Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor
[Display omitted] •Novel Co3O4 flexible electrode is fabricated via electrochemical oxidation of Co-MOF.•This Co3O4 electrode owns the amorphous hydroxyl-rich hierarchical structure.•It expresses higher Cs than a highly crystalline hydroxyl-deficient Co3O4 electrode.•It also exhibits better rate per...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 396; p. 125364 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Novel Co3O4 flexible electrode is fabricated via electrochemical oxidation of Co-MOF.•This Co3O4 electrode owns the amorphous hydroxyl-rich hierarchical structure.•It expresses higher Cs than a highly crystalline hydroxyl-deficient Co3O4 electrode.•It also exhibits better rate performance than many cobalt oxide-based electrodes.•ASC based on this electrode shows excellent rate capability and cycling performance.
Metal oxides-based materials are promising electrodes for energy storage devices, however, the low rate performance and the high energy consumption in the preparation limit their practical applications. Herein, a novel amorphous hydroxyl-rich Co3O4 hierarchical structure flexible electrode is facilely fabricated via electrochemical oxidation of a cobalt-based metal-organic framework. The as-prepared Co3O4 hierarchical structure is composed of large microrods and small nanoparticles and possesses abundant mesopores, amorphous, and hydroxyl-rich nature. These characteristics favor rapid electron transfer, complete exposure of the active interface, and sufficient penetration of electrolyte ions within the active material. Benefitting from these advantages, the optimal Co3O4 electrode (Co3O4-5) expresses a high reversible specific capacitance (Cs) of 226.1 C·g−1 (or 253.2 mC·cm−2), which is 2 (or 3.7) times higher than those of highly crystalline hydroxyl-deficient Co3O4 electrode. The Co3O4-5 electrode also shows excellent rate performance (97% Cs retention after a 6.7-times current increasing), which surpasses the levels of many cobalt oxide-based electrodes. In addition, an asymmetric supercapacitor (ASC) constructed from this Co3O4-5 electrode achieves a large energy density of 26.6 Wh·kg−1 (or 0.146 mWh·cm−2), outstanding rate capability (1% Cs loss at the 10-fold higher current density), and stable cycle performance (10.1% Cs loss after 20,000 charge-discharge cycles). |
---|---|
AbstractList | [Display omitted]
•Novel Co3O4 flexible electrode is fabricated via electrochemical oxidation of Co-MOF.•This Co3O4 electrode owns the amorphous hydroxyl-rich hierarchical structure.•It expresses higher Cs than a highly crystalline hydroxyl-deficient Co3O4 electrode.•It also exhibits better rate performance than many cobalt oxide-based electrodes.•ASC based on this electrode shows excellent rate capability and cycling performance.
Metal oxides-based materials are promising electrodes for energy storage devices, however, the low rate performance and the high energy consumption in the preparation limit their practical applications. Herein, a novel amorphous hydroxyl-rich Co3O4 hierarchical structure flexible electrode is facilely fabricated via electrochemical oxidation of a cobalt-based metal-organic framework. The as-prepared Co3O4 hierarchical structure is composed of large microrods and small nanoparticles and possesses abundant mesopores, amorphous, and hydroxyl-rich nature. These characteristics favor rapid electron transfer, complete exposure of the active interface, and sufficient penetration of electrolyte ions within the active material. Benefitting from these advantages, the optimal Co3O4 electrode (Co3O4-5) expresses a high reversible specific capacitance (Cs) of 226.1 C·g−1 (or 253.2 mC·cm−2), which is 2 (or 3.7) times higher than those of highly crystalline hydroxyl-deficient Co3O4 electrode. The Co3O4-5 electrode also shows excellent rate performance (97% Cs retention after a 6.7-times current increasing), which surpasses the levels of many cobalt oxide-based electrodes. In addition, an asymmetric supercapacitor (ASC) constructed from this Co3O4-5 electrode achieves a large energy density of 26.6 Wh·kg−1 (or 0.146 mWh·cm−2), outstanding rate capability (1% Cs loss at the 10-fold higher current density), and stable cycle performance (10.1% Cs loss after 20,000 charge-discharge cycles). |
ArticleNumber | 125364 |
Author | Guan, Cao Wu, Yatao Chen, Weijie Shen, Zhehong Tong, Yifei Chen, Hao Wang, Jiajie Pei, Gu Tao, Yingjie |
Author_xml | – sequence: 1 givenname: Yingjie surname: Tao fullname: Tao, Yingjie organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China – sequence: 2 givenname: Yatao surname: Wu fullname: Wu, Yatao organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China – sequence: 3 givenname: Hao surname: Chen fullname: Chen, Hao email: haochen@zafu.edu.cn organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China – sequence: 4 givenname: Weijie surname: Chen fullname: Chen, Weijie organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China – sequence: 5 givenname: Jiajie surname: Wang fullname: Wang, Jiajie organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China – sequence: 6 givenname: Yifei surname: Tong fullname: Tong, Yifei organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China – sequence: 7 givenname: Gu surname: Pei fullname: Pei, Gu organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China – sequence: 8 givenname: Zhehong surname: Shen fullname: Shen, Zhehong email: zhehongshen@zafu.edu.cn organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China – sequence: 9 givenname: Cao surname: Guan fullname: Guan, Cao email: iamcguan@nwpu.edu.cn organization: Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China |
BookMark | eNp9kMtOwzAQRS0EEm3hA9j5B1L8zEOsUMVLqlQkYG259pg4SuPITlHz96QqKxZdzczijO49c3TZhQ4QuqNkSQnN75ulgWbJCJtuJnkuLtCMlgXPOKPsctp5KbOyEsU1mqfUEELyilYz9P4xdkMNySccHNa7EPs67BOuRxvDYWyz6E2NV4FvBHYhYtfCwW9bwLX_rrOoB8Bp30M0utfGDyHeoCun2wS3f3OBvp6fPlev2Xrz8rZ6XGeG53zIKsuIKKSxgnLHyi0HsBosSGehoMxYKbaV46I0OdEUCJGU5UyykpKKVabkC0RPf00MKUVwqo9-p-OoKFFHJapRkxJ1VKJOSiam-MdMkfXgQzdE7duz5MOJhKnSj4eokvHQGbA-ghmUDf4M_QvF-329 |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_164447 crossref_primary_10_1016_j_apsusc_2022_156154 crossref_primary_10_1016_j_molstruc_2022_132499 crossref_primary_10_1016_j_electacta_2020_137081 crossref_primary_10_1016_j_ensm_2021_09_023 crossref_primary_10_1016_j_jallcom_2023_169458 crossref_primary_10_1007_s11696_023_03093_8 crossref_primary_10_1007_s42114_022_00532_0 crossref_primary_10_1016_j_jcis_2020_08_013 crossref_primary_10_1039_D0TA07468C crossref_primary_10_1016_j_jobab_2022_05_003 crossref_primary_10_1016_j_cej_2025_159398 crossref_primary_10_1016_j_cej_2022_137886 crossref_primary_10_1016_j_est_2023_108055 crossref_primary_10_1016_j_ceramint_2023_12_382 crossref_primary_10_1002_pc_27016 crossref_primary_10_1016_j_cesx_2021_100114 crossref_primary_10_1007_s10971_023_06297_2 crossref_primary_10_1016_j_mtcomm_2022_104250 crossref_primary_10_1016_j_susmat_2024_e00978 crossref_primary_10_1039_D2DT01827F crossref_primary_10_1039_D2TA05977K crossref_primary_10_1016_j_carbon_2021_12_058 crossref_primary_10_1016_j_diamond_2023_110076 crossref_primary_10_1016_j_jcis_2021_03_022 crossref_primary_10_1039_D1NJ04153C crossref_primary_10_1016_j_est_2022_104783 crossref_primary_10_1016_j_est_2022_106322 crossref_primary_10_1002_eem2_12573 crossref_primary_10_1007_s12598_023_02442_6 crossref_primary_10_1016_j_electacta_2022_140880 crossref_primary_10_1016_j_jcis_2020_11_029 crossref_primary_10_1039_D1TA00652E crossref_primary_10_1016_j_cej_2021_134486 crossref_primary_10_1016_j_electacta_2020_137244 crossref_primary_10_1016_j_jallcom_2024_176945 crossref_primary_10_1039_D2TA00782G crossref_primary_10_1016_j_matchemphys_2024_129331 crossref_primary_10_1016_j_jallcom_2021_160867 crossref_primary_10_1039_D3NR05050E crossref_primary_10_1016_j_est_2021_102586 crossref_primary_10_1016_j_est_2023_106979 crossref_primary_10_1016_j_colsurfa_2023_132028 crossref_primary_10_1016_j_jcis_2021_06_060 crossref_primary_10_1039_D0CE01778G crossref_primary_10_1016_j_jcis_2022_06_140 crossref_primary_10_1016_j_cej_2022_137425 crossref_primary_10_1002_ente_202200295 crossref_primary_10_1039_D1CE01627J crossref_primary_10_1016_j_mtchem_2021_100620 crossref_primary_10_1016_j_carbon_2022_06_042 crossref_primary_10_1016_j_electacta_2020_137334 crossref_primary_10_1007_s11244_021_01538_6 crossref_primary_10_1016_j_jallcom_2022_167821 crossref_primary_10_1039_D1NJ01178B crossref_primary_10_1039_D2TA02937E crossref_primary_10_1021_acsaenm_2c00049 crossref_primary_10_1021_acsanm_4c07014 crossref_primary_10_1016_j_apsusc_2020_148811 crossref_primary_10_1016_j_heliyon_2025_e42992 crossref_primary_10_1016_j_jallcom_2023_171649 crossref_primary_10_1016_j_jcis_2023_08_142 crossref_primary_10_1007_s11581_021_04433_y crossref_primary_10_1016_j_apsusc_2021_151324 crossref_primary_10_1039_D2NJ00276K crossref_primary_10_1016_j_ijhydene_2022_01_035 crossref_primary_10_1016_j_materresbull_2021_111281 crossref_primary_10_1016_j_est_2023_108468 crossref_primary_10_1088_1361_6528_abedef crossref_primary_10_1016_j_optmat_2023_113629 crossref_primary_10_3390_nano10091703 crossref_primary_10_1021_acs_iecr_1c03225 crossref_primary_10_1016_j_jallcom_2021_163557 crossref_primary_10_1016_j_est_2022_104298 crossref_primary_10_1016_j_est_2024_112999 crossref_primary_10_1155_2022_9861440 crossref_primary_10_1021_acs_energyfuels_2c00060 crossref_primary_10_1016_j_apsusc_2021_149789 crossref_primary_10_1016_j_cartre_2024_100341 crossref_primary_10_1016_j_jallcom_2023_169490 crossref_primary_10_1016_j_jpowsour_2023_233808 crossref_primary_10_1016_j_matpr_2023_02_111 crossref_primary_10_1142_S179360472551021X crossref_primary_10_3390_cryst12010076 crossref_primary_10_1039_D3YA00378G crossref_primary_10_1016_j_jallcom_2021_161488 crossref_primary_10_1039_D1NA00523E crossref_primary_10_1016_j_cej_2020_127502 crossref_primary_10_1039_D0TA09799C crossref_primary_10_1007_s10971_023_06239_y crossref_primary_10_1016_j_jpowsour_2024_235663 crossref_primary_10_1039_D3DT03049K crossref_primary_10_1016_j_ccr_2021_214300 crossref_primary_10_1016_j_est_2024_113339 crossref_primary_10_1002_ente_202200145 crossref_primary_10_1016_j_diamond_2024_111736 crossref_primary_10_1039_D1TA06815F crossref_primary_10_1016_j_colsurfa_2024_134437 crossref_primary_10_1016_j_indcrop_2024_119366 crossref_primary_10_1016_j_est_2022_104226 crossref_primary_10_1016_j_actamat_2023_119174 crossref_primary_10_1021_acssuschemeng_0c04530 crossref_primary_10_1021_acs_energyfuels_3c00377 crossref_primary_10_1016_j_cej_2021_130304 crossref_primary_10_1016_j_energy_2020_119436 crossref_primary_10_1016_j_apsusc_2022_153582 crossref_primary_10_3390_physchem5010011 crossref_primary_10_1007_s11581_021_03938_w crossref_primary_10_1039_D3CP00595J crossref_primary_10_1021_acsaem_0c02465 crossref_primary_10_1039_D3QI02214E crossref_primary_10_1039_D2NJ02038F crossref_primary_10_1021_acsanm_2c01488 crossref_primary_10_1016_j_apsusc_2022_153617 crossref_primary_10_1016_j_jallcom_2020_158546 crossref_primary_10_1021_acsami_0c21330 crossref_primary_10_1016_j_electacta_2020_136843 crossref_primary_10_1002_celc_202300463 crossref_primary_10_1016_j_indcrop_2023_116661 crossref_primary_10_1002_smll_202305778 crossref_primary_10_1002_cssc_202400105 crossref_primary_10_1016_j_est_2024_115081 crossref_primary_10_1016_j_ceramint_2022_08_044 crossref_primary_10_1021_acsenergylett_1c01373 crossref_primary_10_1002_celc_202101523 crossref_primary_10_1016_j_est_2022_106342 crossref_primary_10_1002_adma_202303906 crossref_primary_10_1016_j_est_2023_110346 crossref_primary_10_1002_ente_202300749 crossref_primary_10_1016_j_electacta_2022_140101 crossref_primary_10_1088_1361_6528_ac4eb1 crossref_primary_10_1016_j_mtnano_2023_100399 crossref_primary_10_1016_j_electacta_2020_137262 crossref_primary_10_1016_j_est_2023_109995 crossref_primary_10_1016_j_est_2022_104849 crossref_primary_10_1002_est2_348 crossref_primary_10_1088_2632_959X_abd686 crossref_primary_10_1016_j_surfcoat_2021_127782 crossref_primary_10_1021_acsami_4c14052 crossref_primary_10_1021_acs_energyfuels_2c00422 |
Cites_doi | 10.1039/C4TA01296H 10.1016/j.apsusc.2019.07.244 10.1016/j.electacta.2015.08.133 10.1002/advs.201900628 10.1016/j.apsusc.2015.11.171 10.1002/aenm.201300580 10.1039/a908800h 10.1002/aenm.201702014 10.1039/C8CC03669A 10.1016/j.cej.2018.12.041 10.1002/slct.201802131 10.1002/advs.201802002 10.3390/nano9030345 10.1016/j.cej.2015.06.053 10.1021/acsnano.7b02796 10.1016/j.colsurfa.2018.02.072 10.1016/j.colsurfa.2019.03.016 10.1002/aenm.201703454 10.1002/batt.201900174 10.1021/acs.chemrev.8b00252 10.1016/j.mtener.2019.06.008 10.1002/advs.201700659 10.1016/j.electacta.2019.05.019 10.1002/adma.200400183 10.1016/j.jpowsour.2015.02.047 10.1016/j.ceramint.2015.06.106 10.1021/acsnano.9b07956 10.1007/s12274-014-0591-z 10.1016/j.nanoen.2017.05.043 10.1007/s40843-017-9095-4 10.1002/adma.201901916 10.1038/s41598-018-23642-6 10.1039/C8DT02371A 10.1021/am5009369 10.1186/s11671-019-3172-y 10.1021/acsami.5b02787 10.1002/ente.201800963 10.1016/j.enchem.2019.100001 10.1021/jp908548f 10.1039/C6NH00224B 10.1016/j.enchem.2020.100027 10.1016/j.jallcom.2016.06.156 10.1016/j.ceramint.2019.03.070 10.1016/j.ensm.2017.09.013 10.1016/j.apsusc.2019.02.215 10.1002/smll.201702407 10.1016/j.cej.2017.01.010 10.1021/acsami.8b16881 10.1016/j.jallcom.2018.09.347 10.1016/j.electacta.2018.03.166 10.1016/j.electacta.2019.135103 10.1002/aenm.201200380 10.1002/adfm.201301747 10.1002/ente.201600391 10.1016/j.matchemphys.2017.05.051 10.1039/C8EE01415A 10.1016/j.apsusc.2019.05.142 10.1002/adfm.201605307 10.1016/j.ces.2018.02.004 10.1088/1361-6528/ab2a83 10.1016/j.physe.2017.08.005 10.1039/C8TA00835C 10.1039/C7CC07515D 10.1016/j.ijhydene.2019.11.153 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2020.125364 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2020_125364 S1385894720313565 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c363t-9d20475cd413f28b3eedaede5fde712cd54b9f348c60a1e005126252810929c83 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:03:56 EDT 2025 Tue Jul 01 04:26:51 EDT 2025 Fri Feb 23 02:46:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitor Flexible electrode Electrochemical oxidation Hydroxyl-rich Co3O4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-9d20475cd413f28b3eedaede5fde712cd54b9f348c60a1e005126252810929c83 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2020_125364 crossref_citationtrail_10_1016_j_cej_2020_125364 elsevier_sciencedirect_doi_10_1016_j_cej_2020_125364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-15 |
PublicationDateYYYYMMDD | 2020-09-15 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shao, El-Kady, Sun, Li, Zhang, Zhu, Wang, Dunn, Kaner (b0035) 2018; 118 Cheng, Kou, Zhang, Si, Gao, Zhang (b0160) 2017; 38 Zhu, Guan, Cai, Chen, Wang, Du, Wu, Xu, Yu, Huang (b0015) 2020; 3 Zheng, Xiao, Li, Gu, Dai, Tang, Hu, Xue, Pang (b0085) 2018; 61 Zhu, Huang, Zhao, Xu, Wang, Chen, Xie, Chen (b0295) 2019; 313 Wang, Xia, Wang, Gao, Shi, Fang (b0300) 2016; 686 Yan, Chunyi (b0090) 2017; 50 Liu, Zhou, Wang, Du, Zhang, Ding, Du, Zhu (b0310) 2019; 774 Li, Yang, Xue, Pang, Xu (b0115) 2020; 2 Bai, Liu, Liu, Zhang, Li, Jing, Liu, Wang, Li (b0245) 2017; 315 Yang, Liu, Martens, Frost (b0135) 2010; 114 Dupin, Gonbeau, Vinatier, Levasseur (b0155) 2000; 2 El-Hout, Chen, Liang, Yang, Zhang (b0225) 2017; 198 Jiang, Zhou, Liu (b0320) 2018; 11 Qin, Dang, Hao, Wang, Li, Wen, Lu, He, Cao, Peng (b0100) 2018; 47 Yu, Chang, Yuan, Wang, Zhu, Fu, Chen, Wang, Wu, Li (b0055) 2018; 6 Chen, Du, Sun, Wang, Zhang, Xu (b0175) 2020; 45 Abouali, Akbari Garakani, Zhang, Xu, Kamali Heidari, Huang, Huang, Kim (b0240) 2015; 7 Bigdeli, Moradi, Hajati, Kiani, Toth (b0255) 2017; 94 Liang, Zhao, Qiu, Zou, Xu (b0110) 2019; 1 Guo, Song, Li, Tan, Ma, Zhang, Zhao (b0265) 2018; 546 Sun, Wang, Zhang, Xu, Chen (b0180) 2019; 14 Salunkhe, Kaneti, Yamauchi (b0105) 2017; 11 Zhu, Wen, Ma, Wang, Yang, Wang, Shi, Cheng, Sun, Yao (b0140) 2018; 54 Yu, Zhang, Lou, Wu, Zhu, Chen, Shen, Fu, Bao, Wu (b0060) 2018; 8 Zhao, Liu, Du, Zhang, Zhou, Li, Wu, Zhu, Xie, Pan (b0285) 2019; 487 Xiang, Xu, Qu, Tian, Zhang, Wang, Xie, Guo, Ding, Guo (b0080) 2017; 53 Wang, Zhang, Chen, Liu, Lu, Chen, Shao (b0305) 2019; 570 Chen, Wang, Liao, Han, Zhang, Xu, Gao (b0230) 2019; 45 Pan, Chen, Yang, Ma, Zhang, Kou, Ding, Pang, Zhang, Gu, Yan, Wang (b0010) 2019; 6 Li, Balamurugan, Kim, Lee (b0065) 2018; 8 Babu, William, Muralidharan (b0290) 2019; 480 Li, Hu, Chen, Gu, Wu (b0220) 2018; 3 Wang, Yan, Lang, Zheng, Zhang (b0195) 2014; 2 Pan, Yang, Yang, Zhang, Zhang, Li, Kou, Zhang, Chen, Yan, Wang (b0005) 2020; 14 Chen, Hu, Yan, Che, Chen, Wu (b0070) 2013; 3 Fu, Zhao, Ren, Magasinski, Yushin (b0325) 2018; 8 Zhou, Wang, Acauan, Kalfon-Cohen, Ni, Stein, Gleason, Wardle (b0020) 2019; 31 Liu, Li, Zhu, He (b0170) 2015; 282 Lou, Wu, Zhu, Lu, Yu, Yang, Chen, Guan, Li, Shen (b0025) 2018; 10 Liu, Zhang, You, Yu (b0050) 2018; 14 Chen, Shen, Pan, Kou, Liu, Zhang, Gu, Guan, Wang (b0125) 2019; 6 Ma, Chen, Li, Ruan, Tang, Liu, Wang, Huang, Pei, Zapien, Zhi (b0145) 2018; 11 Yang, Zhu, Zhu, Lou, Wu, Lu, Wang, Song, Tao, Pei, Chu, Chen, Ma, Song, Shen (b0260) 2019; 9 Lai, Sun, Zhang, Yang, Kang, Lin (b0275) 2018; 271 Hai, Gao, Zhang, Xu, Cui, Zhang, Tsoukalas, Tang, Yan, Xue (b0250) 2016; 361 Ding, Peng, Chen, Li, Zhang, Falaras, Hu (b0270) 2019; 495 Gong, Dai (b0130) 2015; 8 Liu, Fu, Zhang, Xu, Lu, Zhou, Huang (b0150) 2017; 27 Liu, Liu, Ding, Liu, Teng, Luo, Li, Hu, Liu (b0185) 2015; 41 Zong, Yang, Wang, Zhang, Zhu, Wang, Shen (b0200) 2019; 361 Zheng, Li, Gu, Lin, Du, Xue, Pang (b0045) 2017; 5 Chen, Li, Ma, Zhao, Fang (b0280) 2019; 30 Yang, Liu, Hao, Yang, Goddard, Zhang, Cao (b0210) 2018; 5 Pang, Long, Jiang, Ji, Han, Wang, Liu, Xi, Wang, Xu (b0215) 2015; 280 Guan, Cheng, Wang, Ni, Gu, Li, Huang, Yang, Nie (b0235) 2014; 6 Chen, Hu, Chen, Yan, Wu (b0075) 2014; 24 Dai, Han, Tang, Tang (b0315) 2019; 328 Zhu, Chen, Kan, Tang, Wei, Lin, Li (b0205) 2019; 7 Cao, Xu, Liang, Li (b0190) 2004; 16 Zhu, Yu, Xu, Zhang, Zhang, Lou, Wu, Zhu, Chen, Shen, Bao, Fu (b0030) 2018; 181 Xiao, Ding, Yuan, Shen, Zhong, Zhang, Cao, Hu, Zhai, Gong, Chen, Tong, Zhou, Wang (b0330) 2012; 2 Li, Xu, Jiao, Jiang (b0120) 2019; 1 Guan, Zhao, Hu, Lai, Li, Sun, Zhang, Cheetham, Wang (b0095) 2017; 2 Lai, Sun, Lin (b0165) 2019; 13 Chen, Liu, Shen, Bao, Zhao, Wu (b0040) 2015; 180 Yu (10.1016/j.cej.2020.125364_b0060) 2018; 8 Pan (10.1016/j.cej.2020.125364_b0005) 2020; 14 Lai (10.1016/j.cej.2020.125364_b0275) 2018; 271 Chen (10.1016/j.cej.2020.125364_b0075) 2014; 24 Wang (10.1016/j.cej.2020.125364_b0305) 2019; 570 Jiang (10.1016/j.cej.2020.125364_b0320) 2018; 11 Chen (10.1016/j.cej.2020.125364_b0125) 2019; 6 Zhu (10.1016/j.cej.2020.125364_b0030) 2018; 181 Salunkhe (10.1016/j.cej.2020.125364_b0105) 2017; 11 Liu (10.1016/j.cej.2020.125364_b0150) 2017; 27 Liu (10.1016/j.cej.2020.125364_b0170) 2015; 282 Ding (10.1016/j.cej.2020.125364_b0270) 2019; 495 Zheng (10.1016/j.cej.2020.125364_b0045) 2017; 5 Gong (10.1016/j.cej.2020.125364_b0130) 2015; 8 Guan (10.1016/j.cej.2020.125364_b0235) 2014; 6 Guan (10.1016/j.cej.2020.125364_b0095) 2017; 2 Zhu (10.1016/j.cej.2020.125364_b0140) 2018; 54 Zheng (10.1016/j.cej.2020.125364_b0085) 2018; 61 Abouali (10.1016/j.cej.2020.125364_b0240) 2015; 7 Bai (10.1016/j.cej.2020.125364_b0245) 2017; 315 Li (10.1016/j.cej.2020.125364_b0065) 2018; 8 Guo (10.1016/j.cej.2020.125364_b0265) 2018; 546 Zhu (10.1016/j.cej.2020.125364_b0015) 2020; 3 Zhu (10.1016/j.cej.2020.125364_b0295) 2019; 313 Li (10.1016/j.cej.2020.125364_b0220) 2018; 3 Qin (10.1016/j.cej.2020.125364_b0100) 2018; 47 Cheng (10.1016/j.cej.2020.125364_b0160) 2017; 38 Pang (10.1016/j.cej.2020.125364_b0215) 2015; 280 Yang (10.1016/j.cej.2020.125364_b0210) 2018; 5 Chen (10.1016/j.cej.2020.125364_b0175) 2020; 45 Shao (10.1016/j.cej.2020.125364_b0035) 2018; 118 Fu (10.1016/j.cej.2020.125364_b0325) 2018; 8 Wang (10.1016/j.cej.2020.125364_b0195) 2014; 2 Wang (10.1016/j.cej.2020.125364_b0300) 2016; 686 Liu (10.1016/j.cej.2020.125364_b0050) 2018; 14 Li (10.1016/j.cej.2020.125364_b0120) 2019; 1 Sun (10.1016/j.cej.2020.125364_b0180) 2019; 14 Yu (10.1016/j.cej.2020.125364_b0055) 2018; 6 Ma (10.1016/j.cej.2020.125364_b0145) 2018; 11 Hai (10.1016/j.cej.2020.125364_b0250) 2016; 361 Lou (10.1016/j.cej.2020.125364_b0025) 2018; 10 Chen (10.1016/j.cej.2020.125364_b0040) 2015; 180 Zong (10.1016/j.cej.2020.125364_b0200) 2019; 361 Chen (10.1016/j.cej.2020.125364_b0280) 2019; 30 Cao (10.1016/j.cej.2020.125364_b0190) 2004; 16 Li (10.1016/j.cej.2020.125364_b0115) 2020; 2 Pan (10.1016/j.cej.2020.125364_b0010) 2019; 6 Zhu (10.1016/j.cej.2020.125364_b0205) 2019; 7 Babu (10.1016/j.cej.2020.125364_b0290) 2019; 480 Xiang (10.1016/j.cej.2020.125364_b0080) 2017; 53 Yang (10.1016/j.cej.2020.125364_b0260) 2019; 9 Zhao (10.1016/j.cej.2020.125364_b0285) 2019; 487 El-Hout (10.1016/j.cej.2020.125364_b0225) 2017; 198 Liu (10.1016/j.cej.2020.125364_b0185) 2015; 41 Yang (10.1016/j.cej.2020.125364_b0135) 2010; 114 Liu (10.1016/j.cej.2020.125364_b0310) 2019; 774 Lai (10.1016/j.cej.2020.125364_b0165) 2019; 13 Zhou (10.1016/j.cej.2020.125364_b0020) 2019; 31 Xiao (10.1016/j.cej.2020.125364_b0330) 2012; 2 Dupin (10.1016/j.cej.2020.125364_b0155) 2000; 2 Chen (10.1016/j.cej.2020.125364_b0070) 2013; 3 Bigdeli (10.1016/j.cej.2020.125364_b0255) 2017; 94 Dai (10.1016/j.cej.2020.125364_b0315) 2019; 328 Chen (10.1016/j.cej.2020.125364_b0230) 2019; 45 Yan (10.1016/j.cej.2020.125364_b0090) 2017; 50 Liang (10.1016/j.cej.2020.125364_b0110) 2019; 1 |
References_xml | – volume: 181 start-page: 36 year: 2018 end-page: 45 ident: b0030 article-title: Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials publication-title: Chem. Eng. Sci. – volume: 2 start-page: 1319 year: 2000 end-page: 1324 ident: b0155 article-title: Systematic XPS studies of metal oxides, hydroxides and peroxides publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 1802002 year: 2019 ident: b0125 article-title: Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni–Zn batteries publication-title: Adv. Sci. – volume: 27 start-page: 1605307 year: 2017 ident: b0150 article-title: Design of Hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors publication-title: Adv. Funct. Mater. – volume: 6 start-page: 7626 year: 2014 end-page: 7632 ident: b0235 article-title: Needle-like Co publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2020 ident: b0115 article-title: Metal–organic frameworks as a platform for clean energy applications publication-title: EnergyChem – volume: 8 start-page: 1702014 year: 2018 ident: b0065 article-title: Hierarchical Zn–Co–S nanowires as advanced electrodes for all solid state asymmetric supercapacitors publication-title: Adv. Energy Mater. – volume: 3 start-page: 1636 year: 2013 end-page: 1646 ident: b0070 article-title: One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance publication-title: Adv. Energy Mater. – volume: 14 start-page: 842 year: 2020 end-page: 853 ident: b0005 article-title: Stitching of Zn publication-title: ACS Nano – volume: 14 start-page: 340 year: 2019 ident: b0180 article-title: Egg albumin-assisted hydrothermal synthesis of Co publication-title: Nanoscale Res. Lett. – volume: 495 year: 2019 ident: b0270 article-title: A competitive coordination strategy to synthesize Co publication-title: Appl. Surf. Sci. – volume: 271 start-page: 379 year: 2018 end-page: 387 ident: b0275 article-title: Advanced flower-like Co publication-title: Electrochim. Acta – volume: 61 start-page: 185 year: 2018 end-page: 209 ident: b0085 article-title: Hierarchically nanostructured transition metal oxides for supercapacitors publication-title: Sci. China Mater. – volume: 53 start-page: 12410 year: 2017 end-page: 12413 ident: b0080 article-title: Two dimensional oxygen-vacancy-rich Co publication-title: Chem. Commun. – volume: 9 start-page: 345 year: 2019 ident: b0260 article-title: Electrochemically stable cobalt-zinc mixed oxide/hydroxide hierarchical porous film electrode for high-performance asymmetric supercapacitor publication-title: Nanomaterials – volume: 13 start-page: 342 year: 2019 end-page: 352 ident: b0165 article-title: Synthesis of sandwich-like porous nanostructure of Co publication-title: Mater. Today Energy – volume: 47 start-page: 11503 year: 2018 end-page: 11511 ident: b0100 article-title: Carbon fabric supported 3D cobalt oxides/hydroxide nanosheet network as cathode for flexible all-solid-state asymmetric supercapacitor publication-title: Dalton Trans. – volume: 280 start-page: 377 year: 2015 end-page: 384 ident: b0215 article-title: Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co publication-title: Chem. Eng. J. – volume: 38 start-page: 155 year: 2017 end-page: 166 ident: b0160 article-title: O publication-title: Nano Energy – volume: 328 year: 2019 ident: b0315 article-title: MOF-derived Co publication-title: Electrochim. Acta – volume: 6 start-page: 5856 year: 2018 end-page: 5861 ident: b0055 article-title: Ultrathin NiCo publication-title: J. Mater. Chem. A – volume: 3 start-page: 9622 year: 2018 end-page: 9626 ident: b0220 article-title: Facile synthesis of superthin Co publication-title: ChemistrySelect – volume: 686 start-page: 969 year: 2016 end-page: 975 ident: b0300 article-title: Facile synthesis ultrathin mesoporous Co publication-title: J. Alloy. Compd. – volume: 10 start-page: 42503 year: 2018 end-page: 42512 ident: b0025 article-title: Facile activation of commercial carbon felt as a low-cost free-standing electrode for flexible supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1328 year: 2012 end-page: 1332 ident: b0330 article-title: WO publication-title: Adv. Energy Mater. – volume: 94 start-page: 158 year: 2017 end-page: 166 ident: b0255 article-title: Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co publication-title: Phys. E: Low-Dimens. Syst. Nanostruct. – volume: 315 start-page: 35 year: 2017 end-page: 45 ident: b0245 article-title: Hierarchical Co publication-title: Chem. Eng. J. – volume: 313 start-page: 194 year: 2019 end-page: 204 ident: b0295 article-title: Benzoic acid-assisted substrate-free synthesis of ultrathin nanosheets assembled two-dimensional porous Co publication-title: Electrochim. Acta – volume: 487 start-page: 442 year: 2019 end-page: 451 ident: b0285 article-title: Facile synthesis of interconnected carbon network decorated with Co publication-title: Appl. Surf. Sci. – volume: 114 start-page: 111 year: 2010 end-page: 119 ident: b0135 article-title: Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs publication-title: J. Phys. Chem. C – volume: 2 start-page: 12724 year: 2014 end-page: 12732 ident: b0195 article-title: A hybrid supercapacitor based on flower-like Co(OH) publication-title: J. Mater. Chem. A – volume: 180 start-page: 241 year: 2015 end-page: 251 ident: b0040 article-title: Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials publication-title: Electrochim. Acta – volume: 8 start-page: 5246 year: 2018 ident: b0060 article-title: Synthesis of NiMn-LDH nanosheet@Ni publication-title: Sci. Rep. – volume: 11 start-page: 5293 year: 2017 end-page: 5308 ident: b0105 article-title: Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects publication-title: ACS Nano – volume: 7 start-page: 13503 year: 2015 end-page: 13511 ident: b0240 article-title: Electrospun carbon nanofibers with in situ encapsulated Co publication-title: ACS Appl. Mater. Interfaces – volume: 546 start-page: 1 year: 2018 end-page: 8 ident: b0265 article-title: Oriented synthesis of Co publication-title: Colloid Surface. A – volume: 118 start-page: 9233 year: 2018 end-page: 9280 ident: b0035 article-title: Design and mechanisms of asymmetric supercapacitors publication-title: Chem. Rev. – volume: 1 year: 2019 ident: b0120 article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities publication-title: EnergyChem – volume: 11 start-page: 2521 year: 2018 end-page: 2530 ident: b0145 article-title: Initiating a mild aqueous electrolyte Co publication-title: Energy Environ. Sci. – volume: 570 start-page: 63 year: 2019 end-page: 72 ident: b0305 article-title: Facile precursor conversion synthesis of hollow coral-shaped Co publication-title: Colloid Surface A – volume: 30 year: 2019 ident: b0280 article-title: Aldehyde reduced Co publication-title: Nanotechnology – volume: 45 start-page: 3016 year: 2020 end-page: 3027 ident: b0175 article-title: Solvothermal synthesis of novel pod-like MnCo publication-title: Int. J. Hydrogen Energ – volume: 8 start-page: 23 year: 2015 end-page: 39 ident: b0130 article-title: A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts publication-title: Nano Res. – volume: 54 start-page: 10499 year: 2018 end-page: 10502 ident: b0140 article-title: A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance publication-title: Chem. Commun. – volume: 5 start-page: 1700659 year: 2018 ident: b0210 article-title: Oxygen-vacancy abundant ultrafine Co publication-title: Adv. Sci. – volume: 8 start-page: 1703454 year: 2018 ident: b0325 article-title: Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors publication-title: Adv. Energy Mater. – volume: 31 start-page: 1901916 year: 2019 ident: b0020 article-title: Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal p3mt on horizontally aligned carbon-nanotube arrays publication-title: Adv. Mater. – volume: 14 start-page: 1702407 year: 2018 ident: b0050 article-title: Core-shell nitrogen-doped carbon hollow spheres/Co publication-title: Small – volume: 45 start-page: 11876 year: 2019 end-page: 11882 ident: b0230 article-title: Uniform and porous Mn-doped Co publication-title: Ceram. Int. – volume: 3 start-page: 93 year: 2020 end-page: 100 ident: b0015 article-title: Carbon nanoarrays embedded with metal compounds for high-performance flexible supercapacitors publication-title: Batteries Supercaps – volume: 16 start-page: 1853 year: 2004 end-page: 1857 ident: b0190 article-title: Preparation of the novel nanocomposite Co(OH) publication-title: Adv. Mater. – volume: 41 start-page: 12734 year: 2015 end-page: 12741 ident: b0185 article-title: Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO publication-title: Ceram. Int. – volume: 5 start-page: 544 year: 2017 end-page: 548 ident: b0045 article-title: High-performance flexible solid-state asymmetric supercapacitors based on ordered mesoporous cobalt oxide publication-title: Energy Technol. – volume: 11 start-page: 75 year: 2018 end-page: 82 ident: b0320 article-title: A non-polarity flexible asymmetric supercapacitor with nickel nanoparticle@ carbon nanotube three-dimensional network electrodes publication-title: Energy Storage Mater. – volume: 7 start-page: 1800963 year: 2019 ident: b0205 article-title: Cobalt oxide nanoparticles embedded in N-doped porous carbon as an efficient electrode for supercapacitor publication-title: Energy Technol. – volume: 2 start-page: 99 year: 2017 end-page: 105 ident: b0095 article-title: Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors publication-title: Nanoscale Horiz. – volume: 361 start-page: 57 year: 2016 end-page: 62 ident: b0250 article-title: Facile synthesis of core–shell structured PANI-Co publication-title: Appl. Surf. Sci. – volume: 6 start-page: 1900628 year: 2019 ident: b0010 article-title: CuCo publication-title: Adv. Sci. – volume: 480 start-page: 371 year: 2019 end-page: 383 ident: b0290 article-title: Ordered mesoporous Co publication-title: Appl. Surf. Sci. – volume: 24 start-page: 934 year: 2014 end-page: 942 ident: b0075 article-title: Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials publication-title: Adv. Funct. Mater. – volume: 282 start-page: 179 year: 2015 end-page: 186 ident: b0170 article-title: High-performance all-solid state asymmetric supercapacitor based on Co publication-title: J. Power Sources – volume: 774 start-page: 137 year: 2019 end-page: 144 ident: b0310 article-title: Facile synthesis of homogeneous core-shell Co publication-title: J. Alloy. Compd. – volume: 50 year: 2017 ident: b0090 article-title: Functional flexible and wearable supercapacitors publication-title: J. Phys. D: Appl. Phys. – volume: 1 year: 2019 ident: b0110 article-title: Metal-organic framework-derived materials for electrochemical energy applications publication-title: EnergyChem – volume: 198 start-page: 99 year: 2017 end-page: 106 ident: b0225 article-title: Cetyltrimethylammonium bromide assisted hydrothermal synthesis of cobalt oxide nanowires anchored on graphene as an efficient electrode material for supercapacitor applications publication-title: Mater. Chem. Phys. – volume: 361 start-page: 1 year: 2019 end-page: 11 ident: b0200 article-title: Three-dimensional coral-like NiCoP@C@Ni(OH) publication-title: Chem. Eng. J. – volume: 50 year: 2017 ident: 10.1016/j.cej.2020.125364_b0090 article-title: Functional flexible and wearable supercapacitors publication-title: J. Phys. D: Appl. Phys. – volume: 2 start-page: 12724 year: 2014 ident: 10.1016/j.cej.2020.125364_b0195 article-title: A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01296H – volume: 495 year: 2019 ident: 10.1016/j.cej.2020.125364_b0270 article-title: A competitive coordination strategy to synthesize Co3O4@carbon flower-like structures for high-performance asymmetric supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.244 – volume: 180 start-page: 241 year: 2015 ident: 10.1016/j.cej.2020.125364_b0040 article-title: Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.08.133 – volume: 6 start-page: 1900628 year: 2019 ident: 10.1016/j.cej.2020.125364_b0010 article-title: CuCo2S4 Nanosheets@N-doped carbon nanofibers by sulfurization at room temperature as bifunctional electrocatalysts in flexible quasi-solid-state Zn–air batteries publication-title: Adv. Sci. doi: 10.1002/advs.201900628 – volume: 361 start-page: 57 year: 2016 ident: 10.1016/j.cej.2020.125364_b0250 article-title: Facile synthesis of core–shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.171 – volume: 3 start-page: 1636 year: 2013 ident: 10.1016/j.cej.2020.125364_b0070 article-title: One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300580 – volume: 2 start-page: 1319 year: 2000 ident: 10.1016/j.cej.2020.125364_b0155 article-title: Systematic XPS studies of metal oxides, hydroxides and peroxides publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a908800h – volume: 8 start-page: 1702014 year: 2018 ident: 10.1016/j.cej.2020.125364_b0065 article-title: Hierarchical Zn–Co–S nanowires as advanced electrodes for all solid state asymmetric supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702014 – volume: 54 start-page: 10499 year: 2018 ident: 10.1016/j.cej.2020.125364_b0140 article-title: A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance publication-title: Chem. Commun. doi: 10.1039/C8CC03669A – volume: 361 start-page: 1 year: 2019 ident: 10.1016/j.cej.2020.125364_b0200 article-title: Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.041 – volume: 3 start-page: 9622 year: 2018 ident: 10.1016/j.cej.2020.125364_b0220 article-title: Facile synthesis of superthin Co3O4 porous nanoflake for stable electrochemical supercapacitor publication-title: ChemistrySelect doi: 10.1002/slct.201802131 – volume: 6 start-page: 1802002 year: 2019 ident: 10.1016/j.cej.2020.125364_b0125 article-title: Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni–Zn batteries publication-title: Adv. Sci. doi: 10.1002/advs.201802002 – volume: 9 start-page: 345 year: 2019 ident: 10.1016/j.cej.2020.125364_b0260 article-title: Electrochemically stable cobalt-zinc mixed oxide/hydroxide hierarchical porous film electrode for high-performance asymmetric supercapacitor publication-title: Nanomaterials doi: 10.3390/nano9030345 – volume: 280 start-page: 377 year: 2015 ident: 10.1016/j.cej.2020.125364_b0215 article-title: Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.06.053 – volume: 11 start-page: 5293 year: 2017 ident: 10.1016/j.cej.2020.125364_b0105 article-title: Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects publication-title: ACS Nano doi: 10.1021/acsnano.7b02796 – volume: 546 start-page: 1 year: 2018 ident: 10.1016/j.cej.2020.125364_b0265 article-title: Oriented synthesis of Co3O4 core-shell microspheres for high-performance asymmetric supercapacitor publication-title: Colloid Surface. A doi: 10.1016/j.colsurfa.2018.02.072 – volume: 570 start-page: 63 year: 2019 ident: 10.1016/j.cej.2020.125364_b0305 article-title: Facile precursor conversion synthesis of hollow coral-shaped Co3O4 nanostructures for high-performance supercapacitors publication-title: Colloid Surface A doi: 10.1016/j.colsurfa.2019.03.016 – volume: 8 start-page: 1703454 year: 2018 ident: 10.1016/j.cej.2020.125364_b0325 article-title: Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703454 – volume: 3 start-page: 93 year: 2020 ident: 10.1016/j.cej.2020.125364_b0015 article-title: Carbon nanoarrays embedded with metal compounds for high-performance flexible supercapacitors publication-title: Batteries Supercaps doi: 10.1002/batt.201900174 – volume: 118 start-page: 9233 year: 2018 ident: 10.1016/j.cej.2020.125364_b0035 article-title: Design and mechanisms of asymmetric supercapacitors publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00252 – volume: 13 start-page: 342 year: 2019 ident: 10.1016/j.cej.2020.125364_b0165 article-title: Synthesis of sandwich-like porous nanostructure of Co3O4-rGO for flexible all-solid-state high-performance asymmetric supercapacitors publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2019.06.008 – volume: 5 start-page: 1700659 year: 2018 ident: 10.1016/j.cej.2020.125364_b0210 article-title: Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes publication-title: Adv. Sci. doi: 10.1002/advs.201700659 – volume: 313 start-page: 194 year: 2019 ident: 10.1016/j.cej.2020.125364_b0295 article-title: Benzoic acid-assisted substrate-free synthesis of ultrathin nanosheets assembled two-dimensional porous Co3O4 thin sheets with 3D hierarchical micro-/nano-structures and enhanced performance as battery-type materials for supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.05.019 – volume: 16 start-page: 1853 year: 2004 ident: 10.1016/j.cej.2020.125364_b0190 article-title: Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density publication-title: Adv. Mater. doi: 10.1002/adma.200400183 – volume: 282 start-page: 179 year: 2015 ident: 10.1016/j.cej.2020.125364_b0170 article-title: High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.047 – volume: 41 start-page: 12734 year: 2015 ident: 10.1016/j.cej.2020.125364_b0185 article-title: Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.06.106 – volume: 14 start-page: 842 year: 2020 ident: 10.1016/j.cej.2020.125364_b0005 article-title: Stitching of Zn3(OH)2V2O7·2H2O 2D nanosheets by 1D carbon nanotubes boosts ultrahigh rate for wearable quasi-solid-state zinc-ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b07956 – volume: 8 start-page: 23 year: 2015 ident: 10.1016/j.cej.2020.125364_b0130 article-title: A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts publication-title: Nano Res. doi: 10.1007/s12274-014-0591-z – volume: 38 start-page: 155 year: 2017 ident: 10.1016/j.cej.2020.125364_b0160 article-title: O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.043 – volume: 61 start-page: 185 year: 2018 ident: 10.1016/j.cej.2020.125364_b0085 article-title: Hierarchically nanostructured transition metal oxides for supercapacitors publication-title: Sci. China Mater. doi: 10.1007/s40843-017-9095-4 – volume: 1 year: 2019 ident: 10.1016/j.cej.2020.125364_b0120 article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities publication-title: EnergyChem – volume: 31 start-page: 1901916 year: 2019 ident: 10.1016/j.cej.2020.125364_b0020 article-title: Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal p3mt on horizontally aligned carbon-nanotube arrays publication-title: Adv. Mater. doi: 10.1002/adma.201901916 – volume: 8 start-page: 5246 year: 2018 ident: 10.1016/j.cej.2020.125364_b0060 article-title: Synthesis of NiMn-LDH nanosheet@Ni3S2 nanorod hybrid structures for supercapacitor electrode materials with ultrahigh specific capacitance publication-title: Sci. Rep. doi: 10.1038/s41598-018-23642-6 – volume: 47 start-page: 11503 year: 2018 ident: 10.1016/j.cej.2020.125364_b0100 article-title: Carbon fabric supported 3D cobalt oxides/hydroxide nanosheet network as cathode for flexible all-solid-state asymmetric supercapacitor publication-title: Dalton Trans. doi: 10.1039/C8DT02371A – volume: 6 start-page: 7626 year: 2014 ident: 10.1016/j.cej.2020.125364_b0235 article-title: Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5009369 – volume: 14 start-page: 340 year: 2019 ident: 10.1016/j.cej.2020.125364_b0180 article-title: Egg albumin-assisted hydrothermal synthesis of Co3O4 quasi-cubes as superior electrode material for supercapacitors with excellent performances publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-019-3172-y – volume: 7 start-page: 13503 year: 2015 ident: 10.1016/j.cej.2020.125364_b0240 article-title: Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02787 – volume: 7 start-page: 1800963 year: 2019 ident: 10.1016/j.cej.2020.125364_b0205 article-title: Cobalt oxide nanoparticles embedded in N-doped porous carbon as an efficient electrode for supercapacitor publication-title: Energy Technol. doi: 10.1002/ente.201800963 – volume: 1 year: 2019 ident: 10.1016/j.cej.2020.125364_b0110 article-title: Metal-organic framework-derived materials for electrochemical energy applications publication-title: EnergyChem doi: 10.1016/j.enchem.2019.100001 – volume: 114 start-page: 111 year: 2010 ident: 10.1016/j.cej.2020.125364_b0135 article-title: Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs publication-title: J. Phys. Chem. C doi: 10.1021/jp908548f – volume: 2 start-page: 99 year: 2017 ident: 10.1016/j.cej.2020.125364_b0095 article-title: Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors publication-title: Nanoscale Horiz. doi: 10.1039/C6NH00224B – volume: 2 year: 2020 ident: 10.1016/j.cej.2020.125364_b0115 article-title: Metal–organic frameworks as a platform for clean energy applications publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100027 – volume: 686 start-page: 969 year: 2016 ident: 10.1016/j.cej.2020.125364_b0300 article-title: Facile synthesis ultrathin mesoporous Co3O4 nanosheets for high-energy asymmetric supercapacitor publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.06.156 – volume: 45 start-page: 11876 year: 2019 ident: 10.1016/j.cej.2020.125364_b0230 article-title: Uniform and porous Mn-doped Co3O4 microspheres: Solvothermal synthesis and their superior supercapacitor performances publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.03.070 – volume: 11 start-page: 75 year: 2018 ident: 10.1016/j.cej.2020.125364_b0320 article-title: A non-polarity flexible asymmetric supercapacitor with nickel nanoparticle@ carbon nanotube three-dimensional network electrodes publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.09.013 – volume: 480 start-page: 371 year: 2019 ident: 10.1016/j.cej.2020.125364_b0290 article-title: Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.215 – volume: 14 start-page: 1702407 year: 2018 ident: 10.1016/j.cej.2020.125364_b0050 article-title: Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor publication-title: Small doi: 10.1002/smll.201702407 – volume: 315 start-page: 35 year: 2017 ident: 10.1016/j.cej.2020.125364_b0245 article-title: Hierarchical Co3O4@Ni(OH)2 core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.01.010 – volume: 10 start-page: 42503 year: 2018 ident: 10.1016/j.cej.2020.125364_b0025 article-title: Facile activation of commercial carbon felt as a low-cost free-standing electrode for flexible supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16881 – volume: 774 start-page: 137 year: 2019 ident: 10.1016/j.cej.2020.125364_b0310 article-title: Facile synthesis of homogeneous core-shell Co3O4 mesoporous nanospheres as high performance electrode materials for supercapacitor publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.09.347 – volume: 271 start-page: 379 year: 2018 ident: 10.1016/j.cej.2020.125364_b0275 article-title: Advanced flower-like Co3O4 with ultrathin nanosheets and 3D rGO aerogels as double ion-buffering reservoirs for asymmetric supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.166 – volume: 328 year: 2019 ident: 10.1016/j.cej.2020.125364_b0315 article-title: MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135103 – volume: 2 start-page: 1328 year: 2012 ident: 10.1016/j.cej.2020.125364_b0330 article-title: WO3−x/MoO3−x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200380 – volume: 24 start-page: 934 year: 2014 ident: 10.1016/j.cej.2020.125364_b0075 article-title: Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301747 – volume: 5 start-page: 544 year: 2017 ident: 10.1016/j.cej.2020.125364_b0045 article-title: High-performance flexible solid-state asymmetric supercapacitors based on ordered mesoporous cobalt oxide publication-title: Energy Technol. doi: 10.1002/ente.201600391 – volume: 198 start-page: 99 year: 2017 ident: 10.1016/j.cej.2020.125364_b0225 article-title: Cetyltrimethylammonium bromide assisted hydrothermal synthesis of cobalt oxide nanowires anchored on graphene as an efficient electrode material for supercapacitor applications publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.05.051 – volume: 11 start-page: 2521 year: 2018 ident: 10.1016/j.cej.2020.125364_b0145 article-title: Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01415A – volume: 487 start-page: 442 year: 2019 ident: 10.1016/j.cej.2020.125364_b0285 article-title: Facile synthesis of interconnected carbon network decorated with Co3O4 nanoparticles for potential supercapacitor applications publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.142 – volume: 27 start-page: 1605307 year: 2017 ident: 10.1016/j.cej.2020.125364_b0150 article-title: Design of Hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605307 – volume: 181 start-page: 36 year: 2018 ident: 10.1016/j.cej.2020.125364_b0030 article-title: Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.02.004 – volume: 30 year: 2019 ident: 10.1016/j.cej.2020.125364_b0280 article-title: Aldehyde reduced Co3O4 to form oxygen vacancy and enhance the electrochemical performance for oxygen evolution reaction and supercapacitors publication-title: Nanotechnology doi: 10.1088/1361-6528/ab2a83 – volume: 94 start-page: 158 year: 2017 ident: 10.1016/j.cej.2020.125364_b0255 article-title: Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co3O4 by the new indirect solid state thermolysis as cathode material of asymmetric supercapacitor publication-title: Phys. E: Low-Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2017.08.005 – volume: 6 start-page: 5856 year: 2018 ident: 10.1016/j.cej.2020.125364_b0055 article-title: Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00835C – volume: 53 start-page: 12410 year: 2017 ident: 10.1016/j.cej.2020.125364_b0080 article-title: Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances publication-title: Chem. Commun. doi: 10.1039/C7CC07515D – volume: 45 start-page: 3016 year: 2020 ident: 10.1016/j.cej.2020.125364_b0175 article-title: Solvothermal synthesis of novel pod-like MnCo2O4.5 microstructures as high-performance electrode materials for supercapacitors publication-title: Int. J. Hydrogen Energ doi: 10.1016/j.ijhydene.2019.11.153 |
SSID | ssj0006919 |
Score | 2.627736 |
Snippet | [Display omitted]
•Novel Co3O4 flexible electrode is fabricated via electrochemical oxidation of Co-MOF.•This Co3O4 electrode owns the amorphous hydroxyl-rich... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 125364 |
SubjectTerms | Co3O4 Electrochemical oxidation Flexible electrode Hydroxyl-rich Supercapacitor |
Title | Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor |
URI | https://dx.doi.org/10.1016/j.cej.2020.125364 |
Volume | 396 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_AkrM2-0uRYiqVafOADewvZzS5WalraeujF3-5MmmgF9eApJMxC-HZ25ltm9ltCTnwq0tA4x7AGxxTPPAMvkSyITaqtNqkr1PavrsPOo7rs6d4SaVVnYbCtsoz985heROvyS71Esz7q9-v3HGtascI6IpfAS_AEu2qgl5-9f7V5hHFxuQcaM7SuKptFj5d1L7BFFKixoGWofs5NC_mmvUHWS6JIm_N_2SRLLt8iawvygdvk9n6WA3-b9Cd06Gn6OgTMYCNPn2cZNqcMGMS4Z9oayhtFgZtSj-KXZuAoahQz1Iigk7eRG1tImBZW9niHPLbPH1odVt6QwKwM5ZTFmQhUQ9sMUpEXkZGQ8VKXOe0z1-DCZlqZ2EsV2TBIucMVKGDDIyIeAC2ykdwly_kwd3uEeh2FOob5AUYAKLrYGyGc55Kj_IsJ9klQYZPYUj4cb7EYJFWf2EsCcCYIZzKHc5-cfg4ZzbUz_jJWFeDJNwdIILb_Puzgf8MOySq-YeMH10dkeTp-c8fALqamVrhPjaw0L7qda3x27566H6ubztA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MS3e_AkLM2-YnKUotRXFVTwFrKbXWypbenj0H_vTJuIgnrwmuxA8mV25ltm8g3AachlHlvvOdXguBZF4OglikepzY0zNvcztf37Vtx80Tev5nUBGtW_MNRWWcb-eUyfRevySr1Esz5ot-tPgmpaqaY6olDISxZhidSpTA2WLq5vm63PgByns_ketJ6TQVXcnLV5Od_BU6IkmQWjYv1zevqScq7WYa3kiuxi_jgbsOB7m7D6RUFwCx6fpj2kcKP2iPUDy9_7CBue5dnbtKD-lC7HMPfGGn31oBnSUxZI_9J2PSOZYk4yEWw0Gfihw5zpcHMPt-Hl6vK50eTlkATuVKzGPC1khC_tCsxGQSZWYdLLfeFNKPy5kK4w2qZB6cTFUS48bUKJZx6ZiAiZkUvUDtR6_Z7fBRZMEpsUPxGSAn0e-zRYKX0QSpACjI32IKqwyVypIE6DLLpZ1SrWyRDOjODM5nDuwdmnyWAun_HXYl0Bnn3zgQzD--9m-_8zO4Hl5vP9XXZ33bo9gBW6Q30gwhxCbTyc-CMkG2N7XDrTB1tsz94 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+amorphous+hydroxyl-rich+Co3O4+for+flexible+high-rate+supercapacitor&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Tao%2C+Yingjie&rft.au=Wu%2C+Yatao&rft.au=Chen%2C+Hao&rft.au=Chen%2C+Weijie&rft.date=2020-09-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=396&rft_id=info:doi/10.1016%2Fj.cej.2020.125364&rft.externalDocID=S1385894720313565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |