FastComposer: Tuning-Free Multi-subject Image Generation with Localized Attention

Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods stru...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 133; no. 3; pp. 1175 - 1194
Main Authors Xiao, Guangxuan, Yin, Tianwei, Freeman, William T., Durand, Frédo, Han, Song
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods struggle with multi-subject generation as they often blend identity among subjects. We present FastComposer which enables efficient, personalized, multi-subject text-to-image generation without fine-tuning. FastComposer uses subject embeddings extracted by an image encoder to augment the generic text conditioning in diffusion models, enabling personalized image generation based on subject images and textual instructions with only forward passes . To address the identity blending problem in the multi-subject generation, FastComposer proposes cross-attention localization supervision during training, enforcing the attention of reference subjects localized to the correct regions in the target images. Naively conditioning on subject embeddings results in subject overfitting. FastComposer proposes delayed subject conditioning in the denoising step to maintain both identity and editability in subject-driven image generation. FastComposer generates images of multiple unseen individuals with different styles, actions, and contexts. It achieves 300 × –2500 × speedup compared to fine-tuning-based methods and requires zero extra storage for new subjects. FastComposer paves the way for efficient, personalized, and high-quality multi-subject image creation. Code, model, and dataset are available here ( https://github.com/mit-han-lab/fastcomposer ).
AbstractList Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods struggle with multi-subject generation as they often blend identity among subjects. We present FastComposer which enables efficient, personalized, multi-subject text-to-image generation without fine-tuning. FastComposer uses subject embeddings extracted by an image encoder to augment the generic text conditioning in diffusion models, enabling personalized image generation based on subject images and textual instructions with only forward passes . To address the identity blending problem in the multi-subject generation, FastComposer proposes cross-attention localization supervision during training, enforcing the attention of reference subjects localized to the correct regions in the target images. Naively conditioning on subject embeddings results in subject overfitting. FastComposer proposes delayed subject conditioning in the denoising step to maintain both identity and editability in subject-driven image generation. FastComposer generates images of multiple unseen individuals with different styles, actions, and contexts. It achieves 300 $$\times $$ × –2500 $$\times $$ × speedup compared to fine-tuning-based methods and requires zero extra storage for new subjects. FastComposer paves the way for efficient, personalized, and high-quality multi-subject image creation. Code, model, and dataset are available here ( https://github.com/mit-han-lab/fastcomposer ).
Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods struggle with multi-subject generation as they often blend identity among subjects. We present FastComposer which enables efficient, personalized, multi-subject text-to-image generation without fine-tuning. FastComposer uses subject embeddings extracted by an image encoder to augment the generic text conditioning in diffusion models, enabling personalized image generation based on subject images and textual instructions with only forward passes. To address the identity blending problem in the multi-subject generation, FastComposer proposes cross-attention localization supervision during training, enforcing the attention of reference subjects localized to the correct regions in the target images. Naively conditioning on subject embeddings results in subject overfitting. FastComposer proposes delayed subject conditioning in the denoising step to maintain both identity and editability in subject-driven image generation. FastComposer generates images of multiple unseen individuals with different styles, actions, and contexts. It achieves 300×–2500× speedup compared to fine-tuning-based methods and requires zero extra storage for new subjects. FastComposer paves the way for efficient, personalized, and high-quality multi-subject image creation. Code, model, and dataset are available here (https://github.com/mit-han-lab/fastcomposer).
Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods struggle with multi-subject generation as they often blend identity among subjects. We present FastComposer which enables efficient, personalized, multi-subject text-to-image generation without fine-tuning. FastComposer uses subject embeddings extracted by an image encoder to augment the generic text conditioning in diffusion models, enabling personalized image generation based on subject images and textual instructions with only forward passes . To address the identity blending problem in the multi-subject generation, FastComposer proposes cross-attention localization supervision during training, enforcing the attention of reference subjects localized to the correct regions in the target images. Naively conditioning on subject embeddings results in subject overfitting. FastComposer proposes delayed subject conditioning in the denoising step to maintain both identity and editability in subject-driven image generation. FastComposer generates images of multiple unseen individuals with different styles, actions, and contexts. It achieves 300 × –2500 × speedup compared to fine-tuning-based methods and requires zero extra storage for new subjects. FastComposer paves the way for efficient, personalized, and high-quality multi-subject image creation. Code, model, and dataset are available here ( https://github.com/mit-han-lab/fastcomposer ).
Author Han, Song
Durand, Frédo
Xiao, Guangxuan
Freeman, William T.
Yin, Tianwei
Author_xml – sequence: 1
  givenname: Guangxuan
  orcidid: 0000-0002-7182-9284
  surname: Xiao
  fullname: Xiao, Guangxuan
  email: xgx@mit.edu
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Tianwei
  surname: Yin
  fullname: Yin, Tianwei
  email: tianweiy@mit.edu
  organization: Massachusetts Institute of Technology
– sequence: 3
  givenname: William T.
  surname: Freeman
  fullname: Freeman, William T.
  organization: Massachusetts Institute of Technology
– sequence: 4
  givenname: Frédo
  surname: Durand
  fullname: Durand, Frédo
  organization: Massachusetts Institute of Technology
– sequence: 5
  givenname: Song
  surname: Han
  fullname: Han, Song
  organization: Massachusetts Institute of Technology, NVIDIA
BookMark eNp9kE9LwzAYh4NMcJt-AU8Fz9E3Tdu03sZwczARYZ5Dkr2dHV06kxRxn95uFQQPO4T3kN_z_nlGZGAbi4TcMrhnAOLBMxZnnEKcdC-OBT1ckCFLBacsgXRAhlDEQNOsYFdk5P0WAOI85kPyNlM-TJvdvvHoHqNVayu7oTOHGL20daiob_UWTYgWO7XBaI4WnQpVY6OvKnxEy8aoujrgOpqEgPb4cU0uS1V7vPmtY_I-e1pNn-nydb6YTpbU8IwHqgCQaZ0YrVPMkxSFgaI0QpQa8kQAT0xqSgaaCaFLppMsXXOuMm54IUTG-Zjc9X33rvls0Qe5bVpnu5GSMwFZwUXCulTep4xrvHdYSlOF0wHBqaqWDORRoOwFyk6gPAmUhw6N_6F7V-2U-z4P8R7yXdhu0P1tdYb6AZ2lhaw
CitedBy_id crossref_primary_10_1007_s10462_024_10937_6
crossref_primary_10_1007_s11263_024_02267_5
crossref_primary_10_1007_s11263_024_02309_y
crossref_primary_10_1111_cgf_15063
crossref_primary_10_1007_s11263_024_02334_x
crossref_primary_10_1007_s11263_025_02361_2
crossref_primary_10_1007_s10462_025_11116_x
Cites_doi 10.18653/v1/D19-1410
10.1109/ICCV51070.2023.00355
10.1109/CVPR.2019.00453
10.1109/CVPR52729.2023.00192
10.1109/CVPR52729.2023.00191
10.1109/ICCV51070.2023.01461
10.1145/3610548.3618249
10.1109/ICCV.2015.425
10.1109/CVPR.2015.7298682
10.1109/ICCV51070.2023.00673
10.1109/CVPR52688.2022.01042
10.1109/CVPR52729.2023.00976
10.1145/3610548.3618154
10.1007/978-3-031-73390-1_25
10.1145/3544777
10.1109/CVPR52688.2022.00135
10.1109/ICCV48922.2021.00951
10.1109/CVPR52729.2023.02155
10.1109/CVPR52733.2024.00747
10.1145/3588432.3591513
10.1109/ICCV51070.2023.02062
10.1145/3610548.3618173
10.1109/CVPR52688.2022.01103
10.1145/3550454.3555436
10.1109/LSP.2016.2603342
10.1145/3592116
10.1007/978-3-319-10602-1_48
10.1109/CVPR52733.2024.00213
10.5281/zenodo.5143773
10.1109/CVPR52729.2023.01762
10.1109/WACV57701.2024.00416
10.1109/CVPR52733.2024.00825
10.1109/ICCV51070.2023.02107
10.1109/CVPR52733.2024.00816
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Mar 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11263-024-02227-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 1194
ExternalDocumentID 10_1007_s11263_024_02227_z
GrantInformation_xml – fundername: Defence Science and Technology Agency - Singapore
  grantid: DST00OECI20300823
  funderid: http://dx.doi.org/10.13039/501100001444
– fundername: Division of Information and Intelligent Systems
  grantid: 2105819
  funderid: http://dx.doi.org/10.13039/100000145
– fundername: Massachusetts Institute of Technology
  funderid: http://dx.doi.org/10.13039/100006919
– fundername: Microsoft
  funderid: http://dx.doi.org/10.13039/100004318
– fundername: Division of Computing and Communication Foundations
  grantid: 1943349
  funderid: http://dx.doi.org/10.13039/100000143
– fundername: MIT-IBM Watson AI Lab
  funderid: http://dx.doi.org/10.13039/100020895
– fundername: Amazon
  funderid: http://dx.doi.org/10.13039/100022984
– fundername: Nvidia
  funderid: http://dx.doi.org/10.13039/100007065
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-a00e1bb4cbb5e845e7c09fc77fb0847034c5cf10b177bf1b465d33a63c3977633
IEDL.DBID U2A
ISSN 0920-5691
IngestDate Fri Jul 25 21:21:50 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Tue Aug 05 11:57:25 EDT 2025
Tue Feb 25 01:11:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Model acceleration
Diffusion-based models
Efficiency
Image generation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-a00e1bb4cbb5e845e7c09fc77fb0847034c5cf10b177bf1b465d33a63c3977633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7182-9284
OpenAccessLink https://link.springer.com/10.1007/s11263-024-02227-z
PQID 3170693741
PQPubID 1456341
PageCount 20
ParticipantIDs proquest_journals_3170693741
crossref_citationtrail_10_1007_s11263_024_02227_z
crossref_primary_10_1007_s11263_024_02227_z
springer_journals_10_1007_s11263_024_02227_z
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References J Ho (2227_CR21) 2020; 33
2227_CR30
2227_CR31
2227_CR9
2227_CR36
2227_CR38
2227_CR39
2227_CR32
2227_CR33
2227_CR34
2227_CR35
A Casanova (2227_CR8) 2021; 34
2227_CR7
2227_CR6
2227_CR5
2227_CR4
2227_CR3
2227_CR2
2227_CR1
2227_CR40
2227_CR41
2227_CR42
2227_CR47
2227_CR48
Y Nitzan (2227_CR37) 2022; 41
2227_CR43
2227_CR45
2227_CR46
C Schuhmann (2227_CR49) 2022; 35
2227_CR50
2227_CR51
2227_CR52
2227_CR53
2227_CR14
D Roich (2227_CR44) 2022; 42
2227_CR58
2227_CR15
2227_CR59
2227_CR16
2227_CR17
2227_CR10
2227_CR54
2227_CR11
2227_CR55
2227_CR12
2227_CR56
2227_CR57
2227_CR18
2227_CR19
2227_CR61
2227_CR62
2227_CR63
2227_CR20
2227_CR64
M Ding (2227_CR13) 2021; 34
2227_CR60
2227_CR25
2227_CR26
2227_CR27
2227_CR28
2227_CR22
2227_CR23
2227_CR24
2227_CR29
References_xml – ident: 2227_CR43
  doi: 10.18653/v1/D19-1410
– ident: 2227_CR63
  doi: 10.1109/ICCV51070.2023.00355
– volume: 35
  start-page: 25278
  year: 2022
  ident: 2227_CR49
  publication-title: Advances in Neural Information Processing Systems
– ident: 2227_CR26
  doi: 10.1109/CVPR.2019.00453
– ident: 2227_CR4
– ident: 2227_CR60
– ident: 2227_CR28
  doi: 10.1109/CVPR52729.2023.00192
– ident: 2227_CR53
  doi: 10.1109/CVPR52729.2023.00191
– ident: 2227_CR58
– ident: 2227_CR57
  doi: 10.1109/ICCV51070.2023.01461
– ident: 2227_CR31
– ident: 2227_CR54
  doi: 10.1145/3610548.3618249
– ident: 2227_CR16
– ident: 2227_CR33
  doi: 10.1109/ICCV.2015.425
– ident: 2227_CR48
  doi: 10.1109/CVPR.2015.7298682
– ident: 2227_CR17
  doi: 10.1109/ICCV51070.2023.00673
– ident: 2227_CR45
  doi: 10.1109/CVPR52688.2022.01042
– volume: 34
  start-page: 27517
  year: 2021
  ident: 2227_CR8
  publication-title: Advances in Neural Information Processing Systems
– ident: 2227_CR5
– ident: 2227_CR20
– ident: 2227_CR25
  doi: 10.1109/CVPR52729.2023.00976
– ident: 2227_CR61
– ident: 2227_CR2
  doi: 10.1145/3610548.3618154
– ident: 2227_CR24
  doi: 10.1007/978-3-031-73390-1_25
– volume: 42
  start-page: 1
  issue: 1
  year: 2022
  ident: 2227_CR44
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3544777
– ident: 2227_CR1
– ident: 2227_CR40
– ident: 2227_CR41
– ident: 2227_CR12
  doi: 10.1109/CVPR52688.2022.00135
– ident: 2227_CR34
– ident: 2227_CR7
  doi: 10.1109/ICCV48922.2021.00951
– ident: 2227_CR59
– ident: 2227_CR55
– ident: 2227_CR51
– ident: 2227_CR46
  doi: 10.1109/CVPR52729.2023.02155
– volume: 34
  start-page: 19822
  year: 2021
  ident: 2227_CR13
  publication-title: Advances in Neural Information Processing Systems
– ident: 2227_CR27
– ident: 2227_CR52
– ident: 2227_CR35
  doi: 10.1109/CVPR52733.2024.00747
– ident: 2227_CR38
  doi: 10.1145/3588432.3591513
– ident: 2227_CR62
– ident: 2227_CR6
  doi: 10.1109/ICCV51070.2023.02062
– ident: 2227_CR42
– ident: 2227_CR15
  doi: 10.1145/3610548.3618173
– volume: 33
  start-page: 6840
  year: 2020
  ident: 2227_CR21
  publication-title: Advances in Neural Information Processing Systems
– ident: 2227_CR56
– ident: 2227_CR18
– ident: 2227_CR14
– ident: 2227_CR9
  doi: 10.1109/CVPR52688.2022.01103
– volume: 41
  start-page: 1
  issue: 6
  year: 2022
  ident: 2227_CR37
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3550454.3555436
– ident: 2227_CR64
  doi: 10.1109/LSP.2016.2603342
– ident: 2227_CR10
  doi: 10.1145/3592116
– ident: 2227_CR22
– ident: 2227_CR32
  doi: 10.1007/978-3-319-10602-1_48
– ident: 2227_CR30
  doi: 10.1109/CVPR52733.2024.00213
– ident: 2227_CR23
  doi: 10.5281/zenodo.5143773
– ident: 2227_CR3
  doi: 10.1109/CVPR52729.2023.01762
– ident: 2227_CR47
  doi: 10.1109/WACV57701.2024.00416
– ident: 2227_CR29
  doi: 10.1109/CVPR52733.2024.00825
– ident: 2227_CR11
– ident: 2227_CR39
  doi: 10.1109/ICCV51070.2023.02107
– ident: 2227_CR50
  doi: 10.1109/CVPR52733.2024.00816
– ident: 2227_CR19
– ident: 2227_CR36
SSID ssj0002823
Score 2.5072904
Snippet Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1175
SubjectTerms Artificial Intelligence
Computer Imaging
Computer Science
Conditioning
Customization
Diffusion models
Diffusion rate
Efficiency
Image processing
Image Processing and Computer Vision
Image quality
Pattern Recognition
Pattern Recognition and Graphics
Special Issue on Large-Scale Generative Models for Content Creation and Manipulation
Vision
Title FastComposer: Tuning-Free Multi-subject Image Generation with Localized Attention
URI https://link.springer.com/article/10.1007/s11263-024-02227-z
https://www.proquest.com/docview/3170693741
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odvHitzidIwdvGkiatF29dWN1fg2EDeapNGkCgm6ydpf99Sb92FBU8FRI0xTeR97vveS9B3Dpe5KmQSqwTow2ce0o3HV1inXqJwa_kpRKG4d8GnnDCb-futMqKSyrb7vXR5LFTr1JdqNOcebIcZHAiVfb0HSt726keOKE6_3XOBFlA3njGLleQKtUmZ_X-GqONhjz27FoYW2ifditYCIKS74ewJaaHcJeBRlRpZCZGaq7MtRjR_AcJVluh-dGum7QeGkjHzhaKIWKbFucLYUNvqC7d7OXoLLutGUPsjFZ9GiN2-vK_CXM8_Iu5DFMosG4P8RV4wQsmcdynBCiqBBcCuGqLneVL0mgpe9rQYw1IoxLV2pKbOkpoangnpsylnhMWjjoMXYCjdl8pk4BBdxRxgPhgXAYT4Rhq2JMdYUiMuEJ0S2gNf1iWVUVt80t3uJNPWRL89jQPC5oHq9acLX-5qOsqfHn7HbNlrjSryxmtuqPQVactuC6ZtXm9e-rnf1v-jnsOLbhb3HprA2NfLFUFwaF5KIDzTDq9Ub2efvyMOjAdt_rdwpR_ATL1teX
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3rxLVar5uBNg9lNNtv1Voql1bYgtNDbkmQTELSV7vbSX29mHy0WFbxmkyzMJJlvJplvELoNhfaSKFHESrebuPUNaQY2ITYJpcOvNPE0xCEHQ9Ed8-dJMClpciAXZuP-_iGFFBe4aeQkT9sky220w52nDM_32qK9OnWd61CUjXfuUCAir0yQ-XmO70ZojSw3LkNzG9M5RPslOMStQptHaMtMj9FBCRRxuQ1T11TVYqjaTtBrR6YZNM_cmnrEowXEO0hnbgzOc2xJulAQcsG9D3eC4IJtGpSCIRKL-2DS3pbuL60sK15AnqJx52nU7pKyXALRTLCMSEqNpxTXSgWmyQMTahpZHYZWUWeDKOM60NajQDilrKe4CBLGpGAaQKBg7AzVprOpOUc44r5xfgePlM-4VE6ZhjHTVIZqySW1deRV8ot1ySUOJS3e4zULMsg8djKPc5nHyzq6W435LJg0_uzdqNQSl7sqjRlw_Tg8xb06uq9Utf78-2wX_-t-g3a7o0E_7veGL5doz4eSv_mzswaqZfOFuXI4JFPX-QL8At480nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46QXzxtzidmgffNJg0abv6NqZl0zkUNthbadIEBO3G2r3srzdJ21VFBV_TNoW7JPfdXe47AC59T5AkSDhSsd5NTDkStV2VIJX4scavOCHCxCGfhl5vzB4m7uRTFb-97V6lJIuaBsPSlOY3s0Td1IVvxLH5R4ZsMSdaroMN7anYRG3X667OYu1QFM3ktZPkegEpy2Z-nuOraarx5rcUqbU84S7YLiEj7BQ63gNrMt0HOyV8hOXmzPRQ1aGhGjsAL2Gc5WZ4qlfaLRwtTBQEhXMpoa28RdmCm0AM7L_rcwUWHNRGVdDEZ-HAGLrXpf5LJ8-Le5GHYBzej7o9VDZRQIJ6NEcxxpJwzgTnrmwzV_oCB0r4vuJYWyZMmXCFItjQUHFFOPPchNLYo8JAQ4_SI9BIp6k8BjBgjtTeCAu4Q1nMtYolpbLNJRYxi7FqAlLJLxIlw7hpdPEW1dzIRuaRlnlkZR4tm-Bq9c2s4Nf48-1WpZao3GtZRA0DkEZZjDTBdaWq-vHvs5387_ULsPl8F0aD_vDxFGw5pg-wvYvWAo18vpBnGpzk_Nyuvw8GBdrD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FastComposer%3A+Tuning-Free+Multi-subject+Image+Generation+with+Localized+Attention&rft.jtitle=International+journal+of+computer+vision&rft.au=Xiao%2C+Guangxuan&rft.au=Yin%2C+Tianwei&rft.au=Freeman%2C+William+T.&rft.au=Durand%2C+Fr%C3%A9do&rft.date=2025-03-01&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=133&rft.issue=3&rft.spage=1175&rft.epage=1194&rft_id=info:doi/10.1007%2Fs11263-024-02227-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11263_024_02227_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon