A brief review of hole transporting materials commonly used in perovskite solar cells

Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power conversion efficiency (PCE) has reached to be 25.2% in state-of-the-art PSCs due to the outstanding intrinsic properties of perovskite materials as...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 40; no. 10; pp. 2712 - 2729
Main Authors Li, Song, Cao, Yong-Li, Li, Wen-Hua, Bo, Zhi-Shan
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power conversion efficiency (PCE) has reached to be 25.2% in state-of-the-art PSCs due to the outstanding intrinsic properties of perovskite materials as well as progressive optimization of each functional layer, especially the active layer and hole transporting layer (HTL). In this review, we mainly discuss various hole transporting materials (HTMs) consisting of HTL in PSCs. The progress in PSCs is firstly introduced, then the roles of HTL playing in photovoltaic performance improvement of PSCs are emphasized. Finally, we generally categorize HTMs into organic and inorganic groups and demonstrate both their advantages and disadvantages. Specially, we introduce several typical organic HTMs such as P3HT, PTTA, PEDOT:PSS, spiro-OMeTAD, and inorganic HTMs such as copper-based materials (CuO x , CuSCN, CuI, etc.), nickel-based materials (NiO x ), and two-dimensional layered materials (MoS 2 , WS 2 , etc.). On basis of reviewing the reported HTMs in recent years, we expect to provide some enlightenment for design and application of novel HTMs that can be used to further promote PSCs performance.
AbstractList Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power conversion efficiency (PCE) has reached to be 25.2% in state-of-the-art PSCs due to the outstanding intrinsic properties of perovskite materials as well as progressive optimization of each functional layer, especially the active layer and hole transporting layer (HTL). In this review, we mainly discuss various hole transporting materials (HTMs) consisting of HTL in PSCs. The progress in PSCs is firstly introduced, then the roles of HTL playing in photovoltaic performance improvement of PSCs are emphasized. Finally, we generally categorize HTMs into organic and inorganic groups and demonstrate both their advantages and disadvantages. Specially, we introduce several typical organic HTMs such as P3HT, PTTA, PEDOT:PSS, spiro-OMeTAD, and inorganic HTMs such as copper-based materials (CuOx, CuSCN, CuI, etc.), nickel-based materials (NiOx), and two-dimensional layered materials (MoS2, WS2, etc.). On basis of reviewing the reported HTMs in recent years, we expect to provide some enlightenment for design and application of novel HTMs that can be used to further promote PSCs performance.
Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power conversion efficiency (PCE) has reached to be 25.2% in state-of-the-art PSCs due to the outstanding intrinsic properties of perovskite materials as well as progressive optimization of each functional layer, especially the active layer and hole transporting layer (HTL). In this review, we mainly discuss various hole transporting materials (HTMs) consisting of HTL in PSCs. The progress in PSCs is firstly introduced, then the roles of HTL playing in photovoltaic performance improvement of PSCs are emphasized. Finally, we generally categorize HTMs into organic and inorganic groups and demonstrate both their advantages and disadvantages. Specially, we introduce several typical organic HTMs such as P3HT, PTTA, PEDOT:PSS, spiro-OMeTAD, and inorganic HTMs such as copper-based materials (CuO x , CuSCN, CuI, etc.), nickel-based materials (NiO x ), and two-dimensional layered materials (MoS 2 , WS 2 , etc.). On basis of reviewing the reported HTMs in recent years, we expect to provide some enlightenment for design and application of novel HTMs that can be used to further promote PSCs performance.
Author Li, Song
Bo, Zhi-Shan
Cao, Yong-Li
Li, Wen-Hua
Author_xml – sequence: 1
  givenname: Song
  surname: Li
  fullname: Li, Song
  organization: Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University
– sequence: 2
  givenname: Yong-Li
  surname: Cao
  fullname: Cao, Yong-Li
  organization: Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University
– sequence: 3
  givenname: Wen-Hua
  orcidid: 0000-0003-1189-5287
  surname: Li
  fullname: Li, Wen-Hua
  email: liwenhua@bnu.edu.cn
  organization: Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University
– sequence: 4
  givenname: Zhi-Shan
  orcidid: 0000-0003-0126-7957
  surname: Bo
  fullname: Bo, Zhi-Shan
  email: zsbo@bnu.edu.cn
  organization: Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uZZDe7eyzFLyh4seeQTWdr6japybbS_nqjFQQPPc3AvM_M8IzIwHmHhFwDuwXGyrsIvKirjHGWMZA1ZIczMoRKllkJVTFIPWOQsYLDBRnFuGIsz6VkQzKf0CZYbGnAncVP6lv65jukfdAubnzorVvSte4xWN1Favx67V23p9uIC2od3WDwu_hue6TRdzpQg10XL8l5m-J49VvHZP5w_zp9ymYvj8_TySwzQoo-07xaQCNMXmpRSJ2Xpii4rlvT5HVT8xxEq42UCFxDDRIWhWkZ5gxluajSRIzJzXHvJviPLcZerfw2uHRS8UJUgoPgLKX4MWWCjzFgqzbBrnXYK2DqW5866lNJn_rRpw4Jqv5Bxva6t94lNbY7jYojGtMdt8Tw99UJ6gva94gK
CitedBy_id crossref_primary_10_1002_solr_202400178
crossref_primary_10_1073_pnas_2305327120
crossref_primary_10_1016_j_jmgm_2023_108588
crossref_primary_10_1007_s11664_025_11871_1
crossref_primary_10_1039_D3RA02910G
crossref_primary_10_1007_s12598_024_02984_3
crossref_primary_10_3390_nano12152692
crossref_primary_10_1021_jacsau_2c00160
crossref_primary_10_1039_D3CP02712K
crossref_primary_10_1134_S1063782624601547
crossref_primary_10_1002_slct_202400015
crossref_primary_10_1016_j_mseb_2024_117593
crossref_primary_10_1021_acsaem_3c01988
crossref_primary_10_1021_acsnano_3c10033
crossref_primary_10_4236_msa_2023_149030
crossref_primary_10_1007_s12596_023_01372_x
crossref_primary_10_1007_s41939_024_00699_7
crossref_primary_10_1016_j_mtcomm_2023_106700
crossref_primary_10_1002_inf2_12345
crossref_primary_10_1021_acs_energyfuels_4c02083
crossref_primary_10_1039_D3RA03492E
crossref_primary_10_1016_j_jpcs_2024_112325
crossref_primary_10_1016_j_surfin_2023_103192
crossref_primary_10_3390_ma14113091
crossref_primary_10_47836_pjst_31_4_26
crossref_primary_10_1016_j_solener_2024_112573
crossref_primary_10_3390_nano11082151
crossref_primary_10_1021_acsami_2c23136
crossref_primary_10_1016_j_orgel_2023_106829
crossref_primary_10_1088_1402_4896_ad36bd
crossref_primary_10_1142_S1793292023501096
crossref_primary_10_1016_j_ijleo_2023_170868
crossref_primary_10_1007_s11468_025_02771_5
crossref_primary_10_1021_acsenergylett_1c02836
crossref_primary_10_1007_s10971_023_06296_3
crossref_primary_10_1080_00268976_2025_2480833
crossref_primary_10_3390_nano12173003
crossref_primary_10_3390_nano14010048
crossref_primary_10_1016_j_polymer_2024_127500
crossref_primary_10_1016_j_jallcom_2023_169104
crossref_primary_10_1016_j_molstruc_2024_141142
crossref_primary_10_1016_j_solener_2024_112680
crossref_primary_10_1016_j_mtsust_2022_100218
crossref_primary_10_1016_j_solener_2025_113398
crossref_primary_10_1021_acs_chemmater_2c03305
crossref_primary_10_3390_mi15020192
crossref_primary_10_1002_admt_202200275
crossref_primary_10_1038_s41598_024_81797_x
crossref_primary_10_1007_s10825_022_01940_7
crossref_primary_10_1016_j_solener_2022_11_025
crossref_primary_10_1016_j_mtcomm_2023_105994
crossref_primary_10_1021_acs_iecr_3c04252
crossref_primary_10_1016_j_inoche_2024_113578
crossref_primary_10_1002_adem_202301101
crossref_primary_10_1557_s43578_022_00537_x
crossref_primary_10_1016_j_jallcom_2022_167238
crossref_primary_10_1007_s10854_022_07797_7
crossref_primary_10_1007_s11082_023_06127_3
crossref_primary_10_1016_j_ijleo_2023_170808
crossref_primary_10_1016_j_solmat_2025_113548
crossref_primary_10_1080_16583655_2023_2300856
crossref_primary_10_1088_1361_6528_acb7fb
crossref_primary_10_1038_s41598_024_62882_7
crossref_primary_10_1007_s11082_024_06902_w
crossref_primary_10_3762_bjnano_16_11
crossref_primary_10_24018_ejece_2023_7_5_558
crossref_primary_10_1039_D4TA00956H
crossref_primary_10_1007_s10854_025_14488_6
crossref_primary_10_3390_polym15224443
crossref_primary_10_1016_j_matchemphys_2022_127188
crossref_primary_10_1007_s11706_022_0595_7
crossref_primary_10_1039_D2SE00667G
crossref_primary_10_3390_nano11102732
crossref_primary_10_1016_j_colsurfa_2023_132075
crossref_primary_10_1016_j_mtcomm_2022_104220
crossref_primary_10_3390_solar3030025
crossref_primary_10_1039_D3NJ02841K
crossref_primary_10_1002_adom_202300100
crossref_primary_10_1007_s42823_023_00578_0
crossref_primary_10_1016_j_solmat_2024_113388
crossref_primary_10_1016_j_orgel_2022_106674
crossref_primary_10_1039_D2SE00492E
crossref_primary_10_1007_s10854_024_13697_9
crossref_primary_10_1039_D4LF00299G
crossref_primary_10_1021_acsomega_4c01242
crossref_primary_10_1002_pssa_202300247
crossref_primary_10_1016_j_solener_2024_112375
crossref_primary_10_3390_ma18010186
crossref_primary_10_2174_0115734137286096240320075126
crossref_primary_10_1002_ente_202100838
crossref_primary_10_3390_en14185741
crossref_primary_10_1103_PRXEnergy_2_013004
crossref_primary_10_1002_cssc_202201485
crossref_primary_10_1021_acs_chemrev_2c00166
crossref_primary_10_1002_adts_202300610
crossref_primary_10_1007_s12598_024_02881_9
crossref_primary_10_1007_s00339_022_06349_4
crossref_primary_10_1007_s42823_023_00617_w
crossref_primary_10_1063_5_0116696
crossref_primary_10_1016_j_solener_2024_113210
crossref_primary_10_3389_fchem_2022_907556
crossref_primary_10_3390_nano13091550
crossref_primary_10_1016_j_mtcomm_2025_111625
crossref_primary_10_1002_adem_202400826
crossref_primary_10_1021_acs_energyfuels_2c00423
crossref_primary_10_3390_su151310465
crossref_primary_10_1142_S1793292023500388
crossref_primary_10_1002_pssa_202200736
crossref_primary_10_1016_j_mseb_2024_117740
crossref_primary_10_1002_pssb_202400525
crossref_primary_10_1016_j_ijleo_2023_171537
crossref_primary_10_3390_ma14216341
crossref_primary_10_1007_s41061_024_00464_x
crossref_primary_10_1039_D4RA03916E
crossref_primary_10_1088_1402_4896_ad79c2
crossref_primary_10_1007_s11082_024_07812_7
crossref_primary_10_1088_2631_8695_acee45
crossref_primary_10_1002_poc_4424
crossref_primary_10_1039_D2TA02588D
crossref_primary_10_1016_j_asej_2024_102919
crossref_primary_10_1039_D3CP04310J
crossref_primary_10_1039_D2CE00825D
crossref_primary_10_1016_j_heliyon_2022_e10504
crossref_primary_10_1016_j_matpr_2022_10_006
crossref_primary_10_1088_1361_6528_ac6d69
crossref_primary_10_1117_1_JPE_15_024501
crossref_primary_10_1016_j_ijleo_2024_171719
crossref_primary_10_1016_j_optmat_2022_112221
crossref_primary_10_1016_j_mssp_2025_109269
crossref_primary_10_1007_s11664_024_11630_8
crossref_primary_10_1039_D3SC04668K
crossref_primary_10_1016_j_ceramint_2024_04_111
crossref_primary_10_1002_adts_202400128
crossref_primary_10_1021_acsaem_2c01154
crossref_primary_10_1039_D3SE01617J
crossref_primary_10_1016_j_electacta_2022_141190
crossref_primary_10_1016_j_mseb_2024_117536
crossref_primary_10_1007_s12598_023_02421_x
crossref_primary_10_1016_j_apsadv_2023_100394
crossref_primary_10_1007_s10854_024_12757_4
crossref_primary_10_1098_rsos_230331
crossref_primary_10_1016_j_ijleo_2024_171727
crossref_primary_10_1016_j_solener_2021_10_054
crossref_primary_10_1007_s12034_023_03126_8
crossref_primary_10_1016_j_mssp_2024_108996
crossref_primary_10_1088_1361_6463_ad4dae
crossref_primary_10_3390_polym15040869
crossref_primary_10_1016_j_mseb_2024_117268
crossref_primary_10_3390_nano14231867
crossref_primary_10_1002_solr_202300920
crossref_primary_10_3390_ijms232113375
crossref_primary_10_1016_j_mser_2022_100711
crossref_primary_10_1016_j_dyepig_2023_111449
crossref_primary_10_1016_j_optmat_2022_113060
crossref_primary_10_1088_1402_4896_aceb37
crossref_primary_10_22399_ijcesen_250
crossref_primary_10_1109_LPT_2024_3380516
crossref_primary_10_3390_nano13232985
crossref_primary_10_1016_j_jpcs_2025_112598
crossref_primary_10_1039_D1CS01157J
crossref_primary_10_1016_j_mtchem_2022_101284
crossref_primary_10_1002_adma_202405630
crossref_primary_10_1002_cssc_202301508
crossref_primary_10_1021_acsaem_1c03040
crossref_primary_10_3390_coatings15020132
crossref_primary_10_1038_s41566_024_01561_5
crossref_primary_10_1016_j_solener_2024_112864
crossref_primary_10_1016_j_jpcs_2024_112401
crossref_primary_10_1016_j_rio_2023_100444
crossref_primary_10_1021_acsnano_4c11785
crossref_primary_10_1155_2023_7208502
crossref_primary_10_1007_s00339_023_06986_3
crossref_primary_10_1021_acsami_2c01981
crossref_primary_10_1007_s11705_022_2272_x
crossref_primary_10_1002_smtd_202300399
crossref_primary_10_1016_j_cplett_2023_141057
crossref_primary_10_1016_j_mtcomm_2023_106418
crossref_primary_10_1007_s44291_024_00026_x
crossref_primary_10_1016_j_vacuum_2023_112076
crossref_primary_10_1002_admt_202301760
crossref_primary_10_1016_j_solener_2024_112891
crossref_primary_10_1088_2515_7639_accaaa
crossref_primary_10_1002_solr_202300355
crossref_primary_10_4236_mnsms_2024_144006
crossref_primary_10_1007_s10825_022_01953_2
crossref_primary_10_1002_cptc_202400040
crossref_primary_10_1021_acsami_4c06709
crossref_primary_10_1002_ente_202301032
crossref_primary_10_1016_j_mssp_2024_108184
crossref_primary_10_3390_ma16072908
crossref_primary_10_1002_aenm_202200305
crossref_primary_10_1039_D3TA06708D
crossref_primary_10_3390_molecules27227927
crossref_primary_10_1021_acsmaterialslett_4c01699
crossref_primary_10_1016_j_solener_2023_111937
crossref_primary_10_1016_j_solmat_2024_113087
crossref_primary_10_1007_s10854_022_09708_2
Cites_doi 10.1002/adma.201703852
10.1021/ja411014k
10.1039/C7TA01258F
10.1002/anie.201811593
10.1021/acsami.9b16194
10.1039/C8EE01500G
10.1016/j.solener.2019.11.071
10.1002/anie.201904862
10.1021/acsami.7b14926
10.1002/aenm.202000910
10.1038/s41586-019-1036-3
10.1007/s12598-019-01341-z
10.1021/acsami.5b12776
10.1039/C8CS00262B
10.1016/j.solener.2020.04.077
10.1002/adfm.201808843
10.1039/C6EE00056H
10.1126/science.aan2301
10.1002/aenm.201903403
10.1002/smtd.201700280
10.1016/j.jpowsour.2016.04.032
10.1002/aenm.201601193
10.1039/C5TA00873E
10.1016/j.jallcom.2019.152091
10.1039/C7EE01675A
10.1021/nl504701y
10.1038/s41560-018-0200-6
10.1038/nphoton.2014.134
10.1039/C9TA08314F
10.1002/aenm.201903487
10.1002/adma.201803019
10.1126/science.aav8680
10.1016/j.nanoen.2020.104509
10.1039/C9SC01184F
10.1021/am503610u
10.1021/acs.chemrev.8b00539
10.1021/acsami.9b08714
10.1016/j.solmat.2017.11.010
10.1002/aenm.201700623
10.1002/adma.201803244
10.1016/j.nanoen.2017.12.002
10.1016/j.solmat.2019.110316
10.1038/s41598-018-25975-8
10.1021/acsami.7b06403
10.1021/jacs.7b01439
10.1088/1361-6528/aab1d4
10.1021/ja502824c
10.1002/aenm.201701935
10.1039/C8SC05284K
10.1039/C6RA21775C
10.1002/adfm.201502541
10.1039/C8TA12060A
10.1039/C6NR01927G
10.1016/j.orgel.2019.105575
10.1038/nenergy.2015.17
10.1039/C5NR07758C
10.1063/1.4962143
10.1039/C8EE00036K
10.1002/adfm.201807094
10.1021/acs.accounts.7b00597
10.1039/C8TC04231D
10.1002/tcr.201600117
10.1039/C9TA10694D
10.1039/C7EE02685D
10.1016/j.nanoen.2016.06.044
10.1016/j.nanoen.2019.104412
10.1038/s41598-018-19612-7
10.1038/s41467-018-04028-8
10.1039/C6TA10212C
10.1126/science.1228604
10.1039/C9TA04043A
10.1002/advs.201801169
10.1126/sciadv.1501170
10.1002/solr.201900564
10.1016/j.arabjc.2018.06.006
10.1002/adfm.201908462
10.1016/j.nanoen.2020.104673
10.1021/acs.nanolett.5b00116
10.1002/cssc.201700635
10.1021/acsenergylett.7b00137
10.1039/C5TA05286F
10.1002/adma.201908011
10.1021/acsenergylett.8b01906
10.1002/aenm.201701209
10.1039/C5EE00120J
10.1016/j.nanoen.2019.03.081
10.1016/j.cej.2019.123976
10.1038/s41566-019-0398-2
10.1021/acsnano.8b05514
10.1002/adfm.201706777
10.1126/science.aam5655
10.1039/C4TA05226A
10.1021/ja809598r
10.1016/j.apmt.2018.12.011
10.1016/j.jechem.2019.09.014
10.1016/j.mattod.2014.07.007
10.1002/pip.541
10.1039/C8TA12217B
10.1039/c3ee40810h
10.1002/admi.201700623
10.1038/s41560-019-0538-4
10.1007/s11426-018-9386-5
10.1016/j.nanoen.2015.08.009
10.1002/cssc.201600957
10.1039/C9TA01499C
10.1016/j.nanoen.2017.12.028
10.1002/aenm.201902500
10.1038/nature12509
10.1038/srep00591
ContentType Journal Article
Copyright Youke Publishing Co.,Ltd 2021
Youke Publishing Co.,Ltd 2021.
Copyright_xml – notice: Youke Publishing Co.,Ltd 2021
– notice: Youke Publishing Co.,Ltd 2021.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-020-01691-z
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 2729
ExternalDocumentID 10_1007_s12598_020_01691_z
Genre Commentary
Editorial
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8BQ
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c363t-a28d1b3c47a356a47c552a9fcb49b92413fac66e12a19161d5cf0e40e67d8ac63
IEDL.DBID U2A
ISSN 1001-0521
IngestDate Fri Jul 25 12:25:31 EDT 2025
Tue Jul 01 01:30:09 EDT 2025
Thu Apr 24 22:52:10 EDT 2025
Fri Feb 21 02:49:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Hole-transporting materials
Power conversion efficiency
Perovskite solar cells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-a28d1b3c47a356a47c552a9fcb49b92413fac66e12a19161d5cf0e40e67d8ac63
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
ORCID 0000-0003-0126-7957
0000-0003-1189-5287
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s12598-020-01691-z.pdf
PQID 2538321320
PQPubID 326325
PageCount 18
ParticipantIDs proquest_journals_2538321320
crossref_primary_10_1007_s12598_020_01691_z
crossref_citationtrail_10_1007_s12598_020_01691_z
springer_journals_10_1007_s12598_020_01691_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2021
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References Kim, Lee, Yun, Gil, Park (CR89) 2019; 11
Zhang, Kou, Zhang, Liu, Li, Bo, Shao (CR72) 2019; 7
Green, Ho-Baillie, Snaith (CR9) 2014; 8
Chen, Li, Huang, Chen (CR83) 2018; 8
Pitchaiya, Natarajan, Santhanam, Asokan, Yuvapragasam, Madurai Ramakrishnan, Palanisamy, Sundaram, Velauthapillai (CR31) 2020; 13
Sepalage, Meyer, Pascoe, Scully, Huang, Bach, Cheng, Spiccia (CR91) 2015; 25
Xie, Chen, Wu, Li, Cai, Liu, Yang, Han (CR98) 2017; 10
Jeon, Na, Jung, Yang, Lee, Kim, Shin, Il Seok, Lee, Seo (CR65) 2018; 3
Zhou, Guo, Lin, Ma, Su, Hu, Zhang, Liu, Chang, Hao (CR43) 2019; 60
Cao, Zuo, Cui, Shen, Moehl, Zakeeruddin, Grätzel, Wang (CR97) 2015; 17
Liu, Krückemeier, Krogmeier, Klingebiel, Márquez, Levcenko, Öz, Mathur, Rau, Unold, Kirchartz (CR50) 2018; 4
Xu, Liu, Zuo, Zhang, Zhao, Shen, Zhou, Chen, Yang, Wang (CR96) 2015; 15
Park (CR10) 2015; 18
Singh, Singh, Bhattacharya, Rhee (CR77) 2019; 14
Fakharuddin, De Rossi, Watson, Schmidt-Mende, Jose (CR17) 2016; 4
Ball, Lee, Hey, Snaith (CR13) 2013; 6
Chen, Deng, Dai, Wang, Tian, Zhan, Xie, Huang, Zheng (CR92) 2015; 3
Batmunkh, Shearer, Biggs, Shapter (CR18) 2015; 3
Zhang, He, Xiang, Zheng, Xue, Ye, Peng, Hao, Lian, Zeng, Qu, Song (CR105) 2018; 30
Wang, Dar, Ono, Zhang, Kan, Li, Zhang, Wang, Yang, Gao, Qi, Gratzel, Zhao (CR44) 2019; 365
Jena, Kulkarni, Miyasaka (CR1) 2019; 119
Sathiyan, Syed, Chen, Wu, Tao, Ding, Miao, Li, Cheng, Ding (CR47) 2020; 72
Sun, Li, Ye, Rao, Yan, Peng, Li, Liu, Wang, Chen, Xiao, Bian, Huang (CR80) 2016; 8
Lee, Teuscher, Miyasaka, Murakami, Snaith (CR12) 2012; 338
Jung, Kim, Jeon, Yang, Seo, Noh, Il (CR86) 2016; 9
Salim, Sun, Abe, Krishna, Grimsdale, Lam (CR19) 2015; 3
Arora, Dar, Hinderhofer, Pellet, Schreiber, Zakeeruddin, Gratzel (CR87) 2017; 358
Zuo, Ding (CR53) 2017; 7
Yang, Lee, Choi, Jung, Kim, Lee (CR88) 2019; 7
Rakstys, Igci, Nazeeruddin (CR28) 2019; 10
Zhou, Pang (CR21) 2020; 8
Reza, Gurung, Bahrami, Mabrouk, Elbohy, Pathak, Chen, Chowdhury, Rahman, Letourneau, Yang, Saianand, Elam, Darling, Qiao (CR60) 2020; 44
Jiang, Chu, Wang, Yang, Liu, Wang, Yin, Wu, Zhang, You (CR41) 2017; 29
Huang, Wang, Liu, Zhang, Yuan, Zhou, Song, Li (CR102) 2017; 9
Bi, Tress, Dar, Gao, Luo, Renevier, Schenk, Abate, Giordano, Baena, Decoppet, Zakeeruddin, Nazeeruddin, Gratzel, Hagfeldt (CR40) 2016; 2
Seo, Kim, Akin, Stojanovic, Simon, Fleischer, Hagfeldt, Zakeeruddin, Grätzel (CR45) 2018; 11
Azmi, Nam, Sinaga, Akbar, Lee, Yoon, Jung, Jang (CR29) 2018; 44
Xu, Li, Zhang, Liu, Zheng, Lv, Li, Chen, Huang, Chen (CR57) 2020; 206
Xu, Bi, Hua, Liu, Cheng, Grätzel, Kloo, Hagfeldt, Sun (CR73) 2016; 9
Kim, Lee, Kang, Kim, Park (CR69) 2018; 8
Christians, Fung, Kamat (CR90) 2014; 136
Jiang, Zhao, Zhang, Yang, Chen, Chu, Ye, Li, Yin, You (CR42) 2019; 13
Yu, Sun (CR76) 2018; 2
Lu, He, Ji, Shan, Zhong, Xu, LiuYang, Wu, Zhu (CR27) 2020; 385
Urieta-Mora, Garcia-Benito, Molina-Ontoria, Martin (CR7) 2018; 47
Rao, Sun, Ye, Yan, Li, Peng, Liu, Bian, Huang (CR109) 2016; 8
Wu, Wang, Fang, Shao, Tang, Deng, Lu, Liu, Li, Yang, Gruverman, Huang (CR20) 2018; 9
Nia, Matteocci, Cina, Di Carlo (CR62) 2017; 10
Green, Ho-Baillie (CR5) 2017; 2
Zhang, Elawad, Yu, Jiang, Lai, Sun (CR61) 2016; 6
Chopra, Paulson, Dutta (CR14) 2004; 12
Cai, Cai, Yang, Li, Gurney, Yi, Iraqi, Liu, Wang (CR38) 2018; 45
Miyasaka, Kulkarni, Kim, Öz, Jena (CR2) 2020; 10
Ye, Rao, Zhao, Zhang, Bao, Sun, Li, Gu, Wang, Liu, Bian, Huang (CR104) 2017; 139
Zhang, Xu, Yang, Ruan, Wang, Liu, Zhang, Vlachopoulos, Kloo, Boschloo, Sun, Hagfeldt, Johansson (CR64) 2018; 8
Kohnehpoushi, Nazari, Nejand, Eskandari (CR78) 2018; 29
Kim, Lee, Im, Lee, Moehl, Marchioro, Moon, Humphry-Baker, Yum, Moser, Gratzel, Park (CR11) 2012; 2
Hawash, Ono, Qi (CR25) 2018; 5
Yue, Liu, Xu, Li, Azam, Ren, Liu, Sun, Wang, Cao, Yan, Qu, Lei, Wang (CR99) 2017; 10
Behrouznejad, Forouzandeh, Khosroshahi, Meraji, Badrabadi, Dehghani, Li, Zhan, Liao, Ning, Taghavinia (CR108) 2020; 4
Liu, Li, Yuan, Hong, Shi, Yuan, Wei, Huang, Tang, Fung (CR54) 2017; 5
Najafi, Taheri, Martin-Garcia, Bellani, Di Girolamo, Agresti, Oropesa-Nunez, Pescetelli, Vesce, Calabro, Prato, Del Rio Castillo, Di Carlo, Bonaccorso (CR103) 2018; 12
Pham, Shang, Yang, Hoang, Tiong, Wang, Fan, Chen, Kou, Wang, Wang (CR46) 2020; 69
Wang, Mujahid, Duan, Wang, Xue, Yang (CR32) 2019; 29
Chen, Zhang, Liu, Wu, Yang, Chen, Chen, Chen (CR3) 2020; 39
Rao, Ye, Sun, Yan, Li, Peng, Liu, Bian, Li, Huang (CR81) 2016; 27
Krishna, Grimsdale (CR22) 2017; 5
Yang, Park, Jung, Jeon, Kim, Lee, Shin, Seo, Kim, Noh, Seok (CR48) 2017; 356
Yu, Li, Wang, Alarousu, Chen, Lin, Wang, Hedhili, Li, Wu, Wang, Mohammed, Wu (CR79) 2016; 8
Di Giacomo, Shanmugam, Fledderus, Bruijnaers, Verhees, Dorenkamper, Veenstra, Qiu, Gehlhaar, Merckx, Aernouts, Andriessen, Galagan (CR70) 2018; 181
Jiang, Wang, Wu, Xue, Yao, Zhang, Chen, Zhang, Zhu, Yan, Zhu, Yip (CR36) 2020; 32
Rodriguez-Seco, Cabau, Vidal-Ferran, Palomares (CR37) 2018; 51
Luo, Xia, Yang, Chen, Wan, Han, Malik, Zhu, Jia (CR34) 2018; 11
Fan, Biesold-McGee, Ma, Xu, Pan, Peng, Lin (CR4) 2020; 59
Li, Cheng, Cao, Zhao, Xiao, Zi, Sun (CR59) 2020; 78
Kim, Choi, Kim, Lee, Son, Park (CR24) 2020; 10
Wang, Wang, Li, Hu, Sun, Zang (CR56) 2019; 7
Kim, Kwon, Le, Hong, Jang, Kim (CR101) 2016; 319
Khorasani, Marandi, Khosroshahi, Malekshahi Byranvand, Dehghani, Iraji Zad, Tajabadi, Taghavinia (CR107) 2019; 11
Shen, Wu, Zhang, Li, Zhang, Xu, Wu, Tian, Zhu (CR67) 2019; 58
Schloemer, Christians, Luther, Sellinger (CR6) 2019; 10
Liu, Zhang, Li, Zhou, She, Wang, Tian, Jen, Xu (CR26) 2020; 30
Ru, Bi, Zhang, Wang, Kong, Sha, Tang, Zhang, Wu, Chen, Yang, Chen, Han (CR100) 2020; 10
Luo, Xia, Yang, Malik, Han, Shu, Yao, Wan, Jia (CR49) 2020; 70
Zhu, Ma, Wang, Li, Gao, Wang, Jiang, Liao (CR66) 2018; 29
Luo, Ma, Hou, Li, Ren, Dai, Yao, Zhou, Xiang, Du, He, Wang, Jiang, Lin, Zhang, Guo (CR71) 2018; 28
Jung, Jeon, Park, Moon, Shin, Yang, Noh, Seo (CR35) 2019; 567
Cao, Wu, Peng, Feng, Li, Tang (CR94) 2019; 62
Tseng, Chen, Chang, Wu, Feng, Jeng, Chen, Lee (CR82) 2020; 204
Li, Ma, Mateen, Liu, Ding, Gao, Yang, Zhang, Wu, Dai (CR74) 2020; 195
Fakharuddin, Schmidt-Mende, Garcia-Belmonte, Jose, Mora-Sero (CR16) 2017; 7
Li, Yang, Jiang, Chu, Zhang, Zhou, Xin (CR93) 2017; 9
Li, Yang, Jiang, Lai, Li, Tan, Chen, Li (CR106) 2019; 7
Ye, Sun, Li, Yan, Peng, Bian, Liu, Huang (CR85) 2015; 15
Zhang, Wu, Li, Li, Meng, Bo (CR30) 2019; 7
Liu, Zhou, Chen, Zhao, Dai, Xu (CR84) 2019; 6
Rajeswari, Mrinalini, Prasanthkumar, Giribabu (CR33) 2017; 17
Kojima, Teshima, Shirai, Miyasaka (CR8) 2009; 131
Wang, Shen, Li, Chen, Lin, Chen, Guo (CR95) 2014; 6
Zheng, Hou, Bao, Yin, Yuan, Huang, Song, Liu, Troughton, Gasparini, Zhou, Lin, Xue, Chen, Johnston, Wei, Hedhili, Wei, Alsalloum, Maity, Turedi, Yang, Baran, Anthopoulos, Han, Lu, Mohammed, Gao, Sargent, Bakr (CR51) 2020; 5
Yu, Hong, Jung, Kim, Baek, Lee, Cho, Park, Choi, Song (CR55) 2018; 8
Connell, Wang, Lin, Greenwood, Wiles, Jones, Furnell, Anthony, Kershaw, Cooke, Snaith, Holliman (CR68) 2019; 7
Mann, Seo, Kwon, Na (CR58) 2020; 812
Saliba, Orlandi, Matsui, Aghazada, Cavazzini, Correa-Baena, Gao, Scopelliti, Mosconi, Dahmen, De Angelis, Abate, Hagfeldt, Pozzi, Graetzel, Nazeeruddin (CR63) 2016; 1
Palilis, Vasilopoulou, Verykios, Soultati, Polydorou, Argitis, Davazoglou, Mohd Yusoff, Nazeeruddin (CR75) 2020; 10
Chen, Park (CR23) 2019; 31
Heo, Han, Kim, Ahn, Im (CR52) 2015; 8
Jeon, Lee, Kim, Seo, Noh, Lee, Seok (CR39) 2014; 136
Liu, Johnston, Snaith (CR15) 2013; 501
MA Green (1691_CR9) 2014; 8
DY Liu (1691_CR54) 2017; 5
Q Fan (1691_CR4) 2020; 59
M Liu (1691_CR15) 2013; 501
EH Jung (1691_CR35) 2019; 567
GA Sepalage (1691_CR91) 2015; 25
S Pitchaiya (1691_CR31) 2020; 13
TH Schloemer (1691_CR6) 2019; 10
JY Seo (1691_CR45) 2018; 11
N Arora (1691_CR87) 2017; 358
A Fakharuddin (1691_CR17) 2016; 4
P Huang (1691_CR102) 2017; 9
KC Wang (1691_CR95) 2014; 6
K Rakstys (1691_CR28) 2019; 10
LR Zhang (1691_CR30) 2019; 7
C Liu (1691_CR84) 2019; 6
Y Zhang (1691_CR72) 2019; 7
F Zhang (1691_CR105) 2018; 30
A Kojima (1691_CR8) 2009; 131
ND Pham (1691_CR46) 2020; 69
YC Zhang (1691_CR61) 2016; 6
MH Li (1691_CR74) 2020; 195
T Salim (1691_CR19) 2015; 3
JZ Chen (1691_CR23) 2019; 31
A Khorasani (1691_CR107) 2019; 11
MA Green (1691_CR5) 2017; 2
LG Xu (1691_CR57) 2020; 206
Q Jiang (1691_CR41) 2017; 29
Q Luo (1691_CR71) 2018; 28
PB Ru (1691_CR100) 2020; 10
C Shen (1691_CR67) 2019; 58
CL Chen (1691_CR3) 2020; 39
XB Xu (1691_CR96) 2015; 15
L Najafi (1691_CR103) 2018; 12
HX Rao (1691_CR109) 2016; 8
SY Ye (1691_CR85) 2015; 15
R Wang (1691_CR32) 2019; 29
SZ Yue (1691_CR99) 2017; 10
HS Kim (1691_CR11) 2012; 2
HX Rao (1691_CR81) 2016; 27
AK Jena (1691_CR1) 2019; 119
YG Kim (1691_CR101) 2016; 319
IS Yang (1691_CR88) 2019; 7
G Sathiyan (1691_CR47) 2020; 72
DS Mann (1691_CR58) 2020; 812
WS Yang (1691_CR48) 2017; 356
WW Li (1691_CR59) 2020; 78
XP Zheng (1691_CR51) 2020; 5
XD Zhu (1691_CR66) 2018; 29
DQ Bi (1691_CR40) 2016; 2
T Miyasaka (1691_CR2) 2020; 10
WH Sun (1691_CR80) 2016; 8
X Li (1691_CR106) 2019; 7
GW Kim (1691_CR24) 2020; 10
KM Reza (1691_CR60) 2020; 44
YJ Chen (1691_CR83) 2018; 8
M Jung (1691_CR86) 2016; 9
WY Chen (1691_CR92) 2015; 3
JC Yu (1691_CR55) 2018; 8
LC Palilis (1691_CR75) 2020; 10
JA Christians (1691_CR90) 2014; 136
JM Ball (1691_CR13) 2013; 6
ZF Liu (1691_CR50) 2018; 4
SY Ye (1691_CR104) 2017; 139
A Connell (1691_CR68) 2019; 7
JB Zhang (1691_CR64) 2018; 8
NJ Jeon (1691_CR65) 2018; 3
C Rodriguez-Seco (1691_CR37) 2018; 51
ZM Zhou (1691_CR21) 2020; 8
F Di Giacomo (1691_CR70) 2018; 181
A Fakharuddin (1691_CR16) 2017; 7
JH Heo (1691_CR52) 2015; 8
B Xu (1691_CR73) 2016; 9
X Li (1691_CR93) 2017; 9
C Liu (1691_CR26) 2020; 30
FL Cai (1691_CR38) 2018; 45
M Batmunkh (1691_CR18) 2015; 3
L Zhou (1691_CR43) 2019; 60
CT Zuo (1691_CR53) 2017; 7
R Rajeswari (1691_CR33) 2017; 17
J Kim (1691_CR89) 2019; 11
KL Chopra (1691_CR14) 2004; 12
Y Wang (1691_CR44) 2019; 365
WL Yu (1691_CR79) 2016; 8
CC Tseng (1691_CR82) 2020; 204
NY Nia (1691_CR62) 2017; 10
N-G Park (1691_CR10) 2015; 18
FX Xie (1691_CR98) 2017; 10
WQ Wu (1691_CR20) 2018; 9
Q Jiang (1691_CR42) 2019; 13
JS Luo (1691_CR34) 2018; 11
J Cao (1691_CR94) 2019; 62
S Kohnehpoushi (1691_CR78) 2018; 29
Z Hawash (1691_CR25) 2018; 5
K Jiang (1691_CR36) 2020; 32
F Behrouznejad (1691_CR108) 2020; 4
K Cao (1691_CR97) 2015; 17
Z Yu (1691_CR76) 2018; 2
R Singh (1691_CR77) 2019; 14
J Urieta-Mora (1691_CR7) 2018; 47
NJ Jeon (1691_CR39) 2014; 136
M Wang (1691_CR56) 2019; 7
M Saliba (1691_CR63) 2016; 1
MM Lee (1691_CR12) 2012; 338
GW Kim (1691_CR69) 2018; 8
A Krishna (1691_CR22) 2017; 5
R Azmi (1691_CR29) 2018; 44
HQ Lu (1691_CR27) 2020; 385
JS Luo (1691_CR49) 2020; 70
References_xml – volume: 119
  start-page: 3036
  issue: 5
  year: 2019
  ident: CR1
  article-title: Halide perovskite photovoltaics: background, status, and future prospects
  publication-title: Chem Rev
– volume: 44
  start-page: 41
  year: 2020
  ident: CR60
  article-title: Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: enhancement of electrical and optical properties with improved morphology
  publication-title: J Energy Chem
– volume: 11
  start-page: 2985
  issue: 10
  year: 2018
  ident: CR45
  article-title: Novel p-dopant toward highly efficient and stable perovskite solar cells
  publication-title: Energy Environ Sci
– volume: 29
  start-page: 1703852
  issue: 46
  year: 2017
  ident: CR41
  article-title: Planar-structure perovskite solar cells with efficiency beyond 21%
  publication-title: Adv Mater
– volume: 29
  start-page: 1807094
  issue: 5
  year: 2018
  ident: CR66
  article-title: Hole transporting materials incorporating carbazole into spiro-core for highly efficient perovskite solar cells
  publication-title: Adv Funct Mater
– volume: 7
  start-page: 6028
  issue: 11
  year: 2019
  ident: CR88
  article-title: Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules
  publication-title: J Mater Chem A
– volume: 8
  start-page: 7646
  issue: 1
  year: 2018
  ident: CR83
  article-title: Cu/Cu O nanocomposite films as a p-type modified layer for efficient perovskite solar cells
  publication-title: Sci Rep
– volume: 30
  start-page: 1908462
  issue: 28
  year: 2020
  ident: CR26
  article-title: Highly stable and efficient perovskite solar cells with 22.0% efficiency based on inorganic-organic dopant-free double hole transporting layers
  publication-title: Adv Funct Mater
– volume: 29
  start-page: 1808843
  issue: 47
  year: 2019
  ident: CR32
  article-title: A review of perovskites solar cell stability
  publication-title: Adv Funct Mater
– volume: 4
  start-page: 091505
  issue: 9
  year: 2016
  ident: CR17
  article-title: Research update: behind the high efficiency of hybrid perovskite solar cells
  publication-title: APL Mater
– volume: 25
  start-page: 5650
  issue: 35
  year: 2015
  ident: CR91
  article-title: Copper(I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of – hysteresis
  publication-title: Adv Funct Mater
– volume: 29
  start-page: 205201
  issue: 20
  year: 2018
  ident: CR78
  article-title: MoS : a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells
  publication-title: Nanotechnology
– volume: 8
  start-page: 6173
  issue: 11
  year: 2016
  ident: CR79
  article-title: Ultrathin Cu O as an efficient inorganic hole transporting material for perovskite solar cells
  publication-title: Nanoscale
– volume: 319
  start-page: 1
  year: 2016
  ident: CR101
  article-title: Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells
  publication-title: J Power Sources
– volume: 8
  start-page: 506
  issue: 7
  year: 2014
  ident: CR9
  article-title: The emergence of perovskite solar cells
  publication-title: Nat Photonics
– volume: 139
  start-page: 7504
  issue: 22
  year: 2017
  ident: CR104
  article-title: A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I
  publication-title: J Am Chem Soc.
– volume: 2
  start-page: e1501170
  issue: 1
  year: 2016
  ident: CR40
  article-title: Efficient luminescent solar cells based on tailored mixed-cation perovskites
  publication-title: Sci Adv
– volume: 11
  start-page: 2035
  issue: 8
  year: 2018
  ident: CR34
  article-title: Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole transporting material using a fluorine-containing hydrophobic Lewis acid
  publication-title: Energy Environ Sci
– volume: 4
  start-page: 1900564
  issue: 5
  year: 2020
  ident: CR108
  article-title: Effective carbon composite electrode for low-cost perovskite solar cell with inorganic CuIn Ga S hole transport material
  publication-title: Sol RRL.
– volume: 2
  start-page: 822
  issue: 4
  year: 2017
  ident: CR5
  article-title: Perovskite solar cells: the birth of a new era in photovoltaics
  publication-title: ACS Energy Lett
– volume: 358
  start-page: 768
  issue: 6364
  year: 2017
  ident: CR87
  article-title: Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
  publication-title: Science
– volume: 51
  start-page: 869
  issue: 4
  year: 2018
  ident: CR37
  article-title: Advances in the synthesis of small molecules as hole transport materials for lead halide perovskite solar cells
  publication-title: Acc Chem Res
– volume: 385
  start-page: 123976
  year: 2020
  ident: CR27
  article-title: Dopant-free hole transport materials processed with green solvent for efficient perovskite solar cells
  publication-title: Chem Eng J
– volume: 62
  start-page: 363
  issue: 3
  year: 2019
  ident: CR94
  article-title: Copper–copper iodide hybrid nanostructure as hole transport material for efficient and stable inverted perovskite solar cells
  publication-title: Sci China: Chem
– volume: 58
  start-page: 3784
  issue: 12
  year: 2019
  ident: CR67
  article-title: Semi-locked tetrathienylethene as a building block for hole-transporting materials: toward efficient and stable perovskite solar cells
  publication-title: Angew Chem Int Ed Engl
– volume: 78
  start-page: 105575
  year: 2020
  ident: CR59
  article-title: Boost the performance of inverted perovskite solar cells with PEDOT:PSS/graphene quantum dots composite hole transporting layer
  publication-title: Org Electron
– volume: 2
  start-page: 1700280
  issue: 2
  year: 2018
  ident: CR76
  article-title: Inorganic hole-transporting materials for perovskite solar cells
  publication-title: Small Methods
– volume: 338
  start-page: 643
  issue: 6107
  year: 2012
  ident: CR12
  article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
  publication-title: Science
– volume: 5
  start-page: 5701
  issue: 12
  year: 2017
  ident: CR54
  article-title: Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers
  publication-title: J Mater Chem A
– volume: 30
  start-page: e1803244
  issue: 38
  year: 2018
  ident: CR105
  article-title: Semimetal-semiconductor transitions for monolayer antimonene nanosheets and their application in perovskite solar cells
  publication-title: Adv Mater
– volume: 3
  start-page: 8943
  issue: 17
  year: 2015
  ident: CR19
  article-title: Perovskite-based solar cells: impact of morphology and device architecture on device performance
  publication-title: J Mater Chem A
– volume: 10
  start-page: 2000910
  issue: 27
  year: 2020
  ident: CR75
  article-title: Inorganic and hybrid interfacial materials for organic and perovskite solar cells
  publication-title: Adv Energy Mater.
– volume: 8
  start-page: 7800
  issue: 12
  year: 2016
  ident: CR109
  article-title: Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  start-page: 11851
  issue: 15
  year: 2014
  ident: CR95
  article-title: Low-temperature sputtered nickel oxide compact thin-film as effective electron blocking layer for mesoscopic NiO/CH NH PbI perovskite heterojunction solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 10
  start-page: 3854
  issue: 19
  year: 2017
  ident: CR62
  article-title: High-efficiency perovskite solar cell based on poly(3-hexylthiophene): influence of molecular weight and mesoscopic scaffold layer
  publication-title: Chemsuschem
– volume: 365
  start-page: 591
  issue: 6453
  year: 2019
  ident: CR44
  article-title: Thermodynamically stabilized beta-CsPbI -based perovskite solar cells with efficiencies > 18%
  publication-title: Science
– volume: 4
  start-page: 110
  issue: 1
  year: 2018
  ident: CR50
  article-title: Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells
  publication-title: ACS Energy Lett
– volume: 8
  start-page: 1701935
  issue: 4
  year: 2018
  ident: CR69
  article-title: Donor-acceptor type dopant-free, polymeric hole transport material for planar perovskite solar cells (19.8%)
  publication-title: Adv Energy Mater
– volume: 6
  start-page: 108888
  issue: 110
  year: 2016
  ident: CR61
  article-title: Enhanced performance of perovskite solar cells with P3HT hole transporting materials via molecular p-type doping
  publication-title: RSC Adv
– volume: 14
  start-page: 175
  year: 2019
  ident: CR77
  article-title: Review of current progress in inorganic hole-transport materials for perovskite solar cells
  publication-title: Appl Mater Today
– volume: 12
  start-page: 69
  issue: 23
  year: 2004
  ident: CR14
  article-title: Thin-film solar cells: an overview
  publication-title: Prog Photovolt
– volume: 47
  start-page: 8541
  issue: 23
  year: 2018
  ident: CR7
  article-title: Hole transporting materials for perovskite solar cells: a chemical approach
  publication-title: Chem Soc Rev
– volume: 9
  start-page: 1625
  issue: 1
  year: 2018
  ident: CR20
  article-title: Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells
  publication-title: Nat Commun
– volume: 44
  start-page: 191
  year: 2018
  ident: CR29
  article-title: High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells
  publication-title: Nano Energy
– volume: 13
  start-page: 2526
  issue: 1
  year: 2020
  ident: CR31
  article-title: A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application
  publication-title: Arab J Chem
– volume: 9
  start-page: 873
  issue: 3
  year: 2016
  ident: CR73
  article-title: A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells
  publication-title: Energy Environ Sci
– volume: 28
  start-page: 1706777
  issue: 11
  year: 2018
  ident: CR71
  article-title: All-carbon-electrode-based endurable flexible perovskite solar cells
  publication-title: Adv Funct Mater
– volume: 812
  start-page: 152091
  year: 2020
  ident: CR58
  article-title: Efficient and stable planar perovskite solar cells with a PEDOT:PSS/SrGO hole interfacial layer
  publication-title: J Alloys Compd
– volume: 7
  start-page: 1601193
  issue: 2
  year: 2017
  ident: CR53
  article-title: Modified PEDOT layer makes a 1.52 V for perovskite/PCBM solar cells
  publication-title: Adv Energy Mater
– volume: 356
  start-page: 1376
  issue: 6345
  year: 2017
  ident: CR48
  article-title: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells
  publication-title: Science
– volume: 7
  start-page: 26421
  issue: 46
  year: 2019
  ident: CR56
  article-title: Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis
  publication-title: J Mater Chem A
– volume: 31
  start-page: e1803019
  issue: 47
  year: 2019
  ident: CR23
  article-title: Causes and solutions of recombination in perovskite solar cells
  publication-title: Adv Mater
– volume: 136
  start-page: 758
  issue: 2
  year: 2014
  ident: CR90
  article-title: An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide
  publication-title: J Am Chem Soc
– volume: 7
  start-page: 1700623
  issue: 22
  year: 2017
  ident: CR16
  article-title: Interfaces in perovskite solar cells
  publication-title: Adv Energy Mater
– volume: 10
  start-page: 1942
  issue: 9
  year: 2017
  ident: CR98
  article-title: Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells
  publication-title: Energy Environ Sci
– volume: 5
  start-page: 1700623
  issue: 1
  year: 2018
  ident: CR25
  article-title: Recent advances in spiro-MeOTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells
  publication-title: Adv Mater Interfaces
– volume: 181
  start-page: 53
  year: 2018
  ident: CR70
  article-title: Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating
  publication-title: Sol Energy Mater Sol Cells
– volume: 45
  start-page: 28
  year: 2018
  ident: CR38
  article-title: Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells
  publication-title: Nano Energy
– volume: 13
  start-page: 460
  issue: 7
  year: 2019
  ident: CR42
  article-title: Surface passivation of perovskite film for efficient solar cells
  publication-title: Nat Photonics
– volume: 59
  start-page: 1030
  issue: 3
  year: 2020
  ident: CR4
  article-title: Lead-free halide perovskite nanocrystals: crystal structures, synthesis, stabilities, and optical properties
  publication-title: Angew Chem Int Ed Engl
– volume: 5
  start-page: 16446
  issue: 32
  year: 2017
  ident: CR22
  article-title: Hole transporting materials for mesoscopic perovskite solar cells-towards a rational design?
  publication-title: J Mater Chem A
– volume: 206
  start-page: 110316
  year: 2020
  ident: CR57
  article-title: Improving the efficiency and stability of inverted perovskite solar cells by CuSCN-doped PEDOT:PSS
  publication-title: Sol Energy Mater Sol Cells
– volume: 3
  start-page: 682
  issue: 8
  year: 2018
  ident: CR65
  article-title: A fluorene-terminated hole transporting material for highly efficient and stable perovskite solar cells
  publication-title: Nat Energy
– volume: 7
  start-page: 5522
  issue: 10
  year: 2019
  ident: CR72
  article-title: Crosslinked and dopant free hole transport materials for efficient and stable planar perovskite solar cells
  publication-title: J Mater Chem A
– volume: 5
  start-page: 131
  issue: 2
  year: 2020
  ident: CR51
  article-title: Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells
  publication-title: Nat Energy.
– volume: 70
  start-page: 104509
  year: 2020
  ident: CR49
  article-title: Novel approach toward hole transporting layer doped by hydrophobic Lewis acid through infiltrated diffusion doping for perovskite solar cells
  publication-title: Nano Energy
– volume: 32
  start-page: e1908011
  issue: 16
  year: 2020
  ident: CR36
  article-title: Dopant-free organic hole transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells
  publication-title: Adv Mater
– volume: 3
  start-page: 19353
  issue: 38
  year: 2015
  ident: CR92
  article-title: Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells
  publication-title: J Mater Chem A
– volume: 204
  start-page: 270
  year: 2020
  ident: CR82
  article-title: Cu O-HTM/SiO -ETM assisted for synthesis engineering improving efficiency and stability with heterojunction planar perovskite thin-film solar cells
  publication-title: Sol Energy
– volume: 7
  start-page: 7065
  issue: 12
  year: 2019
  ident: CR106
  article-title: Perovskite solar cells employing an eco-friendly and low-cost inorganic hole transport layer for enhanced photovoltaic performance and operational stability
  publication-title: J Mater Chem A
– volume: 17
  start-page: 681
  issue: 7
  year: 2017
  ident: CR33
  article-title: Emerging of inorganic hole transporting materials for perovskite solar cells
  publication-title: Chem Rec
– volume: 7
  start-page: 14473
  issue: 24
  year: 2019
  ident: CR30
  article-title: Ladder-like conjugated polymers used as hole-transporting materials for high-efficiency perovskite solar cells
  publication-title: J Mater Chem A
– volume: 11
  start-page: 46818
  issue: 50
  year: 2019
  ident: CR89
  article-title: Interfacial modification and defect passivation by the cross-linking interlayer for efficient and stable CuSCN-based perovskite solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 15
  start-page: 3723
  issue: 6
  year: 2015
  ident: CR85
  article-title: CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%
  publication-title: Nano Lett
– volume: 15
  start-page: 2402
  issue: 4
  year: 2015
  ident: CR96
  article-title: Hole selective NiO contact for efficient perovskite solar cells with carbon electrode
  publication-title: Nano Lett
– volume: 11
  start-page: 30838
  issue: 34
  year: 2019
  ident: CR107
  article-title: Optimization of CuIn Ga S nanoparticles and their application in the hole-transporting layer of highly efficient and stable mixed-halide perovskite solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 60
  start-page: 583
  year: 2019
  ident: CR43
  article-title: Interface engineering of low-temperature processed all-inorganic CsPbI Br perovskite solar cells toward PCE exceeding 14%
  publication-title: Nano Energy
– volume: 8
  start-page: 1070
  issue: 1
  year: 2018
  ident: CR55
  article-title: Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer
  publication-title: Sci Rep
– volume: 9
  start-page: 41354
  issue: 47
  year: 2017
  ident: CR93
  article-title: Synergistic effect to high-performance perovskite solar cells with reduced hysteresis and improved stability by the introduction of Na-treated TiO and spraying-deposited CuI as transport layers
  publication-title: ACS Appl Mater Interfaces
– volume: 18
  start-page: 65
  issue: 2
  year: 2015
  ident: CR10
  article-title: Perovskite solar cells: an emerging photovoltaic technology
  publication-title: Mater Today
– volume: 2
  start-page: 591
  year: 2012
  ident: CR11
  article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
  publication-title: Sci Rep
– volume: 9
  start-page: 25323
  issue: 30
  year: 2017
  ident: CR102
  article-title: Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 503
  issue: 2
  year: 2020
  ident: CR21
  article-title: Highly efficient inverted hole-transport-layer-free perovskite solar cells
  publication-title: J Mater Chem A
– volume: 8
  start-page: 1602
  issue: 5
  year: 2015
  ident: CR52
  article-title: Hysteresis-less inverted CH NH PbI planar perovskite hybrid solar cells with 18.1% power conversion efficiency
  publication-title: Energy Environ Sci.
– volume: 9
  start-page: 2592
  issue: 18
  year: 2016
  ident: CR86
  article-title: Thermal stability of CuSCN hole conductor-based perovskite solar cells
  publication-title: Chemsuschem
– volume: 6
  start-page: 1801169
  issue: 7
  year: 2019
  ident: CR84
  article-title: Hydrophobic Cu O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells
  publication-title: Adv Sci
– volume: 10
  start-page: 6748
  issue: 28
  year: 2019
  ident: CR28
  article-title: Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells
  publication-title: Chem Sci.
– volume: 567
  start-page: 511
  issue: 7749
  year: 2019
  ident: CR35
  article-title: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)
  publication-title: Nature
– volume: 136
  start-page: 7837
  issue: 22
  year: 2014
  ident: CR39
  article-title: O-methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells
  publication-title: J Am Chem Soc
– volume: 195
  start-page: 618
  year: 2020
  ident: CR74
  article-title: Facile donor (D)-π-D triphenylamine-based hole transporting materials with different π-linker for perovskite solar cells
  publication-title: Sol Energy
– volume: 10
  start-page: 1902500
  issue: 13
  year: 2020
  ident: CR2
  article-title: Perovskite solar cells: can we go organic-free, lead-free, and dopant-free?
  publication-title: Adv Energy Mater
– volume: 501
  start-page: 395
  issue: 7467
  year: 2013
  ident: CR15
  article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition
  publication-title: Nature
– volume: 6
  start-page: 1739
  issue: 6
  year: 2013
  ident: CR13
  article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells
  publication-title: Energy Environ Sci
– volume: 8
  start-page: 10806
  issue: 20
  year: 2016
  ident: CR80
  article-title: High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuO hole transport layer
  publication-title: Nanoscale
– volume: 10
  start-page: 2570
  issue: 12
  year: 2017
  ident: CR99
  article-title: Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells
  publication-title: Energy Environ Sci
– volume: 39
  start-page: 131
  issue: 2
  year: 2020
  ident: CR3
  article-title: Improved open-circuit voltage and ambient stability of CsPbI Br perovskite solar cells by incorporating CH NH Cl
  publication-title: Rare Met
– volume: 72
  start-page: 104673
  year: 2020
  ident: CR47
  article-title: Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells
  publication-title: Nano Energy
– volume: 8
  start-page: 1701209
  issue: 2
  year: 2018
  ident: CR64
  article-title: The importance of pendant groups on triphenylamine-based hole transport materials for obtaining perovskite solar cells with over 20% efficiency
  publication-title: Adv Energy Mater
– volume: 17
  start-page: 171
  year: 2015
  ident: CR97
  article-title: Efficient screen printed perovskite solar cells based on mesoscopic TiO /Al O /NiO/carbon architecture
  publication-title: Nano Energy
– volume: 12
  start-page: 10736
  issue: 11
  year: 2018
  ident: CR103
  article-title: MoS quantum dot/graphene hybrids for advanced interface engineering of a CH NH PbI perovskite solar cell with an efficiency of over 20%
  publication-title: ACS Nano
– volume: 69
  start-page: 104412
  year: 2020
  ident: CR46
  article-title: Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells
  publication-title: Nano Energy
– volume: 27
  start-page: 51
  year: 2016
  ident: CR81
  article-title: A 19.0% efficiency achieved in CuO -based inverted CH NH PbI Cl solar cells by an effective Cl doping method
  publication-title: Nano Energy.
– volume: 10
  start-page: 1903487
  issue: 12
  year: 2020
  ident: CR100
  article-title: High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells
  publication-title: Adv Energy Mater
– volume: 3
  start-page: 9020
  issue: 17
  year: 2015
  ident: CR18
  article-title: Nanocarbons for mesoscopic perovskite solar cells
  publication-title: J Mater Chem A
– volume: 7
  start-page: 5235
  issue: 18
  year: 2019
  ident: CR68
  article-title: Low-cost triazatruxene hole transporting material for >20% efficiency perovskite solar cells
  publication-title: J Mater Chem C
– volume: 10
  start-page: 1904
  issue: 7
  year: 2019
  ident: CR6
  article-title: Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability
  publication-title: Chem Sci
– volume: 1
  start-page: 15017
  year: 2016
  ident: CR63
  article-title: A molecularly engineered hole transporting material for efficient perovskite solar cells
  publication-title: Nat Energy
– volume: 10
  start-page: 1903403
  issue: 8
  year: 2020
  ident: CR24
  article-title: Hole transport materials in conventional structural (n-i-p) perovskite solar cells: from past to the future
  publication-title: Adv Energy Mater
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  ident: CR8
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J Am Chem Soc
– volume: 29
  start-page: 1703852
  issue: 46
  year: 2017
  ident: 1691_CR41
  publication-title: Adv Mater
  doi: 10.1002/adma.201703852
– volume: 136
  start-page: 758
  issue: 2
  year: 2014
  ident: 1691_CR90
  publication-title: J Am Chem Soc
  doi: 10.1021/ja411014k
– volume: 5
  start-page: 16446
  issue: 32
  year: 2017
  ident: 1691_CR22
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA01258F
– volume: 58
  start-page: 3784
  issue: 12
  year: 2019
  ident: 1691_CR67
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201811593
– volume: 11
  start-page: 46818
  issue: 50
  year: 2019
  ident: 1691_CR89
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b16194
– volume: 11
  start-page: 2985
  issue: 10
  year: 2018
  ident: 1691_CR45
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE01500G
– volume: 195
  start-page: 618
  year: 2020
  ident: 1691_CR74
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.11.071
– volume: 59
  start-page: 1030
  issue: 3
  year: 2020
  ident: 1691_CR4
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201904862
– volume: 9
  start-page: 41354
  issue: 47
  year: 2017
  ident: 1691_CR93
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b14926
– volume: 10
  start-page: 2000910
  issue: 27
  year: 2020
  ident: 1691_CR75
  publication-title: Adv Energy Mater.
  doi: 10.1002/aenm.202000910
– volume: 567
  start-page: 511
  issue: 7749
  year: 2019
  ident: 1691_CR35
  publication-title: Nature
  doi: 10.1038/s41586-019-1036-3
– volume: 39
  start-page: 131
  issue: 2
  year: 2020
  ident: 1691_CR3
  publication-title: Rare Met
  doi: 10.1007/s12598-019-01341-z
– volume: 8
  start-page: 7800
  issue: 12
  year: 2016
  ident: 1691_CR109
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b12776
– volume: 47
  start-page: 8541
  issue: 23
  year: 2018
  ident: 1691_CR7
  publication-title: Chem Soc Rev
  doi: 10.1039/C8CS00262B
– volume: 204
  start-page: 270
  year: 2020
  ident: 1691_CR82
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.04.077
– volume: 29
  start-page: 1808843
  issue: 47
  year: 2019
  ident: 1691_CR32
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201808843
– volume: 9
  start-page: 873
  issue: 3
  year: 2016
  ident: 1691_CR73
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE00056H
– volume: 356
  start-page: 1376
  issue: 6345
  year: 2017
  ident: 1691_CR48
  publication-title: Science
  doi: 10.1126/science.aan2301
– volume: 10
  start-page: 1903403
  issue: 8
  year: 2020
  ident: 1691_CR24
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201903403
– volume: 2
  start-page: 1700280
  issue: 2
  year: 2018
  ident: 1691_CR76
  publication-title: Small Methods
  doi: 10.1002/smtd.201700280
– volume: 319
  start-page: 1
  year: 2016
  ident: 1691_CR101
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.04.032
– volume: 7
  start-page: 1601193
  issue: 2
  year: 2017
  ident: 1691_CR53
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201601193
– volume: 3
  start-page: 9020
  issue: 17
  year: 2015
  ident: 1691_CR18
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA00873E
– volume: 812
  start-page: 152091
  year: 2020
  ident: 1691_CR58
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.152091
– volume: 10
  start-page: 1942
  issue: 9
  year: 2017
  ident: 1691_CR98
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE01675A
– volume: 15
  start-page: 2402
  issue: 4
  year: 2015
  ident: 1691_CR96
  publication-title: Nano Lett
  doi: 10.1021/nl504701y
– volume: 3
  start-page: 682
  issue: 8
  year: 2018
  ident: 1691_CR65
  publication-title: Nat Energy
  doi: 10.1038/s41560-018-0200-6
– volume: 8
  start-page: 506
  issue: 7
  year: 2014
  ident: 1691_CR9
  publication-title: Nat Photonics
  doi: 10.1038/nphoton.2014.134
– volume: 7
  start-page: 26421
  issue: 46
  year: 2019
  ident: 1691_CR56
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA08314F
– volume: 10
  start-page: 1903487
  issue: 12
  year: 2020
  ident: 1691_CR100
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201903487
– volume: 31
  start-page: e1803019
  issue: 47
  year: 2019
  ident: 1691_CR23
  publication-title: Adv Mater
  doi: 10.1002/adma.201803019
– volume: 365
  start-page: 591
  issue: 6453
  year: 2019
  ident: 1691_CR44
  publication-title: Science
  doi: 10.1126/science.aav8680
– volume: 70
  start-page: 104509
  year: 2020
  ident: 1691_CR49
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104509
– volume: 10
  start-page: 6748
  issue: 28
  year: 2019
  ident: 1691_CR28
  publication-title: Chem Sci.
  doi: 10.1039/C9SC01184F
– volume: 6
  start-page: 11851
  issue: 15
  year: 2014
  ident: 1691_CR95
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am503610u
– volume: 119
  start-page: 3036
  issue: 5
  year: 2019
  ident: 1691_CR1
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00539
– volume: 11
  start-page: 30838
  issue: 34
  year: 2019
  ident: 1691_CR107
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b08714
– volume: 181
  start-page: 53
  year: 2018
  ident: 1691_CR70
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2017.11.010
– volume: 7
  start-page: 1700623
  issue: 22
  year: 2017
  ident: 1691_CR16
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201700623
– volume: 30
  start-page: e1803244
  issue: 38
  year: 2018
  ident: 1691_CR105
  publication-title: Adv Mater
  doi: 10.1002/adma.201803244
– volume: 44
  start-page: 191
  year: 2018
  ident: 1691_CR29
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.002
– volume: 206
  start-page: 110316
  year: 2020
  ident: 1691_CR57
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2019.110316
– volume: 8
  start-page: 7646
  issue: 1
  year: 2018
  ident: 1691_CR83
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25975-8
– volume: 9
  start-page: 25323
  issue: 30
  year: 2017
  ident: 1691_CR102
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b06403
– volume: 139
  start-page: 7504
  issue: 22
  year: 2017
  ident: 1691_CR104
  publication-title: J Am Chem Soc.
  doi: 10.1021/jacs.7b01439
– volume: 29
  start-page: 205201
  issue: 20
  year: 2018
  ident: 1691_CR78
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aab1d4
– volume: 136
  start-page: 7837
  issue: 22
  year: 2014
  ident: 1691_CR39
  publication-title: J Am Chem Soc
  doi: 10.1021/ja502824c
– volume: 8
  start-page: 1701935
  issue: 4
  year: 2018
  ident: 1691_CR69
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201701935
– volume: 10
  start-page: 1904
  issue: 7
  year: 2019
  ident: 1691_CR6
  publication-title: Chem Sci
  doi: 10.1039/C8SC05284K
– volume: 6
  start-page: 108888
  issue: 110
  year: 2016
  ident: 1691_CR61
  publication-title: RSC Adv
  doi: 10.1039/C6RA21775C
– volume: 25
  start-page: 5650
  issue: 35
  year: 2015
  ident: 1691_CR91
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201502541
– volume: 7
  start-page: 5522
  issue: 10
  year: 2019
  ident: 1691_CR72
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA12060A
– volume: 8
  start-page: 10806
  issue: 20
  year: 2016
  ident: 1691_CR80
  publication-title: Nanoscale
  doi: 10.1039/C6NR01927G
– volume: 78
  start-page: 105575
  year: 2020
  ident: 1691_CR59
  publication-title: Org Electron
  doi: 10.1016/j.orgel.2019.105575
– volume: 1
  start-page: 15017
  year: 2016
  ident: 1691_CR63
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2015.17
– volume: 8
  start-page: 6173
  issue: 11
  year: 2016
  ident: 1691_CR79
  publication-title: Nanoscale
  doi: 10.1039/C5NR07758C
– volume: 4
  start-page: 091505
  issue: 9
  year: 2016
  ident: 1691_CR17
  publication-title: APL Mater
  doi: 10.1063/1.4962143
– volume: 11
  start-page: 2035
  issue: 8
  year: 2018
  ident: 1691_CR34
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE00036K
– volume: 29
  start-page: 1807094
  issue: 5
  year: 2018
  ident: 1691_CR66
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201807094
– volume: 51
  start-page: 869
  issue: 4
  year: 2018
  ident: 1691_CR37
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.7b00597
– volume: 7
  start-page: 5235
  issue: 18
  year: 2019
  ident: 1691_CR68
  publication-title: J Mater Chem C
  doi: 10.1039/C8TC04231D
– volume: 17
  start-page: 681
  issue: 7
  year: 2017
  ident: 1691_CR33
  publication-title: Chem Rec
  doi: 10.1002/tcr.201600117
– volume: 8
  start-page: 503
  issue: 2
  year: 2020
  ident: 1691_CR21
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA10694D
– volume: 10
  start-page: 2570
  issue: 12
  year: 2017
  ident: 1691_CR99
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE02685D
– volume: 27
  start-page: 51
  year: 2016
  ident: 1691_CR81
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2016.06.044
– volume: 69
  start-page: 104412
  year: 2020
  ident: 1691_CR46
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104412
– volume: 8
  start-page: 1070
  issue: 1
  year: 2018
  ident: 1691_CR55
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-19612-7
– volume: 9
  start-page: 1625
  issue: 1
  year: 2018
  ident: 1691_CR20
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04028-8
– volume: 5
  start-page: 5701
  issue: 12
  year: 2017
  ident: 1691_CR54
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA10212C
– volume: 338
  start-page: 643
  issue: 6107
  year: 2012
  ident: 1691_CR12
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 7
  start-page: 14473
  issue: 24
  year: 2019
  ident: 1691_CR30
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA04043A
– volume: 6
  start-page: 1801169
  issue: 7
  year: 2019
  ident: 1691_CR84
  publication-title: Adv Sci
  doi: 10.1002/advs.201801169
– volume: 2
  start-page: e1501170
  issue: 1
  year: 2016
  ident: 1691_CR40
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1501170
– volume: 4
  start-page: 1900564
  issue: 5
  year: 2020
  ident: 1691_CR108
  publication-title: Sol RRL.
  doi: 10.1002/solr.201900564
– volume: 13
  start-page: 2526
  issue: 1
  year: 2020
  ident: 1691_CR31
  publication-title: Arab J Chem
  doi: 10.1016/j.arabjc.2018.06.006
– volume: 30
  start-page: 1908462
  issue: 28
  year: 2020
  ident: 1691_CR26
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201908462
– volume: 72
  start-page: 104673
  year: 2020
  ident: 1691_CR47
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104673
– volume: 15
  start-page: 3723
  issue: 6
  year: 2015
  ident: 1691_CR85
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b00116
– volume: 10
  start-page: 3854
  issue: 19
  year: 2017
  ident: 1691_CR62
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201700635
– volume: 2
  start-page: 822
  issue: 4
  year: 2017
  ident: 1691_CR5
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.7b00137
– volume: 3
  start-page: 19353
  issue: 38
  year: 2015
  ident: 1691_CR92
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA05286F
– volume: 32
  start-page: e1908011
  issue: 16
  year: 2020
  ident: 1691_CR36
  publication-title: Adv Mater
  doi: 10.1002/adma.201908011
– volume: 4
  start-page: 110
  issue: 1
  year: 2018
  ident: 1691_CR50
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b01906
– volume: 8
  start-page: 1701209
  issue: 2
  year: 2018
  ident: 1691_CR64
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201701209
– volume: 8
  start-page: 1602
  issue: 5
  year: 2015
  ident: 1691_CR52
  publication-title: Energy Environ Sci.
  doi: 10.1039/C5EE00120J
– volume: 60
  start-page: 583
  year: 2019
  ident: 1691_CR43
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.081
– volume: 385
  start-page: 123976
  year: 2020
  ident: 1691_CR27
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.123976
– volume: 13
  start-page: 460
  issue: 7
  year: 2019
  ident: 1691_CR42
  publication-title: Nat Photonics
  doi: 10.1038/s41566-019-0398-2
– volume: 12
  start-page: 10736
  issue: 11
  year: 2018
  ident: 1691_CR103
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05514
– volume: 28
  start-page: 1706777
  issue: 11
  year: 2018
  ident: 1691_CR71
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201706777
– volume: 358
  start-page: 768
  issue: 6364
  year: 2017
  ident: 1691_CR87
  publication-title: Science
  doi: 10.1126/science.aam5655
– volume: 3
  start-page: 8943
  issue: 17
  year: 2015
  ident: 1691_CR19
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA05226A
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  ident: 1691_CR8
  publication-title: J Am Chem Soc
  doi: 10.1021/ja809598r
– volume: 14
  start-page: 175
  year: 2019
  ident: 1691_CR77
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2018.12.011
– volume: 44
  start-page: 41
  year: 2020
  ident: 1691_CR60
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.09.014
– volume: 18
  start-page: 65
  issue: 2
  year: 2015
  ident: 1691_CR10
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2014.07.007
– volume: 12
  start-page: 69
  issue: 23
  year: 2004
  ident: 1691_CR14
  publication-title: Prog Photovolt
  doi: 10.1002/pip.541
– volume: 7
  start-page: 6028
  issue: 11
  year: 2019
  ident: 1691_CR88
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA12217B
– volume: 6
  start-page: 1739
  issue: 6
  year: 2013
  ident: 1691_CR13
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee40810h
– volume: 5
  start-page: 1700623
  issue: 1
  year: 2018
  ident: 1691_CR25
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201700623
– volume: 5
  start-page: 131
  issue: 2
  year: 2020
  ident: 1691_CR51
  publication-title: Nat Energy.
  doi: 10.1038/s41560-019-0538-4
– volume: 62
  start-page: 363
  issue: 3
  year: 2019
  ident: 1691_CR94
  publication-title: Sci China: Chem
  doi: 10.1007/s11426-018-9386-5
– volume: 17
  start-page: 171
  year: 2015
  ident: 1691_CR97
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.08.009
– volume: 9
  start-page: 2592
  issue: 18
  year: 2016
  ident: 1691_CR86
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201600957
– volume: 7
  start-page: 7065
  issue: 12
  year: 2019
  ident: 1691_CR106
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA01499C
– volume: 45
  start-page: 28
  year: 2018
  ident: 1691_CR38
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.028
– volume: 10
  start-page: 1902500
  issue: 13
  year: 2020
  ident: 1691_CR2
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201902500
– volume: 501
  start-page: 395
  issue: 7467
  year: 2013
  ident: 1691_CR15
  publication-title: Nature
  doi: 10.1038/nature12509
– volume: 2
  start-page: 591
  year: 2012
  ident: 1691_CR11
  publication-title: Sci Rep
  doi: 10.1038/srep00591
SSID ssj0044660
Score 2.6267395
Snippet Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2712
SubjectTerms Biomaterials
Chemistry and Materials Science
Energy
Energy conversion efficiency
Layered materials
Materials Engineering
Materials Science
Metallic Materials
Nanoscale Science and Technology
Optimization
Perovskites
Photovoltaic cells
Physical Chemistry
Review
Solar cells
Title A brief review of hole transporting materials commonly used in perovskite solar cells
URI https://link.springer.com/article/10.1007/s12598-020-01691-z
https://www.proquest.com/docview/2538321320
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6XfQgfuJ0jhy8aWBNm6w9Ft0c6rxoYZ5KmiYgjE1sJ7i_3vf6YVVUEAo9JA305eO93_v4hZBTx_qOFsowyzV6q5TPlBQJM9Z1lNXwBFjgPLmT48i7noppVRSW1dnudUiyOKmbYjew1H2GcAcZRBy2WidtAdgdE7kiHtbnLwYoSw4CBMqgnapSmZ_H-KqOGhvzW1i00DajbbJVmYk0LOd1h6yZ-S7Z_EQeuEeikCaAcy0tq0_owlK865bmNV059KJgj5ZLjMJPwoqbvdFlZlL6NKfIEP6aofOWZohvKfrws30SjYYPF2NWXZLAtCvdnCnup07iam-gXCGVN9BCcBVYnXhBEmDUzCotpXG4AmgmnVRo2zde38hB6kOLe0Ba88XcHBLKbQC7M7XWtxJ0FiAhrYRQvqcAu1o_6RCnllWsKwZxvMhiFjfcxyjfGOQbF_KNVx1y9vHNc8mf8Wfvbj0FcbWXspjDmexyLPXukPN6Wprm30c7-l_3Y7LBMWGlyNTrklb-sjQnYHHkSY-0w8vJ7T2-rx5vhr1iwb0DdP_RWQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVl9QFOEIk4sescOFQsKltPrcQtOI4tIVUtIi2o_R4-lJksFBAgcUDKzYui8dgzzzPzDLDvO-Uboa3nuKHbKq08LUXiWRf42hn8Iipwvm3JZie8uhN3U_Ba1cLk2e5VSDI_qSfFbuipK4_gDjGI-N64TKW8tqMXBGrZyeUZruoB5xfn7dOmV74l4JlABgNPc5X6SWDCug6E1GHdCMF15EwSRklEwSWnjZTW5xoRjPRTYdyxDY-trKcKWwKcdxpm0flQtHc6vFGd9xQQLTgPCJijNSxLc77_58_mb-LTfgnD5tbtYgkWS7eUNQo9WoYp21uBhQ9khavQabAEcbVjRbUL6ztGb-uyQUWPjr0Y-r-FSjMUKmp4d8SGmU3ZQ48RI_lzRpfFLCM8zShmkK1B518EuQ4zvX7PbgDjLsLTIHVOOYk2EpGX0UJoFWrEyk4lNfArWcWmZCynhzO68YRrmeQbo3zjXL7xuAaH72MeC76OX3tvV0sQl3s3iznagIBTaXkNjqplmTT_PNvm37rvwVyzfXsT31y2rrdgnlOyTJ4luA0zg6eh3UFvZ5Ds5srG4P6_tfsN0DcLUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gOhBfOLqqjnoSYs2bbLtwcOiLq4vPLjgraZpAsLSXWxV9Ff5E53pw1VRwYPQW9JQZiaZ-TozXwC2XBu4WijjWK7pb5UKHCVF7BjrucpqfEJqcL64lCc9__RG3IzBa90LU1S71ynJsqeBWJrSfG-Y2L1R4xtG7YFD0IfYRFznpSqrPDPPTwjasoPuEWp4m_PO8fXhiVPdK-BoT3q5o3iQuLGn_ZbyhFR-SwvBVWh17IdxSIkmq7SUxuUK0Yx0E6HtvvH3jWwlAY54uO44TPrUfYw7qMfb9dlPydGS_4BAOnrGqk3n-2_-7ApH8e2XlGzh6TpzMFuFqKxd2tQ8jJl0AWY-EBcuQq_NYsTYlpWdL2xgGd2zy_KaKh1nMYyFS_NmKGC09v4ze8hMwu5SRuzkjxn9OGYZYWtG-YNsCXr_IshlmEgHqVkBxm2IJ0NibWAl-ktEYVoJoQJfIW62QdwAt5ZVpCv2crpEox-NeJdJvhHKNyrkG700YOf9nWHJ3fHr7Gatgqjax1nE0R94nBTdgN1aLaPhn1db_dv0TZi6OupE593LszWY5lQ3UxQMNmEiv38w6xj45PFGYWsMbv_buN8AgrQPhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brief+review+of+hole+transporting+materials+commonly+used+in+perovskite+solar+cells&rft.jtitle=Rare+metals&rft.au=Li%2C+Song&rft.au=Yong-Li%2C+Cao&rft.au=Wen-Hua%2C+Li&rft.au=Zhi-Shan%2C+Bo&rft.date=2021-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=40&rft.issue=10&rft.spage=2712&rft.epage=2729&rft_id=info:doi/10.1007%2Fs12598-020-01691-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon