A brief review of hole transporting materials commonly used in perovskite solar cells
Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power conversion efficiency (PCE) has reached to be 25.2% in state-of-the-art PSCs due to the outstanding intrinsic properties of perovskite materials as...
Saved in:
Published in | Rare metals Vol. 40; no. 10; pp. 2712 - 2729 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Nonferrous Metals Society of China
01.10.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power conversion efficiency (PCE) has reached to be 25.2% in state-of-the-art PSCs due to the outstanding intrinsic properties of perovskite materials as well as progressive optimization of each functional layer, especially the active layer and hole transporting layer (HTL). In this review, we mainly discuss various hole transporting materials (HTMs) consisting of HTL in PSCs. The progress in PSCs is firstly introduced, then the roles of HTL playing in photovoltaic performance improvement of PSCs are emphasized. Finally, we generally categorize HTMs into organic and inorganic groups and demonstrate both their advantages and disadvantages. Specially, we introduce several typical organic HTMs such as P3HT, PTTA, PEDOT:PSS, spiro-OMeTAD, and inorganic HTMs such as copper-based materials (CuO
x
, CuSCN, CuI, etc.), nickel-based materials (NiO
x
), and two-dimensional layered materials (MoS
2
, WS
2
, etc.). On basis of reviewing the reported HTMs in recent years, we expect to provide some enlightenment for design and application of novel HTMs that can be used to further promote PSCs performance. |
---|---|
AbstractList | Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power conversion efficiency (PCE) has reached to be 25.2% in state-of-the-art PSCs due to the outstanding intrinsic properties of perovskite materials as well as progressive optimization of each functional layer, especially the active layer and hole transporting layer (HTL). In this review, we mainly discuss various hole transporting materials (HTMs) consisting of HTL in PSCs. The progress in PSCs is firstly introduced, then the roles of HTL playing in photovoltaic performance improvement of PSCs are emphasized. Finally, we generally categorize HTMs into organic and inorganic groups and demonstrate both their advantages and disadvantages. Specially, we introduce several typical organic HTMs such as P3HT, PTTA, PEDOT:PSS, spiro-OMeTAD, and inorganic HTMs such as copper-based materials (CuOx, CuSCN, CuI, etc.), nickel-based materials (NiOx), and two-dimensional layered materials (MoS2, WS2, etc.). On basis of reviewing the reported HTMs in recent years, we expect to provide some enlightenment for design and application of novel HTMs that can be used to further promote PSCs performance. Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power conversion efficiency (PCE) has reached to be 25.2% in state-of-the-art PSCs due to the outstanding intrinsic properties of perovskite materials as well as progressive optimization of each functional layer, especially the active layer and hole transporting layer (HTL). In this review, we mainly discuss various hole transporting materials (HTMs) consisting of HTL in PSCs. The progress in PSCs is firstly introduced, then the roles of HTL playing in photovoltaic performance improvement of PSCs are emphasized. Finally, we generally categorize HTMs into organic and inorganic groups and demonstrate both their advantages and disadvantages. Specially, we introduce several typical organic HTMs such as P3HT, PTTA, PEDOT:PSS, spiro-OMeTAD, and inorganic HTMs such as copper-based materials (CuO x , CuSCN, CuI, etc.), nickel-based materials (NiO x ), and two-dimensional layered materials (MoS 2 , WS 2 , etc.). On basis of reviewing the reported HTMs in recent years, we expect to provide some enlightenment for design and application of novel HTMs that can be used to further promote PSCs performance. |
Author | Li, Song Bo, Zhi-Shan Cao, Yong-Li Li, Wen-Hua |
Author_xml | – sequence: 1 givenname: Song surname: Li fullname: Li, Song organization: Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University – sequence: 2 givenname: Yong-Li surname: Cao fullname: Cao, Yong-Li organization: Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University – sequence: 3 givenname: Wen-Hua orcidid: 0000-0003-1189-5287 surname: Li fullname: Li, Wen-Hua email: liwenhua@bnu.edu.cn organization: Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University – sequence: 4 givenname: Zhi-Shan orcidid: 0000-0003-0126-7957 surname: Bo fullname: Bo, Zhi-Shan email: zsbo@bnu.edu.cn organization: Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uZZDe7eyzFLyh4seeQTWdr6japybbS_nqjFQQPPc3AvM_M8IzIwHmHhFwDuwXGyrsIvKirjHGWMZA1ZIczMoRKllkJVTFIPWOQsYLDBRnFuGIsz6VkQzKf0CZYbGnAncVP6lv65jukfdAubnzorVvSte4xWN1Favx67V23p9uIC2od3WDwu_hue6TRdzpQg10XL8l5m-J49VvHZP5w_zp9ymYvj8_TySwzQoo-07xaQCNMXmpRSJ2Xpii4rlvT5HVT8xxEq42UCFxDDRIWhWkZ5gxluajSRIzJzXHvJviPLcZerfw2uHRS8UJUgoPgLKX4MWWCjzFgqzbBrnXYK2DqW5866lNJn_rRpw4Jqv5Bxva6t94lNbY7jYojGtMdt8Tw99UJ6gva94gK |
CitedBy_id | crossref_primary_10_1002_solr_202400178 crossref_primary_10_1073_pnas_2305327120 crossref_primary_10_1016_j_jmgm_2023_108588 crossref_primary_10_1007_s11664_025_11871_1 crossref_primary_10_1039_D3RA02910G crossref_primary_10_1007_s12598_024_02984_3 crossref_primary_10_3390_nano12152692 crossref_primary_10_1021_jacsau_2c00160 crossref_primary_10_1039_D3CP02712K crossref_primary_10_1134_S1063782624601547 crossref_primary_10_1002_slct_202400015 crossref_primary_10_1016_j_mseb_2024_117593 crossref_primary_10_1021_acsaem_3c01988 crossref_primary_10_1021_acsnano_3c10033 crossref_primary_10_4236_msa_2023_149030 crossref_primary_10_1007_s12596_023_01372_x crossref_primary_10_1007_s41939_024_00699_7 crossref_primary_10_1016_j_mtcomm_2023_106700 crossref_primary_10_1002_inf2_12345 crossref_primary_10_1021_acs_energyfuels_4c02083 crossref_primary_10_1039_D3RA03492E crossref_primary_10_1016_j_jpcs_2024_112325 crossref_primary_10_1016_j_surfin_2023_103192 crossref_primary_10_3390_ma14113091 crossref_primary_10_47836_pjst_31_4_26 crossref_primary_10_1016_j_solener_2024_112573 crossref_primary_10_3390_nano11082151 crossref_primary_10_1021_acsami_2c23136 crossref_primary_10_1016_j_orgel_2023_106829 crossref_primary_10_1088_1402_4896_ad36bd crossref_primary_10_1142_S1793292023501096 crossref_primary_10_1016_j_ijleo_2023_170868 crossref_primary_10_1007_s11468_025_02771_5 crossref_primary_10_1021_acsenergylett_1c02836 crossref_primary_10_1007_s10971_023_06296_3 crossref_primary_10_1080_00268976_2025_2480833 crossref_primary_10_3390_nano12173003 crossref_primary_10_3390_nano14010048 crossref_primary_10_1016_j_polymer_2024_127500 crossref_primary_10_1016_j_jallcom_2023_169104 crossref_primary_10_1016_j_molstruc_2024_141142 crossref_primary_10_1016_j_solener_2024_112680 crossref_primary_10_1016_j_mtsust_2022_100218 crossref_primary_10_1016_j_solener_2025_113398 crossref_primary_10_1021_acs_chemmater_2c03305 crossref_primary_10_3390_mi15020192 crossref_primary_10_1002_admt_202200275 crossref_primary_10_1038_s41598_024_81797_x crossref_primary_10_1007_s10825_022_01940_7 crossref_primary_10_1016_j_solener_2022_11_025 crossref_primary_10_1016_j_mtcomm_2023_105994 crossref_primary_10_1021_acs_iecr_3c04252 crossref_primary_10_1016_j_inoche_2024_113578 crossref_primary_10_1002_adem_202301101 crossref_primary_10_1557_s43578_022_00537_x crossref_primary_10_1016_j_jallcom_2022_167238 crossref_primary_10_1007_s10854_022_07797_7 crossref_primary_10_1007_s11082_023_06127_3 crossref_primary_10_1016_j_ijleo_2023_170808 crossref_primary_10_1016_j_solmat_2025_113548 crossref_primary_10_1080_16583655_2023_2300856 crossref_primary_10_1088_1361_6528_acb7fb crossref_primary_10_1038_s41598_024_62882_7 crossref_primary_10_1007_s11082_024_06902_w crossref_primary_10_3762_bjnano_16_11 crossref_primary_10_24018_ejece_2023_7_5_558 crossref_primary_10_1039_D4TA00956H crossref_primary_10_1007_s10854_025_14488_6 crossref_primary_10_3390_polym15224443 crossref_primary_10_1016_j_matchemphys_2022_127188 crossref_primary_10_1007_s11706_022_0595_7 crossref_primary_10_1039_D2SE00667G crossref_primary_10_3390_nano11102732 crossref_primary_10_1016_j_colsurfa_2023_132075 crossref_primary_10_1016_j_mtcomm_2022_104220 crossref_primary_10_3390_solar3030025 crossref_primary_10_1039_D3NJ02841K crossref_primary_10_1002_adom_202300100 crossref_primary_10_1007_s42823_023_00578_0 crossref_primary_10_1016_j_solmat_2024_113388 crossref_primary_10_1016_j_orgel_2022_106674 crossref_primary_10_1039_D2SE00492E crossref_primary_10_1007_s10854_024_13697_9 crossref_primary_10_1039_D4LF00299G crossref_primary_10_1021_acsomega_4c01242 crossref_primary_10_1002_pssa_202300247 crossref_primary_10_1016_j_solener_2024_112375 crossref_primary_10_3390_ma18010186 crossref_primary_10_2174_0115734137286096240320075126 crossref_primary_10_1002_ente_202100838 crossref_primary_10_3390_en14185741 crossref_primary_10_1103_PRXEnergy_2_013004 crossref_primary_10_1002_cssc_202201485 crossref_primary_10_1021_acs_chemrev_2c00166 crossref_primary_10_1002_adts_202300610 crossref_primary_10_1007_s12598_024_02881_9 crossref_primary_10_1007_s00339_022_06349_4 crossref_primary_10_1007_s42823_023_00617_w crossref_primary_10_1063_5_0116696 crossref_primary_10_1016_j_solener_2024_113210 crossref_primary_10_3389_fchem_2022_907556 crossref_primary_10_3390_nano13091550 crossref_primary_10_1016_j_mtcomm_2025_111625 crossref_primary_10_1002_adem_202400826 crossref_primary_10_1021_acs_energyfuels_2c00423 crossref_primary_10_3390_su151310465 crossref_primary_10_1142_S1793292023500388 crossref_primary_10_1002_pssa_202200736 crossref_primary_10_1016_j_mseb_2024_117740 crossref_primary_10_1002_pssb_202400525 crossref_primary_10_1016_j_ijleo_2023_171537 crossref_primary_10_3390_ma14216341 crossref_primary_10_1007_s41061_024_00464_x crossref_primary_10_1039_D4RA03916E crossref_primary_10_1088_1402_4896_ad79c2 crossref_primary_10_1007_s11082_024_07812_7 crossref_primary_10_1088_2631_8695_acee45 crossref_primary_10_1002_poc_4424 crossref_primary_10_1039_D2TA02588D crossref_primary_10_1016_j_asej_2024_102919 crossref_primary_10_1039_D3CP04310J crossref_primary_10_1039_D2CE00825D crossref_primary_10_1016_j_heliyon_2022_e10504 crossref_primary_10_1016_j_matpr_2022_10_006 crossref_primary_10_1088_1361_6528_ac6d69 crossref_primary_10_1117_1_JPE_15_024501 crossref_primary_10_1016_j_ijleo_2024_171719 crossref_primary_10_1016_j_optmat_2022_112221 crossref_primary_10_1016_j_mssp_2025_109269 crossref_primary_10_1007_s11664_024_11630_8 crossref_primary_10_1039_D3SC04668K crossref_primary_10_1016_j_ceramint_2024_04_111 crossref_primary_10_1002_adts_202400128 crossref_primary_10_1021_acsaem_2c01154 crossref_primary_10_1039_D3SE01617J crossref_primary_10_1016_j_electacta_2022_141190 crossref_primary_10_1016_j_mseb_2024_117536 crossref_primary_10_1007_s12598_023_02421_x crossref_primary_10_1016_j_apsadv_2023_100394 crossref_primary_10_1007_s10854_024_12757_4 crossref_primary_10_1098_rsos_230331 crossref_primary_10_1016_j_ijleo_2024_171727 crossref_primary_10_1016_j_solener_2021_10_054 crossref_primary_10_1007_s12034_023_03126_8 crossref_primary_10_1016_j_mssp_2024_108996 crossref_primary_10_1088_1361_6463_ad4dae crossref_primary_10_3390_polym15040869 crossref_primary_10_1016_j_mseb_2024_117268 crossref_primary_10_3390_nano14231867 crossref_primary_10_1002_solr_202300920 crossref_primary_10_3390_ijms232113375 crossref_primary_10_1016_j_mser_2022_100711 crossref_primary_10_1016_j_dyepig_2023_111449 crossref_primary_10_1016_j_optmat_2022_113060 crossref_primary_10_1088_1402_4896_aceb37 crossref_primary_10_22399_ijcesen_250 crossref_primary_10_1109_LPT_2024_3380516 crossref_primary_10_3390_nano13232985 crossref_primary_10_1016_j_jpcs_2025_112598 crossref_primary_10_1039_D1CS01157J crossref_primary_10_1016_j_mtchem_2022_101284 crossref_primary_10_1002_adma_202405630 crossref_primary_10_1002_cssc_202301508 crossref_primary_10_1021_acsaem_1c03040 crossref_primary_10_3390_coatings15020132 crossref_primary_10_1038_s41566_024_01561_5 crossref_primary_10_1016_j_solener_2024_112864 crossref_primary_10_1016_j_jpcs_2024_112401 crossref_primary_10_1016_j_rio_2023_100444 crossref_primary_10_1021_acsnano_4c11785 crossref_primary_10_1155_2023_7208502 crossref_primary_10_1007_s00339_023_06986_3 crossref_primary_10_1021_acsami_2c01981 crossref_primary_10_1007_s11705_022_2272_x crossref_primary_10_1002_smtd_202300399 crossref_primary_10_1016_j_cplett_2023_141057 crossref_primary_10_1016_j_mtcomm_2023_106418 crossref_primary_10_1007_s44291_024_00026_x crossref_primary_10_1016_j_vacuum_2023_112076 crossref_primary_10_1002_admt_202301760 crossref_primary_10_1016_j_solener_2024_112891 crossref_primary_10_1088_2515_7639_accaaa crossref_primary_10_1002_solr_202300355 crossref_primary_10_4236_mnsms_2024_144006 crossref_primary_10_1007_s10825_022_01953_2 crossref_primary_10_1002_cptc_202400040 crossref_primary_10_1021_acsami_4c06709 crossref_primary_10_1002_ente_202301032 crossref_primary_10_1016_j_mssp_2024_108184 crossref_primary_10_3390_ma16072908 crossref_primary_10_1002_aenm_202200305 crossref_primary_10_1039_D3TA06708D crossref_primary_10_3390_molecules27227927 crossref_primary_10_1021_acsmaterialslett_4c01699 crossref_primary_10_1016_j_solener_2023_111937 crossref_primary_10_1016_j_solmat_2024_113087 crossref_primary_10_1007_s10854_022_09708_2 |
Cites_doi | 10.1002/adma.201703852 10.1021/ja411014k 10.1039/C7TA01258F 10.1002/anie.201811593 10.1021/acsami.9b16194 10.1039/C8EE01500G 10.1016/j.solener.2019.11.071 10.1002/anie.201904862 10.1021/acsami.7b14926 10.1002/aenm.202000910 10.1038/s41586-019-1036-3 10.1007/s12598-019-01341-z 10.1021/acsami.5b12776 10.1039/C8CS00262B 10.1016/j.solener.2020.04.077 10.1002/adfm.201808843 10.1039/C6EE00056H 10.1126/science.aan2301 10.1002/aenm.201903403 10.1002/smtd.201700280 10.1016/j.jpowsour.2016.04.032 10.1002/aenm.201601193 10.1039/C5TA00873E 10.1016/j.jallcom.2019.152091 10.1039/C7EE01675A 10.1021/nl504701y 10.1038/s41560-018-0200-6 10.1038/nphoton.2014.134 10.1039/C9TA08314F 10.1002/aenm.201903487 10.1002/adma.201803019 10.1126/science.aav8680 10.1016/j.nanoen.2020.104509 10.1039/C9SC01184F 10.1021/am503610u 10.1021/acs.chemrev.8b00539 10.1021/acsami.9b08714 10.1016/j.solmat.2017.11.010 10.1002/aenm.201700623 10.1002/adma.201803244 10.1016/j.nanoen.2017.12.002 10.1016/j.solmat.2019.110316 10.1038/s41598-018-25975-8 10.1021/acsami.7b06403 10.1021/jacs.7b01439 10.1088/1361-6528/aab1d4 10.1021/ja502824c 10.1002/aenm.201701935 10.1039/C8SC05284K 10.1039/C6RA21775C 10.1002/adfm.201502541 10.1039/C8TA12060A 10.1039/C6NR01927G 10.1016/j.orgel.2019.105575 10.1038/nenergy.2015.17 10.1039/C5NR07758C 10.1063/1.4962143 10.1039/C8EE00036K 10.1002/adfm.201807094 10.1021/acs.accounts.7b00597 10.1039/C8TC04231D 10.1002/tcr.201600117 10.1039/C9TA10694D 10.1039/C7EE02685D 10.1016/j.nanoen.2016.06.044 10.1016/j.nanoen.2019.104412 10.1038/s41598-018-19612-7 10.1038/s41467-018-04028-8 10.1039/C6TA10212C 10.1126/science.1228604 10.1039/C9TA04043A 10.1002/advs.201801169 10.1126/sciadv.1501170 10.1002/solr.201900564 10.1016/j.arabjc.2018.06.006 10.1002/adfm.201908462 10.1016/j.nanoen.2020.104673 10.1021/acs.nanolett.5b00116 10.1002/cssc.201700635 10.1021/acsenergylett.7b00137 10.1039/C5TA05286F 10.1002/adma.201908011 10.1021/acsenergylett.8b01906 10.1002/aenm.201701209 10.1039/C5EE00120J 10.1016/j.nanoen.2019.03.081 10.1016/j.cej.2019.123976 10.1038/s41566-019-0398-2 10.1021/acsnano.8b05514 10.1002/adfm.201706777 10.1126/science.aam5655 10.1039/C4TA05226A 10.1021/ja809598r 10.1016/j.apmt.2018.12.011 10.1016/j.jechem.2019.09.014 10.1016/j.mattod.2014.07.007 10.1002/pip.541 10.1039/C8TA12217B 10.1039/c3ee40810h 10.1002/admi.201700623 10.1038/s41560-019-0538-4 10.1007/s11426-018-9386-5 10.1016/j.nanoen.2015.08.009 10.1002/cssc.201600957 10.1039/C9TA01499C 10.1016/j.nanoen.2017.12.028 10.1002/aenm.201902500 10.1038/nature12509 10.1038/srep00591 |
ContentType | Journal Article |
Copyright | Youke Publishing Co.,Ltd 2021 Youke Publishing Co.,Ltd 2021. |
Copyright_xml | – notice: Youke Publishing Co.,Ltd 2021 – notice: Youke Publishing Co.,Ltd 2021. |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1007/s12598-020-01691-z |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1867-7185 |
EndPage | 2729 |
ExternalDocumentID | 10_1007_s12598_020_01691_z |
Genre | Commentary Editorial |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 29P 2B. 2C0 2KG 2VQ 30V 4.4 406 408 40D 5VR 5VS 5XA 5XC 8FE 8FG 8RM 8TC 92H 92I 92R 93N 96X AAAVM AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACRPL ACZOJ ADHHG ADHIR ADINQ ADKNI ADMLS ADMUD ADNMO ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BA0 BENPR BGLVJ BGNMA CAG CAJEB CCEZO CCPQU CDRFL CHBEP COF CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PT4 Q-- Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8BQ 8FD ABRTQ JG9 |
ID | FETCH-LOGICAL-c363t-a28d1b3c47a356a47c552a9fcb49b92413fac66e12a19161d5cf0e40e67d8ac63 |
IEDL.DBID | U2A |
ISSN | 1001-0521 |
IngestDate | Fri Jul 25 12:25:31 EDT 2025 Tue Jul 01 01:30:09 EDT 2025 Thu Apr 24 22:52:10 EDT 2025 Fri Feb 21 02:49:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Hole-transporting materials Power conversion efficiency Perovskite solar cells |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-a28d1b3c47a356a47c552a9fcb49b92413fac66e12a19161d5cf0e40e67d8ac63 |
Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Editorial-2 ObjectType-Commentary-1 |
ORCID | 0000-0003-0126-7957 0000-0003-1189-5287 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s12598-020-01691-z.pdf |
PQID | 2538321320 |
PQPubID | 326325 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2538321320 crossref_primary_10_1007_s12598_020_01691_z crossref_citationtrail_10_1007_s12598_020_01691_z springer_journals_10_1007_s12598_020_01691_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Rare metals |
PublicationTitleAbbrev | Rare Met |
PublicationYear | 2021 |
Publisher | Nonferrous Metals Society of China Springer Nature B.V |
Publisher_xml | – name: Nonferrous Metals Society of China – name: Springer Nature B.V |
References | Kim, Lee, Yun, Gil, Park (CR89) 2019; 11 Zhang, Kou, Zhang, Liu, Li, Bo, Shao (CR72) 2019; 7 Green, Ho-Baillie, Snaith (CR9) 2014; 8 Chen, Li, Huang, Chen (CR83) 2018; 8 Pitchaiya, Natarajan, Santhanam, Asokan, Yuvapragasam, Madurai Ramakrishnan, Palanisamy, Sundaram, Velauthapillai (CR31) 2020; 13 Sepalage, Meyer, Pascoe, Scully, Huang, Bach, Cheng, Spiccia (CR91) 2015; 25 Xie, Chen, Wu, Li, Cai, Liu, Yang, Han (CR98) 2017; 10 Jeon, Na, Jung, Yang, Lee, Kim, Shin, Il Seok, Lee, Seo (CR65) 2018; 3 Zhou, Guo, Lin, Ma, Su, Hu, Zhang, Liu, Chang, Hao (CR43) 2019; 60 Cao, Zuo, Cui, Shen, Moehl, Zakeeruddin, Grätzel, Wang (CR97) 2015; 17 Liu, Krückemeier, Krogmeier, Klingebiel, Márquez, Levcenko, Öz, Mathur, Rau, Unold, Kirchartz (CR50) 2018; 4 Xu, Liu, Zuo, Zhang, Zhao, Shen, Zhou, Chen, Yang, Wang (CR96) 2015; 15 Park (CR10) 2015; 18 Singh, Singh, Bhattacharya, Rhee (CR77) 2019; 14 Fakharuddin, De Rossi, Watson, Schmidt-Mende, Jose (CR17) 2016; 4 Ball, Lee, Hey, Snaith (CR13) 2013; 6 Chen, Deng, Dai, Wang, Tian, Zhan, Xie, Huang, Zheng (CR92) 2015; 3 Batmunkh, Shearer, Biggs, Shapter (CR18) 2015; 3 Zhang, He, Xiang, Zheng, Xue, Ye, Peng, Hao, Lian, Zeng, Qu, Song (CR105) 2018; 30 Wang, Dar, Ono, Zhang, Kan, Li, Zhang, Wang, Yang, Gao, Qi, Gratzel, Zhao (CR44) 2019; 365 Jena, Kulkarni, Miyasaka (CR1) 2019; 119 Sathiyan, Syed, Chen, Wu, Tao, Ding, Miao, Li, Cheng, Ding (CR47) 2020; 72 Sun, Li, Ye, Rao, Yan, Peng, Li, Liu, Wang, Chen, Xiao, Bian, Huang (CR80) 2016; 8 Lee, Teuscher, Miyasaka, Murakami, Snaith (CR12) 2012; 338 Jung, Kim, Jeon, Yang, Seo, Noh, Il (CR86) 2016; 9 Salim, Sun, Abe, Krishna, Grimsdale, Lam (CR19) 2015; 3 Arora, Dar, Hinderhofer, Pellet, Schreiber, Zakeeruddin, Gratzel (CR87) 2017; 358 Zuo, Ding (CR53) 2017; 7 Yang, Lee, Choi, Jung, Kim, Lee (CR88) 2019; 7 Rakstys, Igci, Nazeeruddin (CR28) 2019; 10 Zhou, Pang (CR21) 2020; 8 Reza, Gurung, Bahrami, Mabrouk, Elbohy, Pathak, Chen, Chowdhury, Rahman, Letourneau, Yang, Saianand, Elam, Darling, Qiao (CR60) 2020; 44 Jiang, Chu, Wang, Yang, Liu, Wang, Yin, Wu, Zhang, You (CR41) 2017; 29 Huang, Wang, Liu, Zhang, Yuan, Zhou, Song, Li (CR102) 2017; 9 Bi, Tress, Dar, Gao, Luo, Renevier, Schenk, Abate, Giordano, Baena, Decoppet, Zakeeruddin, Nazeeruddin, Gratzel, Hagfeldt (CR40) 2016; 2 Seo, Kim, Akin, Stojanovic, Simon, Fleischer, Hagfeldt, Zakeeruddin, Grätzel (CR45) 2018; 11 Azmi, Nam, Sinaga, Akbar, Lee, Yoon, Jung, Jang (CR29) 2018; 44 Xu, Li, Zhang, Liu, Zheng, Lv, Li, Chen, Huang, Chen (CR57) 2020; 206 Xu, Bi, Hua, Liu, Cheng, Grätzel, Kloo, Hagfeldt, Sun (CR73) 2016; 9 Kim, Lee, Kang, Kim, Park (CR69) 2018; 8 Christians, Fung, Kamat (CR90) 2014; 136 Jiang, Zhao, Zhang, Yang, Chen, Chu, Ye, Li, Yin, You (CR42) 2019; 13 Yu, Sun (CR76) 2018; 2 Lu, He, Ji, Shan, Zhong, Xu, LiuYang, Wu, Zhu (CR27) 2020; 385 Urieta-Mora, Garcia-Benito, Molina-Ontoria, Martin (CR7) 2018; 47 Rao, Sun, Ye, Yan, Li, Peng, Liu, Bian, Huang (CR109) 2016; 8 Wu, Wang, Fang, Shao, Tang, Deng, Lu, Liu, Li, Yang, Gruverman, Huang (CR20) 2018; 9 Nia, Matteocci, Cina, Di Carlo (CR62) 2017; 10 Green, Ho-Baillie (CR5) 2017; 2 Zhang, Elawad, Yu, Jiang, Lai, Sun (CR61) 2016; 6 Chopra, Paulson, Dutta (CR14) 2004; 12 Cai, Cai, Yang, Li, Gurney, Yi, Iraqi, Liu, Wang (CR38) 2018; 45 Miyasaka, Kulkarni, Kim, Öz, Jena (CR2) 2020; 10 Ye, Rao, Zhao, Zhang, Bao, Sun, Li, Gu, Wang, Liu, Bian, Huang (CR104) 2017; 139 Zhang, Xu, Yang, Ruan, Wang, Liu, Zhang, Vlachopoulos, Kloo, Boschloo, Sun, Hagfeldt, Johansson (CR64) 2018; 8 Kohnehpoushi, Nazari, Nejand, Eskandari (CR78) 2018; 29 Kim, Lee, Im, Lee, Moehl, Marchioro, Moon, Humphry-Baker, Yum, Moser, Gratzel, Park (CR11) 2012; 2 Hawash, Ono, Qi (CR25) 2018; 5 Yue, Liu, Xu, Li, Azam, Ren, Liu, Sun, Wang, Cao, Yan, Qu, Lei, Wang (CR99) 2017; 10 Behrouznejad, Forouzandeh, Khosroshahi, Meraji, Badrabadi, Dehghani, Li, Zhan, Liao, Ning, Taghavinia (CR108) 2020; 4 Liu, Li, Yuan, Hong, Shi, Yuan, Wei, Huang, Tang, Fung (CR54) 2017; 5 Najafi, Taheri, Martin-Garcia, Bellani, Di Girolamo, Agresti, Oropesa-Nunez, Pescetelli, Vesce, Calabro, Prato, Del Rio Castillo, Di Carlo, Bonaccorso (CR103) 2018; 12 Pham, Shang, Yang, Hoang, Tiong, Wang, Fan, Chen, Kou, Wang, Wang (CR46) 2020; 69 Wang, Mujahid, Duan, Wang, Xue, Yang (CR32) 2019; 29 Chen, Zhang, Liu, Wu, Yang, Chen, Chen, Chen (CR3) 2020; 39 Rao, Ye, Sun, Yan, Li, Peng, Liu, Bian, Li, Huang (CR81) 2016; 27 Krishna, Grimsdale (CR22) 2017; 5 Yang, Park, Jung, Jeon, Kim, Lee, Shin, Seo, Kim, Noh, Seok (CR48) 2017; 356 Yu, Li, Wang, Alarousu, Chen, Lin, Wang, Hedhili, Li, Wu, Wang, Mohammed, Wu (CR79) 2016; 8 Di Giacomo, Shanmugam, Fledderus, Bruijnaers, Verhees, Dorenkamper, Veenstra, Qiu, Gehlhaar, Merckx, Aernouts, Andriessen, Galagan (CR70) 2018; 181 Jiang, Wang, Wu, Xue, Yao, Zhang, Chen, Zhang, Zhu, Yan, Zhu, Yip (CR36) 2020; 32 Rodriguez-Seco, Cabau, Vidal-Ferran, Palomares (CR37) 2018; 51 Luo, Xia, Yang, Chen, Wan, Han, Malik, Zhu, Jia (CR34) 2018; 11 Fan, Biesold-McGee, Ma, Xu, Pan, Peng, Lin (CR4) 2020; 59 Li, Cheng, Cao, Zhao, Xiao, Zi, Sun (CR59) 2020; 78 Kim, Choi, Kim, Lee, Son, Park (CR24) 2020; 10 Wang, Wang, Li, Hu, Sun, Zang (CR56) 2019; 7 Kim, Kwon, Le, Hong, Jang, Kim (CR101) 2016; 319 Khorasani, Marandi, Khosroshahi, Malekshahi Byranvand, Dehghani, Iraji Zad, Tajabadi, Taghavinia (CR107) 2019; 11 Shen, Wu, Zhang, Li, Zhang, Xu, Wu, Tian, Zhu (CR67) 2019; 58 Schloemer, Christians, Luther, Sellinger (CR6) 2019; 10 Liu, Zhang, Li, Zhou, She, Wang, Tian, Jen, Xu (CR26) 2020; 30 Ru, Bi, Zhang, Wang, Kong, Sha, Tang, Zhang, Wu, Chen, Yang, Chen, Han (CR100) 2020; 10 Luo, Xia, Yang, Malik, Han, Shu, Yao, Wan, Jia (CR49) 2020; 70 Zhu, Ma, Wang, Li, Gao, Wang, Jiang, Liao (CR66) 2018; 29 Luo, Ma, Hou, Li, Ren, Dai, Yao, Zhou, Xiang, Du, He, Wang, Jiang, Lin, Zhang, Guo (CR71) 2018; 28 Jung, Jeon, Park, Moon, Shin, Yang, Noh, Seo (CR35) 2019; 567 Cao, Wu, Peng, Feng, Li, Tang (CR94) 2019; 62 Tseng, Chen, Chang, Wu, Feng, Jeng, Chen, Lee (CR82) 2020; 204 Li, Ma, Mateen, Liu, Ding, Gao, Yang, Zhang, Wu, Dai (CR74) 2020; 195 Fakharuddin, Schmidt-Mende, Garcia-Belmonte, Jose, Mora-Sero (CR16) 2017; 7 Li, Yang, Jiang, Chu, Zhang, Zhou, Xin (CR93) 2017; 9 Li, Yang, Jiang, Lai, Li, Tan, Chen, Li (CR106) 2019; 7 Ye, Sun, Li, Yan, Peng, Bian, Liu, Huang (CR85) 2015; 15 Zhang, Wu, Li, Li, Meng, Bo (CR30) 2019; 7 Liu, Zhou, Chen, Zhao, Dai, Xu (CR84) 2019; 6 Rajeswari, Mrinalini, Prasanthkumar, Giribabu (CR33) 2017; 17 Kojima, Teshima, Shirai, Miyasaka (CR8) 2009; 131 Wang, Shen, Li, Chen, Lin, Chen, Guo (CR95) 2014; 6 Zheng, Hou, Bao, Yin, Yuan, Huang, Song, Liu, Troughton, Gasparini, Zhou, Lin, Xue, Chen, Johnston, Wei, Hedhili, Wei, Alsalloum, Maity, Turedi, Yang, Baran, Anthopoulos, Han, Lu, Mohammed, Gao, Sargent, Bakr (CR51) 2020; 5 Yu, Hong, Jung, Kim, Baek, Lee, Cho, Park, Choi, Song (CR55) 2018; 8 Connell, Wang, Lin, Greenwood, Wiles, Jones, Furnell, Anthony, Kershaw, Cooke, Snaith, Holliman (CR68) 2019; 7 Mann, Seo, Kwon, Na (CR58) 2020; 812 Saliba, Orlandi, Matsui, Aghazada, Cavazzini, Correa-Baena, Gao, Scopelliti, Mosconi, Dahmen, De Angelis, Abate, Hagfeldt, Pozzi, Graetzel, Nazeeruddin (CR63) 2016; 1 Palilis, Vasilopoulou, Verykios, Soultati, Polydorou, Argitis, Davazoglou, Mohd Yusoff, Nazeeruddin (CR75) 2020; 10 Chen, Park (CR23) 2019; 31 Heo, Han, Kim, Ahn, Im (CR52) 2015; 8 Jeon, Lee, Kim, Seo, Noh, Lee, Seok (CR39) 2014; 136 Liu, Johnston, Snaith (CR15) 2013; 501 MA Green (1691_CR9) 2014; 8 DY Liu (1691_CR54) 2017; 5 Q Fan (1691_CR4) 2020; 59 M Liu (1691_CR15) 2013; 501 EH Jung (1691_CR35) 2019; 567 GA Sepalage (1691_CR91) 2015; 25 S Pitchaiya (1691_CR31) 2020; 13 TH Schloemer (1691_CR6) 2019; 10 JY Seo (1691_CR45) 2018; 11 N Arora (1691_CR87) 2017; 358 A Fakharuddin (1691_CR17) 2016; 4 P Huang (1691_CR102) 2017; 9 KC Wang (1691_CR95) 2014; 6 K Rakstys (1691_CR28) 2019; 10 LR Zhang (1691_CR30) 2019; 7 C Liu (1691_CR84) 2019; 6 Y Zhang (1691_CR72) 2019; 7 F Zhang (1691_CR105) 2018; 30 A Kojima (1691_CR8) 2009; 131 ND Pham (1691_CR46) 2020; 69 YC Zhang (1691_CR61) 2016; 6 MH Li (1691_CR74) 2020; 195 T Salim (1691_CR19) 2015; 3 JZ Chen (1691_CR23) 2019; 31 A Khorasani (1691_CR107) 2019; 11 MA Green (1691_CR5) 2017; 2 LG Xu (1691_CR57) 2020; 206 Q Jiang (1691_CR41) 2017; 29 Q Luo (1691_CR71) 2018; 28 PB Ru (1691_CR100) 2020; 10 C Shen (1691_CR67) 2019; 58 CL Chen (1691_CR3) 2020; 39 XB Xu (1691_CR96) 2015; 15 L Najafi (1691_CR103) 2018; 12 HX Rao (1691_CR109) 2016; 8 SY Ye (1691_CR85) 2015; 15 R Wang (1691_CR32) 2019; 29 SZ Yue (1691_CR99) 2017; 10 HS Kim (1691_CR11) 2012; 2 HX Rao (1691_CR81) 2016; 27 AK Jena (1691_CR1) 2019; 119 YG Kim (1691_CR101) 2016; 319 IS Yang (1691_CR88) 2019; 7 G Sathiyan (1691_CR47) 2020; 72 DS Mann (1691_CR58) 2020; 812 WS Yang (1691_CR48) 2017; 356 WW Li (1691_CR59) 2020; 78 XP Zheng (1691_CR51) 2020; 5 XD Zhu (1691_CR66) 2018; 29 DQ Bi (1691_CR40) 2016; 2 T Miyasaka (1691_CR2) 2020; 10 WH Sun (1691_CR80) 2016; 8 X Li (1691_CR106) 2019; 7 GW Kim (1691_CR24) 2020; 10 KM Reza (1691_CR60) 2020; 44 YJ Chen (1691_CR83) 2018; 8 M Jung (1691_CR86) 2016; 9 WY Chen (1691_CR92) 2015; 3 JC Yu (1691_CR55) 2018; 8 LC Palilis (1691_CR75) 2020; 10 JA Christians (1691_CR90) 2014; 136 JM Ball (1691_CR13) 2013; 6 ZF Liu (1691_CR50) 2018; 4 SY Ye (1691_CR104) 2017; 139 A Connell (1691_CR68) 2019; 7 JB Zhang (1691_CR64) 2018; 8 NJ Jeon (1691_CR65) 2018; 3 C Rodriguez-Seco (1691_CR37) 2018; 51 ZM Zhou (1691_CR21) 2020; 8 F Di Giacomo (1691_CR70) 2018; 181 A Fakharuddin (1691_CR16) 2017; 7 JH Heo (1691_CR52) 2015; 8 B Xu (1691_CR73) 2016; 9 X Li (1691_CR93) 2017; 9 C Liu (1691_CR26) 2020; 30 FL Cai (1691_CR38) 2018; 45 M Batmunkh (1691_CR18) 2015; 3 L Zhou (1691_CR43) 2019; 60 CT Zuo (1691_CR53) 2017; 7 R Rajeswari (1691_CR33) 2017; 17 J Kim (1691_CR89) 2019; 11 KL Chopra (1691_CR14) 2004; 12 Y Wang (1691_CR44) 2019; 365 WL Yu (1691_CR79) 2016; 8 CC Tseng (1691_CR82) 2020; 204 NY Nia (1691_CR62) 2017; 10 N-G Park (1691_CR10) 2015; 18 FX Xie (1691_CR98) 2017; 10 WQ Wu (1691_CR20) 2018; 9 Q Jiang (1691_CR42) 2019; 13 JS Luo (1691_CR34) 2018; 11 J Cao (1691_CR94) 2019; 62 S Kohnehpoushi (1691_CR78) 2018; 29 Z Hawash (1691_CR25) 2018; 5 K Jiang (1691_CR36) 2020; 32 F Behrouznejad (1691_CR108) 2020; 4 K Cao (1691_CR97) 2015; 17 Z Yu (1691_CR76) 2018; 2 R Singh (1691_CR77) 2019; 14 J Urieta-Mora (1691_CR7) 2018; 47 NJ Jeon (1691_CR39) 2014; 136 M Wang (1691_CR56) 2019; 7 M Saliba (1691_CR63) 2016; 1 MM Lee (1691_CR12) 2012; 338 GW Kim (1691_CR69) 2018; 8 A Krishna (1691_CR22) 2017; 5 R Azmi (1691_CR29) 2018; 44 HQ Lu (1691_CR27) 2020; 385 JS Luo (1691_CR49) 2020; 70 |
References_xml | – volume: 119 start-page: 3036 issue: 5 year: 2019 ident: CR1 article-title: Halide perovskite photovoltaics: background, status, and future prospects publication-title: Chem Rev – volume: 44 start-page: 41 year: 2020 ident: CR60 article-title: Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: enhancement of electrical and optical properties with improved morphology publication-title: J Energy Chem – volume: 11 start-page: 2985 issue: 10 year: 2018 ident: CR45 article-title: Novel p-dopant toward highly efficient and stable perovskite solar cells publication-title: Energy Environ Sci – volume: 29 start-page: 1703852 issue: 46 year: 2017 ident: CR41 article-title: Planar-structure perovskite solar cells with efficiency beyond 21% publication-title: Adv Mater – volume: 29 start-page: 1807094 issue: 5 year: 2018 ident: CR66 article-title: Hole transporting materials incorporating carbazole into spiro-core for highly efficient perovskite solar cells publication-title: Adv Funct Mater – volume: 7 start-page: 6028 issue: 11 year: 2019 ident: CR88 article-title: Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules publication-title: J Mater Chem A – volume: 8 start-page: 7646 issue: 1 year: 2018 ident: CR83 article-title: Cu/Cu O nanocomposite films as a p-type modified layer for efficient perovskite solar cells publication-title: Sci Rep – volume: 30 start-page: 1908462 issue: 28 year: 2020 ident: CR26 article-title: Highly stable and efficient perovskite solar cells with 22.0% efficiency based on inorganic-organic dopant-free double hole transporting layers publication-title: Adv Funct Mater – volume: 29 start-page: 1808843 issue: 47 year: 2019 ident: CR32 article-title: A review of perovskites solar cell stability publication-title: Adv Funct Mater – volume: 4 start-page: 091505 issue: 9 year: 2016 ident: CR17 article-title: Research update: behind the high efficiency of hybrid perovskite solar cells publication-title: APL Mater – volume: 25 start-page: 5650 issue: 35 year: 2015 ident: CR91 article-title: Copper(I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of – hysteresis publication-title: Adv Funct Mater – volume: 29 start-page: 205201 issue: 20 year: 2018 ident: CR78 article-title: MoS : a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells publication-title: Nanotechnology – volume: 8 start-page: 6173 issue: 11 year: 2016 ident: CR79 article-title: Ultrathin Cu O as an efficient inorganic hole transporting material for perovskite solar cells publication-title: Nanoscale – volume: 319 start-page: 1 year: 2016 ident: CR101 article-title: Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells publication-title: J Power Sources – volume: 8 start-page: 506 issue: 7 year: 2014 ident: CR9 article-title: The emergence of perovskite solar cells publication-title: Nat Photonics – volume: 139 start-page: 7504 issue: 22 year: 2017 ident: CR104 article-title: A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I publication-title: J Am Chem Soc. – volume: 2 start-page: e1501170 issue: 1 year: 2016 ident: CR40 article-title: Efficient luminescent solar cells based on tailored mixed-cation perovskites publication-title: Sci Adv – volume: 11 start-page: 2035 issue: 8 year: 2018 ident: CR34 article-title: Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole transporting material using a fluorine-containing hydrophobic Lewis acid publication-title: Energy Environ Sci – volume: 4 start-page: 1900564 issue: 5 year: 2020 ident: CR108 article-title: Effective carbon composite electrode for low-cost perovskite solar cell with inorganic CuIn Ga S hole transport material publication-title: Sol RRL. – volume: 2 start-page: 822 issue: 4 year: 2017 ident: CR5 article-title: Perovskite solar cells: the birth of a new era in photovoltaics publication-title: ACS Energy Lett – volume: 358 start-page: 768 issue: 6364 year: 2017 ident: CR87 article-title: Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% publication-title: Science – volume: 51 start-page: 869 issue: 4 year: 2018 ident: CR37 article-title: Advances in the synthesis of small molecules as hole transport materials for lead halide perovskite solar cells publication-title: Acc Chem Res – volume: 385 start-page: 123976 year: 2020 ident: CR27 article-title: Dopant-free hole transport materials processed with green solvent for efficient perovskite solar cells publication-title: Chem Eng J – volume: 62 start-page: 363 issue: 3 year: 2019 ident: CR94 article-title: Copper–copper iodide hybrid nanostructure as hole transport material for efficient and stable inverted perovskite solar cells publication-title: Sci China: Chem – volume: 58 start-page: 3784 issue: 12 year: 2019 ident: CR67 article-title: Semi-locked tetrathienylethene as a building block for hole-transporting materials: toward efficient and stable perovskite solar cells publication-title: Angew Chem Int Ed Engl – volume: 78 start-page: 105575 year: 2020 ident: CR59 article-title: Boost the performance of inverted perovskite solar cells with PEDOT:PSS/graphene quantum dots composite hole transporting layer publication-title: Org Electron – volume: 2 start-page: 1700280 issue: 2 year: 2018 ident: CR76 article-title: Inorganic hole-transporting materials for perovskite solar cells publication-title: Small Methods – volume: 338 start-page: 643 issue: 6107 year: 2012 ident: CR12 article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites publication-title: Science – volume: 5 start-page: 5701 issue: 12 year: 2017 ident: CR54 article-title: Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers publication-title: J Mater Chem A – volume: 30 start-page: e1803244 issue: 38 year: 2018 ident: CR105 article-title: Semimetal-semiconductor transitions for monolayer antimonene nanosheets and their application in perovskite solar cells publication-title: Adv Mater – volume: 3 start-page: 8943 issue: 17 year: 2015 ident: CR19 article-title: Perovskite-based solar cells: impact of morphology and device architecture on device performance publication-title: J Mater Chem A – volume: 10 start-page: 2000910 issue: 27 year: 2020 ident: CR75 article-title: Inorganic and hybrid interfacial materials for organic and perovskite solar cells publication-title: Adv Energy Mater. – volume: 8 start-page: 7800 issue: 12 year: 2016 ident: CR109 article-title: Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 11851 issue: 15 year: 2014 ident: CR95 article-title: Low-temperature sputtered nickel oxide compact thin-film as effective electron blocking layer for mesoscopic NiO/CH NH PbI perovskite heterojunction solar cells publication-title: ACS Appl Mater Interfaces – volume: 10 start-page: 3854 issue: 19 year: 2017 ident: CR62 article-title: High-efficiency perovskite solar cell based on poly(3-hexylthiophene): influence of molecular weight and mesoscopic scaffold layer publication-title: Chemsuschem – volume: 365 start-page: 591 issue: 6453 year: 2019 ident: CR44 article-title: Thermodynamically stabilized beta-CsPbI -based perovskite solar cells with efficiencies > 18% publication-title: Science – volume: 4 start-page: 110 issue: 1 year: 2018 ident: CR50 article-title: Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells publication-title: ACS Energy Lett – volume: 8 start-page: 1701935 issue: 4 year: 2018 ident: CR69 article-title: Donor-acceptor type dopant-free, polymeric hole transport material for planar perovskite solar cells (19.8%) publication-title: Adv Energy Mater – volume: 6 start-page: 108888 issue: 110 year: 2016 ident: CR61 article-title: Enhanced performance of perovskite solar cells with P3HT hole transporting materials via molecular p-type doping publication-title: RSC Adv – volume: 14 start-page: 175 year: 2019 ident: CR77 article-title: Review of current progress in inorganic hole-transport materials for perovskite solar cells publication-title: Appl Mater Today – volume: 12 start-page: 69 issue: 23 year: 2004 ident: CR14 article-title: Thin-film solar cells: an overview publication-title: Prog Photovolt – volume: 47 start-page: 8541 issue: 23 year: 2018 ident: CR7 article-title: Hole transporting materials for perovskite solar cells: a chemical approach publication-title: Chem Soc Rev – volume: 9 start-page: 1625 issue: 1 year: 2018 ident: CR20 article-title: Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells publication-title: Nat Commun – volume: 44 start-page: 191 year: 2018 ident: CR29 article-title: High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells publication-title: Nano Energy – volume: 13 start-page: 2526 issue: 1 year: 2020 ident: CR31 article-title: A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application publication-title: Arab J Chem – volume: 9 start-page: 873 issue: 3 year: 2016 ident: CR73 article-title: A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells publication-title: Energy Environ Sci – volume: 28 start-page: 1706777 issue: 11 year: 2018 ident: CR71 article-title: All-carbon-electrode-based endurable flexible perovskite solar cells publication-title: Adv Funct Mater – volume: 812 start-page: 152091 year: 2020 ident: CR58 article-title: Efficient and stable planar perovskite solar cells with a PEDOT:PSS/SrGO hole interfacial layer publication-title: J Alloys Compd – volume: 7 start-page: 1601193 issue: 2 year: 2017 ident: CR53 article-title: Modified PEDOT layer makes a 1.52 V for perovskite/PCBM solar cells publication-title: Adv Energy Mater – volume: 356 start-page: 1376 issue: 6345 year: 2017 ident: CR48 article-title: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells publication-title: Science – volume: 7 start-page: 26421 issue: 46 year: 2019 ident: CR56 article-title: Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis publication-title: J Mater Chem A – volume: 31 start-page: e1803019 issue: 47 year: 2019 ident: CR23 article-title: Causes and solutions of recombination in perovskite solar cells publication-title: Adv Mater – volume: 136 start-page: 758 issue: 2 year: 2014 ident: CR90 article-title: An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide publication-title: J Am Chem Soc – volume: 7 start-page: 1700623 issue: 22 year: 2017 ident: CR16 article-title: Interfaces in perovskite solar cells publication-title: Adv Energy Mater – volume: 10 start-page: 1942 issue: 9 year: 2017 ident: CR98 article-title: Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells publication-title: Energy Environ Sci – volume: 5 start-page: 1700623 issue: 1 year: 2018 ident: CR25 article-title: Recent advances in spiro-MeOTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells publication-title: Adv Mater Interfaces – volume: 181 start-page: 53 year: 2018 ident: CR70 article-title: Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating publication-title: Sol Energy Mater Sol Cells – volume: 45 start-page: 28 year: 2018 ident: CR38 article-title: Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells publication-title: Nano Energy – volume: 13 start-page: 460 issue: 7 year: 2019 ident: CR42 article-title: Surface passivation of perovskite film for efficient solar cells publication-title: Nat Photonics – volume: 59 start-page: 1030 issue: 3 year: 2020 ident: CR4 article-title: Lead-free halide perovskite nanocrystals: crystal structures, synthesis, stabilities, and optical properties publication-title: Angew Chem Int Ed Engl – volume: 5 start-page: 16446 issue: 32 year: 2017 ident: CR22 article-title: Hole transporting materials for mesoscopic perovskite solar cells-towards a rational design? publication-title: J Mater Chem A – volume: 206 start-page: 110316 year: 2020 ident: CR57 article-title: Improving the efficiency and stability of inverted perovskite solar cells by CuSCN-doped PEDOT:PSS publication-title: Sol Energy Mater Sol Cells – volume: 3 start-page: 682 issue: 8 year: 2018 ident: CR65 article-title: A fluorene-terminated hole transporting material for highly efficient and stable perovskite solar cells publication-title: Nat Energy – volume: 7 start-page: 5522 issue: 10 year: 2019 ident: CR72 article-title: Crosslinked and dopant free hole transport materials for efficient and stable planar perovskite solar cells publication-title: J Mater Chem A – volume: 5 start-page: 131 issue: 2 year: 2020 ident: CR51 article-title: Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells publication-title: Nat Energy. – volume: 70 start-page: 104509 year: 2020 ident: CR49 article-title: Novel approach toward hole transporting layer doped by hydrophobic Lewis acid through infiltrated diffusion doping for perovskite solar cells publication-title: Nano Energy – volume: 32 start-page: e1908011 issue: 16 year: 2020 ident: CR36 article-title: Dopant-free organic hole transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells publication-title: Adv Mater – volume: 3 start-page: 19353 issue: 38 year: 2015 ident: CR92 article-title: Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells publication-title: J Mater Chem A – volume: 204 start-page: 270 year: 2020 ident: CR82 article-title: Cu O-HTM/SiO -ETM assisted for synthesis engineering improving efficiency and stability with heterojunction planar perovskite thin-film solar cells publication-title: Sol Energy – volume: 7 start-page: 7065 issue: 12 year: 2019 ident: CR106 article-title: Perovskite solar cells employing an eco-friendly and low-cost inorganic hole transport layer for enhanced photovoltaic performance and operational stability publication-title: J Mater Chem A – volume: 17 start-page: 681 issue: 7 year: 2017 ident: CR33 article-title: Emerging of inorganic hole transporting materials for perovskite solar cells publication-title: Chem Rec – volume: 7 start-page: 14473 issue: 24 year: 2019 ident: CR30 article-title: Ladder-like conjugated polymers used as hole-transporting materials for high-efficiency perovskite solar cells publication-title: J Mater Chem A – volume: 11 start-page: 46818 issue: 50 year: 2019 ident: CR89 article-title: Interfacial modification and defect passivation by the cross-linking interlayer for efficient and stable CuSCN-based perovskite solar cells publication-title: ACS Appl Mater Interfaces – volume: 15 start-page: 3723 issue: 6 year: 2015 ident: CR85 article-title: CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6% publication-title: Nano Lett – volume: 15 start-page: 2402 issue: 4 year: 2015 ident: CR96 article-title: Hole selective NiO contact for efficient perovskite solar cells with carbon electrode publication-title: Nano Lett – volume: 11 start-page: 30838 issue: 34 year: 2019 ident: CR107 article-title: Optimization of CuIn Ga S nanoparticles and their application in the hole-transporting layer of highly efficient and stable mixed-halide perovskite solar cells publication-title: ACS Appl Mater Interfaces – volume: 60 start-page: 583 year: 2019 ident: CR43 article-title: Interface engineering of low-temperature processed all-inorganic CsPbI Br perovskite solar cells toward PCE exceeding 14% publication-title: Nano Energy – volume: 8 start-page: 1070 issue: 1 year: 2018 ident: CR55 article-title: Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer publication-title: Sci Rep – volume: 9 start-page: 41354 issue: 47 year: 2017 ident: CR93 article-title: Synergistic effect to high-performance perovskite solar cells with reduced hysteresis and improved stability by the introduction of Na-treated TiO and spraying-deposited CuI as transport layers publication-title: ACS Appl Mater Interfaces – volume: 18 start-page: 65 issue: 2 year: 2015 ident: CR10 article-title: Perovskite solar cells: an emerging photovoltaic technology publication-title: Mater Today – volume: 2 start-page: 591 year: 2012 ident: CR11 article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% publication-title: Sci Rep – volume: 9 start-page: 25323 issue: 30 year: 2017 ident: CR102 article-title: Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells publication-title: ACS Appl Mater Interfaces – volume: 8 start-page: 503 issue: 2 year: 2020 ident: CR21 article-title: Highly efficient inverted hole-transport-layer-free perovskite solar cells publication-title: J Mater Chem A – volume: 8 start-page: 1602 issue: 5 year: 2015 ident: CR52 article-title: Hysteresis-less inverted CH NH PbI planar perovskite hybrid solar cells with 18.1% power conversion efficiency publication-title: Energy Environ Sci. – volume: 9 start-page: 2592 issue: 18 year: 2016 ident: CR86 article-title: Thermal stability of CuSCN hole conductor-based perovskite solar cells publication-title: Chemsuschem – volume: 6 start-page: 1801169 issue: 7 year: 2019 ident: CR84 article-title: Hydrophobic Cu O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells publication-title: Adv Sci – volume: 10 start-page: 6748 issue: 28 year: 2019 ident: CR28 article-title: Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells publication-title: Chem Sci. – volume: 567 start-page: 511 issue: 7749 year: 2019 ident: CR35 article-title: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) publication-title: Nature – volume: 136 start-page: 7837 issue: 22 year: 2014 ident: CR39 article-title: O-methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells publication-title: J Am Chem Soc – volume: 195 start-page: 618 year: 2020 ident: CR74 article-title: Facile donor (D)-π-D triphenylamine-based hole transporting materials with different π-linker for perovskite solar cells publication-title: Sol Energy – volume: 10 start-page: 1902500 issue: 13 year: 2020 ident: CR2 article-title: Perovskite solar cells: can we go organic-free, lead-free, and dopant-free? publication-title: Adv Energy Mater – volume: 501 start-page: 395 issue: 7467 year: 2013 ident: CR15 article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition publication-title: Nature – volume: 6 start-page: 1739 issue: 6 year: 2013 ident: CR13 article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells publication-title: Energy Environ Sci – volume: 8 start-page: 10806 issue: 20 year: 2016 ident: CR80 article-title: High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuO hole transport layer publication-title: Nanoscale – volume: 10 start-page: 2570 issue: 12 year: 2017 ident: CR99 article-title: Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells publication-title: Energy Environ Sci – volume: 39 start-page: 131 issue: 2 year: 2020 ident: CR3 article-title: Improved open-circuit voltage and ambient stability of CsPbI Br perovskite solar cells by incorporating CH NH Cl publication-title: Rare Met – volume: 72 start-page: 104673 year: 2020 ident: CR47 article-title: Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells publication-title: Nano Energy – volume: 8 start-page: 1701209 issue: 2 year: 2018 ident: CR64 article-title: The importance of pendant groups on triphenylamine-based hole transport materials for obtaining perovskite solar cells with over 20% efficiency publication-title: Adv Energy Mater – volume: 17 start-page: 171 year: 2015 ident: CR97 article-title: Efficient screen printed perovskite solar cells based on mesoscopic TiO /Al O /NiO/carbon architecture publication-title: Nano Energy – volume: 12 start-page: 10736 issue: 11 year: 2018 ident: CR103 article-title: MoS quantum dot/graphene hybrids for advanced interface engineering of a CH NH PbI perovskite solar cell with an efficiency of over 20% publication-title: ACS Nano – volume: 69 start-page: 104412 year: 2020 ident: CR46 article-title: Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells publication-title: Nano Energy – volume: 27 start-page: 51 year: 2016 ident: CR81 article-title: A 19.0% efficiency achieved in CuO -based inverted CH NH PbI Cl solar cells by an effective Cl doping method publication-title: Nano Energy. – volume: 10 start-page: 1903487 issue: 12 year: 2020 ident: CR100 article-title: High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells publication-title: Adv Energy Mater – volume: 3 start-page: 9020 issue: 17 year: 2015 ident: CR18 article-title: Nanocarbons for mesoscopic perovskite solar cells publication-title: J Mater Chem A – volume: 7 start-page: 5235 issue: 18 year: 2019 ident: CR68 article-title: Low-cost triazatruxene hole transporting material for >20% efficiency perovskite solar cells publication-title: J Mater Chem C – volume: 10 start-page: 1904 issue: 7 year: 2019 ident: CR6 article-title: Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability publication-title: Chem Sci – volume: 1 start-page: 15017 year: 2016 ident: CR63 article-title: A molecularly engineered hole transporting material for efficient perovskite solar cells publication-title: Nat Energy – volume: 10 start-page: 1903403 issue: 8 year: 2020 ident: CR24 article-title: Hole transport materials in conventional structural (n-i-p) perovskite solar cells: from past to the future publication-title: Adv Energy Mater – volume: 131 start-page: 6050 issue: 17 year: 2009 ident: CR8 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J Am Chem Soc – volume: 29 start-page: 1703852 issue: 46 year: 2017 ident: 1691_CR41 publication-title: Adv Mater doi: 10.1002/adma.201703852 – volume: 136 start-page: 758 issue: 2 year: 2014 ident: 1691_CR90 publication-title: J Am Chem Soc doi: 10.1021/ja411014k – volume: 5 start-page: 16446 issue: 32 year: 2017 ident: 1691_CR22 publication-title: J Mater Chem A doi: 10.1039/C7TA01258F – volume: 58 start-page: 3784 issue: 12 year: 2019 ident: 1691_CR67 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201811593 – volume: 11 start-page: 46818 issue: 50 year: 2019 ident: 1691_CR89 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b16194 – volume: 11 start-page: 2985 issue: 10 year: 2018 ident: 1691_CR45 publication-title: Energy Environ Sci doi: 10.1039/C8EE01500G – volume: 195 start-page: 618 year: 2020 ident: 1691_CR74 publication-title: Sol Energy doi: 10.1016/j.solener.2019.11.071 – volume: 59 start-page: 1030 issue: 3 year: 2020 ident: 1691_CR4 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201904862 – volume: 9 start-page: 41354 issue: 47 year: 2017 ident: 1691_CR93 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b14926 – volume: 10 start-page: 2000910 issue: 27 year: 2020 ident: 1691_CR75 publication-title: Adv Energy Mater. doi: 10.1002/aenm.202000910 – volume: 567 start-page: 511 issue: 7749 year: 2019 ident: 1691_CR35 publication-title: Nature doi: 10.1038/s41586-019-1036-3 – volume: 39 start-page: 131 issue: 2 year: 2020 ident: 1691_CR3 publication-title: Rare Met doi: 10.1007/s12598-019-01341-z – volume: 8 start-page: 7800 issue: 12 year: 2016 ident: 1691_CR109 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b12776 – volume: 47 start-page: 8541 issue: 23 year: 2018 ident: 1691_CR7 publication-title: Chem Soc Rev doi: 10.1039/C8CS00262B – volume: 204 start-page: 270 year: 2020 ident: 1691_CR82 publication-title: Sol Energy doi: 10.1016/j.solener.2020.04.077 – volume: 29 start-page: 1808843 issue: 47 year: 2019 ident: 1691_CR32 publication-title: Adv Funct Mater doi: 10.1002/adfm.201808843 – volume: 9 start-page: 873 issue: 3 year: 2016 ident: 1691_CR73 publication-title: Energy Environ Sci doi: 10.1039/C6EE00056H – volume: 356 start-page: 1376 issue: 6345 year: 2017 ident: 1691_CR48 publication-title: Science doi: 10.1126/science.aan2301 – volume: 10 start-page: 1903403 issue: 8 year: 2020 ident: 1691_CR24 publication-title: Adv Energy Mater doi: 10.1002/aenm.201903403 – volume: 2 start-page: 1700280 issue: 2 year: 2018 ident: 1691_CR76 publication-title: Small Methods doi: 10.1002/smtd.201700280 – volume: 319 start-page: 1 year: 2016 ident: 1691_CR101 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.04.032 – volume: 7 start-page: 1601193 issue: 2 year: 2017 ident: 1691_CR53 publication-title: Adv Energy Mater doi: 10.1002/aenm.201601193 – volume: 3 start-page: 9020 issue: 17 year: 2015 ident: 1691_CR18 publication-title: J Mater Chem A doi: 10.1039/C5TA00873E – volume: 812 start-page: 152091 year: 2020 ident: 1691_CR58 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.152091 – volume: 10 start-page: 1942 issue: 9 year: 2017 ident: 1691_CR98 publication-title: Energy Environ Sci doi: 10.1039/C7EE01675A – volume: 15 start-page: 2402 issue: 4 year: 2015 ident: 1691_CR96 publication-title: Nano Lett doi: 10.1021/nl504701y – volume: 3 start-page: 682 issue: 8 year: 2018 ident: 1691_CR65 publication-title: Nat Energy doi: 10.1038/s41560-018-0200-6 – volume: 8 start-page: 506 issue: 7 year: 2014 ident: 1691_CR9 publication-title: Nat Photonics doi: 10.1038/nphoton.2014.134 – volume: 7 start-page: 26421 issue: 46 year: 2019 ident: 1691_CR56 publication-title: J Mater Chem A doi: 10.1039/C9TA08314F – volume: 10 start-page: 1903487 issue: 12 year: 2020 ident: 1691_CR100 publication-title: Adv Energy Mater doi: 10.1002/aenm.201903487 – volume: 31 start-page: e1803019 issue: 47 year: 2019 ident: 1691_CR23 publication-title: Adv Mater doi: 10.1002/adma.201803019 – volume: 365 start-page: 591 issue: 6453 year: 2019 ident: 1691_CR44 publication-title: Science doi: 10.1126/science.aav8680 – volume: 70 start-page: 104509 year: 2020 ident: 1691_CR49 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104509 – volume: 10 start-page: 6748 issue: 28 year: 2019 ident: 1691_CR28 publication-title: Chem Sci. doi: 10.1039/C9SC01184F – volume: 6 start-page: 11851 issue: 15 year: 2014 ident: 1691_CR95 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am503610u – volume: 119 start-page: 3036 issue: 5 year: 2019 ident: 1691_CR1 publication-title: Chem Rev doi: 10.1021/acs.chemrev.8b00539 – volume: 11 start-page: 30838 issue: 34 year: 2019 ident: 1691_CR107 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b08714 – volume: 181 start-page: 53 year: 2018 ident: 1691_CR70 publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2017.11.010 – volume: 7 start-page: 1700623 issue: 22 year: 2017 ident: 1691_CR16 publication-title: Adv Energy Mater doi: 10.1002/aenm.201700623 – volume: 30 start-page: e1803244 issue: 38 year: 2018 ident: 1691_CR105 publication-title: Adv Mater doi: 10.1002/adma.201803244 – volume: 44 start-page: 191 year: 2018 ident: 1691_CR29 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.002 – volume: 206 start-page: 110316 year: 2020 ident: 1691_CR57 publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2019.110316 – volume: 8 start-page: 7646 issue: 1 year: 2018 ident: 1691_CR83 publication-title: Sci Rep doi: 10.1038/s41598-018-25975-8 – volume: 9 start-page: 25323 issue: 30 year: 2017 ident: 1691_CR102 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b06403 – volume: 139 start-page: 7504 issue: 22 year: 2017 ident: 1691_CR104 publication-title: J Am Chem Soc. doi: 10.1021/jacs.7b01439 – volume: 29 start-page: 205201 issue: 20 year: 2018 ident: 1691_CR78 publication-title: Nanotechnology doi: 10.1088/1361-6528/aab1d4 – volume: 136 start-page: 7837 issue: 22 year: 2014 ident: 1691_CR39 publication-title: J Am Chem Soc doi: 10.1021/ja502824c – volume: 8 start-page: 1701935 issue: 4 year: 2018 ident: 1691_CR69 publication-title: Adv Energy Mater doi: 10.1002/aenm.201701935 – volume: 10 start-page: 1904 issue: 7 year: 2019 ident: 1691_CR6 publication-title: Chem Sci doi: 10.1039/C8SC05284K – volume: 6 start-page: 108888 issue: 110 year: 2016 ident: 1691_CR61 publication-title: RSC Adv doi: 10.1039/C6RA21775C – volume: 25 start-page: 5650 issue: 35 year: 2015 ident: 1691_CR91 publication-title: Adv Funct Mater doi: 10.1002/adfm.201502541 – volume: 7 start-page: 5522 issue: 10 year: 2019 ident: 1691_CR72 publication-title: J Mater Chem A doi: 10.1039/C8TA12060A – volume: 8 start-page: 10806 issue: 20 year: 2016 ident: 1691_CR80 publication-title: Nanoscale doi: 10.1039/C6NR01927G – volume: 78 start-page: 105575 year: 2020 ident: 1691_CR59 publication-title: Org Electron doi: 10.1016/j.orgel.2019.105575 – volume: 1 start-page: 15017 year: 2016 ident: 1691_CR63 publication-title: Nat Energy doi: 10.1038/nenergy.2015.17 – volume: 8 start-page: 6173 issue: 11 year: 2016 ident: 1691_CR79 publication-title: Nanoscale doi: 10.1039/C5NR07758C – volume: 4 start-page: 091505 issue: 9 year: 2016 ident: 1691_CR17 publication-title: APL Mater doi: 10.1063/1.4962143 – volume: 11 start-page: 2035 issue: 8 year: 2018 ident: 1691_CR34 publication-title: Energy Environ Sci doi: 10.1039/C8EE00036K – volume: 29 start-page: 1807094 issue: 5 year: 2018 ident: 1691_CR66 publication-title: Adv Funct Mater doi: 10.1002/adfm.201807094 – volume: 51 start-page: 869 issue: 4 year: 2018 ident: 1691_CR37 publication-title: Acc Chem Res doi: 10.1021/acs.accounts.7b00597 – volume: 7 start-page: 5235 issue: 18 year: 2019 ident: 1691_CR68 publication-title: J Mater Chem C doi: 10.1039/C8TC04231D – volume: 17 start-page: 681 issue: 7 year: 2017 ident: 1691_CR33 publication-title: Chem Rec doi: 10.1002/tcr.201600117 – volume: 8 start-page: 503 issue: 2 year: 2020 ident: 1691_CR21 publication-title: J Mater Chem A doi: 10.1039/C9TA10694D – volume: 10 start-page: 2570 issue: 12 year: 2017 ident: 1691_CR99 publication-title: Energy Environ Sci doi: 10.1039/C7EE02685D – volume: 27 start-page: 51 year: 2016 ident: 1691_CR81 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2016.06.044 – volume: 69 start-page: 104412 year: 2020 ident: 1691_CR46 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104412 – volume: 8 start-page: 1070 issue: 1 year: 2018 ident: 1691_CR55 publication-title: Sci Rep doi: 10.1038/s41598-018-19612-7 – volume: 9 start-page: 1625 issue: 1 year: 2018 ident: 1691_CR20 publication-title: Nat Commun doi: 10.1038/s41467-018-04028-8 – volume: 5 start-page: 5701 issue: 12 year: 2017 ident: 1691_CR54 publication-title: J Mater Chem A doi: 10.1039/C6TA10212C – volume: 338 start-page: 643 issue: 6107 year: 2012 ident: 1691_CR12 publication-title: Science doi: 10.1126/science.1228604 – volume: 7 start-page: 14473 issue: 24 year: 2019 ident: 1691_CR30 publication-title: J Mater Chem A doi: 10.1039/C9TA04043A – volume: 6 start-page: 1801169 issue: 7 year: 2019 ident: 1691_CR84 publication-title: Adv Sci doi: 10.1002/advs.201801169 – volume: 2 start-page: e1501170 issue: 1 year: 2016 ident: 1691_CR40 publication-title: Sci Adv doi: 10.1126/sciadv.1501170 – volume: 4 start-page: 1900564 issue: 5 year: 2020 ident: 1691_CR108 publication-title: Sol RRL. doi: 10.1002/solr.201900564 – volume: 13 start-page: 2526 issue: 1 year: 2020 ident: 1691_CR31 publication-title: Arab J Chem doi: 10.1016/j.arabjc.2018.06.006 – volume: 30 start-page: 1908462 issue: 28 year: 2020 ident: 1691_CR26 publication-title: Adv Funct Mater doi: 10.1002/adfm.201908462 – volume: 72 start-page: 104673 year: 2020 ident: 1691_CR47 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104673 – volume: 15 start-page: 3723 issue: 6 year: 2015 ident: 1691_CR85 publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b00116 – volume: 10 start-page: 3854 issue: 19 year: 2017 ident: 1691_CR62 publication-title: Chemsuschem doi: 10.1002/cssc.201700635 – volume: 2 start-page: 822 issue: 4 year: 2017 ident: 1691_CR5 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.7b00137 – volume: 3 start-page: 19353 issue: 38 year: 2015 ident: 1691_CR92 publication-title: J Mater Chem A doi: 10.1039/C5TA05286F – volume: 32 start-page: e1908011 issue: 16 year: 2020 ident: 1691_CR36 publication-title: Adv Mater doi: 10.1002/adma.201908011 – volume: 4 start-page: 110 issue: 1 year: 2018 ident: 1691_CR50 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b01906 – volume: 8 start-page: 1701209 issue: 2 year: 2018 ident: 1691_CR64 publication-title: Adv Energy Mater doi: 10.1002/aenm.201701209 – volume: 8 start-page: 1602 issue: 5 year: 2015 ident: 1691_CR52 publication-title: Energy Environ Sci. doi: 10.1039/C5EE00120J – volume: 60 start-page: 583 year: 2019 ident: 1691_CR43 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.081 – volume: 385 start-page: 123976 year: 2020 ident: 1691_CR27 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.123976 – volume: 13 start-page: 460 issue: 7 year: 2019 ident: 1691_CR42 publication-title: Nat Photonics doi: 10.1038/s41566-019-0398-2 – volume: 12 start-page: 10736 issue: 11 year: 2018 ident: 1691_CR103 publication-title: ACS Nano doi: 10.1021/acsnano.8b05514 – volume: 28 start-page: 1706777 issue: 11 year: 2018 ident: 1691_CR71 publication-title: Adv Funct Mater doi: 10.1002/adfm.201706777 – volume: 358 start-page: 768 issue: 6364 year: 2017 ident: 1691_CR87 publication-title: Science doi: 10.1126/science.aam5655 – volume: 3 start-page: 8943 issue: 17 year: 2015 ident: 1691_CR19 publication-title: J Mater Chem A doi: 10.1039/C4TA05226A – volume: 131 start-page: 6050 issue: 17 year: 2009 ident: 1691_CR8 publication-title: J Am Chem Soc doi: 10.1021/ja809598r – volume: 14 start-page: 175 year: 2019 ident: 1691_CR77 publication-title: Appl Mater Today doi: 10.1016/j.apmt.2018.12.011 – volume: 44 start-page: 41 year: 2020 ident: 1691_CR60 publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.09.014 – volume: 18 start-page: 65 issue: 2 year: 2015 ident: 1691_CR10 publication-title: Mater Today doi: 10.1016/j.mattod.2014.07.007 – volume: 12 start-page: 69 issue: 23 year: 2004 ident: 1691_CR14 publication-title: Prog Photovolt doi: 10.1002/pip.541 – volume: 7 start-page: 6028 issue: 11 year: 2019 ident: 1691_CR88 publication-title: J Mater Chem A doi: 10.1039/C8TA12217B – volume: 6 start-page: 1739 issue: 6 year: 2013 ident: 1691_CR13 publication-title: Energy Environ Sci doi: 10.1039/c3ee40810h – volume: 5 start-page: 1700623 issue: 1 year: 2018 ident: 1691_CR25 publication-title: Adv Mater Interfaces doi: 10.1002/admi.201700623 – volume: 5 start-page: 131 issue: 2 year: 2020 ident: 1691_CR51 publication-title: Nat Energy. doi: 10.1038/s41560-019-0538-4 – volume: 62 start-page: 363 issue: 3 year: 2019 ident: 1691_CR94 publication-title: Sci China: Chem doi: 10.1007/s11426-018-9386-5 – volume: 17 start-page: 171 year: 2015 ident: 1691_CR97 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.08.009 – volume: 9 start-page: 2592 issue: 18 year: 2016 ident: 1691_CR86 publication-title: Chemsuschem doi: 10.1002/cssc.201600957 – volume: 7 start-page: 7065 issue: 12 year: 2019 ident: 1691_CR106 publication-title: J Mater Chem A doi: 10.1039/C9TA01499C – volume: 45 start-page: 28 year: 2018 ident: 1691_CR38 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.028 – volume: 10 start-page: 1902500 issue: 13 year: 2020 ident: 1691_CR2 publication-title: Adv Energy Mater doi: 10.1002/aenm.201902500 – volume: 501 start-page: 395 issue: 7467 year: 2013 ident: 1691_CR15 publication-title: Nature doi: 10.1038/nature12509 – volume: 2 start-page: 591 year: 2012 ident: 1691_CR11 publication-title: Sci Rep doi: 10.1038/srep00591 |
SSID | ssj0044660 |
Score | 2.6267395 |
Snippet | Perovskite solar cells (PSCs) have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years. The power... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2712 |
SubjectTerms | Biomaterials Chemistry and Materials Science Energy Energy conversion efficiency Layered materials Materials Engineering Materials Science Metallic Materials Nanoscale Science and Technology Optimization Perovskites Photovoltaic cells Physical Chemistry Review Solar cells |
Title | A brief review of hole transporting materials commonly used in perovskite solar cells |
URI | https://link.springer.com/article/10.1007/s12598-020-01691-z https://www.proquest.com/docview/2538321320 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6XfQgfuJ0jhy8aWBNm6w9Ft0c6rxoYZ5KmiYgjE1sJ7i_3vf6YVVUEAo9JA305eO93_v4hZBTx_qOFsowyzV6q5TPlBQJM9Z1lNXwBFjgPLmT48i7noppVRSW1dnudUiyOKmbYjew1H2GcAcZRBy2WidtAdgdE7kiHtbnLwYoSw4CBMqgnapSmZ_H-KqOGhvzW1i00DajbbJVmYk0LOd1h6yZ-S7Z_EQeuEeikCaAcy0tq0_owlK865bmNV059KJgj5ZLjMJPwoqbvdFlZlL6NKfIEP6aofOWZohvKfrws30SjYYPF2NWXZLAtCvdnCnup07iam-gXCGVN9BCcBVYnXhBEmDUzCotpXG4AmgmnVRo2zde38hB6kOLe0Ba88XcHBLKbQC7M7XWtxJ0FiAhrYRQvqcAu1o_6RCnllWsKwZxvMhiFjfcxyjfGOQbF_KNVx1y9vHNc8mf8Wfvbj0FcbWXspjDmexyLPXukPN6Wprm30c7-l_3Y7LBMWGlyNTrklb-sjQnYHHkSY-0w8vJ7T2-rx5vhr1iwb0DdP_RWQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVl9QFOEIk4sescOFQsKltPrcQtOI4tIVUtIi2o_R4-lJksFBAgcUDKzYui8dgzzzPzDLDvO-Uboa3nuKHbKq08LUXiWRf42hn8Iipwvm3JZie8uhN3U_Ba1cLk2e5VSDI_qSfFbuipK4_gDjGI-N64TKW8tqMXBGrZyeUZruoB5xfn7dOmV74l4JlABgNPc5X6SWDCug6E1GHdCMF15EwSRklEwSWnjZTW5xoRjPRTYdyxDY-trKcKWwKcdxpm0flQtHc6vFGd9xQQLTgPCJijNSxLc77_58_mb-LTfgnD5tbtYgkWS7eUNQo9WoYp21uBhQ9khavQabAEcbVjRbUL6ztGb-uyQUWPjr0Y-r-FSjMUKmp4d8SGmU3ZQ48RI_lzRpfFLCM8zShmkK1B518EuQ4zvX7PbgDjLsLTIHVOOYk2EpGX0UJoFWrEyk4lNfArWcWmZCynhzO68YRrmeQbo3zjXL7xuAaH72MeC76OX3tvV0sQl3s3iznagIBTaXkNjqplmTT_PNvm37rvwVyzfXsT31y2rrdgnlOyTJ4luA0zg6eh3UFvZ5Ds5srG4P6_tfsN0DcLUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gOhBfOLqqjnoSYs2bbLtwcOiLq4vPLjgraZpAsLSXWxV9Ff5E53pw1VRwYPQW9JQZiaZ-TozXwC2XBu4WijjWK7pb5UKHCVF7BjrucpqfEJqcL64lCc9__RG3IzBa90LU1S71ynJsqeBWJrSfG-Y2L1R4xtG7YFD0IfYRFznpSqrPDPPTwjasoPuEWp4m_PO8fXhiVPdK-BoT3q5o3iQuLGn_ZbyhFR-SwvBVWh17IdxSIkmq7SUxuUK0Yx0E6HtvvH3jWwlAY54uO44TPrUfYw7qMfb9dlPydGS_4BAOnrGqk3n-2_-7ApH8e2XlGzh6TpzMFuFqKxd2tQ8jJl0AWY-EBcuQq_NYsTYlpWdL2xgGd2zy_KaKh1nMYyFS_NmKGC09v4ze8hMwu5SRuzkjxn9OGYZYWtG-YNsCXr_IshlmEgHqVkBxm2IJ0NibWAl-ktEYVoJoQJfIW62QdwAt5ZVpCv2crpEox-NeJdJvhHKNyrkG700YOf9nWHJ3fHr7Gatgqjax1nE0R94nBTdgN1aLaPhn1db_dv0TZi6OupE593LszWY5lQ3UxQMNmEiv38w6xj45PFGYWsMbv_buN8AgrQPhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brief+review+of+hole+transporting+materials+commonly+used+in+perovskite+solar+cells&rft.jtitle=Rare+metals&rft.au=Li%2C+Song&rft.au=Yong-Li%2C+Cao&rft.au=Wen-Hua%2C+Li&rft.au=Zhi-Shan%2C+Bo&rft.date=2021-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=40&rft.issue=10&rft.spage=2712&rft.epage=2729&rft_id=info:doi/10.1007%2Fs12598-020-01691-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon |