FastComposer: Tuning-Free Multi-subject Image Generation with Localized Attention
Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods stru...
Saved in:
Published in | International journal of computer vision Vol. 133; no. 3; pp. 1175 - 1194 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods struggle with multi-subject generation as they often blend identity among subjects. We present FastComposer which enables efficient, personalized, multi-subject text-to-image generation without fine-tuning. FastComposer uses subject embeddings extracted by an image encoder to augment the generic text conditioning in diffusion models, enabling personalized image generation based on subject images and textual instructions
with only forward passes
. To address the identity blending problem in the multi-subject generation, FastComposer proposes
cross-attention localization
supervision during training, enforcing the attention of reference subjects localized to the correct regions in the target images. Naively conditioning on subject embeddings results in subject overfitting. FastComposer proposes
delayed subject conditioning
in the denoising step to maintain both identity and editability in subject-driven image generation. FastComposer generates images of multiple unseen individuals with different styles, actions, and contexts. It achieves 300
×
–2500
×
speedup compared to fine-tuning-based methods and requires zero extra storage for new subjects. FastComposer paves the way for efficient, personalized, and high-quality multi-subject image creation. Code, model, and dataset are available here (
https://github.com/mit-han-lab/fastcomposer
). |
---|---|
AbstractList | Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods struggle with multi-subject generation as they often blend identity among subjects. We present FastComposer which enables efficient, personalized, multi-subject text-to-image generation without fine-tuning. FastComposer uses subject embeddings extracted by an image encoder to augment the generic text conditioning in diffusion models, enabling personalized image generation based on subject images and textual instructions with only forward passes . To address the identity blending problem in the multi-subject generation, FastComposer proposes cross-attention localization supervision during training, enforcing the attention of reference subjects localized to the correct regions in the target images. Naively conditioning on subject embeddings results in subject overfitting. FastComposer proposes delayed subject conditioning in the denoising step to maintain both identity and editability in subject-driven image generation. FastComposer generates images of multiple unseen individuals with different styles, actions, and contexts. It achieves 300 $$\times $$ × –2500 $$\times $$ × speedup compared to fine-tuning-based methods and requires zero extra storage for new subjects. FastComposer paves the way for efficient, personalized, and high-quality multi-subject image creation. Code, model, and dataset are available here ( https://github.com/mit-han-lab/fastcomposer ). Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods struggle with multi-subject generation as they often blend identity among subjects. We present FastComposer which enables efficient, personalized, multi-subject text-to-image generation without fine-tuning. FastComposer uses subject embeddings extracted by an image encoder to augment the generic text conditioning in diffusion models, enabling personalized image generation based on subject images and textual instructions with only forward passes. To address the identity blending problem in the multi-subject generation, FastComposer proposes cross-attention localization supervision during training, enforcing the attention of reference subjects localized to the correct regions in the target images. Naively conditioning on subject embeddings results in subject overfitting. FastComposer proposes delayed subject conditioning in the denoising step to maintain both identity and editability in subject-driven image generation. FastComposer generates images of multiple unseen individuals with different styles, actions, and contexts. It achieves 300×–2500× speedup compared to fine-tuning-based methods and requires zero extra storage for new subjects. FastComposer paves the way for efficient, personalized, and high-quality multi-subject image creation. Code, model, and dataset are available here (https://github.com/mit-han-lab/fastcomposer). Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient due to the subject-specific fine-tuning, which is computationally intensive and hampers efficient deployment. Moreover, existing methods struggle with multi-subject generation as they often blend identity among subjects. We present FastComposer which enables efficient, personalized, multi-subject text-to-image generation without fine-tuning. FastComposer uses subject embeddings extracted by an image encoder to augment the generic text conditioning in diffusion models, enabling personalized image generation based on subject images and textual instructions with only forward passes . To address the identity blending problem in the multi-subject generation, FastComposer proposes cross-attention localization supervision during training, enforcing the attention of reference subjects localized to the correct regions in the target images. Naively conditioning on subject embeddings results in subject overfitting. FastComposer proposes delayed subject conditioning in the denoising step to maintain both identity and editability in subject-driven image generation. FastComposer generates images of multiple unseen individuals with different styles, actions, and contexts. It achieves 300 × –2500 × speedup compared to fine-tuning-based methods and requires zero extra storage for new subjects. FastComposer paves the way for efficient, personalized, and high-quality multi-subject image creation. Code, model, and dataset are available here ( https://github.com/mit-han-lab/fastcomposer ). |
Author | Han, Song Durand, Frédo Xiao, Guangxuan Freeman, William T. Yin, Tianwei |
Author_xml | – sequence: 1 givenname: Guangxuan orcidid: 0000-0002-7182-9284 surname: Xiao fullname: Xiao, Guangxuan email: xgx@mit.edu organization: Massachusetts Institute of Technology – sequence: 2 givenname: Tianwei surname: Yin fullname: Yin, Tianwei email: tianweiy@mit.edu organization: Massachusetts Institute of Technology – sequence: 3 givenname: William T. surname: Freeman fullname: Freeman, William T. organization: Massachusetts Institute of Technology – sequence: 4 givenname: Frédo surname: Durand fullname: Durand, Frédo organization: Massachusetts Institute of Technology – sequence: 5 givenname: Song surname: Han fullname: Han, Song organization: Massachusetts Institute of Technology, NVIDIA |
BookMark | eNp9kE9LwzAYh4NMcJt-AU8Fz9E3Tdu03sZwczARYZ5Dkr2dHV06kxRxn95uFQQPO4T3kN_z_nlGZGAbi4TcMrhnAOLBMxZnnEKcdC-OBT1ckCFLBacsgXRAhlDEQNOsYFdk5P0WAOI85kPyNlM-TJvdvvHoHqNVayu7oTOHGL20daiob_UWTYgWO7XBaI4WnQpVY6OvKnxEy8aoujrgOpqEgPb4cU0uS1V7vPmtY_I-e1pNn-nydb6YTpbU8IwHqgCQaZ0YrVPMkxSFgaI0QpQa8kQAT0xqSgaaCaFLppMsXXOuMm54IUTG-Zjc9X33rvls0Qe5bVpnu5GSMwFZwUXCulTep4xrvHdYSlOF0wHBqaqWDORRoOwFyk6gPAmUhw6N_6F7V-2U-z4P8R7yXdhu0P1tdYb6AZ2lhaw |
CitedBy_id | crossref_primary_10_1007_s10462_024_10937_6 crossref_primary_10_1007_s11263_024_02267_5 crossref_primary_10_1007_s11263_024_02309_y crossref_primary_10_1111_cgf_15063 crossref_primary_10_1007_s11263_024_02334_x crossref_primary_10_1007_s11263_025_02361_2 crossref_primary_10_1007_s10462_025_11116_x |
Cites_doi | 10.18653/v1/D19-1410 10.1109/ICCV51070.2023.00355 10.1109/CVPR.2019.00453 10.1109/CVPR52729.2023.00192 10.1109/CVPR52729.2023.00191 10.1109/ICCV51070.2023.01461 10.1145/3610548.3618249 10.1109/ICCV.2015.425 10.1109/CVPR.2015.7298682 10.1109/ICCV51070.2023.00673 10.1109/CVPR52688.2022.01042 10.1109/CVPR52729.2023.00976 10.1145/3610548.3618154 10.1007/978-3-031-73390-1_25 10.1145/3544777 10.1109/CVPR52688.2022.00135 10.1109/ICCV48922.2021.00951 10.1109/CVPR52729.2023.02155 10.1109/CVPR52733.2024.00747 10.1145/3588432.3591513 10.1109/ICCV51070.2023.02062 10.1145/3610548.3618173 10.1109/CVPR52688.2022.01103 10.1145/3550454.3555436 10.1109/LSP.2016.2603342 10.1145/3592116 10.1007/978-3-319-10602-1_48 10.1109/CVPR52733.2024.00213 10.5281/zenodo.5143773 10.1109/CVPR52729.2023.01762 10.1109/WACV57701.2024.00416 10.1109/CVPR52733.2024.00825 10.1109/ICCV51070.2023.02107 10.1109/CVPR52733.2024.00816 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11263-024-02227-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 1194 |
ExternalDocumentID | 10_1007_s11263_024_02227_z |
GrantInformation_xml | – fundername: Defence Science and Technology Agency - Singapore grantid: DST00OECI20300823 funderid: http://dx.doi.org/10.13039/501100001444 – fundername: Division of Information and Intelligent Systems grantid: 2105819 funderid: http://dx.doi.org/10.13039/100000145 – fundername: Massachusetts Institute of Technology funderid: http://dx.doi.org/10.13039/100006919 – fundername: Microsoft funderid: http://dx.doi.org/10.13039/100004318 – fundername: Division of Computing and Communication Foundations grantid: 1943349 funderid: http://dx.doi.org/10.13039/100000143 – fundername: MIT-IBM Watson AI Lab funderid: http://dx.doi.org/10.13039/100020895 – fundername: Amazon funderid: http://dx.doi.org/10.13039/100022984 – fundername: Nvidia funderid: http://dx.doi.org/10.13039/100007065 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c363t-a00e1bb4cbb5e845e7c09fc77fb0847034c5cf10b177bf1b465d33a63c3977633 |
IEDL.DBID | U2A |
ISSN | 0920-5691 |
IngestDate | Fri Jul 25 21:21:50 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Tue Aug 05 11:57:25 EDT 2025 Tue Feb 25 01:11:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Model acceleration Diffusion-based models Efficiency Image generation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-a00e1bb4cbb5e845e7c09fc77fb0847034c5cf10b177bf1b465d33a63c3977633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7182-9284 |
OpenAccessLink | https://link.springer.com/10.1007/s11263-024-02227-z |
PQID | 3170693741 |
PQPubID | 1456341 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3170693741 crossref_citationtrail_10_1007_s11263_024_02227_z crossref_primary_10_1007_s11263_024_02227_z springer_journals_10_1007_s11263_024_02227_z |
PublicationCentury | 2000 |
PublicationDate | 20250300 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | J Ho (2227_CR21) 2020; 33 2227_CR30 2227_CR31 2227_CR9 2227_CR36 2227_CR38 2227_CR39 2227_CR32 2227_CR33 2227_CR34 2227_CR35 A Casanova (2227_CR8) 2021; 34 2227_CR7 2227_CR6 2227_CR5 2227_CR4 2227_CR3 2227_CR2 2227_CR1 2227_CR40 2227_CR41 2227_CR42 2227_CR47 2227_CR48 Y Nitzan (2227_CR37) 2022; 41 2227_CR43 2227_CR45 2227_CR46 C Schuhmann (2227_CR49) 2022; 35 2227_CR50 2227_CR51 2227_CR52 2227_CR53 2227_CR14 D Roich (2227_CR44) 2022; 42 2227_CR58 2227_CR15 2227_CR59 2227_CR16 2227_CR17 2227_CR10 2227_CR54 2227_CR11 2227_CR55 2227_CR12 2227_CR56 2227_CR57 2227_CR18 2227_CR19 2227_CR61 2227_CR62 2227_CR63 2227_CR20 2227_CR64 M Ding (2227_CR13) 2021; 34 2227_CR60 2227_CR25 2227_CR26 2227_CR27 2227_CR28 2227_CR22 2227_CR23 2227_CR24 2227_CR29 |
References_xml | – ident: 2227_CR43 doi: 10.18653/v1/D19-1410 – ident: 2227_CR63 doi: 10.1109/ICCV51070.2023.00355 – volume: 35 start-page: 25278 year: 2022 ident: 2227_CR49 publication-title: Advances in Neural Information Processing Systems – ident: 2227_CR26 doi: 10.1109/CVPR.2019.00453 – ident: 2227_CR4 – ident: 2227_CR60 – ident: 2227_CR28 doi: 10.1109/CVPR52729.2023.00192 – ident: 2227_CR53 doi: 10.1109/CVPR52729.2023.00191 – ident: 2227_CR58 – ident: 2227_CR57 doi: 10.1109/ICCV51070.2023.01461 – ident: 2227_CR31 – ident: 2227_CR54 doi: 10.1145/3610548.3618249 – ident: 2227_CR16 – ident: 2227_CR33 doi: 10.1109/ICCV.2015.425 – ident: 2227_CR48 doi: 10.1109/CVPR.2015.7298682 – ident: 2227_CR17 doi: 10.1109/ICCV51070.2023.00673 – ident: 2227_CR45 doi: 10.1109/CVPR52688.2022.01042 – volume: 34 start-page: 27517 year: 2021 ident: 2227_CR8 publication-title: Advances in Neural Information Processing Systems – ident: 2227_CR5 – ident: 2227_CR20 – ident: 2227_CR25 doi: 10.1109/CVPR52729.2023.00976 – ident: 2227_CR61 – ident: 2227_CR2 doi: 10.1145/3610548.3618154 – ident: 2227_CR24 doi: 10.1007/978-3-031-73390-1_25 – volume: 42 start-page: 1 issue: 1 year: 2022 ident: 2227_CR44 publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3544777 – ident: 2227_CR1 – ident: 2227_CR40 – ident: 2227_CR41 – ident: 2227_CR12 doi: 10.1109/CVPR52688.2022.00135 – ident: 2227_CR34 – ident: 2227_CR7 doi: 10.1109/ICCV48922.2021.00951 – ident: 2227_CR59 – ident: 2227_CR55 – ident: 2227_CR51 – ident: 2227_CR46 doi: 10.1109/CVPR52729.2023.02155 – volume: 34 start-page: 19822 year: 2021 ident: 2227_CR13 publication-title: Advances in Neural Information Processing Systems – ident: 2227_CR27 – ident: 2227_CR52 – ident: 2227_CR35 doi: 10.1109/CVPR52733.2024.00747 – ident: 2227_CR38 doi: 10.1145/3588432.3591513 – ident: 2227_CR62 – ident: 2227_CR6 doi: 10.1109/ICCV51070.2023.02062 – ident: 2227_CR42 – ident: 2227_CR15 doi: 10.1145/3610548.3618173 – volume: 33 start-page: 6840 year: 2020 ident: 2227_CR21 publication-title: Advances in Neural Information Processing Systems – ident: 2227_CR56 – ident: 2227_CR18 – ident: 2227_CR14 – ident: 2227_CR9 doi: 10.1109/CVPR52688.2022.01103 – volume: 41 start-page: 1 issue: 6 year: 2022 ident: 2227_CR37 publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3550454.3555436 – ident: 2227_CR64 doi: 10.1109/LSP.2016.2603342 – ident: 2227_CR10 doi: 10.1145/3592116 – ident: 2227_CR22 – ident: 2227_CR32 doi: 10.1007/978-3-319-10602-1_48 – ident: 2227_CR30 doi: 10.1109/CVPR52733.2024.00213 – ident: 2227_CR23 doi: 10.5281/zenodo.5143773 – ident: 2227_CR3 doi: 10.1109/CVPR52729.2023.01762 – ident: 2227_CR47 doi: 10.1109/WACV57701.2024.00416 – ident: 2227_CR29 doi: 10.1109/CVPR52733.2024.00825 – ident: 2227_CR11 – ident: 2227_CR39 doi: 10.1109/ICCV51070.2023.02107 – ident: 2227_CR50 doi: 10.1109/CVPR52733.2024.00816 – ident: 2227_CR19 – ident: 2227_CR36 |
SSID | ssj0002823 |
Score | 2.5072904 |
Snippet | Diffusion models excel at text-to-image generation, especially in subject-driven generation for personalized images. However, existing methods are inefficient... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1175 |
SubjectTerms | Artificial Intelligence Computer Imaging Computer Science Conditioning Customization Diffusion models Diffusion rate Efficiency Image processing Image Processing and Computer Vision Image quality Pattern Recognition Pattern Recognition and Graphics Special Issue on Large-Scale Generative Models for Content Creation and Manipulation Vision |
Title | FastComposer: Tuning-Free Multi-subject Image Generation with Localized Attention |
URI | https://link.springer.com/article/10.1007/s11263-024-02227-z https://www.proquest.com/docview/3170693741 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odvHitzidIwdvGkiatF29dWN1fg2EDeapNGkCgm6ydpf99Sb92FBU8FRI0xTeR97vveS9B3Dpe5KmQSqwTow2ce0o3HV1inXqJwa_kpRKG4d8GnnDCb-futMqKSyrb7vXR5LFTr1JdqNOcebIcZHAiVfb0HSt726keOKE6_3XOBFlA3njGLleQKtUmZ_X-GqONhjz27FoYW2ifditYCIKS74ewJaaHcJeBRlRpZCZGaq7MtRjR_AcJVluh-dGum7QeGkjHzhaKIWKbFucLYUNvqC7d7OXoLLutGUPsjFZ9GiN2-vK_CXM8_Iu5DFMosG4P8RV4wQsmcdynBCiqBBcCuGqLneVL0mgpe9rQYw1IoxLV2pKbOkpoangnpsylnhMWjjoMXYCjdl8pk4BBdxRxgPhgXAYT4Rhq2JMdYUiMuEJ0S2gNf1iWVUVt80t3uJNPWRL89jQPC5oHq9acLX-5qOsqfHn7HbNlrjSryxmtuqPQVactuC6ZtXm9e-rnf1v-jnsOLbhb3HprA2NfLFUFwaF5KIDzTDq9Ub2efvyMOjAdt_rdwpR_ATL1teX |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3rxLVar5uBNg9lNNtv1Voql1bYgtNDbkmQTELSV7vbSX29mHy0WFbxmkyzMJJlvJplvELoNhfaSKFHESrebuPUNaQY2ITYJpcOvNPE0xCEHQ9Ed8-dJMClpciAXZuP-_iGFFBe4aeQkT9sky220w52nDM_32qK9OnWd61CUjXfuUCAir0yQ-XmO70ZojSw3LkNzG9M5RPslOMStQptHaMtMj9FBCRRxuQ1T11TVYqjaTtBrR6YZNM_cmnrEowXEO0hnbgzOc2xJulAQcsG9D3eC4IJtGpSCIRKL-2DS3pbuL60sK15AnqJx52nU7pKyXALRTLCMSEqNpxTXSgWmyQMTahpZHYZWUWeDKOM60NajQDilrKe4CBLGpGAaQKBg7AzVprOpOUc44r5xfgePlM-4VE6ZhjHTVIZqySW1deRV8ot1ySUOJS3e4zULMsg8djKPc5nHyzq6W435LJg0_uzdqNQSl7sqjRlw_Tg8xb06uq9Utf78-2wX_-t-g3a7o0E_7veGL5doz4eSv_mzswaqZfOFuXI4JFPX-QL8At480nw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46QXzxtzidmgffNJg0abv6NqZl0zkUNthbadIEBO3G2r3srzdJ21VFBV_TNoW7JPfdXe47AC59T5AkSDhSsd5NTDkStV2VIJX4scavOCHCxCGfhl5vzB4m7uRTFb-97V6lJIuaBsPSlOY3s0Td1IVvxLH5R4ZsMSdaroMN7anYRG3X667OYu1QFM3ktZPkegEpy2Z-nuOraarx5rcUqbU84S7YLiEj7BQ63gNrMt0HOyV8hOXmzPRQ1aGhGjsAL2Gc5WZ4qlfaLRwtTBQEhXMpoa28RdmCm0AM7L_rcwUWHNRGVdDEZ-HAGLrXpf5LJ8-Le5GHYBzej7o9VDZRQIJ6NEcxxpJwzgTnrmwzV_oCB0r4vuJYWyZMmXCFItjQUHFFOPPchNLYo8JAQ4_SI9BIp6k8BjBgjtTeCAu4Q1nMtYolpbLNJRYxi7FqAlLJLxIlw7hpdPEW1dzIRuaRlnlkZR4tm-Bq9c2s4Nf48-1WpZao3GtZRA0DkEZZjDTBdaWq-vHvs5387_ULsPl8F0aD_vDxFGw5pg-wvYvWAo18vpBnGpzk_Nyuvw8GBdrD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FastComposer%3A+Tuning-Free+Multi-subject+Image+Generation+with+Localized+Attention&rft.jtitle=International+journal+of+computer+vision&rft.au=Xiao%2C+Guangxuan&rft.au=Yin%2C+Tianwei&rft.au=Freeman%2C+William+T.&rft.au=Durand%2C+Fr%C3%A9do&rft.date=2025-03-01&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=133&rft.issue=3&rft.spage=1175&rft.epage=1194&rft_id=info:doi/10.1007%2Fs11263-024-02227-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11263_024_02227_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |