Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor

[Display omitted] •Novel Co3O4 flexible electrode is fabricated via electrochemical oxidation of Co-MOF.•This Co3O4 electrode owns the amorphous hydroxyl-rich hierarchical structure.•It expresses higher Cs than a highly crystalline hydroxyl-deficient Co3O4 electrode.•It also exhibits better rate per...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 396; p. 125364
Main Authors Tao, Yingjie, Wu, Yatao, Chen, Hao, Chen, Weijie, Wang, Jiajie, Tong, Yifei, Pei, Gu, Shen, Zhehong, Guan, Cao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Novel Co3O4 flexible electrode is fabricated via electrochemical oxidation of Co-MOF.•This Co3O4 electrode owns the amorphous hydroxyl-rich hierarchical structure.•It expresses higher Cs than a highly crystalline hydroxyl-deficient Co3O4 electrode.•It also exhibits better rate performance than many cobalt oxide-based electrodes.•ASC based on this electrode shows excellent rate capability and cycling performance. Metal oxides-based materials are promising electrodes for energy storage devices, however, the low rate performance and the high energy consumption in the preparation limit their practical applications. Herein, a novel amorphous hydroxyl-rich Co3O4 hierarchical structure flexible electrode is facilely fabricated via electrochemical oxidation of a cobalt-based metal-organic framework. The as-prepared Co3O4 hierarchical structure is composed of large microrods and small nanoparticles and possesses abundant mesopores, amorphous, and hydroxyl-rich nature. These characteristics favor rapid electron transfer, complete exposure of the active interface, and sufficient penetration of electrolyte ions within the active material. Benefitting from these advantages, the optimal Co3O4 electrode (Co3O4-5) expresses a high reversible specific capacitance (Cs) of 226.1 C·g−1 (or 253.2 mC·cm−2), which is 2 (or 3.7) times higher than those of highly crystalline hydroxyl-deficient Co3O4 electrode. The Co3O4-5 electrode also shows excellent rate performance (97% Cs retention after a 6.7-times current increasing), which surpasses the levels of many cobalt oxide-based electrodes. In addition, an asymmetric supercapacitor (ASC) constructed from this Co3O4-5 electrode achieves a large energy density of 26.6 Wh·kg−1 (or 0.146 mWh·cm−2), outstanding rate capability (1% Cs loss at the 10-fold higher current density), and stable cycle performance (10.1% Cs loss after 20,000 charge-discharge cycles).
AbstractList [Display omitted] •Novel Co3O4 flexible electrode is fabricated via electrochemical oxidation of Co-MOF.•This Co3O4 electrode owns the amorphous hydroxyl-rich hierarchical structure.•It expresses higher Cs than a highly crystalline hydroxyl-deficient Co3O4 electrode.•It also exhibits better rate performance than many cobalt oxide-based electrodes.•ASC based on this electrode shows excellent rate capability and cycling performance. Metal oxides-based materials are promising electrodes for energy storage devices, however, the low rate performance and the high energy consumption in the preparation limit their practical applications. Herein, a novel amorphous hydroxyl-rich Co3O4 hierarchical structure flexible electrode is facilely fabricated via electrochemical oxidation of a cobalt-based metal-organic framework. The as-prepared Co3O4 hierarchical structure is composed of large microrods and small nanoparticles and possesses abundant mesopores, amorphous, and hydroxyl-rich nature. These characteristics favor rapid electron transfer, complete exposure of the active interface, and sufficient penetration of electrolyte ions within the active material. Benefitting from these advantages, the optimal Co3O4 electrode (Co3O4-5) expresses a high reversible specific capacitance (Cs) of 226.1 C·g−1 (or 253.2 mC·cm−2), which is 2 (or 3.7) times higher than those of highly crystalline hydroxyl-deficient Co3O4 electrode. The Co3O4-5 electrode also shows excellent rate performance (97% Cs retention after a 6.7-times current increasing), which surpasses the levels of many cobalt oxide-based electrodes. In addition, an asymmetric supercapacitor (ASC) constructed from this Co3O4-5 electrode achieves a large energy density of 26.6 Wh·kg−1 (or 0.146 mWh·cm−2), outstanding rate capability (1% Cs loss at the 10-fold higher current density), and stable cycle performance (10.1% Cs loss after 20,000 charge-discharge cycles).
ArticleNumber 125364
Author Guan, Cao
Wu, Yatao
Chen, Weijie
Shen, Zhehong
Tong, Yifei
Chen, Hao
Wang, Jiajie
Pei, Gu
Tao, Yingjie
Author_xml – sequence: 1
  givenname: Yingjie
  surname: Tao
  fullname: Tao, Yingjie
  organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China
– sequence: 2
  givenname: Yatao
  surname: Wu
  fullname: Wu, Yatao
  organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China
– sequence: 3
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  email: haochen@zafu.edu.cn
  organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China
– sequence: 4
  givenname: Weijie
  surname: Chen
  fullname: Chen, Weijie
  organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China
– sequence: 5
  givenname: Jiajie
  surname: Wang
  fullname: Wang, Jiajie
  organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China
– sequence: 6
  givenname: Yifei
  surname: Tong
  fullname: Tong, Yifei
  organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China
– sequence: 7
  givenname: Gu
  surname: Pei
  fullname: Pei, Gu
  organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China
– sequence: 8
  givenname: Zhehong
  surname: Shen
  fullname: Shen, Zhehong
  email: zhehongshen@zafu.edu.cn
  organization: School of Engineering, Zhejiang A&F University, Hangzhou 311300, PR China
– sequence: 9
  givenname: Cao
  surname: Guan
  fullname: Guan, Cao
  email: iamcguan@nwpu.edu.cn
  organization: Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
BookMark eNp9kMtOwzAQRS0EEm3hA9j5B1L8zEOsUMVLqlQkYG259pg4SuPITlHz96QqKxZdzczijO49c3TZhQ4QuqNkSQnN75ulgWbJCJtuJnkuLtCMlgXPOKPsctp5KbOyEsU1mqfUEELyilYz9P4xdkMNySccHNa7EPs67BOuRxvDYWyz6E2NV4FvBHYhYtfCwW9bwLX_rrOoB8Bp30M0utfGDyHeoCun2wS3f3OBvp6fPlev2Xrz8rZ6XGeG53zIKsuIKKSxgnLHyi0HsBosSGehoMxYKbaV46I0OdEUCJGU5UyykpKKVabkC0RPf00MKUVwqo9-p-OoKFFHJapRkxJ1VKJOSiam-MdMkfXgQzdE7duz5MOJhKnSj4eokvHQGbA-ghmUDf4M_QvF-329
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_164447
crossref_primary_10_1016_j_apsusc_2022_156154
crossref_primary_10_1016_j_molstruc_2022_132499
crossref_primary_10_1016_j_electacta_2020_137081
crossref_primary_10_1016_j_ensm_2021_09_023
crossref_primary_10_1016_j_jallcom_2023_169458
crossref_primary_10_1007_s11696_023_03093_8
crossref_primary_10_1007_s42114_022_00532_0
crossref_primary_10_1016_j_jcis_2020_08_013
crossref_primary_10_1039_D0TA07468C
crossref_primary_10_1016_j_jobab_2022_05_003
crossref_primary_10_1016_j_cej_2025_159398
crossref_primary_10_1016_j_cej_2022_137886
crossref_primary_10_1016_j_est_2023_108055
crossref_primary_10_1016_j_ceramint_2023_12_382
crossref_primary_10_1002_pc_27016
crossref_primary_10_1016_j_cesx_2021_100114
crossref_primary_10_1007_s10971_023_06297_2
crossref_primary_10_1016_j_mtcomm_2022_104250
crossref_primary_10_1016_j_susmat_2024_e00978
crossref_primary_10_1039_D2DT01827F
crossref_primary_10_1039_D2TA05977K
crossref_primary_10_1016_j_carbon_2021_12_058
crossref_primary_10_1016_j_diamond_2023_110076
crossref_primary_10_1016_j_jcis_2021_03_022
crossref_primary_10_1039_D1NJ04153C
crossref_primary_10_1016_j_est_2022_104783
crossref_primary_10_1016_j_est_2022_106322
crossref_primary_10_1002_eem2_12573
crossref_primary_10_1007_s12598_023_02442_6
crossref_primary_10_1016_j_electacta_2022_140880
crossref_primary_10_1016_j_jcis_2020_11_029
crossref_primary_10_1039_D1TA00652E
crossref_primary_10_1016_j_cej_2021_134486
crossref_primary_10_1016_j_electacta_2020_137244
crossref_primary_10_1016_j_jallcom_2024_176945
crossref_primary_10_1039_D2TA00782G
crossref_primary_10_1016_j_matchemphys_2024_129331
crossref_primary_10_1016_j_jallcom_2021_160867
crossref_primary_10_1039_D3NR05050E
crossref_primary_10_1016_j_est_2021_102586
crossref_primary_10_1016_j_est_2023_106979
crossref_primary_10_1016_j_colsurfa_2023_132028
crossref_primary_10_1016_j_jcis_2021_06_060
crossref_primary_10_1039_D0CE01778G
crossref_primary_10_1016_j_jcis_2022_06_140
crossref_primary_10_1016_j_cej_2022_137425
crossref_primary_10_1002_ente_202200295
crossref_primary_10_1039_D1CE01627J
crossref_primary_10_1016_j_mtchem_2021_100620
crossref_primary_10_1016_j_carbon_2022_06_042
crossref_primary_10_1016_j_electacta_2020_137334
crossref_primary_10_1007_s11244_021_01538_6
crossref_primary_10_1016_j_jallcom_2022_167821
crossref_primary_10_1039_D1NJ01178B
crossref_primary_10_1039_D2TA02937E
crossref_primary_10_1021_acsaenm_2c00049
crossref_primary_10_1021_acsanm_4c07014
crossref_primary_10_1016_j_apsusc_2020_148811
crossref_primary_10_1016_j_heliyon_2025_e42992
crossref_primary_10_1016_j_jallcom_2023_171649
crossref_primary_10_1016_j_jcis_2023_08_142
crossref_primary_10_1007_s11581_021_04433_y
crossref_primary_10_1016_j_apsusc_2021_151324
crossref_primary_10_1039_D2NJ00276K
crossref_primary_10_1016_j_ijhydene_2022_01_035
crossref_primary_10_1016_j_materresbull_2021_111281
crossref_primary_10_1016_j_est_2023_108468
crossref_primary_10_1088_1361_6528_abedef
crossref_primary_10_1016_j_optmat_2023_113629
crossref_primary_10_3390_nano10091703
crossref_primary_10_1021_acs_iecr_1c03225
crossref_primary_10_1016_j_jallcom_2021_163557
crossref_primary_10_1016_j_est_2022_104298
crossref_primary_10_1016_j_est_2024_112999
crossref_primary_10_1155_2022_9861440
crossref_primary_10_1021_acs_energyfuels_2c00060
crossref_primary_10_1016_j_apsusc_2021_149789
crossref_primary_10_1016_j_cartre_2024_100341
crossref_primary_10_1016_j_jallcom_2023_169490
crossref_primary_10_1016_j_jpowsour_2023_233808
crossref_primary_10_1016_j_matpr_2023_02_111
crossref_primary_10_1142_S179360472551021X
crossref_primary_10_3390_cryst12010076
crossref_primary_10_1039_D3YA00378G
crossref_primary_10_1016_j_jallcom_2021_161488
crossref_primary_10_1039_D1NA00523E
crossref_primary_10_1016_j_cej_2020_127502
crossref_primary_10_1039_D0TA09799C
crossref_primary_10_1007_s10971_023_06239_y
crossref_primary_10_1016_j_jpowsour_2024_235663
crossref_primary_10_1039_D3DT03049K
crossref_primary_10_1016_j_ccr_2021_214300
crossref_primary_10_1016_j_est_2024_113339
crossref_primary_10_1002_ente_202200145
crossref_primary_10_1016_j_diamond_2024_111736
crossref_primary_10_1039_D1TA06815F
crossref_primary_10_1016_j_colsurfa_2024_134437
crossref_primary_10_1016_j_indcrop_2024_119366
crossref_primary_10_1016_j_est_2022_104226
crossref_primary_10_1016_j_actamat_2023_119174
crossref_primary_10_1021_acssuschemeng_0c04530
crossref_primary_10_1021_acs_energyfuels_3c00377
crossref_primary_10_1016_j_cej_2021_130304
crossref_primary_10_1016_j_energy_2020_119436
crossref_primary_10_1016_j_apsusc_2022_153582
crossref_primary_10_3390_physchem5010011
crossref_primary_10_1007_s11581_021_03938_w
crossref_primary_10_1039_D3CP00595J
crossref_primary_10_1021_acsaem_0c02465
crossref_primary_10_1039_D3QI02214E
crossref_primary_10_1039_D2NJ02038F
crossref_primary_10_1021_acsanm_2c01488
crossref_primary_10_1016_j_apsusc_2022_153617
crossref_primary_10_1016_j_jallcom_2020_158546
crossref_primary_10_1021_acsami_0c21330
crossref_primary_10_1016_j_electacta_2020_136843
crossref_primary_10_1002_celc_202300463
crossref_primary_10_1016_j_indcrop_2023_116661
crossref_primary_10_1002_smll_202305778
crossref_primary_10_1002_cssc_202400105
crossref_primary_10_1016_j_est_2024_115081
crossref_primary_10_1016_j_ceramint_2022_08_044
crossref_primary_10_1021_acsenergylett_1c01373
crossref_primary_10_1002_celc_202101523
crossref_primary_10_1016_j_est_2022_106342
crossref_primary_10_1002_adma_202303906
crossref_primary_10_1016_j_est_2023_110346
crossref_primary_10_1002_ente_202300749
crossref_primary_10_1016_j_electacta_2022_140101
crossref_primary_10_1088_1361_6528_ac4eb1
crossref_primary_10_1016_j_mtnano_2023_100399
crossref_primary_10_1016_j_electacta_2020_137262
crossref_primary_10_1016_j_est_2023_109995
crossref_primary_10_1016_j_est_2022_104849
crossref_primary_10_1002_est2_348
crossref_primary_10_1088_2632_959X_abd686
crossref_primary_10_1016_j_surfcoat_2021_127782
crossref_primary_10_1021_acsami_4c14052
crossref_primary_10_1021_acs_energyfuels_2c00422
Cites_doi 10.1039/C4TA01296H
10.1016/j.apsusc.2019.07.244
10.1016/j.electacta.2015.08.133
10.1002/advs.201900628
10.1016/j.apsusc.2015.11.171
10.1002/aenm.201300580
10.1039/a908800h
10.1002/aenm.201702014
10.1039/C8CC03669A
10.1016/j.cej.2018.12.041
10.1002/slct.201802131
10.1002/advs.201802002
10.3390/nano9030345
10.1016/j.cej.2015.06.053
10.1021/acsnano.7b02796
10.1016/j.colsurfa.2018.02.072
10.1016/j.colsurfa.2019.03.016
10.1002/aenm.201703454
10.1002/batt.201900174
10.1021/acs.chemrev.8b00252
10.1016/j.mtener.2019.06.008
10.1002/advs.201700659
10.1016/j.electacta.2019.05.019
10.1002/adma.200400183
10.1016/j.jpowsour.2015.02.047
10.1016/j.ceramint.2015.06.106
10.1021/acsnano.9b07956
10.1007/s12274-014-0591-z
10.1016/j.nanoen.2017.05.043
10.1007/s40843-017-9095-4
10.1002/adma.201901916
10.1038/s41598-018-23642-6
10.1039/C8DT02371A
10.1021/am5009369
10.1186/s11671-019-3172-y
10.1021/acsami.5b02787
10.1002/ente.201800963
10.1016/j.enchem.2019.100001
10.1021/jp908548f
10.1039/C6NH00224B
10.1016/j.enchem.2020.100027
10.1016/j.jallcom.2016.06.156
10.1016/j.ceramint.2019.03.070
10.1016/j.ensm.2017.09.013
10.1016/j.apsusc.2019.02.215
10.1002/smll.201702407
10.1016/j.cej.2017.01.010
10.1021/acsami.8b16881
10.1016/j.jallcom.2018.09.347
10.1016/j.electacta.2018.03.166
10.1016/j.electacta.2019.135103
10.1002/aenm.201200380
10.1002/adfm.201301747
10.1002/ente.201600391
10.1016/j.matchemphys.2017.05.051
10.1039/C8EE01415A
10.1016/j.apsusc.2019.05.142
10.1002/adfm.201605307
10.1016/j.ces.2018.02.004
10.1088/1361-6528/ab2a83
10.1016/j.physe.2017.08.005
10.1039/C8TA00835C
10.1039/C7CC07515D
10.1016/j.ijhydene.2019.11.153
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2020.125364
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2020_125364
S1385894720313565
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c363t-9d20475cd413f28b3eedaede5fde712cd54b9f348c60a1e005126252810929c83
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Apr 24 23:03:56 EDT 2025
Tue Jul 01 04:26:51 EDT 2025
Fri Feb 23 02:46:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supercapacitor
Flexible electrode
Electrochemical oxidation
Hydroxyl-rich
Co3O4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-9d20475cd413f28b3eedaede5fde712cd54b9f348c60a1e005126252810929c83
ParticipantIDs crossref_primary_10_1016_j_cej_2020_125364
crossref_citationtrail_10_1016_j_cej_2020_125364
elsevier_sciencedirect_doi_10_1016_j_cej_2020_125364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shao, El-Kady, Sun, Li, Zhang, Zhu, Wang, Dunn, Kaner (b0035) 2018; 118
Cheng, Kou, Zhang, Si, Gao, Zhang (b0160) 2017; 38
Zhu, Guan, Cai, Chen, Wang, Du, Wu, Xu, Yu, Huang (b0015) 2020; 3
Zheng, Xiao, Li, Gu, Dai, Tang, Hu, Xue, Pang (b0085) 2018; 61
Zhu, Huang, Zhao, Xu, Wang, Chen, Xie, Chen (b0295) 2019; 313
Wang, Xia, Wang, Gao, Shi, Fang (b0300) 2016; 686
Yan, Chunyi (b0090) 2017; 50
Liu, Zhou, Wang, Du, Zhang, Ding, Du, Zhu (b0310) 2019; 774
Li, Yang, Xue, Pang, Xu (b0115) 2020; 2
Bai, Liu, Liu, Zhang, Li, Jing, Liu, Wang, Li (b0245) 2017; 315
Yang, Liu, Martens, Frost (b0135) 2010; 114
Dupin, Gonbeau, Vinatier, Levasseur (b0155) 2000; 2
El-Hout, Chen, Liang, Yang, Zhang (b0225) 2017; 198
Jiang, Zhou, Liu (b0320) 2018; 11
Qin, Dang, Hao, Wang, Li, Wen, Lu, He, Cao, Peng (b0100) 2018; 47
Yu, Chang, Yuan, Wang, Zhu, Fu, Chen, Wang, Wu, Li (b0055) 2018; 6
Chen, Du, Sun, Wang, Zhang, Xu (b0175) 2020; 45
Abouali, Akbari Garakani, Zhang, Xu, Kamali Heidari, Huang, Huang, Kim (b0240) 2015; 7
Bigdeli, Moradi, Hajati, Kiani, Toth (b0255) 2017; 94
Liang, Zhao, Qiu, Zou, Xu (b0110) 2019; 1
Guo, Song, Li, Tan, Ma, Zhang, Zhao (b0265) 2018; 546
Sun, Wang, Zhang, Xu, Chen (b0180) 2019; 14
Salunkhe, Kaneti, Yamauchi (b0105) 2017; 11
Zhu, Wen, Ma, Wang, Yang, Wang, Shi, Cheng, Sun, Yao (b0140) 2018; 54
Yu, Zhang, Lou, Wu, Zhu, Chen, Shen, Fu, Bao, Wu (b0060) 2018; 8
Zhao, Liu, Du, Zhang, Zhou, Li, Wu, Zhu, Xie, Pan (b0285) 2019; 487
Xiang, Xu, Qu, Tian, Zhang, Wang, Xie, Guo, Ding, Guo (b0080) 2017; 53
Wang, Zhang, Chen, Liu, Lu, Chen, Shao (b0305) 2019; 570
Chen, Wang, Liao, Han, Zhang, Xu, Gao (b0230) 2019; 45
Pan, Chen, Yang, Ma, Zhang, Kou, Ding, Pang, Zhang, Gu, Yan, Wang (b0010) 2019; 6
Li, Balamurugan, Kim, Lee (b0065) 2018; 8
Babu, William, Muralidharan (b0290) 2019; 480
Li, Hu, Chen, Gu, Wu (b0220) 2018; 3
Wang, Yan, Lang, Zheng, Zhang (b0195) 2014; 2
Pan, Yang, Yang, Zhang, Zhang, Li, Kou, Zhang, Chen, Yan, Wang (b0005) 2020; 14
Chen, Hu, Yan, Che, Chen, Wu (b0070) 2013; 3
Fu, Zhao, Ren, Magasinski, Yushin (b0325) 2018; 8
Zhou, Wang, Acauan, Kalfon-Cohen, Ni, Stein, Gleason, Wardle (b0020) 2019; 31
Liu, Li, Zhu, He (b0170) 2015; 282
Lou, Wu, Zhu, Lu, Yu, Yang, Chen, Guan, Li, Shen (b0025) 2018; 10
Liu, Zhang, You, Yu (b0050) 2018; 14
Chen, Shen, Pan, Kou, Liu, Zhang, Gu, Guan, Wang (b0125) 2019; 6
Ma, Chen, Li, Ruan, Tang, Liu, Wang, Huang, Pei, Zapien, Zhi (b0145) 2018; 11
Yang, Zhu, Zhu, Lou, Wu, Lu, Wang, Song, Tao, Pei, Chu, Chen, Ma, Song, Shen (b0260) 2019; 9
Lai, Sun, Zhang, Yang, Kang, Lin (b0275) 2018; 271
Hai, Gao, Zhang, Xu, Cui, Zhang, Tsoukalas, Tang, Yan, Xue (b0250) 2016; 361
Ding, Peng, Chen, Li, Zhang, Falaras, Hu (b0270) 2019; 495
Gong, Dai (b0130) 2015; 8
Liu, Fu, Zhang, Xu, Lu, Zhou, Huang (b0150) 2017; 27
Liu, Liu, Ding, Liu, Teng, Luo, Li, Hu, Liu (b0185) 2015; 41
Zong, Yang, Wang, Zhang, Zhu, Wang, Shen (b0200) 2019; 361
Zheng, Li, Gu, Lin, Du, Xue, Pang (b0045) 2017; 5
Chen, Li, Ma, Zhao, Fang (b0280) 2019; 30
Yang, Liu, Hao, Yang, Goddard, Zhang, Cao (b0210) 2018; 5
Pang, Long, Jiang, Ji, Han, Wang, Liu, Xi, Wang, Xu (b0215) 2015; 280
Guan, Cheng, Wang, Ni, Gu, Li, Huang, Yang, Nie (b0235) 2014; 6
Chen, Hu, Chen, Yan, Wu (b0075) 2014; 24
Dai, Han, Tang, Tang (b0315) 2019; 328
Zhu, Chen, Kan, Tang, Wei, Lin, Li (b0205) 2019; 7
Cao, Xu, Liang, Li (b0190) 2004; 16
Zhu, Yu, Xu, Zhang, Zhang, Lou, Wu, Zhu, Chen, Shen, Bao, Fu (b0030) 2018; 181
Xiao, Ding, Yuan, Shen, Zhong, Zhang, Cao, Hu, Zhai, Gong, Chen, Tong, Zhou, Wang (b0330) 2012; 2
Li, Xu, Jiao, Jiang (b0120) 2019; 1
Guan, Zhao, Hu, Lai, Li, Sun, Zhang, Cheetham, Wang (b0095) 2017; 2
Lai, Sun, Lin (b0165) 2019; 13
Chen, Liu, Shen, Bao, Zhao, Wu (b0040) 2015; 180
Yu (10.1016/j.cej.2020.125364_b0060) 2018; 8
Pan (10.1016/j.cej.2020.125364_b0005) 2020; 14
Lai (10.1016/j.cej.2020.125364_b0275) 2018; 271
Chen (10.1016/j.cej.2020.125364_b0075) 2014; 24
Wang (10.1016/j.cej.2020.125364_b0305) 2019; 570
Jiang (10.1016/j.cej.2020.125364_b0320) 2018; 11
Chen (10.1016/j.cej.2020.125364_b0125) 2019; 6
Zhu (10.1016/j.cej.2020.125364_b0030) 2018; 181
Salunkhe (10.1016/j.cej.2020.125364_b0105) 2017; 11
Liu (10.1016/j.cej.2020.125364_b0150) 2017; 27
Liu (10.1016/j.cej.2020.125364_b0170) 2015; 282
Ding (10.1016/j.cej.2020.125364_b0270) 2019; 495
Zheng (10.1016/j.cej.2020.125364_b0045) 2017; 5
Gong (10.1016/j.cej.2020.125364_b0130) 2015; 8
Guan (10.1016/j.cej.2020.125364_b0235) 2014; 6
Guan (10.1016/j.cej.2020.125364_b0095) 2017; 2
Zhu (10.1016/j.cej.2020.125364_b0140) 2018; 54
Zheng (10.1016/j.cej.2020.125364_b0085) 2018; 61
Abouali (10.1016/j.cej.2020.125364_b0240) 2015; 7
Bai (10.1016/j.cej.2020.125364_b0245) 2017; 315
Li (10.1016/j.cej.2020.125364_b0065) 2018; 8
Guo (10.1016/j.cej.2020.125364_b0265) 2018; 546
Zhu (10.1016/j.cej.2020.125364_b0015) 2020; 3
Zhu (10.1016/j.cej.2020.125364_b0295) 2019; 313
Li (10.1016/j.cej.2020.125364_b0220) 2018; 3
Qin (10.1016/j.cej.2020.125364_b0100) 2018; 47
Cheng (10.1016/j.cej.2020.125364_b0160) 2017; 38
Pang (10.1016/j.cej.2020.125364_b0215) 2015; 280
Yang (10.1016/j.cej.2020.125364_b0210) 2018; 5
Chen (10.1016/j.cej.2020.125364_b0175) 2020; 45
Shao (10.1016/j.cej.2020.125364_b0035) 2018; 118
Fu (10.1016/j.cej.2020.125364_b0325) 2018; 8
Wang (10.1016/j.cej.2020.125364_b0195) 2014; 2
Wang (10.1016/j.cej.2020.125364_b0300) 2016; 686
Liu (10.1016/j.cej.2020.125364_b0050) 2018; 14
Li (10.1016/j.cej.2020.125364_b0120) 2019; 1
Sun (10.1016/j.cej.2020.125364_b0180) 2019; 14
Yu (10.1016/j.cej.2020.125364_b0055) 2018; 6
Ma (10.1016/j.cej.2020.125364_b0145) 2018; 11
Hai (10.1016/j.cej.2020.125364_b0250) 2016; 361
Lou (10.1016/j.cej.2020.125364_b0025) 2018; 10
Chen (10.1016/j.cej.2020.125364_b0040) 2015; 180
Zong (10.1016/j.cej.2020.125364_b0200) 2019; 361
Chen (10.1016/j.cej.2020.125364_b0280) 2019; 30
Cao (10.1016/j.cej.2020.125364_b0190) 2004; 16
Li (10.1016/j.cej.2020.125364_b0115) 2020; 2
Pan (10.1016/j.cej.2020.125364_b0010) 2019; 6
Zhu (10.1016/j.cej.2020.125364_b0205) 2019; 7
Babu (10.1016/j.cej.2020.125364_b0290) 2019; 480
Xiang (10.1016/j.cej.2020.125364_b0080) 2017; 53
Yang (10.1016/j.cej.2020.125364_b0260) 2019; 9
Zhao (10.1016/j.cej.2020.125364_b0285) 2019; 487
El-Hout (10.1016/j.cej.2020.125364_b0225) 2017; 198
Liu (10.1016/j.cej.2020.125364_b0185) 2015; 41
Yang (10.1016/j.cej.2020.125364_b0135) 2010; 114
Liu (10.1016/j.cej.2020.125364_b0310) 2019; 774
Lai (10.1016/j.cej.2020.125364_b0165) 2019; 13
Zhou (10.1016/j.cej.2020.125364_b0020) 2019; 31
Xiao (10.1016/j.cej.2020.125364_b0330) 2012; 2
Dupin (10.1016/j.cej.2020.125364_b0155) 2000; 2
Chen (10.1016/j.cej.2020.125364_b0070) 2013; 3
Bigdeli (10.1016/j.cej.2020.125364_b0255) 2017; 94
Dai (10.1016/j.cej.2020.125364_b0315) 2019; 328
Chen (10.1016/j.cej.2020.125364_b0230) 2019; 45
Yan (10.1016/j.cej.2020.125364_b0090) 2017; 50
Liang (10.1016/j.cej.2020.125364_b0110) 2019; 1
References_xml – volume: 181
  start-page: 36
  year: 2018
  end-page: 45
  ident: b0030
  article-title: Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials
  publication-title: Chem. Eng. Sci.
– volume: 2
  start-page: 1319
  year: 2000
  end-page: 1324
  ident: b0155
  article-title: Systematic XPS studies of metal oxides, hydroxides and peroxides
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 1802002
  year: 2019
  ident: b0125
  article-title: Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni–Zn batteries
  publication-title: Adv. Sci.
– volume: 27
  start-page: 1605307
  year: 2017
  ident: b0150
  article-title: Design of Hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 7626
  year: 2014
  end-page: 7632
  ident: b0235
  article-title: Needle-like Co
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2020
  ident: b0115
  article-title: Metal–organic frameworks as a platform for clean energy applications
  publication-title: EnergyChem
– volume: 8
  start-page: 1702014
  year: 2018
  ident: b0065
  article-title: Hierarchical Zn–Co–S nanowires as advanced electrodes for all solid state asymmetric supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1636
  year: 2013
  end-page: 1646
  ident: b0070
  article-title: One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 842
  year: 2020
  end-page: 853
  ident: b0005
  article-title: Stitching of Zn
  publication-title: ACS Nano
– volume: 14
  start-page: 340
  year: 2019
  ident: b0180
  article-title: Egg albumin-assisted hydrothermal synthesis of Co
  publication-title: Nanoscale Res. Lett.
– volume: 495
  year: 2019
  ident: b0270
  article-title: A competitive coordination strategy to synthesize Co
  publication-title: Appl. Surf. Sci.
– volume: 271
  start-page: 379
  year: 2018
  end-page: 387
  ident: b0275
  article-title: Advanced flower-like Co
  publication-title: Electrochim. Acta
– volume: 61
  start-page: 185
  year: 2018
  end-page: 209
  ident: b0085
  article-title: Hierarchically nanostructured transition metal oxides for supercapacitors
  publication-title: Sci. China Mater.
– volume: 53
  start-page: 12410
  year: 2017
  end-page: 12413
  ident: b0080
  article-title: Two dimensional oxygen-vacancy-rich Co
  publication-title: Chem. Commun.
– volume: 9
  start-page: 345
  year: 2019
  ident: b0260
  article-title: Electrochemically stable cobalt-zinc mixed oxide/hydroxide hierarchical porous film electrode for high-performance asymmetric supercapacitor
  publication-title: Nanomaterials
– volume: 13
  start-page: 342
  year: 2019
  end-page: 352
  ident: b0165
  article-title: Synthesis of sandwich-like porous nanostructure of Co
  publication-title: Mater. Today Energy
– volume: 47
  start-page: 11503
  year: 2018
  end-page: 11511
  ident: b0100
  article-title: Carbon fabric supported 3D cobalt oxides/hydroxide nanosheet network as cathode for flexible all-solid-state asymmetric supercapacitor
  publication-title: Dalton Trans.
– volume: 280
  start-page: 377
  year: 2015
  end-page: 384
  ident: b0215
  article-title: Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co
  publication-title: Chem. Eng. J.
– volume: 38
  start-page: 155
  year: 2017
  end-page: 166
  ident: b0160
  article-title: O
  publication-title: Nano Energy
– volume: 328
  year: 2019
  ident: b0315
  article-title: MOF-derived Co
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 5856
  year: 2018
  end-page: 5861
  ident: b0055
  article-title: Ultrathin NiCo
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 9622
  year: 2018
  end-page: 9626
  ident: b0220
  article-title: Facile synthesis of superthin Co
  publication-title: ChemistrySelect
– volume: 686
  start-page: 969
  year: 2016
  end-page: 975
  ident: b0300
  article-title: Facile synthesis ultrathin mesoporous Co
  publication-title: J. Alloy. Compd.
– volume: 10
  start-page: 42503
  year: 2018
  end-page: 42512
  ident: b0025
  article-title: Facile activation of commercial carbon felt as a low-cost free-standing electrode for flexible supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1328
  year: 2012
  end-page: 1332
  ident: b0330
  article-title: WO
  publication-title: Adv. Energy Mater.
– volume: 94
  start-page: 158
  year: 2017
  end-page: 166
  ident: b0255
  article-title: Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co
  publication-title: Phys. E: Low-Dimens. Syst. Nanostruct.
– volume: 315
  start-page: 35
  year: 2017
  end-page: 45
  ident: b0245
  article-title: Hierarchical Co
  publication-title: Chem. Eng. J.
– volume: 313
  start-page: 194
  year: 2019
  end-page: 204
  ident: b0295
  article-title: Benzoic acid-assisted substrate-free synthesis of ultrathin nanosheets assembled two-dimensional porous Co
  publication-title: Electrochim. Acta
– volume: 487
  start-page: 442
  year: 2019
  end-page: 451
  ident: b0285
  article-title: Facile synthesis of interconnected carbon network decorated with Co
  publication-title: Appl. Surf. Sci.
– volume: 114
  start-page: 111
  year: 2010
  end-page: 119
  ident: b0135
  article-title: Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 12724
  year: 2014
  end-page: 12732
  ident: b0195
  article-title: A hybrid supercapacitor based on flower-like Co(OH)
  publication-title: J. Mater. Chem. A
– volume: 180
  start-page: 241
  year: 2015
  end-page: 251
  ident: b0040
  article-title: Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 5246
  year: 2018
  ident: b0060
  article-title: Synthesis of NiMn-LDH nanosheet@Ni
  publication-title: Sci. Rep.
– volume: 11
  start-page: 5293
  year: 2017
  end-page: 5308
  ident: b0105
  article-title: Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects
  publication-title: ACS Nano
– volume: 7
  start-page: 13503
  year: 2015
  end-page: 13511
  ident: b0240
  article-title: Electrospun carbon nanofibers with in situ encapsulated Co
  publication-title: ACS Appl. Mater. Interfaces
– volume: 546
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0265
  article-title: Oriented synthesis of Co
  publication-title: Colloid Surface. A
– volume: 118
  start-page: 9233
  year: 2018
  end-page: 9280
  ident: b0035
  article-title: Design and mechanisms of asymmetric supercapacitors
  publication-title: Chem. Rev.
– volume: 1
  year: 2019
  ident: b0120
  article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities
  publication-title: EnergyChem
– volume: 11
  start-page: 2521
  year: 2018
  end-page: 2530
  ident: b0145
  article-title: Initiating a mild aqueous electrolyte Co
  publication-title: Energy Environ. Sci.
– volume: 570
  start-page: 63
  year: 2019
  end-page: 72
  ident: b0305
  article-title: Facile precursor conversion synthesis of hollow coral-shaped Co
  publication-title: Colloid Surface A
– volume: 30
  year: 2019
  ident: b0280
  article-title: Aldehyde reduced Co
  publication-title: Nanotechnology
– volume: 45
  start-page: 3016
  year: 2020
  end-page: 3027
  ident: b0175
  article-title: Solvothermal synthesis of novel pod-like MnCo
  publication-title: Int. J. Hydrogen Energ
– volume: 8
  start-page: 23
  year: 2015
  end-page: 39
  ident: b0130
  article-title: A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts
  publication-title: Nano Res.
– volume: 54
  start-page: 10499
  year: 2018
  end-page: 10502
  ident: b0140
  article-title: A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance
  publication-title: Chem. Commun.
– volume: 5
  start-page: 1700659
  year: 2018
  ident: b0210
  article-title: Oxygen-vacancy abundant ultrafine Co
  publication-title: Adv. Sci.
– volume: 8
  start-page: 1703454
  year: 2018
  ident: b0325
  article-title: Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 1901916
  year: 2019
  ident: b0020
  article-title: Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal p3mt on horizontally aligned carbon-nanotube arrays
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1702407
  year: 2018
  ident: b0050
  article-title: Core-shell nitrogen-doped carbon hollow spheres/Co
  publication-title: Small
– volume: 45
  start-page: 11876
  year: 2019
  end-page: 11882
  ident: b0230
  article-title: Uniform and porous Mn-doped Co
  publication-title: Ceram. Int.
– volume: 3
  start-page: 93
  year: 2020
  end-page: 100
  ident: b0015
  article-title: Carbon nanoarrays embedded with metal compounds for high-performance flexible supercapacitors
  publication-title: Batteries Supercaps
– volume: 16
  start-page: 1853
  year: 2004
  end-page: 1857
  ident: b0190
  article-title: Preparation of the novel nanocomposite Co(OH)
  publication-title: Adv. Mater.
– volume: 41
  start-page: 12734
  year: 2015
  end-page: 12741
  ident: b0185
  article-title: Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO
  publication-title: Ceram. Int.
– volume: 5
  start-page: 544
  year: 2017
  end-page: 548
  ident: b0045
  article-title: High-performance flexible solid-state asymmetric supercapacitors based on ordered mesoporous cobalt oxide
  publication-title: Energy Technol.
– volume: 11
  start-page: 75
  year: 2018
  end-page: 82
  ident: b0320
  article-title: A non-polarity flexible asymmetric supercapacitor with nickel nanoparticle@ carbon nanotube three-dimensional network electrodes
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 1800963
  year: 2019
  ident: b0205
  article-title: Cobalt oxide nanoparticles embedded in N-doped porous carbon as an efficient electrode for supercapacitor
  publication-title: Energy Technol.
– volume: 2
  start-page: 99
  year: 2017
  end-page: 105
  ident: b0095
  article-title: Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors
  publication-title: Nanoscale Horiz.
– volume: 361
  start-page: 57
  year: 2016
  end-page: 62
  ident: b0250
  article-title: Facile synthesis of core–shell structured PANI-Co
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 1900628
  year: 2019
  ident: b0010
  article-title: CuCo
  publication-title: Adv. Sci.
– volume: 480
  start-page: 371
  year: 2019
  end-page: 383
  ident: b0290
  article-title: Ordered mesoporous Co
  publication-title: Appl. Surf. Sci.
– volume: 24
  start-page: 934
  year: 2014
  end-page: 942
  ident: b0075
  article-title: Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials
  publication-title: Adv. Funct. Mater.
– volume: 282
  start-page: 179
  year: 2015
  end-page: 186
  ident: b0170
  article-title: High-performance all-solid state asymmetric supercapacitor based on Co
  publication-title: J. Power Sources
– volume: 774
  start-page: 137
  year: 2019
  end-page: 144
  ident: b0310
  article-title: Facile synthesis of homogeneous core-shell Co
  publication-title: J. Alloy. Compd.
– volume: 50
  year: 2017
  ident: b0090
  article-title: Functional flexible and wearable supercapacitors
  publication-title: J. Phys. D: Appl. Phys.
– volume: 1
  year: 2019
  ident: b0110
  article-title: Metal-organic framework-derived materials for electrochemical energy applications
  publication-title: EnergyChem
– volume: 198
  start-page: 99
  year: 2017
  end-page: 106
  ident: b0225
  article-title: Cetyltrimethylammonium bromide assisted hydrothermal synthesis of cobalt oxide nanowires anchored on graphene as an efficient electrode material for supercapacitor applications
  publication-title: Mater. Chem. Phys.
– volume: 361
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0200
  article-title: Three-dimensional coral-like NiCoP@C@Ni(OH)
  publication-title: Chem. Eng. J.
– volume: 50
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0090
  article-title: Functional flexible and wearable supercapacitors
  publication-title: J. Phys. D: Appl. Phys.
– volume: 2
  start-page: 12724
  year: 2014
  ident: 10.1016/j.cej.2020.125364_b0195
  article-title: A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01296H
– volume: 495
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0270
  article-title: A competitive coordination strategy to synthesize Co3O4@carbon flower-like structures for high-performance asymmetric supercapacitors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.244
– volume: 180
  start-page: 241
  year: 2015
  ident: 10.1016/j.cej.2020.125364_b0040
  article-title: Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.08.133
– volume: 6
  start-page: 1900628
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0010
  article-title: CuCo2S4 Nanosheets@N-doped carbon nanofibers by sulfurization at room temperature as bifunctional electrocatalysts in flexible quasi-solid-state Zn–air batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900628
– volume: 361
  start-page: 57
  year: 2016
  ident: 10.1016/j.cej.2020.125364_b0250
  article-title: Facile synthesis of core–shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.171
– volume: 3
  start-page: 1636
  year: 2013
  ident: 10.1016/j.cej.2020.125364_b0070
  article-title: One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300580
– volume: 2
  start-page: 1319
  year: 2000
  ident: 10.1016/j.cej.2020.125364_b0155
  article-title: Systematic XPS studies of metal oxides, hydroxides and peroxides
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a908800h
– volume: 8
  start-page: 1702014
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0065
  article-title: Hierarchical Zn–Co–S nanowires as advanced electrodes for all solid state asymmetric supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702014
– volume: 54
  start-page: 10499
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0140
  article-title: A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC03669A
– volume: 361
  start-page: 1
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0200
  article-title: Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.041
– volume: 3
  start-page: 9622
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0220
  article-title: Facile synthesis of superthin Co3O4 porous nanoflake for stable electrochemical supercapacitor
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201802131
– volume: 6
  start-page: 1802002
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0125
  article-title: Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni–Zn batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802002
– volume: 9
  start-page: 345
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0260
  article-title: Electrochemically stable cobalt-zinc mixed oxide/hydroxide hierarchical porous film electrode for high-performance asymmetric supercapacitor
  publication-title: Nanomaterials
  doi: 10.3390/nano9030345
– volume: 280
  start-page: 377
  year: 2015
  ident: 10.1016/j.cej.2020.125364_b0215
  article-title: Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.06.053
– volume: 11
  start-page: 5293
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0105
  article-title: Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02796
– volume: 546
  start-page: 1
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0265
  article-title: Oriented synthesis of Co3O4 core-shell microspheres for high-performance asymmetric supercapacitor
  publication-title: Colloid Surface. A
  doi: 10.1016/j.colsurfa.2018.02.072
– volume: 570
  start-page: 63
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0305
  article-title: Facile precursor conversion synthesis of hollow coral-shaped Co3O4 nanostructures for high-performance supercapacitors
  publication-title: Colloid Surface A
  doi: 10.1016/j.colsurfa.2019.03.016
– volume: 8
  start-page: 1703454
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0325
  article-title: Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703454
– volume: 3
  start-page: 93
  year: 2020
  ident: 10.1016/j.cej.2020.125364_b0015
  article-title: Carbon nanoarrays embedded with metal compounds for high-performance flexible supercapacitors
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.201900174
– volume: 118
  start-page: 9233
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0035
  article-title: Design and mechanisms of asymmetric supercapacitors
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00252
– volume: 13
  start-page: 342
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0165
  article-title: Synthesis of sandwich-like porous nanostructure of Co3O4-rGO for flexible all-solid-state high-performance asymmetric supercapacitors
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2019.06.008
– volume: 5
  start-page: 1700659
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0210
  article-title: Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700659
– volume: 313
  start-page: 194
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0295
  article-title: Benzoic acid-assisted substrate-free synthesis of ultrathin nanosheets assembled two-dimensional porous Co3O4 thin sheets with 3D hierarchical micro-/nano-structures and enhanced performance as battery-type materials for supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.05.019
– volume: 16
  start-page: 1853
  year: 2004
  ident: 10.1016/j.cej.2020.125364_b0190
  article-title: Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400183
– volume: 282
  start-page: 179
  year: 2015
  ident: 10.1016/j.cej.2020.125364_b0170
  article-title: High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.047
– volume: 41
  start-page: 12734
  year: 2015
  ident: 10.1016/j.cej.2020.125364_b0185
  article-title: Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.06.106
– volume: 14
  start-page: 842
  year: 2020
  ident: 10.1016/j.cej.2020.125364_b0005
  article-title: Stitching of Zn3(OH)2V2O7·2H2O 2D nanosheets by 1D carbon nanotubes boosts ultrahigh rate for wearable quasi-solid-state zinc-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07956
– volume: 8
  start-page: 23
  year: 2015
  ident: 10.1016/j.cej.2020.125364_b0130
  article-title: A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0591-z
– volume: 38
  start-page: 155
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0160
  article-title: O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.043
– volume: 61
  start-page: 185
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0085
  article-title: Hierarchically nanostructured transition metal oxides for supercapacitors
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9095-4
– volume: 1
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0120
  article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities
  publication-title: EnergyChem
– volume: 31
  start-page: 1901916
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0020
  article-title: Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal p3mt on horizontally aligned carbon-nanotube arrays
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901916
– volume: 8
  start-page: 5246
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0060
  article-title: Synthesis of NiMn-LDH nanosheet@Ni3S2 nanorod hybrid structures for supercapacitor electrode materials with ultrahigh specific capacitance
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23642-6
– volume: 47
  start-page: 11503
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0100
  article-title: Carbon fabric supported 3D cobalt oxides/hydroxide nanosheet network as cathode for flexible all-solid-state asymmetric supercapacitor
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT02371A
– volume: 6
  start-page: 7626
  year: 2014
  ident: 10.1016/j.cej.2020.125364_b0235
  article-title: Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5009369
– volume: 14
  start-page: 340
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0180
  article-title: Egg albumin-assisted hydrothermal synthesis of Co3O4 quasi-cubes as superior electrode material for supercapacitors with excellent performances
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-019-3172-y
– volume: 7
  start-page: 13503
  year: 2015
  ident: 10.1016/j.cej.2020.125364_b0240
  article-title: Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02787
– volume: 7
  start-page: 1800963
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0205
  article-title: Cobalt oxide nanoparticles embedded in N-doped porous carbon as an efficient electrode for supercapacitor
  publication-title: Energy Technol.
  doi: 10.1002/ente.201800963
– volume: 1
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0110
  article-title: Metal-organic framework-derived materials for electrochemical energy applications
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2019.100001
– volume: 114
  start-page: 111
  year: 2010
  ident: 10.1016/j.cej.2020.125364_b0135
  article-title: Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908548f
– volume: 2
  start-page: 99
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0095
  article-title: Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C6NH00224B
– volume: 2
  year: 2020
  ident: 10.1016/j.cej.2020.125364_b0115
  article-title: Metal–organic frameworks as a platform for clean energy applications
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100027
– volume: 686
  start-page: 969
  year: 2016
  ident: 10.1016/j.cej.2020.125364_b0300
  article-title: Facile synthesis ultrathin mesoporous Co3O4 nanosheets for high-energy asymmetric supercapacitor
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.06.156
– volume: 45
  start-page: 11876
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0230
  article-title: Uniform and porous Mn-doped Co3O4 microspheres: Solvothermal synthesis and their superior supercapacitor performances
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.03.070
– volume: 11
  start-page: 75
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0320
  article-title: A non-polarity flexible asymmetric supercapacitor with nickel nanoparticle@ carbon nanotube three-dimensional network electrodes
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.09.013
– volume: 480
  start-page: 371
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0290
  article-title: Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.215
– volume: 14
  start-page: 1702407
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0050
  article-title: Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor
  publication-title: Small
  doi: 10.1002/smll.201702407
– volume: 315
  start-page: 35
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0245
  article-title: Hierarchical Co3O4@Ni(OH)2 core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.01.010
– volume: 10
  start-page: 42503
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0025
  article-title: Facile activation of commercial carbon felt as a low-cost free-standing electrode for flexible supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16881
– volume: 774
  start-page: 137
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0310
  article-title: Facile synthesis of homogeneous core-shell Co3O4 mesoporous nanospheres as high performance electrode materials for supercapacitor
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.09.347
– volume: 271
  start-page: 379
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0275
  article-title: Advanced flower-like Co3O4 with ultrathin nanosheets and 3D rGO aerogels as double ion-buffering reservoirs for asymmetric supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.03.166
– volume: 328
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0315
  article-title: MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135103
– volume: 2
  start-page: 1328
  year: 2012
  ident: 10.1016/j.cej.2020.125364_b0330
  article-title: WO3−x/MoO3−x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200380
– volume: 24
  start-page: 934
  year: 2014
  ident: 10.1016/j.cej.2020.125364_b0075
  article-title: Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301747
– volume: 5
  start-page: 544
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0045
  article-title: High-performance flexible solid-state asymmetric supercapacitors based on ordered mesoporous cobalt oxide
  publication-title: Energy Technol.
  doi: 10.1002/ente.201600391
– volume: 198
  start-page: 99
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0225
  article-title: Cetyltrimethylammonium bromide assisted hydrothermal synthesis of cobalt oxide nanowires anchored on graphene as an efficient electrode material for supercapacitor applications
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.05.051
– volume: 11
  start-page: 2521
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0145
  article-title: Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01415A
– volume: 487
  start-page: 442
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0285
  article-title: Facile synthesis of interconnected carbon network decorated with Co3O4 nanoparticles for potential supercapacitor applications
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.142
– volume: 27
  start-page: 1605307
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0150
  article-title: Design of Hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605307
– volume: 181
  start-page: 36
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0030
  article-title: Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.02.004
– volume: 30
  year: 2019
  ident: 10.1016/j.cej.2020.125364_b0280
  article-title: Aldehyde reduced Co3O4 to form oxygen vacancy and enhance the electrochemical performance for oxygen evolution reaction and supercapacitors
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab2a83
– volume: 94
  start-page: 158
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0255
  article-title: Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co3O4 by the new indirect solid state thermolysis as cathode material of asymmetric supercapacitor
  publication-title: Phys. E: Low-Dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2017.08.005
– volume: 6
  start-page: 5856
  year: 2018
  ident: 10.1016/j.cej.2020.125364_b0055
  article-title: Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00835C
– volume: 53
  start-page: 12410
  year: 2017
  ident: 10.1016/j.cej.2020.125364_b0080
  article-title: Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC07515D
– volume: 45
  start-page: 3016
  year: 2020
  ident: 10.1016/j.cej.2020.125364_b0175
  article-title: Solvothermal synthesis of novel pod-like MnCo2O4.5 microstructures as high-performance electrode materials for supercapacitors
  publication-title: Int. J. Hydrogen Energ
  doi: 10.1016/j.ijhydene.2019.11.153
SSID ssj0006919
Score 2.627736
Snippet [Display omitted] •Novel Co3O4 flexible electrode is fabricated via electrochemical oxidation of Co-MOF.•This Co3O4 electrode owns the amorphous hydroxyl-rich...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125364
SubjectTerms Co3O4
Electrochemical oxidation
Flexible electrode
Hydroxyl-rich
Supercapacitor
Title Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor
URI https://dx.doi.org/10.1016/j.cej.2020.125364
Volume 396
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_AkrM2-0uRYiqVafOADewvZzS5WalraeujF3-5MmmgF9eApJMxC-HZ25ltm9ltCTnwq0tA4x7AGxxTPPAMvkSyITaqtNqkr1PavrsPOo7rs6d4SaVVnYbCtsoz985heROvyS71Esz7q9-v3HGtascI6IpfAS_AEu2qgl5-9f7V5hHFxuQcaM7SuKptFj5d1L7BFFKixoGWofs5NC_mmvUHWS6JIm_N_2SRLLt8iawvygdvk9n6WA3-b9Cd06Gn6OgTMYCNPn2cZNqcMGMS4Z9oayhtFgZtSj-KXZuAoahQz1Iigk7eRG1tImBZW9niHPLbPH1odVt6QwKwM5ZTFmQhUQ9sMUpEXkZGQ8VKXOe0z1-DCZlqZ2EsV2TBIucMVKGDDIyIeAC2ykdwly_kwd3uEeh2FOob5AUYAKLrYGyGc55Kj_IsJ9klQYZPYUj4cb7EYJFWf2EsCcCYIZzKHc5-cfg4ZzbUz_jJWFeDJNwdIILb_Puzgf8MOySq-YeMH10dkeTp-c8fALqamVrhPjaw0L7qda3x27566H6ubztA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MS3e_AkLM2-YnKUotRXFVTwFrKbXWypbenj0H_vTJuIgnrwmuxA8mV25ltm8g3AachlHlvvOdXguBZF4OglikepzY0zNvcztf37Vtx80Tev5nUBGtW_MNRWWcb-eUyfRevySr1Esz5ot-tPgmpaqaY6olDISxZhidSpTA2WLq5vm63PgByns_ketJ6TQVXcnLV5Od_BU6IkmQWjYv1zevqScq7WYa3kiuxi_jgbsOB7m7D6RUFwCx6fpj2kcKP2iPUDy9_7CBue5dnbtKD-lC7HMPfGGn31oBnSUxZI_9J2PSOZYk4yEWw0Gfihw5zpcHMPt-Hl6vK50eTlkATuVKzGPC1khC_tCsxGQSZWYdLLfeFNKPy5kK4w2qZB6cTFUS48bUKJZx6ZiAiZkUvUDtR6_Z7fBRZMEpsUPxGSAn0e-zRYKX0QSpACjI32IKqwyVypIE6DLLpZ1SrWyRDOjODM5nDuwdmnyWAun_HXYl0Bnn3zgQzD--9m-_8zO4Hl5vP9XXZ33bo9gBW6Q30gwhxCbTyc-CMkG2N7XDrTB1tsz94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+amorphous+hydroxyl-rich+Co3O4+for+flexible+high-rate+supercapacitor&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Tao%2C+Yingjie&rft.au=Wu%2C+Yatao&rft.au=Chen%2C+Hao&rft.au=Chen%2C+Weijie&rft.date=2020-09-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=396&rft_id=info:doi/10.1016%2Fj.cej.2020.125364&rft.externalDocID=S1385894720313565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon