Marginal effects for non-linear prediction functions
Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models such as generalized linear models, the estimated coefficients cannot be interpreted as a direct feature effect on the predicted outcome. Hence, marginal effects...
Saved in:
Published in | Data mining and knowledge discovery Vol. 38; no. 5; pp. 2997 - 3042 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-023-00993-x |
Cover
Loading…
Abstract | Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models such as generalized linear models, the estimated coefficients cannot be interpreted as a direct feature effect on the predicted outcome. Hence, marginal effects are typically used as approximations for feature effects, either as derivatives of the prediction function or forward differences in prediction due to changes in feature values. While marginal effects are commonly used in many scientific fields, they have not yet been adopted as a general model-agnostic interpretation method for machine learning models. This may stem from the ambiguity surrounding marginal effects and their inability to deal with the non-linearities found in black box models. We introduce a unified definition of forward marginal effects (FMEs) that includes univariate and multivariate, as well as continuous, categorical, and mixed-type features. To account for the non-linearity of prediction functions, we introduce a non-linearity measure for FMEs. Furthermore, we argue against summarizing feature effects of a non-linear prediction function in a single metric such as the average marginal effect. Instead, we propose to average homogeneous FMEs within population subgroups, which serve as conditional feature effect estimates. |
---|---|
AbstractList | Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models such as generalized linear models, the estimated coefficients cannot be interpreted as a direct feature effect on the predicted outcome. Hence, marginal effects are typically used as approximations for feature effects, either as derivatives of the prediction function or forward differences in prediction due to changes in feature values. While marginal effects are commonly used in many scientific fields, they have not yet been adopted as a general model-agnostic interpretation method for machine learning models. This may stem from the ambiguity surrounding marginal effects and their inability to deal with the non-linearities found in black box models. We introduce a unified definition of forward marginal effects (FMEs) that includes univariate and multivariate, as well as continuous, categorical, and mixed-type features. To account for the non-linearity of prediction functions, we introduce a non-linearity measure for FMEs. Furthermore, we argue against summarizing feature effects of a non-linear prediction function in a single metric such as the average marginal effect. Instead, we propose to average homogeneous FMEs within population subgroups, which serve as conditional feature effect estimates. |
Author | Molnar, Christoph Casalicchio, Giuseppe Bischl, Bernd Scholbeck, Christian A. Heumann, Christian |
Author_xml | – sequence: 1 givenname: Christian A. orcidid: 0000-0001-6607-4895 surname: Scholbeck fullname: Scholbeck, Christian A. email: christian.scholbeck@stat.uni-muenchen.de organization: Munich Center for Machine Learning (MCML), Ludwig-Maximilians-Universität in Munich – sequence: 2 givenname: Giuseppe surname: Casalicchio fullname: Casalicchio, Giuseppe organization: Munich Center for Machine Learning (MCML), Ludwig-Maximilians-Universität in Munich – sequence: 3 givenname: Christoph surname: Molnar fullname: Molnar, Christoph organization: Ludwig-Maximilians-Universität in Munich – sequence: 4 givenname: Bernd surname: Bischl fullname: Bischl, Bernd organization: Munich Center for Machine Learning (MCML), Ludwig-Maximilians-Universität in Munich – sequence: 5 givenname: Christian surname: Heumann fullname: Heumann, Christian organization: Ludwig-Maximilians-Universität in Munich |
BookMark | eNp9kE9LAzEUxIMo2Fa_gKcFz9GXvE2ye5TiP6h4UfAW0t2kpKzZmmyhfnvTriB46OnNYX7DvJmS09AHS8gVgxsGoG4TA8kqChwpQF0j3Z2QCRMKqRLy4zRrrEoqKgbnZJrSGgAER5iQ8sXElQ-mK6xzthlS4fpY5HTa-WBNLDbRtr4ZfB8Ktw0HkS7ImTNdspe_d0beH-7f5k908fr4PL9b0AYlDrQ2y1ZAUzmGsm5bp1q15JVFh6VxTuY2zIIVSylQOVYDlwpsybiwTNVMKpyR6zF3E_uvrU2DXvfbmMsmjflLzvavZlc1uprYpxSt040fzL7oEI3vNAO930iPG-m8kT5spHcZ5f_QTfSfJn4fh3CEUjaHlY1_rY5QP6vReyQ |
CitedBy_id | crossref_primary_10_1007_s10618_024_01041_y |
Cites_doi | 10.1111/insr.12016 10.1016/j.tbs.2020.02.003 10.1007/s11222-021-10057-z 10.1198/106186006X133933 10.1515/ijb-2015-0032 10.1002/per.2113 10.1080/10618600.2014.907095 10.1007/s10115-013-0679-x 10.1016/S0165-1765(03)00032-6 10.1016/S0020-0190(97)00140-3 10.1007/s10618-022-00907-3 10.1177/0081175019852763 10.1214/aos/1013203451 10.1142/S0218001402001599 10.1007/s40273-014-0224-0 10.1111/rssb.12377 10.1007/s10614-020-09998-w 10.1198/106186008X319331 10.1001/jama.2019.1954 10.1126/science.aal4321 10.1007/s10994-017-5633-9 10.1198/106186007X237892 10.1007/BF00058655 10.1016/j.envsoft.2020.104954 10.1007/s00181-016-1090-8 10.1177/1536867X0500500303 10.1007/978-94-015-3994-4_1 10.1002/2015WR017558 10.1080/00401706.1991.10484804 10.1214/12-EJS749 10.1111/j.1467-9531.2007.00181.x 10.1023/A:1010933404324 10.1021/jp054148m 10.1007/BF00993473 10.1093/pan/mpj004 10.1214/ss/1009213726 10.1007/978-3-030-10925-7_40 10.1177/1536867X1201200209 10.1007/978-3-030-43823-4_18 10.1016/j.sbspro.2010.05.208 10.1142/S0218195995000064 10.1007/978-0-387-21606-5 10.1145/2133360.2133363 10.1145/1014052.1014121 10.1145/3447548.3467274 10.1145/1645953.1646195 10.1007/978-3-030-43823-4_17 10.32614/CRAN.package.margins 10.1007/978-3-031-04083-2_4 10.1145/1014052.1014122 10.1145/3375627.3375830 10.1002/9780470725184 10.1145/2939672.2939778 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. corrected publication 2024 The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10618-023-00993-x |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 3042 |
ExternalDocumentID | 10_1007_s10618_023_00993_x |
GrantInformation_xml | – fundername: Ludwig-Maximilians-Universität München funderid: http://dx.doi.org/10.13039/501100005722 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-9abd50c8f1369ddf7d7b28e3f34aff65811e0e5b6537f1902670e4125e1791673 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Tue Sep 02 03:47:31 EDT 2025 Tue Jul 01 00:40:33 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 Fri Feb 21 02:39:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | XAI Interpretations Model-agnostic Interpretable machine learning Conditional average marginal effects IML NLM Non-linearity measure Forward marginal effects Explainable AI Forward difference cAME FME |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-9abd50c8f1369ddf7d7b28e3f34aff65811e0e5b6537f1902670e4125e1791673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6607-4895 |
OpenAccessLink | https://link.springer.com/10.1007/s10618-023-00993-x |
PQID | 3099210993 |
PQPubID | 43030 |
PageCount | 46 |
ParticipantIDs | proquest_journals_3099210993 crossref_citationtrail_10_1007_s10618_023_00993_x crossref_primary_10_1007_s10618_023_00993_x springer_journals_10_1007_s10618_023_00993_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240900 2024-09-00 20240901 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Greene (CR22) 2012 Seibold, Zeileis, Hothorn (CR57) 2016; 12 CR38 Onukwugha, Bergtold, Jain (CR48) 2015; 33 CR37 Razavi, Jakeman, Saltelli, Prieur, Iooss, Borgonovo, Plischke, Lo Piano, Iwanaga, Becker, Tarantola, Guillaume, Jakeman, Gupta, Melillo, Rabitti, Chabridon, Duan, Sun, Smith, Sheikholeslami, Hosseini, Asadzadeh, Puy, Kucherenko, Maier (CR53) 2021; 137 CR35 CR33 Morris (CR43) 1991; 33 CR31 Belogay, Cabrelli, Molter, Shonkwiler (CR8) 1997; 64 Gelman, Pardoe (CR20) 2007; 37 Li, Hu, Wang, Georgopoulos, Schoendorf, Rabitz (CR34) 2006; 110 Ramsey, Bergtold (CR51) 2021; 58 CR2 Stachl, Hilbert, Au, Buschek, De Luca, Bischl, Hussmann, Bühner (CR60) 2017; 31 CR3 Athey (CR6) 2017; 355 Wachter, Mittelstadt, Russell (CR64) 2018; 31 CR5 CR49 CR46 Norton, Dowd, Maciejewski (CR47) 2019; 321 CR45 Bartus (CR7) 2005; 5 CR42 Goldstein, Kapelner, Bleich, Pitkin (CR21) 2015; 24 CR41 CR40 Loh (CR36) 2014; 82 Fisher, Rudin, Dominici (CR17) 2019; 20 Štrumbelj, Kononenko (CR62) 2014; 41 Breiman, Friedman, Olshen, Stone (CR13) 1984 Mize, Doan, Long (CR39) 2019; 49 Mullahy (CR44) 2017; 53 Last, Maimon, Minkov (CR32) 2002; 16 Hothorn, Hornik, Zeileis (CR29) 2006; 15 Hooker, Mentch, Zhou (CR28) 2021; 31 Apley, Zhu (CR4) 2020; 82 CR16 Chastaing, Gamboa, Prieur (CR15) 2012; 6 CR59 CR14 CR58 CR12 CR56 CR55 Hooker (CR27) 2007; 16 CR54 Turney (CR63) 1995; 20 CR50 King, Zeng (CR30) 2006; 14 Friedman (CR19) 2001; 29 Ai, Norton (CR1) 2003; 80 Zhou, Zhou, Hooker (CR68) 2023 Breiman (CR11) 2001; 45 Friedman (CR18) 1991; 19 CR26 CR25 CR69 Breiman (CR10) 1996; 24 CR23 Razavi, Gupta (CR52) 2016; 52 CR65 CR61 Zeileis, Hothorn, Hornik (CR66) 2008; 17 Zhao, Yan, Yu, Van Hentenryck (CR67) 2020; 20 Bertsimas, Dunn (CR9) 2017; 106 Hawkins (CR24) 1980 X Zhao (993_CR67) 2020; 20 993_CR38 S Wachter (993_CR64) 2018; 31 S Razavi (993_CR52) 2016; 52 M Last (993_CR32) 2002; 16 993_CR40 MD Morris (993_CR43) 1991; 33 P Turney (993_CR63) 1995; 20 E Štrumbelj (993_CR62) 2014; 41 993_CR46 993_CR45 J Mullahy (993_CR44) 2017; 53 993_CR42 DM Hawkins (993_CR24) 1980 993_CR41 S Razavi (993_CR53) 2021; 137 WY Loh (993_CR36) 2014; 82 A Gelman (993_CR20) 2007; 37 H Seibold (993_CR57) 2016; 12 G Hooker (993_CR27) 2007; 16 JH Friedman (993_CR19) 2001; 29 993_CR49 A Fisher (993_CR17) 2019; 20 TD Mize (993_CR39) 2019; 49 993_CR50 SM Ramsey (993_CR51) 2021; 58 G Li (993_CR34) 2006; 110 993_CR59 993_CR14 993_CR58 993_CR12 993_CR56 993_CR55 993_CR54 DW Apley (993_CR4) 2020; 82 S Athey (993_CR6) 2017; 355 EC Norton (993_CR47) 2019; 321 E Onukwugha (993_CR48) 2015; 33 A Zeileis (993_CR66) 2008; 17 L Breiman (993_CR11) 2001; 45 993_CR16 C Ai (993_CR1) 2003; 80 G King (993_CR30) 2006; 14 D Bertsimas (993_CR9) 2017; 106 993_CR61 A Goldstein (993_CR21) 2015; 24 W Greene (993_CR22) 2012 Y Zhou (993_CR68) 2023 C Stachl (993_CR60) 2017; 31 E Belogay (993_CR8) 1997; 64 L Breiman (993_CR13) 1984 993_CR26 993_CR25 993_CR69 993_CR23 L Breiman (993_CR10) 1996; 24 993_CR65 T Bartus (993_CR7) 2005; 5 G Hooker (993_CR28) 2021; 31 993_CR2 G Chastaing (993_CR15) 2012; 6 T Hothorn (993_CR29) 2006; 15 993_CR5 993_CR37 JH Friedman (993_CR18) 1991; 19 993_CR3 993_CR35 993_CR33 993_CR31 |
References_xml | – volume: 82 start-page: 329 issue: 3 year: 2014 end-page: 348 ident: CR36 article-title: Fifty years of classification and regression trees publication-title: International Statistical Review doi: 10.1111/insr.12016 – ident: CR45 – volume: 20 start-page: 22 year: 2020 end-page: 35 ident: CR67 article-title: Prediction and behavioral analysis of travel mode choice: A comparison of machine learning and logit models publication-title: Travel Behaviour and Society doi: 10.1016/j.tbs.2020.02.003 – volume: 31 start-page: 82 issue: 6 year: 2021 ident: CR28 article-title: Unrestricted permutation forces extrapolation: Variable importance requires at least one more model, or there is no free variable importance publication-title: Statistics and Computing doi: 10.1007/s11222-021-10057-z – volume: 15 start-page: 651 issue: 3 year: 2006 end-page: 674 ident: CR29 article-title: Unbiased recursive partitioning: A conditional inference framework publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186006X133933 – ident: CR49 – volume: 12 start-page: 45 issue: 1 year: 2016 end-page: 63 ident: CR57 article-title: Model-based recursive partitioning for subgroup analyses publication-title: The International Journal of Biostatistics doi: 10.1515/ijb-2015-0032 – volume: 31 start-page: 701 issue: 6 year: 2017 end-page: 722 ident: CR60 article-title: Personality traits predict smartphone usage publication-title: European Journal of Personality doi: 10.1002/per.2113 – ident: CR16 – volume: 24 start-page: 44 issue: 1 year: 2015 end-page: 65 ident: CR21 article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2014.907095 – volume: 41 start-page: 647 issue: 3 year: 2014 end-page: 665 ident: CR62 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowledge and Information Systems doi: 10.1007/s10115-013-0679-x – ident: CR12 – volume: 80 start-page: 123 issue: 1 year: 2003 end-page: 129 ident: CR1 article-title: Interaction terms in logit and probit models publication-title: Economics Letters doi: 10.1016/S0165-1765(03)00032-6 – ident: CR35 – year: 2012 ident: CR22 publication-title: Econometric Analysis – ident: CR54 – ident: CR61 – volume: 64 start-page: 17 issue: 1 year: 1997 end-page: 22 ident: CR8 article-title: Calculating the Hausdorff distance between curves publication-title: Information Processing Letters doi: 10.1016/S0020-0190(97)00140-3 – ident: CR58 – ident: CR25 – year: 2023 ident: CR68 article-title: Approximation trees: Statistical reproducibility in model distillation publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-022-00907-3 – ident: CR42 – ident: CR46 – volume: 49 start-page: 152 issue: 1 year: 2019 end-page: 189 ident: CR39 article-title: A general framework for comparing predictions and marginal effects across models publication-title: Sociological Methodology doi: 10.1177/0081175019852763 – volume: 29 start-page: 1189 issue: 5 year: 2001 end-page: 1232 ident: CR19 article-title: Greedy function approximation: A gradient boosting machine publication-title: The Annals of Statistics doi: 10.1214/aos/1013203451 – volume: 16 start-page: 145 issue: 02 year: 2002 end-page: 159 ident: CR32 article-title: Improving stability of decision trees publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001402001599 – ident: CR50 – volume: 33 start-page: 97 issue: 2 year: 2015 end-page: 103 ident: CR48 article-title: A primer on marginal effects-part II: Health services research applications publication-title: PharmacoEconomics doi: 10.1007/s40273-014-0224-0 – volume: 82 start-page: 1059 issue: 4 year: 2020 end-page: 1086 ident: CR4 article-title: Visualizing the effects of predictor variables in black box supervised learning models publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/rssb.12377 – volume: 58 start-page: 1137 issue: 4 year: 2021 end-page: 1165 ident: CR51 article-title: Examining inferences from neural network estimators of binary choice processes: Marginal effects, and willingness-to-pay publication-title: Computational Economics doi: 10.1007/s10614-020-09998-w – volume: 17 start-page: 492 issue: 2 year: 2008 end-page: 514 ident: CR66 article-title: Model-based recursive partitioning publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186008X319331 – volume: 321 start-page: 1304 issue: 13 year: 2019 end-page: 1305 ident: CR47 article-title: Marginal effects-quantifying the effect of changes in risk factors in logistic regression models publication-title: JAMA doi: 10.1001/jama.2019.1954 – ident: CR5 – volume: 355 start-page: 483 issue: 6324 year: 2017 end-page: 485 ident: CR6 article-title: Beyond prediction: Using big data for policy problems publication-title: Science doi: 10.1126/science.aal4321 – ident: CR26 – volume: 20 start-page: 1 issue: 177 year: 2019 end-page: 81 ident: CR17 article-title: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously publication-title: Journal of Machine Learning Research – volume: 106 start-page: 1039 issue: 7 year: 2017 end-page: 1082 ident: CR9 article-title: Optimal classification trees publication-title: Machine Learning doi: 10.1007/s10994-017-5633-9 – ident: CR14 – volume: 16 start-page: 709 issue: 3 year: 2007 end-page: 732 ident: CR27 article-title: Generalized functional ANOVA diagnostics for high-dimensional functions of dependent variables publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186007X237892 – ident: CR2 – ident: CR37 – volume: 31 start-page: 841 issue: 2 year: 2018 end-page: 887 ident: CR64 article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR publication-title: Harvard Journal of Law and Technology – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 ident: CR10 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – ident: CR33 – volume: 137 year: 2021 ident: CR53 article-title: The future of sensitivity analysis: An essential discipline for systems modeling and policy support publication-title: Environmental Modelling and Software doi: 10.1016/j.envsoft.2020.104954 – volume: 53 start-page: 447 issue: 2 year: 2017 end-page: 461 ident: CR44 article-title: Marginal effects in multivariate probit models publication-title: Empirical economics doi: 10.1007/s00181-016-1090-8 – volume: 5 start-page: 309 issue: 3 year: 2005 end-page: 329 ident: CR7 article-title: Estimation of marginal effects using margeff publication-title: The Stata Journal doi: 10.1177/1536867X0500500303 – ident: CR56 – year: 1980 ident: CR24 article-title: Identification of Outliers publication-title: Springer, Netherlands, doi: 10.1007/978-94-015-3994-4_1 – ident: CR40 – ident: CR23 – volume: 52 start-page: 423 issue: 1 year: 2016 end-page: 439 ident: CR52 article-title: A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1 publication-title: Theory. Water Resources Research doi: 10.1002/2015WR017558 – volume: 19 start-page: 1 issue: 1 year: 1991 end-page: 67 ident: CR18 article-title: Multivariate Adaptive Regression Splines publication-title: The Annals of Statistics – volume: 33 start-page: 161 issue: 2 year: 1991 end-page: 174 ident: CR43 article-title: Factorial sampling plans for preliminary computational experiments publication-title: Technometrics doi: 10.1080/00401706.1991.10484804 – ident: CR69 – year: 1984 ident: CR13 publication-title: Classification and Regression Trees – ident: CR65 – ident: CR3 – ident: CR38 – volume: 6 start-page: 2420 year: 2012 end-page: 2448 ident: CR15 article-title: Generalized Hoeffding-Sobol decomposition for dependent variables - application to sensitivity analysis publication-title: Electronic Journal of Statistics doi: 10.1214/12-EJS749 – ident: CR31 – volume: 37 start-page: 23 issue: 1 year: 2007 end-page: 51 ident: CR20 article-title: Average predictive comparisons for models with nonlinearity, interactions, and variance components publication-title: Sociological Methodology doi: 10.1111/j.1467-9531.2007.00181.x – ident: CR55 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR11 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – ident: CR59 – volume: 110 start-page: 2474 issue: 7 year: 2006 end-page: 2485 ident: CR34 article-title: Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions publication-title: The Journal of Physical Chemistry A doi: 10.1021/jp054148m – ident: CR41 – volume: 20 start-page: 23 issue: 1 year: 1995 end-page: 33 ident: CR63 article-title: Technical note: Bias and the quantification of stability publication-title: Machine Learning doi: 10.1007/BF00993473 – volume: 14 start-page: 131 issue: 2 year: 2006 end-page: 159 ident: CR30 article-title: The dangers of extreme counterfactuals publication-title: Political Analysis doi: 10.1093/pan/mpj004 – volume: 33 start-page: 161 issue: 2 year: 1991 ident: 993_CR43 publication-title: Technometrics doi: 10.1080/00401706.1991.10484804 – ident: 993_CR5 – volume-title: Econometric Analysis year: 2012 ident: 993_CR22 – ident: 993_CR50 – volume: 24 start-page: 44 issue: 1 year: 2015 ident: 993_CR21 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2014.907095 – volume: 49 start-page: 152 issue: 1 year: 2019 ident: 993_CR39 publication-title: Sociological Methodology doi: 10.1177/0081175019852763 – volume: 37 start-page: 23 issue: 1 year: 2007 ident: 993_CR20 publication-title: Sociological Methodology doi: 10.1111/j.1467-9531.2007.00181.x – volume-title: Classification and Regression Trees year: 1984 ident: 993_CR13 – volume: 20 start-page: 23 issue: 1 year: 1995 ident: 993_CR63 publication-title: Machine Learning doi: 10.1007/BF00993473 – ident: 993_CR12 doi: 10.1214/ss/1009213726 – volume: 5 start-page: 309 issue: 3 year: 2005 ident: 993_CR7 publication-title: The Stata Journal doi: 10.1177/1536867X0500500303 – ident: 993_CR16 – volume: 80 start-page: 123 issue: 1 year: 2003 ident: 993_CR1 publication-title: Economics Letters doi: 10.1016/S0165-1765(03)00032-6 – ident: 993_CR40 – volume: 12 start-page: 45 issue: 1 year: 2016 ident: 993_CR57 publication-title: The International Journal of Biostatistics doi: 10.1515/ijb-2015-0032 – year: 1980 ident: 993_CR24 publication-title: Springer, Netherlands, doi: 10.1007/978-94-015-3994-4_1 – volume: 64 start-page: 17 issue: 1 year: 1997 ident: 993_CR8 publication-title: Information Processing Letters doi: 10.1016/S0020-0190(97)00140-3 – ident: 993_CR14 doi: 10.1007/978-3-030-10925-7_40 – volume: 82 start-page: 1059 issue: 4 year: 2020 ident: 993_CR4 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/rssb.12377 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 993_CR19 publication-title: The Annals of Statistics doi: 10.1214/aos/1013203451 – ident: 993_CR65 doi: 10.1177/1536867X1201200209 – volume: 17 start-page: 492 issue: 2 year: 2008 ident: 993_CR66 publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186008X319331 – ident: 993_CR49 – volume: 106 start-page: 1039 issue: 7 year: 2017 ident: 993_CR9 publication-title: Machine Learning doi: 10.1007/s10994-017-5633-9 – volume: 33 start-page: 97 issue: 2 year: 2015 ident: 993_CR48 publication-title: PharmacoEconomics doi: 10.1007/s40273-014-0224-0 – volume: 16 start-page: 145 issue: 02 year: 2002 ident: 993_CR32 publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001402001599 – volume: 19 start-page: 1 issue: 1 year: 1991 ident: 993_CR18 publication-title: The Annals of Statistics – volume: 137 year: 2021 ident: 993_CR53 publication-title: Environmental Modelling and Software doi: 10.1016/j.envsoft.2020.104954 – ident: 993_CR38 – volume: 6 start-page: 2420 year: 2012 ident: 993_CR15 publication-title: Electronic Journal of Statistics doi: 10.1214/12-EJS749 – ident: 993_CR45 – ident: 993_CR56 doi: 10.1007/978-3-030-43823-4_18 – volume: 31 start-page: 701 issue: 6 year: 2017 ident: 993_CR60 publication-title: European Journal of Personality doi: 10.1002/per.2113 – volume: 41 start-page: 647 issue: 3 year: 2014 ident: 993_CR62 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-013-0679-x – volume: 82 start-page: 329 issue: 3 year: 2014 ident: 993_CR36 publication-title: International Statistical Review doi: 10.1111/insr.12016 – ident: 993_CR59 doi: 10.1016/j.sbspro.2010.05.208 – ident: 993_CR3 – ident: 993_CR2 doi: 10.1142/S0218195995000064 – ident: 993_CR23 doi: 10.1007/978-0-387-21606-5 – volume: 110 start-page: 2474 issue: 7 year: 2006 ident: 993_CR34 publication-title: The Journal of Physical Chemistry A doi: 10.1021/jp054148m – volume: 20 start-page: 22 year: 2020 ident: 993_CR67 publication-title: Travel Behaviour and Society doi: 10.1016/j.tbs.2020.02.003 – ident: 993_CR35 doi: 10.1145/2133360.2133363 – ident: 993_CR46 – ident: 993_CR37 – ident: 993_CR61 – volume: 355 start-page: 483 issue: 6324 year: 2017 ident: 993_CR6 publication-title: Science doi: 10.1126/science.aal4321 – ident: 993_CR25 doi: 10.1145/1014052.1014121 – volume: 31 start-page: 82 issue: 6 year: 2021 ident: 993_CR28 publication-title: Statistics and Computing doi: 10.1007/s11222-021-10057-z – volume: 53 start-page: 447 issue: 2 year: 2017 ident: 993_CR44 publication-title: Empirical economics doi: 10.1007/s00181-016-1090-8 – year: 2023 ident: 993_CR68 publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-022-00907-3 – ident: 993_CR69 doi: 10.1145/3447548.3467274 – volume: 15 start-page: 651 issue: 3 year: 2006 ident: 993_CR29 publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186006X133933 – volume: 31 start-page: 841 issue: 2 year: 2018 ident: 993_CR64 publication-title: Harvard Journal of Law and Technology – volume: 52 start-page: 423 issue: 1 year: 2016 ident: 993_CR52 publication-title: Theory. Water Resources Research doi: 10.1002/2015WR017558 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 993_CR10 publication-title: Machine Learning doi: 10.1007/BF00058655 – ident: 993_CR31 doi: 10.1145/1645953.1646195 – volume: 14 start-page: 131 issue: 2 year: 2006 ident: 993_CR30 publication-title: Political Analysis doi: 10.1093/pan/mpj004 – ident: 993_CR41 doi: 10.1007/978-3-030-43823-4_17 – volume: 16 start-page: 709 issue: 3 year: 2007 ident: 993_CR27 publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186007X237892 – ident: 993_CR33 doi: 10.32614/CRAN.package.margins – ident: 993_CR42 doi: 10.1007/978-3-031-04083-2_4 – ident: 993_CR26 doi: 10.1145/1014052.1014122 – volume: 58 start-page: 1137 issue: 4 year: 2021 ident: 993_CR51 publication-title: Computational Economics doi: 10.1007/s10614-020-09998-w – ident: 993_CR58 doi: 10.1145/3375627.3375830 – ident: 993_CR55 doi: 10.1002/9780470725184 – volume: 20 start-page: 1 issue: 177 year: 2019 ident: 993_CR17 publication-title: Journal of Machine Learning Research – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 993_CR11 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 321 start-page: 1304 issue: 13 year: 2019 ident: 993_CR47 publication-title: JAMA doi: 10.1001/jama.2019.1954 – ident: 993_CR54 doi: 10.1145/2939672.2939778 |
SSID | ssj0005230 |
Score | 2.4399025 |
Snippet | Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models such as generalized... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2997 |
SubjectTerms | Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Generalized linear models Information Storage and Retrieval Linear prediction Machine learning Nonlinearity Physics Regression models Special Issue on Explainable and Interpretable Machine Learning and Data Mining Statistical models Statistics for Engineering Subgroups |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB2kInjxoypWq-TgTQObTTabPRaxFEFPFnoLm2xyEiltBX--k2y2raKC52SzMJnJvGFm3gDcmBoxRB0YLo3EAIV7Q420nDJu6ky40qtIVv30LCdT8TgrZqkpbNlVu3cpyfhSbzW7SaYo-hgaYA2niBx3ixC7oxZP89FWYQdve4OVoIViWWqV-fmMr-5ogzG_pUWjtxkfwUGCiWTU3usx7Li3Phx2IxhIssg-7MUKTrs8ARFG1oYRVySVaBCEowSDexqAZL0g80XIyYR7IMGZRX07hen44eV-QtNIBGq55Cta1aYpMqs847JqGl82pcmV456L2ntEE4y5zBVGFrz06OtzWWZOIIhxgYZUlvwMevhndw7EYqTDmqzKpfOicdYoW2GYzZoqWqUbAOsko23iCw9jK171huk4SFOjNHWUpv4YwO36m3nLlvHn7mEncJ0sZ6k5ruUhXccHcNddwmb599Mu_rf9EvZRd0RbLjaE3mrx7q4QX6zMdVSnT5HjxQU priority: 102 providerName: Springer Nature |
Title | Marginal effects for non-linear prediction functions |
URI | https://link.springer.com/article/10.1007/s10618-023-00993-x https://www.proquest.com/docview/3099210993 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdmHhjSiUygMbWMRx4jgTKlUfAlEhRKUyRXFiTwhKW6T-fM6JQwCJLhnycKSzffed7_EBXKgUMURqO1wqgQ4KN4oqkXHKuEq9QEdGFs2qHyZiPA3uZuHMHbgtXVplpRMLRZ2_Z_aM_JojlPFtGIffzD-oZY2y0VVHodGAFqpgic5X63YweXz6keTByzphGdBQMs-VzbjiOcEkRZtFLUzidP3bNNV480-ItLA8wz3YcZCR9Mo53oct_XYAuxUdA3G78xACS1prSa6IS9IgCEgJuvfUQsl0QeYLG5WxM0GsOStW3BFMh4Pn_pg6UgSaccFXNE5VHnqZNIyLOM9NlEfKl5obHqTGIJ5gTHs6VCLkkUFr74vI0wHCGG0bkYqIH0MT_6xPgGTo67Dci32hTZDrTMksRkeb5XGxL3UbWCWPJHMdwy1xxWtS9zq2MkxQhkkhw2Tdhsvvb-Zlv4yNb3cqMSdu7yyTeqbbcFWJvn78_2inm0c7g20fEUmZINaB5mrxqc8RUaxUFxpyOOpCqzd6uR903SLCu33Rx-vU730BwJLKPw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1Eo4AEmsIjjxEkGhBBQWgpMIHULcWJPqJRSRPlT_Ebu8qCABFvnJBfpy_nuu9wLYE8nyCESmnCpFQYo0mquVSq5kDpxPBPYMB9WfXOr2vfeVc_v1eCj6oWhssrKJuaGOntK6R_5kUQq41IaR54MnjltjaLsarVCo1CLrnl_w5Dt5bhzjt9333VbF3dnbV5uFeCpVHLEo0RnvpOGVkgVZZkNskC7oZFWeom16JCFMI7xtfJlYNFduipwjIc8wNAkTxVIlDsDs56UEZ2osHX5raREFl3JocdRjlM26ZStekqEHD0kJ1Im-finI5yw218J2dzPtZZgoSSo7LTQqGWomf4KLFbLH1hpC1bBoxW5tFKLlSUhDOkv6z_1ORHXZMgGQ8oB0Xdn5Dxz_V6D-6mAtQ51fLPZAJZiZCUyJ3KVsV5mUh2mEYb1IotyK2AaICo84rScT05rMh7jyWRlwjBGDOMcw3jcgIOvZwbFdI5_725WMMflSX2JJ3rVgMMK-snlv6Vt_i9tF-badzfX8XXntrsF8y5yoaI0rQn10fDVbCOXGemdXIEYPExbYz8BSKwAVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJMaLbyOKugc96YZut2zbgzEqEhElxGjCrXbb3ZMBRIz61_x1zrZbURO5eW47TabfznzTeQHsyxg5RGwmXEqBAQrXkkqRcMq4jB1P-TrIhlXfdMXlvXfVb_RL8FH0wpiyysImZoY6HSbmH3mdI5VxTRqH17Uti-g1WyejJ2o2SJlMa7FOI4dIR72_Yvj2fNxu4rc-cN3Wxd35JbUbBmjCBZ_QMJZpw0kCzbgI01T7qS_dQHHNvVhrdM6MKUc1pGhwX6PrdIXvKA85gTJTPYXPUe4cVHyMipwyVM4uur3bbwUmPO9RDjyKkhzbsmMb9wQLKPpLaigap28_3eKU6_5Kz2Zer7UMi5auktMcXytQUoNVWCpWQRBrGdbAMwtzzYItYgtECJJhMhgOqKGx8ZiMxiYjZFBAjCvN0L4O9_-irg0o45vVJpAE4yyWOqErlPZSlcggCTHIZ2mY2QRVBVboI0rstHKzNOMxms5ZNjqMUIdRpsPorQqHX8-M8lkdM--uFWqO7Ll9jqYoq8JRofrp5b-lbc2WtgfziNbout3tbMOCi8Qor1OrQXkyflE7SGwmctciiMDDf4P2E7ONBeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marginal+effects+for+non-linear+prediction+functions&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Scholbeck%2C+Christian+A&rft.au=Casalicchio%2C+Giuseppe&rft.au=Molnar%2C+Christoph&rft.au=Bischl%2C+Bernd&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=5&rft.spage=2997&rft.epage=3042&rft_id=info:doi/10.1007%2Fs10618-023-00993-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |