Marginal effects for non-linear prediction functions

Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models such as generalized linear models, the estimated coefficients cannot be interpreted as a direct feature effect on the predicted outcome. Hence, marginal effects...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 38; no. 5; pp. 2997 - 3042
Main Authors Scholbeck, Christian A., Casalicchio, Giuseppe, Molnar, Christoph, Bischl, Bernd, Heumann, Christian
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-023-00993-x

Cover

Loading…
Abstract Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models such as generalized linear models, the estimated coefficients cannot be interpreted as a direct feature effect on the predicted outcome. Hence, marginal effects are typically used as approximations for feature effects, either as derivatives of the prediction function or forward differences in prediction due to changes in feature values. While marginal effects are commonly used in many scientific fields, they have not yet been adopted as a general model-agnostic interpretation method for machine learning models. This may stem from the ambiguity surrounding marginal effects and their inability to deal with the non-linearities found in black box models. We introduce a unified definition of forward marginal effects (FMEs) that includes univariate and multivariate, as well as continuous, categorical, and mixed-type features. To account for the non-linearity of prediction functions, we introduce a non-linearity measure for FMEs. Furthermore, we argue against summarizing feature effects of a non-linear prediction function in a single metric such as the average marginal effect. Instead, we propose to average homogeneous FMEs within population subgroups, which serve as conditional feature effect estimates.
AbstractList Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models such as generalized linear models, the estimated coefficients cannot be interpreted as a direct feature effect on the predicted outcome. Hence, marginal effects are typically used as approximations for feature effects, either as derivatives of the prediction function or forward differences in prediction due to changes in feature values. While marginal effects are commonly used in many scientific fields, they have not yet been adopted as a general model-agnostic interpretation method for machine learning models. This may stem from the ambiguity surrounding marginal effects and their inability to deal with the non-linearities found in black box models. We introduce a unified definition of forward marginal effects (FMEs) that includes univariate and multivariate, as well as continuous, categorical, and mixed-type features. To account for the non-linearity of prediction functions, we introduce a non-linearity measure for FMEs. Furthermore, we argue against summarizing feature effects of a non-linear prediction function in a single metric such as the average marginal effect. Instead, we propose to average homogeneous FMEs within population subgroups, which serve as conditional feature effect estimates.
Author Molnar, Christoph
Casalicchio, Giuseppe
Bischl, Bernd
Scholbeck, Christian A.
Heumann, Christian
Author_xml – sequence: 1
  givenname: Christian A.
  orcidid: 0000-0001-6607-4895
  surname: Scholbeck
  fullname: Scholbeck, Christian A.
  email: christian.scholbeck@stat.uni-muenchen.de
  organization: Munich Center for Machine Learning (MCML), Ludwig-Maximilians-Universität in Munich
– sequence: 2
  givenname: Giuseppe
  surname: Casalicchio
  fullname: Casalicchio, Giuseppe
  organization: Munich Center for Machine Learning (MCML), Ludwig-Maximilians-Universität in Munich
– sequence: 3
  givenname: Christoph
  surname: Molnar
  fullname: Molnar, Christoph
  organization: Ludwig-Maximilians-Universität in Munich
– sequence: 4
  givenname: Bernd
  surname: Bischl
  fullname: Bischl, Bernd
  organization: Munich Center for Machine Learning (MCML), Ludwig-Maximilians-Universität in Munich
– sequence: 5
  givenname: Christian
  surname: Heumann
  fullname: Heumann, Christian
  organization: Ludwig-Maximilians-Universität in Munich
BookMark eNp9kE9LAzEUxIMo2Fa_gKcFz9GXvE2ye5TiP6h4UfAW0t2kpKzZmmyhfnvTriB46OnNYX7DvJmS09AHS8gVgxsGoG4TA8kqChwpQF0j3Z2QCRMKqRLy4zRrrEoqKgbnZJrSGgAER5iQ8sXElQ-mK6xzthlS4fpY5HTa-WBNLDbRtr4ZfB8Ktw0HkS7ImTNdspe_d0beH-7f5k908fr4PL9b0AYlDrQ2y1ZAUzmGsm5bp1q15JVFh6VxTuY2zIIVSylQOVYDlwpsybiwTNVMKpyR6zF3E_uvrU2DXvfbmMsmjflLzvavZlc1uprYpxSt040fzL7oEI3vNAO930iPG-m8kT5spHcZ5f_QTfSfJn4fh3CEUjaHlY1_rY5QP6vReyQ
CitedBy_id crossref_primary_10_1007_s10618_024_01041_y
Cites_doi 10.1111/insr.12016
10.1016/j.tbs.2020.02.003
10.1007/s11222-021-10057-z
10.1198/106186006X133933
10.1515/ijb-2015-0032
10.1002/per.2113
10.1080/10618600.2014.907095
10.1007/s10115-013-0679-x
10.1016/S0165-1765(03)00032-6
10.1016/S0020-0190(97)00140-3
10.1007/s10618-022-00907-3
10.1177/0081175019852763
10.1214/aos/1013203451
10.1142/S0218001402001599
10.1007/s40273-014-0224-0
10.1111/rssb.12377
10.1007/s10614-020-09998-w
10.1198/106186008X319331
10.1001/jama.2019.1954
10.1126/science.aal4321
10.1007/s10994-017-5633-9
10.1198/106186007X237892
10.1007/BF00058655
10.1016/j.envsoft.2020.104954
10.1007/s00181-016-1090-8
10.1177/1536867X0500500303
10.1007/978-94-015-3994-4_1
10.1002/2015WR017558
10.1080/00401706.1991.10484804
10.1214/12-EJS749
10.1111/j.1467-9531.2007.00181.x
10.1023/A:1010933404324
10.1021/jp054148m
10.1007/BF00993473
10.1093/pan/mpj004
10.1214/ss/1009213726
10.1007/978-3-030-10925-7_40
10.1177/1536867X1201200209
10.1007/978-3-030-43823-4_18
10.1016/j.sbspro.2010.05.208
10.1142/S0218195995000064
10.1007/978-0-387-21606-5
10.1145/2133360.2133363
10.1145/1014052.1014121
10.1145/3447548.3467274
10.1145/1645953.1646195
10.1007/978-3-030-43823-4_17
10.32614/CRAN.package.margins
10.1007/978-3-031-04083-2_4
10.1145/1014052.1014122
10.1145/3375627.3375830
10.1002/9780470725184
10.1145/2939672.2939778
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10618-023-00993-x
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 3042
ExternalDocumentID 10_1007_s10618_023_00993_x
GrantInformation_xml – fundername: Ludwig-Maximilians-Universität München
  funderid: http://dx.doi.org/10.13039/501100005722
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-9abd50c8f1369ddf7d7b28e3f34aff65811e0e5b6537f1902670e4125e1791673
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Tue Sep 02 03:47:31 EDT 2025
Tue Jul 01 00:40:33 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
Fri Feb 21 02:39:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords XAI
Interpretations
Model-agnostic
Interpretable machine learning
Conditional average marginal effects
IML
NLM
Non-linearity measure
Forward marginal effects
Explainable AI
Forward difference
cAME
FME
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-9abd50c8f1369ddf7d7b28e3f34aff65811e0e5b6537f1902670e4125e1791673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6607-4895
OpenAccessLink https://link.springer.com/10.1007/s10618-023-00993-x
PQID 3099210993
PQPubID 43030
PageCount 46
ParticipantIDs proquest_journals_3099210993
crossref_citationtrail_10_1007_s10618_023_00993_x
crossref_primary_10_1007_s10618_023_00993_x
springer_journals_10_1007_s10618_023_00993_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Greene (CR22) 2012
Seibold, Zeileis, Hothorn (CR57) 2016; 12
CR38
Onukwugha, Bergtold, Jain (CR48) 2015; 33
CR37
Razavi, Jakeman, Saltelli, Prieur, Iooss, Borgonovo, Plischke, Lo Piano, Iwanaga, Becker, Tarantola, Guillaume, Jakeman, Gupta, Melillo, Rabitti, Chabridon, Duan, Sun, Smith, Sheikholeslami, Hosseini, Asadzadeh, Puy, Kucherenko, Maier (CR53) 2021; 137
CR35
CR33
Morris (CR43) 1991; 33
CR31
Belogay, Cabrelli, Molter, Shonkwiler (CR8) 1997; 64
Gelman, Pardoe (CR20) 2007; 37
Li, Hu, Wang, Georgopoulos, Schoendorf, Rabitz (CR34) 2006; 110
Ramsey, Bergtold (CR51) 2021; 58
CR2
Stachl, Hilbert, Au, Buschek, De Luca, Bischl, Hussmann, Bühner (CR60) 2017; 31
CR3
Athey (CR6) 2017; 355
Wachter, Mittelstadt, Russell (CR64) 2018; 31
CR5
CR49
CR46
Norton, Dowd, Maciejewski (CR47) 2019; 321
CR45
Bartus (CR7) 2005; 5
CR42
Goldstein, Kapelner, Bleich, Pitkin (CR21) 2015; 24
CR41
CR40
Loh (CR36) 2014; 82
Fisher, Rudin, Dominici (CR17) 2019; 20
Štrumbelj, Kononenko (CR62) 2014; 41
Breiman, Friedman, Olshen, Stone (CR13) 1984
Mize, Doan, Long (CR39) 2019; 49
Mullahy (CR44) 2017; 53
Last, Maimon, Minkov (CR32) 2002; 16
Hothorn, Hornik, Zeileis (CR29) 2006; 15
Hooker, Mentch, Zhou (CR28) 2021; 31
Apley, Zhu (CR4) 2020; 82
CR16
Chastaing, Gamboa, Prieur (CR15) 2012; 6
CR59
CR14
CR58
CR12
CR56
CR55
Hooker (CR27) 2007; 16
CR54
Turney (CR63) 1995; 20
CR50
King, Zeng (CR30) 2006; 14
Friedman (CR19) 2001; 29
Ai, Norton (CR1) 2003; 80
Zhou, Zhou, Hooker (CR68) 2023
Breiman (CR11) 2001; 45
Friedman (CR18) 1991; 19
CR26
CR25
CR69
Breiman (CR10) 1996; 24
CR23
Razavi, Gupta (CR52) 2016; 52
CR65
CR61
Zeileis, Hothorn, Hornik (CR66) 2008; 17
Zhao, Yan, Yu, Van Hentenryck (CR67) 2020; 20
Bertsimas, Dunn (CR9) 2017; 106
Hawkins (CR24) 1980
X Zhao (993_CR67) 2020; 20
993_CR38
S Wachter (993_CR64) 2018; 31
S Razavi (993_CR52) 2016; 52
M Last (993_CR32) 2002; 16
993_CR40
MD Morris (993_CR43) 1991; 33
P Turney (993_CR63) 1995; 20
E Štrumbelj (993_CR62) 2014; 41
993_CR46
993_CR45
J Mullahy (993_CR44) 2017; 53
993_CR42
DM Hawkins (993_CR24) 1980
993_CR41
S Razavi (993_CR53) 2021; 137
WY Loh (993_CR36) 2014; 82
A Gelman (993_CR20) 2007; 37
H Seibold (993_CR57) 2016; 12
G Hooker (993_CR27) 2007; 16
JH Friedman (993_CR19) 2001; 29
993_CR49
A Fisher (993_CR17) 2019; 20
TD Mize (993_CR39) 2019; 49
993_CR50
SM Ramsey (993_CR51) 2021; 58
G Li (993_CR34) 2006; 110
993_CR59
993_CR14
993_CR58
993_CR12
993_CR56
993_CR55
993_CR54
DW Apley (993_CR4) 2020; 82
S Athey (993_CR6) 2017; 355
EC Norton (993_CR47) 2019; 321
E Onukwugha (993_CR48) 2015; 33
A Zeileis (993_CR66) 2008; 17
L Breiman (993_CR11) 2001; 45
993_CR16
C Ai (993_CR1) 2003; 80
G King (993_CR30) 2006; 14
D Bertsimas (993_CR9) 2017; 106
993_CR61
A Goldstein (993_CR21) 2015; 24
W Greene (993_CR22) 2012
Y Zhou (993_CR68) 2023
C Stachl (993_CR60) 2017; 31
E Belogay (993_CR8) 1997; 64
L Breiman (993_CR13) 1984
993_CR26
993_CR25
993_CR69
993_CR23
L Breiman (993_CR10) 1996; 24
993_CR65
T Bartus (993_CR7) 2005; 5
G Hooker (993_CR28) 2021; 31
993_CR2
G Chastaing (993_CR15) 2012; 6
T Hothorn (993_CR29) 2006; 15
993_CR5
993_CR37
JH Friedman (993_CR18) 1991; 19
993_CR3
993_CR35
993_CR33
993_CR31
References_xml – volume: 82
  start-page: 329
  issue: 3
  year: 2014
  end-page: 348
  ident: CR36
  article-title: Fifty years of classification and regression trees
  publication-title: International Statistical Review
  doi: 10.1111/insr.12016
– ident: CR45
– volume: 20
  start-page: 22
  year: 2020
  end-page: 35
  ident: CR67
  article-title: Prediction and behavioral analysis of travel mode choice: A comparison of machine learning and logit models
  publication-title: Travel Behaviour and Society
  doi: 10.1016/j.tbs.2020.02.003
– volume: 31
  start-page: 82
  issue: 6
  year: 2021
  ident: CR28
  article-title: Unrestricted permutation forces extrapolation: Variable importance requires at least one more model, or there is no free variable importance
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-021-10057-z
– volume: 15
  start-page: 651
  issue: 3
  year: 2006
  end-page: 674
  ident: CR29
  article-title: Unbiased recursive partitioning: A conditional inference framework
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186006X133933
– ident: CR49
– volume: 12
  start-page: 45
  issue: 1
  year: 2016
  end-page: 63
  ident: CR57
  article-title: Model-based recursive partitioning for subgroup analyses
  publication-title: The International Journal of Biostatistics
  doi: 10.1515/ijb-2015-0032
– volume: 31
  start-page: 701
  issue: 6
  year: 2017
  end-page: 722
  ident: CR60
  article-title: Personality traits predict smartphone usage
  publication-title: European Journal of Personality
  doi: 10.1002/per.2113
– ident: CR16
– volume: 24
  start-page: 44
  issue: 1
  year: 2015
  end-page: 65
  ident: CR21
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2014.907095
– volume: 41
  start-page: 647
  issue: 3
  year: 2014
  end-page: 665
  ident: CR62
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-013-0679-x
– ident: CR12
– volume: 80
  start-page: 123
  issue: 1
  year: 2003
  end-page: 129
  ident: CR1
  article-title: Interaction terms in logit and probit models
  publication-title: Economics Letters
  doi: 10.1016/S0165-1765(03)00032-6
– ident: CR35
– year: 2012
  ident: CR22
  publication-title: Econometric Analysis
– ident: CR54
– ident: CR61
– volume: 64
  start-page: 17
  issue: 1
  year: 1997
  end-page: 22
  ident: CR8
  article-title: Calculating the Hausdorff distance between curves
  publication-title: Information Processing Letters
  doi: 10.1016/S0020-0190(97)00140-3
– ident: CR58
– ident: CR25
– year: 2023
  ident: CR68
  article-title: Approximation trees: Statistical reproducibility in model distillation
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-022-00907-3
– ident: CR42
– ident: CR46
– volume: 49
  start-page: 152
  issue: 1
  year: 2019
  end-page: 189
  ident: CR39
  article-title: A general framework for comparing predictions and marginal effects across models
  publication-title: Sociological Methodology
  doi: 10.1177/0081175019852763
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  end-page: 1232
  ident: CR19
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013203451
– volume: 16
  start-page: 145
  issue: 02
  year: 2002
  end-page: 159
  ident: CR32
  article-title: Improving stability of decision trees
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001402001599
– ident: CR50
– volume: 33
  start-page: 97
  issue: 2
  year: 2015
  end-page: 103
  ident: CR48
  article-title: A primer on marginal effects-part II: Health services research applications
  publication-title: PharmacoEconomics
  doi: 10.1007/s40273-014-0224-0
– volume: 82
  start-page: 1059
  issue: 4
  year: 2020
  end-page: 1086
  ident: CR4
  article-title: Visualizing the effects of predictor variables in black box supervised learning models
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12377
– volume: 58
  start-page: 1137
  issue: 4
  year: 2021
  end-page: 1165
  ident: CR51
  article-title: Examining inferences from neural network estimators of binary choice processes: Marginal effects, and willingness-to-pay
  publication-title: Computational Economics
  doi: 10.1007/s10614-020-09998-w
– volume: 17
  start-page: 492
  issue: 2
  year: 2008
  end-page: 514
  ident: CR66
  article-title: Model-based recursive partitioning
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186008X319331
– volume: 321
  start-page: 1304
  issue: 13
  year: 2019
  end-page: 1305
  ident: CR47
  article-title: Marginal effects-quantifying the effect of changes in risk factors in logistic regression models
  publication-title: JAMA
  doi: 10.1001/jama.2019.1954
– ident: CR5
– volume: 355
  start-page: 483
  issue: 6324
  year: 2017
  end-page: 485
  ident: CR6
  article-title: Beyond prediction: Using big data for policy problems
  publication-title: Science
  doi: 10.1126/science.aal4321
– ident: CR26
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  end-page: 81
  ident: CR17
  article-title: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously
  publication-title: Journal of Machine Learning Research
– volume: 106
  start-page: 1039
  issue: 7
  year: 2017
  end-page: 1082
  ident: CR9
  article-title: Optimal classification trees
  publication-title: Machine Learning
  doi: 10.1007/s10994-017-5633-9
– ident: CR14
– volume: 16
  start-page: 709
  issue: 3
  year: 2007
  end-page: 732
  ident: CR27
  article-title: Generalized functional ANOVA diagnostics for high-dimensional functions of dependent variables
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186007X237892
– ident: CR2
– ident: CR37
– volume: 31
  start-page: 841
  issue: 2
  year: 2018
  end-page: 887
  ident: CR64
  article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR
  publication-title: Harvard Journal of Law and Technology
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  ident: CR10
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– ident: CR33
– volume: 137
  year: 2021
  ident: CR53
  article-title: The future of sensitivity analysis: An essential discipline for systems modeling and policy support
  publication-title: Environmental Modelling and Software
  doi: 10.1016/j.envsoft.2020.104954
– volume: 53
  start-page: 447
  issue: 2
  year: 2017
  end-page: 461
  ident: CR44
  article-title: Marginal effects in multivariate probit models
  publication-title: Empirical economics
  doi: 10.1007/s00181-016-1090-8
– volume: 5
  start-page: 309
  issue: 3
  year: 2005
  end-page: 329
  ident: CR7
  article-title: Estimation of marginal effects using margeff
  publication-title: The Stata Journal
  doi: 10.1177/1536867X0500500303
– ident: CR56
– year: 1980
  ident: CR24
  article-title: Identification of Outliers
  publication-title: Springer, Netherlands,
  doi: 10.1007/978-94-015-3994-4_1
– ident: CR40
– ident: CR23
– volume: 52
  start-page: 423
  issue: 1
  year: 2016
  end-page: 439
  ident: CR52
  article-title: A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1
  publication-title: Theory. Water Resources Research
  doi: 10.1002/2015WR017558
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  end-page: 67
  ident: CR18
  article-title: Multivariate Adaptive Regression Splines
  publication-title: The Annals of Statistics
– volume: 33
  start-page: 161
  issue: 2
  year: 1991
  end-page: 174
  ident: CR43
  article-title: Factorial sampling plans for preliminary computational experiments
  publication-title: Technometrics
  doi: 10.1080/00401706.1991.10484804
– ident: CR69
– year: 1984
  ident: CR13
  publication-title: Classification and Regression Trees
– ident: CR65
– ident: CR3
– ident: CR38
– volume: 6
  start-page: 2420
  year: 2012
  end-page: 2448
  ident: CR15
  article-title: Generalized Hoeffding-Sobol decomposition for dependent variables - application to sensitivity analysis
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/12-EJS749
– ident: CR31
– volume: 37
  start-page: 23
  issue: 1
  year: 2007
  end-page: 51
  ident: CR20
  article-title: Average predictive comparisons for models with nonlinearity, interactions, and variance components
  publication-title: Sociological Methodology
  doi: 10.1111/j.1467-9531.2007.00181.x
– ident: CR55
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR11
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: CR59
– volume: 110
  start-page: 2474
  issue: 7
  year: 2006
  end-page: 2485
  ident: CR34
  article-title: Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions
  publication-title: The Journal of Physical Chemistry A
  doi: 10.1021/jp054148m
– ident: CR41
– volume: 20
  start-page: 23
  issue: 1
  year: 1995
  end-page: 33
  ident: CR63
  article-title: Technical note: Bias and the quantification of stability
  publication-title: Machine Learning
  doi: 10.1007/BF00993473
– volume: 14
  start-page: 131
  issue: 2
  year: 2006
  end-page: 159
  ident: CR30
  article-title: The dangers of extreme counterfactuals
  publication-title: Political Analysis
  doi: 10.1093/pan/mpj004
– volume: 33
  start-page: 161
  issue: 2
  year: 1991
  ident: 993_CR43
  publication-title: Technometrics
  doi: 10.1080/00401706.1991.10484804
– ident: 993_CR5
– volume-title: Econometric Analysis
  year: 2012
  ident: 993_CR22
– ident: 993_CR50
– volume: 24
  start-page: 44
  issue: 1
  year: 2015
  ident: 993_CR21
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2014.907095
– volume: 49
  start-page: 152
  issue: 1
  year: 2019
  ident: 993_CR39
  publication-title: Sociological Methodology
  doi: 10.1177/0081175019852763
– volume: 37
  start-page: 23
  issue: 1
  year: 2007
  ident: 993_CR20
  publication-title: Sociological Methodology
  doi: 10.1111/j.1467-9531.2007.00181.x
– volume-title: Classification and Regression Trees
  year: 1984
  ident: 993_CR13
– volume: 20
  start-page: 23
  issue: 1
  year: 1995
  ident: 993_CR63
  publication-title: Machine Learning
  doi: 10.1007/BF00993473
– ident: 993_CR12
  doi: 10.1214/ss/1009213726
– volume: 5
  start-page: 309
  issue: 3
  year: 2005
  ident: 993_CR7
  publication-title: The Stata Journal
  doi: 10.1177/1536867X0500500303
– ident: 993_CR16
– volume: 80
  start-page: 123
  issue: 1
  year: 2003
  ident: 993_CR1
  publication-title: Economics Letters
  doi: 10.1016/S0165-1765(03)00032-6
– ident: 993_CR40
– volume: 12
  start-page: 45
  issue: 1
  year: 2016
  ident: 993_CR57
  publication-title: The International Journal of Biostatistics
  doi: 10.1515/ijb-2015-0032
– year: 1980
  ident: 993_CR24
  publication-title: Springer, Netherlands,
  doi: 10.1007/978-94-015-3994-4_1
– volume: 64
  start-page: 17
  issue: 1
  year: 1997
  ident: 993_CR8
  publication-title: Information Processing Letters
  doi: 10.1016/S0020-0190(97)00140-3
– ident: 993_CR14
  doi: 10.1007/978-3-030-10925-7_40
– volume: 82
  start-page: 1059
  issue: 4
  year: 2020
  ident: 993_CR4
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12377
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 993_CR19
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013203451
– ident: 993_CR65
  doi: 10.1177/1536867X1201200209
– volume: 17
  start-page: 492
  issue: 2
  year: 2008
  ident: 993_CR66
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186008X319331
– ident: 993_CR49
– volume: 106
  start-page: 1039
  issue: 7
  year: 2017
  ident: 993_CR9
  publication-title: Machine Learning
  doi: 10.1007/s10994-017-5633-9
– volume: 33
  start-page: 97
  issue: 2
  year: 2015
  ident: 993_CR48
  publication-title: PharmacoEconomics
  doi: 10.1007/s40273-014-0224-0
– volume: 16
  start-page: 145
  issue: 02
  year: 2002
  ident: 993_CR32
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001402001599
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: 993_CR18
  publication-title: The Annals of Statistics
– volume: 137
  year: 2021
  ident: 993_CR53
  publication-title: Environmental Modelling and Software
  doi: 10.1016/j.envsoft.2020.104954
– ident: 993_CR38
– volume: 6
  start-page: 2420
  year: 2012
  ident: 993_CR15
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/12-EJS749
– ident: 993_CR45
– ident: 993_CR56
  doi: 10.1007/978-3-030-43823-4_18
– volume: 31
  start-page: 701
  issue: 6
  year: 2017
  ident: 993_CR60
  publication-title: European Journal of Personality
  doi: 10.1002/per.2113
– volume: 41
  start-page: 647
  issue: 3
  year: 2014
  ident: 993_CR62
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-013-0679-x
– volume: 82
  start-page: 329
  issue: 3
  year: 2014
  ident: 993_CR36
  publication-title: International Statistical Review
  doi: 10.1111/insr.12016
– ident: 993_CR59
  doi: 10.1016/j.sbspro.2010.05.208
– ident: 993_CR3
– ident: 993_CR2
  doi: 10.1142/S0218195995000064
– ident: 993_CR23
  doi: 10.1007/978-0-387-21606-5
– volume: 110
  start-page: 2474
  issue: 7
  year: 2006
  ident: 993_CR34
  publication-title: The Journal of Physical Chemistry A
  doi: 10.1021/jp054148m
– volume: 20
  start-page: 22
  year: 2020
  ident: 993_CR67
  publication-title: Travel Behaviour and Society
  doi: 10.1016/j.tbs.2020.02.003
– ident: 993_CR35
  doi: 10.1145/2133360.2133363
– ident: 993_CR46
– ident: 993_CR37
– ident: 993_CR61
– volume: 355
  start-page: 483
  issue: 6324
  year: 2017
  ident: 993_CR6
  publication-title: Science
  doi: 10.1126/science.aal4321
– ident: 993_CR25
  doi: 10.1145/1014052.1014121
– volume: 31
  start-page: 82
  issue: 6
  year: 2021
  ident: 993_CR28
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-021-10057-z
– volume: 53
  start-page: 447
  issue: 2
  year: 2017
  ident: 993_CR44
  publication-title: Empirical economics
  doi: 10.1007/s00181-016-1090-8
– year: 2023
  ident: 993_CR68
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-022-00907-3
– ident: 993_CR69
  doi: 10.1145/3447548.3467274
– volume: 15
  start-page: 651
  issue: 3
  year: 2006
  ident: 993_CR29
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186006X133933
– volume: 31
  start-page: 841
  issue: 2
  year: 2018
  ident: 993_CR64
  publication-title: Harvard Journal of Law and Technology
– volume: 52
  start-page: 423
  issue: 1
  year: 2016
  ident: 993_CR52
  publication-title: Theory. Water Resources Research
  doi: 10.1002/2015WR017558
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 993_CR10
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– ident: 993_CR31
  doi: 10.1145/1645953.1646195
– volume: 14
  start-page: 131
  issue: 2
  year: 2006
  ident: 993_CR30
  publication-title: Political Analysis
  doi: 10.1093/pan/mpj004
– ident: 993_CR41
  doi: 10.1007/978-3-030-43823-4_17
– volume: 16
  start-page: 709
  issue: 3
  year: 2007
  ident: 993_CR27
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186007X237892
– ident: 993_CR33
  doi: 10.32614/CRAN.package.margins
– ident: 993_CR42
  doi: 10.1007/978-3-031-04083-2_4
– ident: 993_CR26
  doi: 10.1145/1014052.1014122
– volume: 58
  start-page: 1137
  issue: 4
  year: 2021
  ident: 993_CR51
  publication-title: Computational Economics
  doi: 10.1007/s10614-020-09998-w
– ident: 993_CR58
  doi: 10.1145/3375627.3375830
– ident: 993_CR55
  doi: 10.1002/9780470725184
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  ident: 993_CR17
  publication-title: Journal of Machine Learning Research
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 993_CR11
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 321
  start-page: 1304
  issue: 13
  year: 2019
  ident: 993_CR47
  publication-title: JAMA
  doi: 10.1001/jama.2019.1954
– ident: 993_CR54
  doi: 10.1145/2939672.2939778
SSID ssj0005230
Score 2.4399025
Snippet Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models such as generalized...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2997
SubjectTerms Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Generalized linear models
Information Storage and Retrieval
Linear prediction
Machine learning
Nonlinearity
Physics
Regression models
Special Issue on Explainable and Interpretable Machine Learning and Data Mining
Statistical models
Statistics for Engineering
Subgroups
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB2kInjxoypWq-TgTQObTTabPRaxFEFPFnoLm2xyEiltBX--k2y2raKC52SzMJnJvGFm3gDcmBoxRB0YLo3EAIV7Q420nDJu6ky40qtIVv30LCdT8TgrZqkpbNlVu3cpyfhSbzW7SaYo-hgaYA2niBx3ixC7oxZP89FWYQdve4OVoIViWWqV-fmMr-5ogzG_pUWjtxkfwUGCiWTU3usx7Li3Phx2IxhIssg-7MUKTrs8ARFG1oYRVySVaBCEowSDexqAZL0g80XIyYR7IMGZRX07hen44eV-QtNIBGq55Cta1aYpMqs847JqGl82pcmV456L2ntEE4y5zBVGFrz06OtzWWZOIIhxgYZUlvwMevhndw7EYqTDmqzKpfOicdYoW2GYzZoqWqUbAOsko23iCw9jK171huk4SFOjNHWUpv4YwO36m3nLlvHn7mEncJ0sZ6k5ruUhXccHcNddwmb599Mu_rf9EvZRd0RbLjaE3mrx7q4QX6zMdVSnT5HjxQU
  priority: 102
  providerName: Springer Nature
Title Marginal effects for non-linear prediction functions
URI https://link.springer.com/article/10.1007/s10618-023-00993-x
https://www.proquest.com/docview/3099210993
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdmHhjSiUygMbWMRx4jgTKlUfAlEhRKUyRXFiTwhKW6T-fM6JQwCJLhnycKSzffed7_EBXKgUMURqO1wqgQ4KN4oqkXHKuEq9QEdGFs2qHyZiPA3uZuHMHbgtXVplpRMLRZ2_Z_aM_JojlPFtGIffzD-oZY2y0VVHodGAFqpgic5X63YweXz6keTByzphGdBQMs-VzbjiOcEkRZtFLUzidP3bNNV480-ItLA8wz3YcZCR9Mo53oct_XYAuxUdA3G78xACS1prSa6IS9IgCEgJuvfUQsl0QeYLG5WxM0GsOStW3BFMh4Pn_pg6UgSaccFXNE5VHnqZNIyLOM9NlEfKl5obHqTGIJ5gTHs6VCLkkUFr74vI0wHCGG0bkYqIH0MT_6xPgGTo67Dci32hTZDrTMksRkeb5XGxL3UbWCWPJHMdwy1xxWtS9zq2MkxQhkkhw2Tdhsvvb-Zlv4yNb3cqMSdu7yyTeqbbcFWJvn78_2inm0c7g20fEUmZINaB5mrxqc8RUaxUFxpyOOpCqzd6uR903SLCu33Rx-vU730BwJLKPw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1Eo4AEmsIjjxEkGhBBQWgpMIHULcWJPqJRSRPlT_Ebu8qCABFvnJBfpy_nuu9wLYE8nyCESmnCpFQYo0mquVSq5kDpxPBPYMB9WfXOr2vfeVc_v1eCj6oWhssrKJuaGOntK6R_5kUQq41IaR54MnjltjaLsarVCo1CLrnl_w5Dt5bhzjt9333VbF3dnbV5uFeCpVHLEo0RnvpOGVkgVZZkNskC7oZFWeom16JCFMI7xtfJlYNFduipwjIc8wNAkTxVIlDsDs56UEZ2osHX5raREFl3JocdRjlM26ZStekqEHD0kJ1Im-finI5yw218J2dzPtZZgoSSo7LTQqGWomf4KLFbLH1hpC1bBoxW5tFKLlSUhDOkv6z_1ORHXZMgGQ8oB0Xdn5Dxz_V6D-6mAtQ51fLPZAJZiZCUyJ3KVsV5mUh2mEYb1IotyK2AaICo84rScT05rMh7jyWRlwjBGDOMcw3jcgIOvZwbFdI5_725WMMflSX2JJ3rVgMMK-snlv6Vt_i9tF-badzfX8XXntrsF8y5yoaI0rQn10fDVbCOXGemdXIEYPExbYz8BSKwAVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJMaLbyOKugc96YZut2zbgzEqEhElxGjCrXbb3ZMBRIz61_x1zrZbURO5eW47TabfznzTeQHsyxg5RGwmXEqBAQrXkkqRcMq4jB1P-TrIhlXfdMXlvXfVb_RL8FH0wpiyysImZoY6HSbmH3mdI5VxTRqH17Uti-g1WyejJ2o2SJlMa7FOI4dIR72_Yvj2fNxu4rc-cN3Wxd35JbUbBmjCBZ_QMJZpw0kCzbgI01T7qS_dQHHNvVhrdM6MKUc1pGhwX6PrdIXvKA85gTJTPYXPUe4cVHyMipwyVM4uur3bbwUmPO9RDjyKkhzbsmMb9wQLKPpLaigap28_3eKU6_5Kz2Zer7UMi5auktMcXytQUoNVWCpWQRBrGdbAMwtzzYItYgtECJJhMhgOqKGx8ZiMxiYjZFBAjCvN0L4O9_-irg0o45vVJpAE4yyWOqErlPZSlcggCTHIZ2mY2QRVBVboI0rstHKzNOMxms5ZNjqMUIdRpsPorQqHX8-M8lkdM--uFWqO7Ll9jqYoq8JRofrp5b-lbc2WtgfziNbout3tbMOCi8Qor1OrQXkyflE7SGwmctciiMDDf4P2E7ONBeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marginal+effects+for+non-linear+prediction+functions&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Scholbeck%2C+Christian+A&rft.au=Casalicchio%2C+Giuseppe&rft.au=Molnar%2C+Christoph&rft.au=Bischl%2C+Bernd&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=5&rft.spage=2997&rft.epage=3042&rft_id=info:doi/10.1007%2Fs10618-023-00993-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon