id=info:doi/10.1007%2Fs11012-022-01606-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11012_022_01606_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6455&client=summon |