Linear Solvers for Reservoir Simulation Problems: An Overview and Recent Developments
Linear solvers for reservoir simulation applications are the objective of this review. Specifically, we focus on techniques for Fully Implicit (FI) solution methods, in which the set of governing Partial Differential Equations (PDEs) is properly discretized in time (usually by the Backward Euler sch...
Saved in:
Published in | Archives of computational methods in engineering Vol. 29; no. 6; pp. 4341 - 4378 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.10.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Linear solvers for reservoir simulation applications are the objective of this review. Specifically, we focus on techniques for Fully Implicit (FI) solution methods, in which the set of governing Partial Differential Equations (PDEs) is properly discretized in time (usually by the Backward Euler scheme), and space, and tackled by assembling and linearizing a single system of equations to solve all the model unknowns simultaneously. Due to the usually large size of these systems arising from real-world models, iterative methods, specifically Krylov subspace solvers, have become conventional choices; nonetheless, their success largely revolves around the quality of the preconditioner that is supplied to accelerate their convergence. These two intertwined elements, i.e., the solver and the preconditioner, are the focus of our analysis, especially the latter, which is still the subject of extensive research. The progressive increase in reservoir model size and complexity, along with the introduction of additional physics to the classical flow problem, display the limits of existing solvers. Intensive usage of computational and memory resources are frequent drawbacks in practice, resulting in unpleasantly slow convergence rates. Developing efficient, robust, and scalable preconditioners, often relying on physics-based assumptions, is the way to avoid potential bottlenecks in the solving phase. In this work, we proceed in reviewing principles and state-of-the-art of such linear solution tools to summarize and discuss the main advances and research directions for reservoir simulation problems. We compare the available preconditioning options, showing the connections existing among the different approaches, and try to develop a general algebraic framework. |
---|---|
AbstractList | Linear solvers for reservoir simulation applications are the objective of this review. Specifically, we focus on techniques for Fully Implicit (FI) solution methods, in which the set of governing Partial Differential Equations (PDEs) is properly discretized in time (usually by the Backward Euler scheme), and space, and tackled by assembling and linearizing a single system of equations to solve all the model unknowns simultaneously. Due to the usually large size of these systems arising from real-world models, iterative methods, specifically Krylov subspace solvers, have become conventional choices; nonetheless, their success largely revolves around the quality of the preconditioner that is supplied to accelerate their convergence. These two intertwined elements, i.e., the solver and the preconditioner, are the focus of our analysis, especially the latter, which is still the subject of extensive research. The progressive increase in reservoir model size and complexity, along with the introduction of additional physics to the classical flow problem, display the limits of existing solvers. Intensive usage of computational and memory resources are frequent drawbacks in practice, resulting in unpleasantly slow convergence rates. Developing efficient, robust, and scalable preconditioners, often relying on physics-based assumptions, is the way to avoid potential bottlenecks in the solving phase. In this work, we proceed in reviewing principles and state-of-the-art of such linear solution tools to summarize and discuss the main advances and research directions for reservoir simulation problems. We compare the available preconditioning options, showing the connections existing among the different approaches, and try to develop a general algebraic framework. |
Author | Nardean, Stefano Abushaikha, Ahmad Ferronato, Massimiliano |
Author_xml | – sequence: 1 givenname: Stefano surname: Nardean fullname: Nardean, Stefano organization: Division of Sustainable Development, College of Science and Engineering, Qatar Foundation, Hamad Bin Khalifa University – sequence: 2 givenname: Massimiliano surname: Ferronato fullname: Ferronato, Massimiliano organization: Department of Civil, Environmental and Architectural Engineering, University of Padova – sequence: 3 givenname: Ahmad surname: Abushaikha fullname: Abushaikha, Ahmad email: aabushaikha@hbku.edu.qa organization: Division of Sustainable Development, College of Science and Engineering, Qatar Foundation, Hamad Bin Khalifa University |
BookMark | eNp9kE1LxDAQhoOs4Lr6BzwVPFcnSZuk3pb1ExZW1D2HfkylS5usSbfivzduBcHDnmYY3mdmeE7JxFiDhFxQuKIA8tpTqjiNgbEYMsmzmB2RKVVKxFSqZBJ6ypOYg4ATcur9BiBNsoxNyXrZGMxd9GrbAZ2PauuiF_ToBtuEadPt2rxvrImenS1a7PxNNDfRKmSHBj-j3FQhXqLpo1scsLXbLvT-jBzXeevx_LfOyPr-7m3xGC9XD0-L-TIuueB9nGUcShB1oWqoEDjKWlIlUyVqBMaLIk2YFIpzjoCSi5yyCuo0DbOkqCTyGbkc926d_dih7_XG7pwJJzWTVDAqUgYhxcZU6az3Dmu9dU2Xuy9NQf_o06M-HfTpvT7NAqT-QWXT71X0Lm_awygfUR_umHd0f18doL4B_oGFvQ |
CitedBy_id | crossref_primary_10_1007_s11831_025_10263_2 crossref_primary_10_1007_s10596_023_10238_x crossref_primary_10_1016_j_enconman_2023_117146 crossref_primary_10_1016_j_cma_2024_116982 crossref_primary_10_1080_10916466_2024_2381601 crossref_primary_10_1016_j_advwatres_2024_104844 |
Cites_doi | 10.1007/s10596-021-10096-5 10.1016/S0167-8191(97)00026-4 10.1137/S106482750240443X 10.2118/203991-PA 10.1016/j.parco.2020.102622 10.1016/j.egyr.2020.11.009 10.2118/182679-PA 10.1137/19M1255409 10.1016/0021-9991(78)90098-0 10.2118/163649-PA 10.1016/j.cam.2019.112614 10.1016/j.jcp.2013.04.045 10.1016/j.jcp.2018.09.054 10.1137/0910071 10.1007/s10596-007-9066-6 10.1016/j.jcp.2009.09.009 10.2118/203929-PA 10.1016/j.jcp.2019.06.038 10.1016/j.jcp.2018.05.048 10.1137/16M1098991 10.2118/21209-MS 10.1016/j.jcp.2016.03.007 10.1080/15567036.2018.1548518 10.1016/j.jcp.2010.11.036 10.1142/S0129053389000056 10.1007/BFb0080116 10.1029/94WR01786 10.1016/j.jcp.2021.110665 10.1007/s10596-018-9737-5 10.1016/j.cma.2007.01.013 10.1016/j.jcp.2016.06.012 10.1137/18M1193773 10.2118/106254-PA 10.1016/j.jcp.2006.01.028 10.1002/nla.2017 10.1002/nag.3192 10.1137/140968896 10.1137/16M1082652 10.1016/j.jcp.2019.03.038 10.1016/j.jcp.2021.110513 10.1016/j.jcpx.2020.100052 10.1016/j.jcp.2015.10.010 10.1137/15M1010567 10.1016/j.jcp.2020.109745 10.2118/163608-PA 10.1016/j.jcp.2019.05.038 10.1109/LAWP.2018.2830124 10.1007/978-1-4612-3172-1 10.2118/166062-MS 10.1007/BF02238511 10.1016/j.advwatres.2018.01.027 10.1137/18M1193761 10.1137/0712047 10.1007/s10596-007-9071-9 10.1137/1.9781611971538 10.1137/15M102887X 10.2118/66342-MS 10.1016/j.jcp.2011.08.021 10.1137/0907058 10.1016/j.advwatres.2004.10.007 10.1007/s10596-017-9627-2 10.1023/A:1011510505406 10.1016/j.jcp.2020.109607 10.1137/0917054 10.2174/978160805306311201010042 10.1137/S106482750037620X 10.1016/0045-7825(84)90010-0 10.1016/S0021-9991(03)00075-5 10.1137/090752973 10.1016/j.cma.2008.03.008 10.1016/j.jcp.2020.109961 10.2118/193887-MS 10.1007/s11831-019-09394-0 10.1016/j.jcp.2019.109134 10.2118/79713-MS 10.2118/13536-MS 10.2118/12244-PA 10.1137/S106482759732678X 10.1007/s11831-012-9078-9 10.1016/0309-1708(91)90020-O 10.3997/2214-4609.201406863 10.1023/A:1021291114475 10.1142/S0218202505000832 10.1007/s10596-018-9798-5 10.1016/j.jcp.2017.10.052 10.2118/18423-MS 10.1016/j.cma.2017.10.016 10.1017/9781108591416 10.1137/S1064827500376193 10.1137/141002062 10.1137/050640771 10.1016/j.cma.2019.04.030 10.1007/978-3-319-40827-9_18 10.1016/j.jcp.2016.11.044 10.1007/s10596-019-09848-1 10.1016/j.jcp.2021.110541 10.1002/nla.279 10.2118/10501-PA 10.1016/0021-9991(86)90127-0 10.1016/j.jcp.2017.07.019 10.1023/A:1021295215383 10.2118/173226-PA 10.1016/j.jcp.2008.06.013 10.2307/2005786 10.1137/18M1219370 10.1007/s10596-007-9069-3 10.2118/37324-JPT 10.1029/2008RG000277 10.1007/BF01931691 10.1016/j.jcp.2017.02.037 10.2118/173259-PA 10.1137/0724090 10.2118/163588-MS 10.2118/10120-PA 10.3997/2214-4609.201406864 10.1137/16M1074084 10.1090/S0025-5718-02-01441-2 10.1016/j.jcp.2020.109312 10.1007/s11242-012-9981-4 10.1007/s10596-018-9791-z 10.1016/j.cam.2017.07.022 10.1137/15M1032156 10.1007/978-3-642-23397-5_8 10.1137/16M1082706 10.1016/j.jcp.2012.10.001 10.1002/nla.806 10.1145/200979.200981 10.1017/S0962492915000021 10.1016/0167-8191(94)90004-3 10.1016/0168-9274(91)90045-2 10.1137/19M1256117 10.1137/050631811 10.1007/s10596-011-9244-4 10.1007/b137868 10.1007/s10596-012-9324-0 10.1023/B:BITN.0000014563.33622.1d 10.1137/110840819 10.1017/CBO9780511624100 10.1137/S106482759732753X 10.1002/nla.264 10.3997/2214-4609.201411305 10.1137/1.9780898718003 10.1002/fld.267 10.1006/jcph.1997.5682 10.1016/j.jcp.2013.07.031 10.2118/173207-MS 10.1016/j.jcp.2008.08.002 10.1016/j.cma.2012.02.004 10.2118/8252-PA 10.2118/193870-MS 10.1137/030600795 10.1016/j.petrol.2020.107506 10.1016/j.jcp.2015.10.031 10.4208/nmtma.2015.w06si 10.1137/100803031 10.2172/1461175 10.1137/19M1261250 10.1137/1.9781611974065 10.2118/182723-MS 10.1137/S0895479897317788 10.1007/s10596-021-10072-z 10.1137/S1064827595293594 10.1017/S0962492916000076 10.6028/jres.049.044 10.1016/j.jcp.2008.03.029 10.1002/nla.1680010405 10.1016/j.jcp.2008.09.026 10.1002/fld.5039 10.2118/18412-PA 10.1016/j.apnum.2017.07.007 10.1007/BF01932738 10.2523/12264-MS 10.1137/050634566 10.1016/j.cma.2016.01.008 10.1016/0024-3795(83)90091-5 10.1137/12088879X 10.1137/S1064827502405094 10.1137/S1064827595293582 10.1016/j.cma.2019.112575 10.2118/182619-MS 10.2118/163664-PA 10.1016/j.jcp.2013.11.024 10.1016/j.cam.2014.12.042 10.1017/S0962492904000212 10.2118/105832-MS 10.1142/S0129626499000438 10.3390/a13080199 10.1137/16M1079506 10.1007/978-1-349-03521-2 10.1007/BF01932753 10.2118/195472-MS 10.1007/s10596-021-10090-x 10.1016/j.cma.2019.04.034 10.5402/2012/127647 10.1016/j.jcpx.2020.100061 10.1002/fld.404 10.1137/19M1292023 10.2118/4542-MS 10.1137/17M1123456 10.1137/S1064827599355153 10.1137/S0895479899351805 10.1145/3190647 10.1016/j.camwa.2020.05.014 10.3997/2214-4609.202035063 10.1137/030600655 10.1137/S0036142994262585 10.1137/1.9780898718942 10.1145/331532.331561 10.1007/s11075-016-0110-2 10.1016/j.laa.2012.11.022 10.2118/141402-MS 10.1023/A:1011521413158 10.1016/j.jcp.2017.02.032 10.1002/nme.5320 10.1016/j.jcp.2006.01.001 10.2118/149690-PA 10.1002/cpe.4460 10.2118/65092-PA 10.2118/106023-MS 10.1016/S0377-0427(00)00516-1 10.2118/51931-MS 10.1137/S0036142902406636 10.1137/S0036142900370824 10.1016/j.jcp.2016.09.063 10.1016/j.jcp.2018.08.043 10.1137/120885188 10.2118/163592-MS 10.1016/j.cma.2020.113229 10.2118/182630-PA 10.1080/00207160.2014.998208 10.2307/2006422 10.1016/j.jcp.2015.07.019 10.1002/nla.1821 10.1007/978-3-319-62458-7_5 10.1137/17M1161178 10.2118/8284-PA 10.2118/9303-PA 10.1063/1.1745403 10.1016/j.petrol.2011.10.012 10.1137/17M1144350 10.1016/j.cma.2020.113122 10.1016/j.jcp.2013.08.042 10.2516/ogst/2013184 10.1002/fld.4952 10.2118/5729-MS 10.1016/j.jcp.2017.01.052 10.1137/0721026 10.1137/140970379 10.1137/130936610 10.1137/080742117 10.1002/nla.325 10.1016/j.jcp.2020.109934 10.2118/182694-MS 10.1002/nme.4711 10.1039/C7EE02342A 10.2118/81909-PA 10.1006/jcph.2002.7176 10.1016/j.jcp.2019.108887 10.3997/2214-4609.201903117 10.2118/173241-MS 10.1017/9781009019781 10.2118/9781613993286 10.3997/2214-4609.202035046 10.1093/imanum/3.1.41 10.1007/s10596-020-09981-2 10.1016/j.jcp.2016.05.001 10.1137/17M1153674 10.1137/1.9781611971057.ch4 10.1007/s00211-002-0444-7 10.1002/nla.2361 10.1016/j.jcp.2018.06.075 10.1016/j.petlm.2021.05.002 10.1145/355887.355893 10.1016/j.jpdc.2018.04.017 10.1007/s10596-019-09835-6 10.1002/nla.1887 10.1002/fld.936 10.1016/j.cma.2018.09.039 10.1016/j.jcp.2019.109194 10.1137/050638473 10.1002/nla.2144 10.1017/S0962492917000083 10.2118/12265-MS 10.6028/jres.049.006 10.1016/j.jcp.2015.08.016 10.1093/oso/9780198501787.001.0001 10.1007/s00791-013-0209-0 10.2118/141473-PA 10.1007/s10596-019-9827-z 10.1016/0010-4655(89)90164-1 10.2118/96809-MS 10.2118/182701-PA 10.1039/C3EE42350F 10.1137/140953691 10.1016/j.cma.2017.08.025 10.1145/509593.509621 10.1137/0913035 10.1016/j.parco.2017.12.006 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION JQ2 |
DOI | 10.1007/s11831-022-09739-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1886-1784 |
EndPage | 4378 |
ExternalDocumentID | 10_1007_s11831_022_09739_2 |
GrantInformation_xml | – fundername: Qatar National Research Fund grantid: NPRP11S-1210-170079 funderid: http://dx.doi.org/10.13039/100008982 – fundername: Hamad bin Khalifa University |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M0N M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JZLTJ PHGZM PHGZT ABRTQ JQ2 |
ID | FETCH-LOGICAL-c363t-9930c06fb8f0de03e7f7187586fe023bb542768333e0e736a12d0f557684bd7e3 |
IEDL.DBID | U2A |
ISSN | 1134-3060 |
IngestDate | Fri Jul 25 10:48:43 EDT 2025 Tue Jul 01 04:16:06 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Fri Feb 21 02:45:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-9930c06fb8f0de03e7f7187586fe023bb542768333e0e736a12d0f557684bd7e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s11831-022-09739-2 |
PQID | 2716216520 |
PQPubID | 1486352 |
PageCount | 38 |
ParticipantIDs | proquest_journals_2716216520 crossref_primary_10_1007_s11831_022_09739_2 crossref_citationtrail_10_1007_s11831_022_09739_2 springer_journals_10_1007_s11831_022_09739_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | State of the Art Reviews |
PublicationTitle | Archives of computational methods in engineering |
PublicationTitleAbbrev | Arch Computat Methods Eng |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | OlsonLNSchroderJBTuminaroRSA general interpolation strategy for algebraic multigrid using energy minimizationSIAM J Sci Comput.2011332966991280119710.1137/1008030311233.65096 Rock Flow Dynamics.: tNavigator Technical Description. Available from: https://rfdyn.com/tnavigator/tnavigator-technical-description Axelsson O. Iterative Solution Methods. Cambridge, United Kingdom: Cambridge University Press; 1994. Available from: https://www.cambridge.org/core/product/identifier/9780511624100/type/book D’ambraPFilipponeSVassilevskiPSBootCMatchACM Trans Math Softw.201844412510.1145/31906471484.65059 GyryaVLipnikovKThe arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensorJ Comput Phys.2017348549566368964710.1016/j.jcp.2017.07.0191380.65325 ManteuffelTARugeJSouthworthBSNonsymmetric algebraic multigrid based on local approximate ideal restriction (lAIR)SIAM J Sci Comput.2018406A4105A413010.1137/17M11443501412.65130 ManteuffelTSouthworthBSConvergence in norm of nonsymmetric algebraic multigridSIAM J Sci Comput.2019415S269S296402476310.1137/18M11937731436.65051 Li G, Wallis J. Enhanced constrained pressure residual ECPR preconditioning for solving difficult large scale thermal models. In: SPE Reserv Simul Conf. Montgomery, Texas: Society of Petroleum Engineers; 2017. p. SPE–182619–MS. Available from: http://www.onepetro.org/doi/10.2118/182619-MS Cao H, Tchelepi HA, Wallis JR, Yardumian HE. Parallel scalable unstructured CPR-type linear solver for reservoir simulation. In: SPE Annu Tech Conf Exhib. Dallas, Texas: Society of Petroleum Engineers; 2005. p. SPE–96809–MS. Available from: http://www.onepetro.org/doi/10.2118/96809-MS Wallis JR. Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration. In: SPE Reserv Simul Symp. San Francisco, California: Society of Petroleum Engineers; 1983. p. 325–334. Available from: http://www.onepetro.org/doi/10.2118/12265-MS BeanMLipnikovKYiSYA block-diagonal preconditioner for a four-field mixed finite element method for Biot’s equationsAppl Numer Math.2017122113370908810.1016/j.apnum.2017.07.0071433.76069 Aavatsmark I, Barkve T, Bøe O, Mannseth T (1998) Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J Sci Comput. 19(5):1700–1716. https://doi.org/10.1137/S1064827595293582 Liu J, Yang W, Dong M, Marsden AL (2020) The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations. Comput Methods Appl Mech Eng. 367:113122, 113122. https://doi.org/10.1016/j.cma.2020.113122 Efendiev Y, Hou TY. Multiscale Finite Element Methods. New York, NY: Springer; 2009. Available from: http://link.springer.com/10.1007/978-0-387-09496-0 Lake LW, Johns R, Rossen B, Pope G. Fundamentals of Enhanced Oil Recovery. Richardson, Texas, USA: Society of Petroleum Engineers; 2014. Available from: https://store.spe.org/Fundamentals-ofEnhanced-Oil-Recovery-P921.aspx ZhouYJiangYTchelepiHAA scalable multistage linear solver for reservoir models with multisegment wellsComput Geosci.2013172197216303618610.1007/s10596-012-9324-01382.86007 Karypis G, Kumar V. Parallel threshold-based ILU factorization. In: Proc 1997 ACM/IEEE Conf Supercomput - Supercomput ’97. San Jose, CA, USA: ACM Press; 1997. p. 1–24. Available from: http://portal.acm.org/citation.cfm?doid=509593.509621 JonesMTPlassmannPEScalable iterative solution of sparse linear systemsParallel Comput.1994205753773128107910.1016/0167-8191(94)90004-30802.65034 Ferronato M (2012) Preconditioning for sparse linear systems at the dawn of the 21st century: History, current developments, and future perspectives. ISRN Appl Math. 2012:127647. https://doi.org/10.5402/2012/127647 CortinovisDJennyPZonal multiscale finite-volume frameworkJ Comput Phys.20173378497362314810.1016/j.jcp.2017.01.0521415.65244 DuffISMeurantGAThe effect of ordering on preconditioned conjugate gradientsBIT.1989294635657103812210.1007/BF019327380687.65037 ChenRCaiXCA parallel two-level domain decomposition based one-shot method for shape optimization problemsInt J Numer Methods Eng.20149913945965325793010.1002/nme.47111352.76046 BondyJAMurtyUSRGraph Theory with Applications1976New York, New York, USAElsevier Science Publishing Co., Inc.10.1007/978-1-349-03521-2 BabaeiMKingPRA modified nested-gridding for upscaling-downscaling in reservoir simulationTransp Porous Media.201293375377510.1007/s11242-012-9981-4 White JA, Castelletto N, Klevtsov S, Bui QM, Osei-Kuffuor D, Tchelepi HA (2019) A two-stage preconditioner for multiphase poromechanics in reservoir simulation. Comput Methods Appl Mech Eng. 357:112575, 112575. https://doi.org/10.1016/j.cma.2019.112575 ChenZHouTYA mixed multiscale finite element method for elliptic problems with oscillating coefficientsMath Comput.200372242541577195495610.1090/S0025-5718-02-01441-21017.65088 WheelerMFYotovIA multipoint flux mixed finite element methodSIAM J Numer Anal.200644520822106226304110.1137/0506384731121.76040 WuSLBergamaschiLLiCXA note on eigenvalue distribution of constraint-preconditioned symmetric saddle point matricesNumer Linear Algebr with Appl.201421117117410.1002/nla.18871324.65046 Moncorgé A, Tchelepi HA, Jenny P (2018) Sequential fully implicit formulation for compositional simulation using natural variables. J Comput Phys 371:690–711 https://doi.org/10.1016/j.jcp.2018.05.048 AarnesJEKippeVLieKAMixed multiscale finite elements and streamline methods for reservoir simulation of large geomodelsAdv Water Resour.200528325727110.1016/j.advwatres.2004.10.007 AxelssonOBlahetaRByczanskiPStable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matricesComput Vis Sci.201215191207314814210.1007/s00791-013-0209-01388.74035 Anciaux-SedrakianAGottschlingPGratienJMGuignonTSurvey on efficient linear solvers for porous media flow models on recent hardware architecturesOil Gas Sci Technol - Rev d’IFP Energies Nouv.201469475376610.2516/ogst/2013184 Gries S, Plum HJ. Status of system-AMG for reservoir simulation applications. In: SPE Reserv Simul Symp. Houston, Texas, USA: Society of Petroleum Engineers; 2015. p. SPE–173241–MS ParramoreEEdwardsMGPalMLamineSMultiscale finite-volume CVD-MPFA formulations on structured and unstructured gridsMultiscale Model Simul.2016142559594348439110.1137/1409536911381.76224 BootlandNBentleyAKeesCWathenAPreconditioners for two-phase incompressible Navier-Stokes flowSIAM J Sci Comput.2019414B843B869399530710.1137/17M11536741421.76161 Wang L, Osei-Kuffuor D, Falgout R, Mishev I, Li J. Multigrid reduction for coupled flow problems with application to reservoir simulation. In: SPE Reserv Simul Conf. Montgomery, Texas, USA: Society of Petroleum Engineers; 2017. p. SPE–182723–MS. Available from: http://www.onepetro.org/doi/10.2118/182723-MS AarnesJEKrogstadSLieKAA hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse gridsMultiscale Model Simul.200652337363224775410.1137/0506345661124.76022 PakzadMLloydJLPhillipsCIndependent columns: A new parallel ILU preconditioner for the PCG methodParallel Comput.1997236637647145308310.1016/S0167-8191(97)00026-40907.68030 BrambleJHMultigrid Methods1993Boca Raton, Florida, USAChapman and Hall/CRC0786.65094 LieKAMøynerONatvigJRUse of multiple multiscale operators to accelerate simulation of complex geomodelsSPE J.20172261929194510.2118/182701-PA CastellettoNWhiteJAFerronatoMScalable algorithms for three-field mixed finite element coupled poromechanicsJ Comput Phys.2016327894918356436910.1016/j.jcp.2016.09.0631373.76312 BergamaschiLOn eigenvalue distribution of constraint-preconditioned symmetric saddle point matricesNumer Linear Algebr with Appl.2012194754772295125310.1002/nla.8061274.65084 JonesMTPlassmannPEAn improved incomplete Cholesky factorizationACM Trans Math Softw.1995211517136581010.1145/200979.2009810886.65024 LieKKrogstadSLigaardenISNatvigJRNilsenHMSkaflestadBOpen-source MATLAB implementation of consistent discretisations on complex gridsComput Geosci.201216229732210.1007/s10596-011-9244-41348.86002 Manea AM, Hajibeygi H, Vassilevski P, Tchelepi HA. Parallel enriched algebraic multiscale solver. In: SPE Reserv Simul Conf. Montgomery, Texas, USA: SPE; 2017. p. SPE–182694–MS. Available from: https://onepetro.org/spersc/proceedings/17RSC/1-17RSC/Montgomery,Texas,USA/208231 CaiXCKeyesDENonlinearly preconditioned inexact Newton algorithmsSIAM J Sci Comput.2002241183200192442010.1137/S106482750037620X1015.65058 LunatiIJennyPMultiscale finite-volume method for density-driven flow in porous mediaComput Geosci.2008123337350243494810.1007/s10596-007-9071-91259.76051 Lie KA, Møyner O, editors. Advanced Modeling with the MATLAB Reservoir Simulation Toolbox. Cambridge, United Kingdom: Cambridge University Press; 2021. Available from: https://www.cambridge.org/core/product/identifier/9781009019781/type/book FaberVManteuffelTNecessary and sufficient conditions for the existence of a conjugate gradient methodSIAM J Numer Anal.198421235236273633710.1137/07210260546.65010 HosseiniMehr M, Vuik C, Hajibeygi H (2020) Adaptive dynamic multilevel simulation of fractured geothermal reservoirs. J Comput Phys X. 7:100061, 100061. https://doi.org/10.1016/j.jcpx.2020.100061 AnztHDongarraJFlegarGQuintana-OrtíESVariable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning on graphics processorsParallel Comput.201981131146391312810.1016/j.parco.2017.12.006 Dong X, Cooperman G. A Bit-Compatible Parallelization for ILU(k) Preconditioning. In: Jeannot E, Namyst R, Roman J, editors. Euro-Par 2011 Parallel Process Euro-Par 2011 Lect Notes Comput Sci. Berlin, Heidelberg: Springer, Berlin, Heidelberg; 2011. p. 66–77. Available from: http://link.springer.com/10.1007/978-3-642-23397-5_8 JennyPLeeSHTchelepiHAAdaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous mediaJ Comput Phys.20062 R Chen (9739_CR194) 2014; 99 K Pruess (9739_CR129) 2012 P Jenny (9739_CR232) 2003; 187 A Brandt (9739_CR137) 1977; 31 PA Forsyth (9739_CR36) 1986; 62 E Anderson (9739_CR112) 1989; 1 P D’ambra (9739_CR156) 2018; 44 HS Tang (9739_CR203) 2020 O Møyner (9739_CR238) 2016; 304 JJ Douglas (9739_CR45) 1983; 17 V Faber (9739_CR76) 1984; 21 E Parramore (9739_CR250) 2016; 14 R Nabben (9739_CR180) 2003; 95 CC Paige (9739_CR64) 1975; 12 9739_CR88 A Moncorgé (9739_CR30) 2020; 24 A Behie (9739_CR66) 1982; 22 9739_CR179 9739_CR1 I Aavatsmark (9739_CR43) 2002; 6 9739_CR299 N Munksgaard (9739_CR91) 1980; 6 9739_CR176 F Kong (9739_CR193) 2016; 38 9739_CR81 VA Paludetto Magri (9739_CR150) 2019; 41 9739_CR175 9739_CR80 9739_CR294 9739_CR172 9739_CR8 9739_CR85 9739_CR292 9739_CR84 9739_CR291 P Jenny (9739_CR244) 2009; 228 AJ Wathen (9739_CR79) 2015; 24 O Massarweh (9739_CR3) 2020; 6 RE Bank (9739_CR281) 1989; 29 K Lipnikov (9739_CR215) 2008; 227 M Ries (9739_CR147) 1983; 49 H Liu (9739_CR184) 2016; 23 Y Saad (9739_CR109) 1996; 17 S Ma (9739_CR118) 1998 S Lacroix (9739_CR272) 2001; 8 O Axelsson (9739_CR305) 2012; 15 EG Phillips (9739_CR312) 2016; 38 9739_CR189 9739_CR188 V Heuveline (9739_CR121) 2011 9739_CR187 9739_CR95 A Behie (9739_CR131) 1984; 42 MT Jones (9739_CR93) 1995; 21 MF Wheeler (9739_CR51) 2006; 44 TA Manteuffel (9739_CR167) 2018; 40 C Wolfsteiner (9739_CR243) 2006; 5 MT Jones (9739_CR101) 1994; 20 GW Thomas (9739_CR35) 1983; 23 JA Bondy (9739_CR96) 1976 H Yang (9739_CR186) 2019; 396 N Castelletto (9739_CR306) 2016; 327 A Brandt (9739_CR151) 2011; 33 T Arbogast (9739_CR224) 2002; 6 H Anzt (9739_CR82) 2019; 81 I Lunati (9739_CR213) 2011; 230 Y Efendiev (9739_CR221) 2013; 251 AL Yang (9739_CR296) 2015; 282 JA White (9739_CR307) 2016; 303 9739_CR196 Y Wang (9739_CR251) 2014; 259 K Stüben (9739_CR173) 2001; 128 ACN van Duin (9739_CR123) 1999; 20 M Wathen (9739_CR313) 2017; 39 T Manteuffel (9739_CR169) 2019; 41 M Vasilyeva (9739_CR248) 2019; 376 S Gries (9739_CR285) 2014; 19 F Zanetti (9739_CR300) 2020; 13 M Bean (9739_CR308) 2017; 122 JA Meijerink (9739_CR86) 1977; 31 MA Heroux (9739_CR113) 1991; 8 A Quarteroni (9739_CR202) 1999 M Ferronato (9739_CR315) 2008; 197 H Yang (9739_CR185) 2018; 330 JM Nordbotten (9739_CR210) 2008; 12 TA Manteuffel (9739_CR170) 2019; 41 CN Dawson (9739_CR278) 1997; 1 M Brezina (9739_CR152) 2012; 19 JH Bramble (9739_CR171) 1993 N Bootland (9739_CR298) 2019; 41 J Brannick (9739_CR168) 2018; 40 K Esler (9739_CR11) 2021 H Horníková (9739_CR301) 2021; 93 S Shah (9739_CR246) 2016; 318 JO Skogestad (9739_CR181) 2013; 234 M Babaei (9739_CR208) 2012; 93 L Bergamaschi (9739_CR320) 2012; 19 S Nardean (9739_CR284) 2021 XC Cai (9739_CR195) 2002; 40 V Gyrya (9739_CR58) 2017; 348 XC Cai (9739_CR190) 1999; 21 H Zhou (9739_CR183) 2012; 17 O Møyner (9739_CR249) 2014; 19 AF Rasmussen (9739_CR128) 2021; 81 F Brezzi (9739_CR53) 2005; 15 M Pakzad (9739_CR114) 1997; 23 IS Duff (9739_CR99) 1989; 29 I Dassios (9739_CR303) 2015; 37 Ø Klemetsdal (9739_CR201) 2021 H Anzt (9739_CR165) 2018; 40 9739_CR304 DV Voskov (9739_CR15) 2012; 82–83 I Lunati (9739_CR212) 2009; 8 Y Saad (9739_CR75) 1986; 7 C Rodrigo (9739_CR139) 2012; 19 SH Lee (9739_CR264) 2009; 228 9739_CR319 JH Adler (9739_CR309) 2020; 42 9739_CR317 K Lipnikov (9739_CR57) 2016; 305 9739_CR310 C Qiao (9739_CR282) 2017; 336 M Muskat (9739_CR16) 1936; 7 JE Aarnes (9739_CR229) 2004; 2 N Li (9739_CR92) 2003; 25 RH Brooks (9739_CR19) 1964 G Chavent (9739_CR48) 1991; 14 S Lacroix (9739_CR280) 2003; 25 M HosseiniMehr (9739_CR219) 2018; 373 TA Manteuffel (9739_CR143) 2017; 39 9739_CR329 9739_CR207 9739_CR327 9739_CR204 K Wang (9739_CR10) 2018; 328 9739_CR200 T Arbogast (9739_CR225) 2002; 7 S Gries (9739_CR162) 2016 M Bui (9739_CR6) 2018; 11 M Benzi (9739_CR125) 2002; 182 O Møyner (9739_CR29) 2020; 24 V Dolean (9739_CR199) 2016; 38 9739_CR217 P Chidyagwai (9739_CR323) 2016; 38 OB Widlund (9739_CR178) 1987 Y Zhou (9739_CR269) 2013; 17 JW Watts (9739_CR23) 1986; 1 A Brandt (9739_CR153) 2015; 8 Y Yang (9739_CR222) 2019; 391 H Anzt (9739_CR164) 2016; 73 D Alfarge (9739_CR2) 2020 P Jenny (9739_CR233) 2005; 3 JE Aarnes (9739_CR230) 2005; 28 9739_CR18 9739_CR17 H Hajibeygi (9739_CR253) 2008; 227 XC Cai (9739_CR197) 2002; 24 R Mosé (9739_CR49) 1994; 30 K Lie (9739_CR54) 2012; 16 9739_CR107 9739_CR12 9739_CR106 C Keller (9739_CR318) 2000; 21 9739_CR105 9739_CR14 9739_CR104 9739_CR13 9739_CR103 9739_CR102 HC Elman (9739_CR100) 1989; 53 9739_CR220 T Arbogast (9739_CR226) 2004; 42 D Hysom (9739_CR120) 2001; 22 PE Farrell (9739_CR297) 2019; 41 EC Cyr (9739_CR311) 2013; 35 TA Davis (9739_CR62) 2016; 25 L Bergamaschi (9739_CR325) 2008; 227 D Cortinovis (9739_CR235) 2017; 337 SH Lee (9739_CR240) 2008; 12 LN Olson (9739_CR142) 2011; 33 9739_CR119 S Gries (9739_CR163) 2018; 23 KA Lie (9739_CR239) 2017; 21 9739_CR20 9739_CR117 9739_CR22 9739_CR116 9739_CR237 9739_CR236 QM Bui (9739_CR290) 2017; 39 9739_CR24 H Zhou (9739_CR211) 2008; 13 9739_CR27 T Roy (9739_CR293) 2019; 395 9739_CR26 L Li (9739_CR44) 2021 FJ Gaspar (9739_CR155) 2017; 326 BF Smith (9739_CR138) 1996 L Bergamaschi (9739_CR326) 2012; 221–222 CL Farmer (9739_CR206) 2002; 40 E Chow (9739_CR124) 2018; 119 A Brandt (9739_CR154) 2015; 44 Y Saad (9739_CR97) 1986 JW Watts III (9739_CR90) 1981; 21 TT Garipov (9739_CR271) 2018; 22 9739_CR39 M Cusini (9739_CR218) 2016; 314 P Kumar (9739_CR108) 2016; 93 S Bellavia (9739_CR302) 2013; 35 ØS Klemetsdal (9739_CR214) 2020; 24 9739_CR32 9739_CR31 9739_CR34 9739_CR33 9739_CR127 9739_CR126 T Arbogast (9739_CR50) 1997; 34 J Xu (9739_CR174) 2017; 26 9739_CR37 Y Jung (9739_CR130) 2018 9739_CR242 Y Saad (9739_CR94) 1994; 1 A Dziekonski (9739_CR83) 2018; 17 Z Chen (9739_CR228) 2003; 72 ZE Heinemann (9739_CR38) 1991; 6 P Jenny (9739_CR25) 2006; 217 Y Saad (9739_CR110) 1999; 20 P Vaněk (9739_CR141) 1996; 56 HA van der Vorst (9739_CR77) 1992; 13 A Franceschini (9739_CR157) 2019; 352 QM Bui (9739_CR149) 2020; 42 9739_CR42 QM Bui (9739_CR148) 2018; 114 G Singh (9739_CR223) 2019; 23 G Singh (9739_CR274) 2018; 375 9739_CR259 9739_CR47 9739_CR46 9739_CR136 9739_CR257 9739_CR256 9739_CR134 H Hajibeygi (9739_CR245) 2011; 230 9739_CR133 9739_CR132 A Frommer (9739_CR191) 2001; 39 E Efstathiou (9739_CR192) 2003; 43 SL Wu (9739_CR322) 2014; 21 R Künze (9739_CR216) 2013; 255 9739_CR41 X Hu (9739_CR9) 2013; 11 EL Poole (9739_CR98) 1987; 24 M Wathen (9739_CR314) 2020; 42 T Roy (9739_CR286) 2020; 42 TY Hou (9739_CR209) 1997; 134 K Aziz (9739_CR21) 1979 AM Manea (9739_CR255) 2016; 21 D Sesana (9739_CR321) 2013; 438 9739_CR55 L Liu (9739_CR198) 2015; 37 9739_CR268 9739_CR146 JE Aarnes (9739_CR231) 2006; 5 9739_CR267 9739_CR59 I Lunati (9739_CR241) 2008; 12 9739_CR266 9739_CR265 KH Coats (9739_CR279) 2000; 5 I Gustafsson (9739_CR89) 1978; 18 9739_CR263 9739_CR140 Y Saad (9739_CR144) 2002; 9 9739_CR261 9739_CR52 E Chow (9739_CR122) 2015; 37 O Massarweh (9739_CR4) 2021 DS Kershaw (9739_CR87) 1978; 26 Z Li (9739_CR145) 2003; 10 V Dolean (9739_CR182) 2015 M Ţene (9739_CR247) 2016; 321 A Anciaux-Sedrakian (9739_CR158) 2014; 69 A Franceschini (9739_CR316) 2019; 344 9739_CR65 KA Lie (9739_CR258) 2017; 22 M Benzi (9739_CR295) 2005; 14 9739_CR69 9739_CR159 Q Chen (9739_CR328) 2021 9739_CR277 9739_CR276 A Behie (9739_CR67) 1983; 3 9739_CR275 9739_CR273 9739_CR61 9739_CR60 K Wang (9739_CR288) 2015; 301 9739_CR63 9739_CR270 W Li (9739_CR68) 2005; 48 HA Schwarz (9739_CR177) 1870; 15 MA Christie (9739_CR205) 1996; 48 T Arbogast (9739_CR227) 2006; 44 K Lipnikov (9739_CR56) 2014; 257 9739_CR78 D Osei-Kuffuor (9739_CR135) 2015; 37 MG Edwards (9739_CR40) 1998; 2 FM Baena-Moreno (9739_CR7) 2019; 41 N Castelletto (9739_CR262) 2019; 23 D Pasetto (9739_CR254) 2017; 109 9739_CR289 9739_CR166 9739_CR287 I Lunati (9739_CR234) 2006; 216 L Bergamaschi (9739_CR324) 2007; 196 J Jiang (9739_CR28) 2019; 352 9739_CR70 ME Boot-Handford (9739_CR5) 2014; 7 9739_CR72 9739_CR71 HA van der Vorst (9739_CR111) 1989; 10 9739_CR161 N Castelletto (9739_CR260) 2017; 331 9739_CR74 9739_CR160 A Franceschini (9739_CR283) 2021; 25 9739_CR73 P Gonzales (9739_CR115) 1999; 9 M Cusini (9739_CR252) 2015; 299 |
References_xml | – reference: ShahSMøynerOTeneMLieKAHajibeygiHThe multiscale restriction smoothed basis method for fractured porous media (F-MsRSB)J Comput Phys.20163183657350398710.1016/j.jcp.2016.05.0011349.76385 – reference: ManteuffelTSouthworthBSConvergence in norm of nonsymmetric algebraic multigridSIAM J Sci Comput.2019415S269S296402476310.1137/18M11937731436.65051 – reference: Halliburton. Nexus: Technical reference guide; 2014 – reference: AzizKSettariAPetroleum Reservoir Simulation1979London, United KingdomApplied Science Publishers – reference: JonesMTPlassmannPEScalable iterative solution of sparse linear systemsParallel Comput.1994205753773128107910.1016/0167-8191(94)90004-30802.65034 – reference: SkogestadJOKeilegavlenENordbottenJMDomain decomposition strategies for nonlinear flow problems in porous mediaJ Comput Phys.2013234439451299978610.1016/j.jcp.2012.10.001 – reference: WolfsteinerCLeeSHTchelepiHAWell modeling in the multiscale finite volume method for subsurface flow simulationMultiscale Model Simul.200653900917225723910.1137/0506407711205.76175 – reference: NabbenRComparisons between multiplicative and additive Schwarz iterations in domain decomposition methodsNumer Math.2003951145162199394210.1007/s00211-002-0444-71026.65021 – reference: Aavatsmark I, Barkve T, Bøe O, Mannseth T (1998) Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results. SIAM J Sci Comput. 19(5):1717–1736, 109607. https://doi.org/10.1137/S1064827595293594 – reference: Darlow BL, Ewing RE, Wheeler MF (1984) Mixed finite element method for miscible displacement problems in porous media. SPE J. 24(04):10501. https://doi.org/10.2118/10501-PA – reference: Ferronato M, Franceschini A, Janna C, Castelletto N, Tchelepi HA (2019) A general preconditioning framework for coupled multiphysics problems with application to contact- and poro-mechanics. J Comput Phys. 398:108887, 108887. https://doi.org/10.1016/j.jcp.2019.108887 – reference: LunatiIJennyPMultiscale finite-volume method for density-driven flow in porous mediaComput Geosci.2008123337350243494810.1007/s10596-007-9071-91259.76051 – reference: EfstathiouEGanderMJWhy restricted additive Schwarz converges faster than additive SchwarzBIT Numer Math.2003435945959205887710.1023/B:BITN.0000014563.33622.1d1045.65027 – reference: BeanMLipnikovKYiSYA block-diagonal preconditioner for a four-field mixed finite element method for Biot’s equationsAppl Numer Math.2017122113370908810.1016/j.apnum.2017.07.0071433.76069 – reference: ManteuffelTAOlsonLNSchroderJBSouthworthBSA root-node-based Algebraic multigrid methodSIAM J Sci Comput.2017395S723S756371658110.1137/16M10827061392.65064 – reference: HysomDPothenAA scalable parallel algorithm for incomplete factor preconditioningSIAM J Sci Comput.200122621942215185630910.1137/S10648275003761930986.65048 – reference: MassarwehOAbushaikhaASA review of recent developments in CO2 mobility control in enhanced oil recoveryPetroleum202110.1016/j.petlm.2021.05.002 – reference: CaiXCKeyesDENonlinearly preconditioned inexact Newton algorithmsSIAM J Sci Comput.2002241183200192442010.1137/S106482750037620X1015.65058 – reference: GriesSOn the convergence of system-AMG in reservoir simulationSPE J.2018230258959710.2118/182630-PA – reference: Ries M, Trottenberg U. MGR-ein blitzschneller elliptischer löser. Universität Bonn; 1979 – reference: Abushaikha AS, Terekhov KM (2020) A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability. J Comput Phys. 406:109194. https://doi.org/10.1016/j.jcp.2019.109194 – reference: WattsJWIIIA conjugate gradient-truncated direct method for the iterative solution of the reservoir simulation pressure equationSoc Pet Eng J.198121334535310.2118/8252-PA – reference: Nilsen HM, Lie KAA, Natvig JR (2012) Accurate modeling of faults by multipoint, mimetic, and mixed methods. SPE J. 17(02):149690. https://doi.org/10.2118/149690-PA – reference: MaSSaadYDistributed ILU(0) and SOR preconditioners for unstructured sparse linear systems1998Minneapolis, Minnesota, USAArmy High Performance Computing Research Center, University of Minnesota – reference: SesanaDSimonciniVSpectral analysis of inexact constraint preconditioning for symmetric saddle point matricesLinear Algebra Appl.2013438626832700300852610.1016/j.laa.2012.11.0221263.65029 – reference: FranceschiniAPaludetto MagriVAMazzuccoGSpieziaNJannaCA robust adaptive algebraic multigrid linear solver for structural mechanicsComput Methods Appl Mech Eng.2019352389416395008110.1016/j.cma.2019.04.0341441.74302 – reference: BuiQMElmanHCMoultonJDAlgebraic multigrid preconditioners for multiphase flow in porous mediaSIAM J Sci Comput.2017395S662S680371657710.1137/16M10826521392.65024 – reference: LunatiILeeSHAn operator formulation of the multiscale finite-volume method with correction functionMultiscale Model Simul.20098196109257504610.1137/0807421171404.65222 – reference: ArbogastTAnalysis of a two-scale, locally conservative subgrid upscaling for elliptic problemsSIAM J Numer Anal.2004422576598208422710.1137/S00361429024066361078.65092 – reference: GriesSSystem-AMG approaches for industrial fully and adaptive implicit oil reservoir simulation [PhD dissertation]2016Cologne, GermanyUniversity of Cologne – reference: CaiXCKeyesDEMarcinkowskiLNon-linear additive Schwarz preconditioners and application in computational fluid dynamicsInt J Numer Methods Fluids.2002401214631470195760010.1002/fld.4041025.76040 – reference: SinghGLeungWWheelerMFMultiscale methods for model order reduction of non-linear multiphase flow problemsComput Geosci.2019232305323394194410.1007/s10596-018-9798-51414.76088 – reference: VoskovDVTchelepiHAComparison of nonlinear formulations for two-phase multi-component EoS based simulationJ Pet Sci Eng.201282–8310111110.1016/j.petrol.2011.10.012 – reference: Rock Flow Dynamics. tNavigator: User guide; 2016 – reference: ChidyagwaiPLadenheimSSzyldDBConstraint preconditioning for the coupled Stokes-Darcy systemSIAM J Sci Comput.2016382A668A690346542610.1137/15M10321561382.76162 – reference: MoncorgéAMøynerOTchelepiHAJennyPConsistent upwinding for sequential fully implicit multiscale compositional simulationComput Geosci.2020242533550408740010.1007/s10596-019-09835-61434.76128 – reference: Younes A, Ackerer P, Delay F (2010) Mixed finite elements for solving 2-D diffusion-type equations. Rev Geophys. 48(1):RG100,. https://doi.org/10.1029/2008RG000277 – reference: ChristieMAUpscaling for reservoir simulationJ Pet Technol.199648111004101010.2118/37324-JPT – reference: HorníkováHVuikCEgermaierJA comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equationsInt J Numer Methods Fluids.202193617881815425262610.1002/fld.4952 – reference: WathenMGreifCA scalable approximate inverse block preconditioner for an incompressible magnetohydrodynamics model problemSIAM J Sci Comput.2020421B57B79404802010.1137/19M12554091428.76177 – reference: ElmanHCAgrónEOrdering techniques for the preconditioned conjugate gradient method on parallel computersComput Phys Commun.1989531–325326910.1016/0010-4655(89)90164-10798.65038 – reference: FerronatoMJannaCGambolatiGMixed constraint preconditioning in computational contact mechanicsComput Methods Appl Mech Eng.200819745–4839223931245812010.1016/j.cma.2008.03.0081194.74522 – reference: KershawDSThe incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equationsJ Comput Phys.1978261436548866910.1016/0021-9991(78)90098-00367.65018 – reference: WidlundOBDryjaMAn additive variant of the Schwarz alternating method for the case of many subregions1987New York, New York, USADepartment of Computer Science, Courant Institute – reference: PaigeCCSaundersMASolution of sparse indefinite systems of linear equationsSIAM J Numer Anal.197512461762938371510.1137/07120470319.65025 – reference: Zhou Y, Tchelepi HA. Multi-GPU parallelization of nested factorization for solving large linear systems. In: SPE Reserv Simul Symp. The Woodlands, Texas, USA: Society of Petroleum Engineers; 2013. p. SPE–163588–MS. Available from: https://onepetro.org/spersc/proceedings/13RSS/All-13RSS/TheWoodlands,Texas,USA/177563 – reference: BehieAVinsomePKWBlock iterative methods for fully implicit reservoir simulationSoc Pet Eng J.198222565866810.2118/9303-PA – reference: Murphy MF, Golub GH, Wathen AJ (2000) A note on preconditioning for indefinite linear systems. SIAM J Sci Comput. 21(6):1969–1972, e2144. https://doi.org/10.1137/S1064827599355153 – reference: RoyTJönsthövelTBLemonCWathenAJA constrained pressure-temperature residual (CPTR) method for non-isothermal multiphase flow in porous mediaSIAM J Sci Comput.2020424B1014B1040412900610.1137/19M12920231452.76101 – reference: GustafssonIA class of first order factorization methodsBIT.197818214215649923010.1007/BF019316910386.65006 – reference: Mohajeri S, Eslahi R, Bakhtiari M, Alizadeh A, Madani M, Zeinali M et al (2020) A novel linear solver for simulating highly heterogeneous black oil reservoirs. J Pet Sci Eng. 194:107506, 107506. https://doi.org/10.1016/j.petrol.2020.107506 – reference: HosseiniMehr M, Vuik C, Hajibeygi H (2020) Adaptive dynamic multilevel simulation of fractured geothermal reservoirs. J Comput Phys X. 7:100061, 100061. https://doi.org/10.1016/j.jcpx.2020.100061 – reference: T Camargo J, White JA, Castelletto N, Borja RI. Preconditioners for multiphase poromechanics with strong capillarity. Int J Numer Anal Methods Geomech. 2021 ;45(9):1141–1168. DOI: 10.1002/nag.3192 – reference: BrezinaMKetelsenCManteuffelTMcCormickSParkMRugeJRelaxation-corrected bootstrap algebraic multigrid (rBAMG)Numer Linear Algebr with Appl.201219217819310.1002/nla.18211274.65269 – reference: Kayum S, Cancelliere M, Rogowski M, Al-Zawawi A. Application of Algebraic multigrid in fully implicit massive reservoir simulations. In: SPE Eur Featur 81st EAGE Conf Exhib. London, United Kingdom: Society of Petroleum Engineers; 2019. p. SPE–195472–MS. Available from: https://onepetro.org/SPEEURO/proceedings/19EURO/4-19EURO/London,England,UK/217876 – reference: LiZSaadYSosonkinaMpARMS: A parallel version of the algebraic recursive multilevel solverNumer Linear Algebr with Appl.2003105–6485509200837110.1002/nla.3251071.65532 – reference: VasilyevaMChungETEfendievYKimJConstrained energy minimization based upscaling for coupled flow and mechanicsJ Comput Phys.2019376660674387553910.1016/j.jcp.2018.09.0541416.76163 – reference: CortinovisDJennyPZonal multiscale finite-volume frameworkJ Comput Phys.20173378497362314810.1016/j.jcp.2017.01.0521415.65244 – reference: ZanettiFBergamaschiLScalable block preconditioners for linearized Navier-Stokes equations at high Reynolds numberAlgorithms.2020138199414441010.3390/a13080199 – reference: BergamaschiLMartínezÁRMCP: Relaxed Mixed Constraint Preconditioners for saddle point linear systems arising in geomechanicsComput Methods Appl Mech Eng.2012221–2225462291394910.1016/j.cma.2012.02.0041253.74032 – reference: LipnikovKMoultonJDSvyatskiyDA multilevel multiscale mimetic (M3) method for two-phase flows in porous mediaJ Comput Phys.20082271467276753243542910.1016/j.jcp.2008.03.0291338.76096 – reference: CaiXCSarkisMA restricted additive Schwarz preconditioner for general sparse linear systemsSIAM J Sci Comput.1999212792797171870710.1137/S106482759732678X0944.65031 – reference: DziekonskiAMrozowskiMBlock conjugate-gradient method with multilevel preconditioning and GPU acceleration for FEM problems in electromagneticsIEEE Antennas Wirel Propag Lett.20181761039104210.1109/LAWP.2018.2830124 – reference: Meuer H, Strohmaier E, Dongarra J, Horst S, Meuer M.: Top500 List. Available from: https://www.top500.org/ – reference: Efendiev Y, Hou TY. Multiscale Finite Element Methods. New York, NY: Springer; 2009. Available from: http://link.springer.com/10.1007/978-0-387-09496-0 – reference: LieKAMøynerONatvigJRUse of multiple multiscale operators to accelerate simulation of complex geomodelsSPE J.20172261929194510.2118/182701-PA – reference: SaadYSchultzMHGMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systemsSIAM J Sci Stat Comput.19867385686984856810.1137/09070580599.65018 – reference: CoatsKHA note on IMPES and some IMPES-based simulation modelsSPE J.20005324525110.2118/65092-PA – reference: ChenZHouTYA mixed multiscale finite element method for elliptic problems with oscillating coefficientsMath Comput.200372242541577195495610.1090/S0025-5718-02-01441-21017.65088 – reference: BergamaschiLOn eigenvalue distribution of constraint-preconditioned symmetric saddle point matricesNumer Linear Algebr with Appl.2012194754772295125310.1002/nla.8061274.65084 – reference: Nilsen H, Moncorge A, Bao K, Møyner O, Lie K, Brodtkorb A. Comparison between Algebraic multigrid and Multilevel multiscale methods for reservoir simulation. In: ECMOR XVII - 17th Eur Conf Math Oil Recover. European Association of Geoscientists & Engineers; 2020. p. 1–17. Available from: https://www.earthdoc.org/content/papers/10.3997/2214-4609.202035063 – reference: Delpopolo Carciopolo L, Formaggia L, Scotti A, Hajibeygi H (2020) Conservative multirate multiscale simulation of multiphase flow in heterogeneous porous media. J Comput Phys. 404:109134, 109134. https://doi.org/10.1016/j.jcp.2019.109134 – reference: CyrECShadidJNTuminaroRSPawlowskiRPChacónLA new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHDSIAM J Sci Comput.2013353B701B730306856810.1137/12088879X1273.76269 – reference: HuXWuSWuXHXuJZhangCSZhangSCombined preconditioning with applications in reservoir simulationMultiscale Model Simul.2013112507521305523410.1137/1208851881426.76269 – reference: FarrellPEMitchellLWechsungFAn augmented lagrangian preconditioner for the 3D stationary incompressible Navier-Stokes equations at high Reynolds numberSIAM J Sci Comput.2019415A3073A3096401613610.1137/18M12193701448.65261 – reference: Aavatsmark I, Barkve T, Bøe O, Mannseth T (1998) Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J Sci Comput. 19(5):1700–1716. https://doi.org/10.1137/S1064827595293582 – reference: BrandtAMulti-level adaptive solutions to boundary-value problemsMath Comput.19773113833339043171910.2307/20064220373.65054 – reference: WangYHajibeygiHTchelepiHAAlgebraic multiscale solver for flow in heterogeneous porous mediaJ Comput Phys.2014259284303314857110.1016/j.jcp.2013.11.0241349.76835 – reference: DawsonCNKlíeHWheelerMFWoodwardCSA parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton-Krylov solverComput Geosci.19971215249169048910.1023/A:10115214131580941.76062 – reference: Khait M. Delft advanced research terra simulator: General purpose reservoir simulator with operator-based linearization [Doctoral thesis]. Delft university of technology; 2019 – reference: GaripovTTTominPRinRVoskovDVTchelepiHAUnified thermo-compositional-mechanical framework for reservoir simulationComput Geosci.20182210391057382726510.1007/s10596-018-9737-51401.86012 – reference: HajibeygiHKarvounisDJennyPA hierarchical fracture model for the iterative multiscale finite volume methodJ Comput Phys.20112302487298743284501610.1016/j.jcp.2011.08.0211370.76095 – reference: Alvestad J, Baxendale D, Bao K, Blatt M, Hove J, Lauser A, et al. OPM flow: Reference manual. Oslo, Norway; 2021 – reference: KlemetsdalØMoncorgéAMøynerOLieKAA numerical study of the additive Schwarz preconditioned exact Newton method (ASPEN) as a nonlinear preconditioner for immiscible and compositional porous media flowComput Geosci.202110.1007/s10596-021-10090-x – reference: KumarPGrigoriLNatafFNiuQOn relaxed nested factorization and combination preconditioningInt J Comput Math.2016931179199343704910.1080/00207160.2014.9982081338.65076 – reference: KlemetsdalØSMøynerOLieKAAccelerating multiscale simulation of complex geomodels by use of dynamically adapted basis functionsComput Geosci.2020242459476408742910.1007/s10596-019-9827-z1434.86014 – reference: Rock Flow Dynamics.: tNavigator Technical Description. Available from: https://rfdyn.com/tnavigator/tnavigator-technical-description/ – reference: WhiteJACastellettoNTchelepiHABlock-partitioned solvers for coupled poromechanics: A unified frameworkComput Methods Appl Mech Eng.20163035574347345710.1016/j.cma.2016.01.0081425.74497 – reference: TangHSHaynesRDHouzeauxGA review of domain decomposition methods for simulation of fluid flows: Concepts, algorithms, and applicationsArch Comput Methods Eng.202010.1007/s11831-019-09394-0 – reference: ArbogastTBoydKJSubgrid upscaling and mixed multiscale finite elementsSIAM J Numer Anal.200644311501171223185910.1137/0506318111120.65122 – reference: Cremon MA, Castelletto N, White JA (2020) Multi-stage preconditioners for thermal-compositional-reactive flow in porous media. J Comput Phys 418:109607. https://doi.org/10.1016/j.jcp.2020.109607 – reference: Li G, Wallis J, Shaw G. A parallel linear solver algorithm for solving difficult large scale thermal models. In: SPE Reserv Simul Symp. Houston, Texas: Society of Petroleum Engineers; 2015. p. SPE–173207–MS. Available from: http://www.onepetro.org/doi/10.2118/173207-MS – reference: GyryaVLipnikovKThe arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensorJ Comput Phys.2017348549566368964710.1016/j.jcp.2017.07.0191380.65325 – reference: BehieACollinsDForsythPIncomplete factorization methods for three-dimensional non-symmetric problemsComput Methods Appl Mech Eng.198442328729910.1016/0045-7825(84)90010-00517.76102 – reference: Anzt H, Dongarra J, Flegar G, Higham NJ, Quintana-Ortí ES (2019) Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurr Comput Pract Exp. 31(6):e4460. https://doi.org/10.1002/cpe.4460 – reference: BankREChanTFCoughranWMSmithRKThe alternate-block-factorization procedure for systems of partial differential equationsBIT Numer Math.1989294938954103813710.1007/BF019327530715.65097 – reference: BergamaschiLFerronatoMGambolatiGMixed constraint preconditioners for the iterative solution of FE coupled consolidation equationsJ Comput Phys.20082272398859897246903910.1016/j.jcp.2008.08.0021154.65015 – reference: Toselli A, Widlund OB. Domain Decomposition Methods - Algorithms and Theory. vol. 34 of Springer Series in Computational Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. Available from: http://link.springer.com/10.1007/b137868 – reference: FranceschiniACastellettoNFerronatoMApproximate inverse-based block preconditioners in poroelasticityComput Geosci.2021252701714423813910.1007/s10596-020-09981-21460.65031 – reference: BootlandNBentleyAKeesCWathenAPreconditioners for two-phase incompressible Navier-Stokes flowSIAM J Sci Comput.2019414B843B869399530710.1137/17M11536741421.76161 – reference: BrannickJCaoFKahlKFalgoutRDHuXOptimal interpolation and compatible relaxation in classical algebraic multigridSIAM J Sci Comput.2018403A1473A1493380554910.1137/17M11234561448.65258 – reference: Ferronato M (2012) Preconditioning for sparse linear systems at the dawn of the 21st century: History, current developments, and future perspectives. ISRN Appl Math. 2012:127647. https://doi.org/10.5402/2012/127647 – reference: Moncorgé A, Tchelepi HA, Jenny P (2017) Modified sequential fully implicit scheme for compositional flow simulation. J Comput Phys 337:98–115, 109607. https://doi.org/10.1016/j.jcp.2017.02.032 – reference: BrandtABrannickJKahlKLivshitsIAlgebraic distance for anisotropic diffusion problems: Multilevel resultsElectron Trans Numer Anal.20154447249634072301327.65261 – reference: GasparFJRodrigoCOn the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanicsComput Methods Appl Mech Eng.2017326526540370920310.1016/j.cma.2017.08.0251439.74413 – reference: PasettoDFerronatoMPuttiMA reduced order model-based preconditioner for the efficient solution of transient diffusion equationsInt J Numer Methods Eng.2017109811591179360315010.1002/nme.5320 – reference: LunatiITyagiMLeeSHAn iterative multiscale finite volume algorithm converging to the exact solutionJ Comput Phys.201123051849186410.1016/j.jcp.2010.11.0361391.76428 – reference: FrommerASzyldDBAn algebraic convergence theory for restricted additive Schwarz methods using weighted max normsSIAM J Numer Anal.2001392463479186026810.1137/S00361429003708241006.65031 – reference: Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. vol. 15 of Springer Series in Computational Mathematics. New York, NY: Springer-Verlag New York; 1991. Available from: http://link.springer.com/10.1007/978-1-4612-3172-1 – reference: BondyJAMurtyUSRGraph Theory with Applications1976New York, New York, USAElsevier Science Publishing Co., Inc.10.1007/978-1-349-03521-2 – reference: SinghGPenchevaGWheelerMFAn approximate Jacobian nonlinear solver for multiphase flow and transportJ Comput Phys.2018375337351387454010.1016/j.jcp.2018.08.0431416.76126 – reference: QiaoCWuSXuJZhangCSAnalytical decoupling techniques for fully implicit reservoir simulationJ Comput Phys.2017336664681362263610.1016/j.jcp.2017.02.0371375.76187 – reference: CastellettoNWhiteJAFerronatoMScalable algorithms for three-field mixed finite element coupled poromechanicsJ Comput Phys.2016327894918356436910.1016/j.jcp.2016.09.0631373.76312 – reference: Axelsson O. Iterative Solution Methods. Cambridge, United Kingdom: Cambridge University Press; 1994. Available from: https://www.cambridge.org/core/product/identifier/9780511624100/type/book – reference: StübenKA review of algebraic multigridJ Comput Appl Math.20011281–2281309182087810.1016/S0377-0427(00)00516-10979.65111 – reference: DavisTARajamanickamSSid-LakhdarWMA survey of direct methods for sparse linear systemsActa Numer.201625383566350921110.1017/S09624929160000761346.65011 – reference: F Wheeler M, Sun S, G Thomas S. Modeling of flow and reactive transport in IPARS. In: Fan Z, Gour-Tsyh GY, Parker JC, editors. Groundw React Transp Model. Bentham Science Publishers; 2012. p. 42–73. Available from: http://www.eurekaselect.com/node/50526 – reference: ZhouYJiangYTchelepiHAA scalable multistage linear solver for reservoir models with multisegment wellsComput Geosci.2013172197216303618610.1007/s10596-012-9324-01382.86007 – reference: Edwards MG, Rogers CF. A flux continuous scheme for the full tensor pressure equation. In: ECMOR IV - 4th Eur Conf Math Oil Recover. European Association of Geoscientists & Engineers; 1994. p. 1–15. Available from: https://www.earthdoc.org/content/papers/10.3997/2214-4609.201411178 – reference: Voskov DV, Volkov O. Advanced strategies of forward simulation for adjoint-based optimization. In: SPE Reserv Simul Symp. The Woodlands, Texas, USA: Society of Petroleum Engineers; 2013. p. SPE–163592–MS. Available from: http://www.onepetro.org/doi/10.2118/163592-MS – reference: GriesSStübenKBrownGLChenDCollinsDAPreconditioning for efficiently applying algebraic multigrid in fully implicit reservoir simulationsSPE J.201419472673610.2118/163608-PA – reference: LipnikovKManziniGShashkovMMimetic finite difference methodJ Comput Phys.201425711631227313343710.1016/j.jcp.2013.07.0311352.65420 – reference: ChowEPatelAFine-grained parallel incomplete LU factorizationSIAM J Sci Comput.2015372C169C193332354710.1137/1409688961320.65048 – reference: BrezziFLipnikovKSimonciniVA family of mimetic finite difference methods on polygonal and polyhedral meshesMath Model Methods Appl Sci.2005151015331551216894510.1142/S02182025050008321083.65099 – reference: Chen Z, Huan G, Ma Y. Computational Methods for Multiphase Flows in Porous Media. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics; 2006. Available from: http://epubs.siam.org/doi/book/10.1137/1.9780898718942 – reference: JennyPLeeSHTchelepiHAAdaptive multiscale finite-volume method for multiphase flow and transport in porous mediaMultiscale Model Simul.2005315064212310910.1137/0306007951160.76372 – reference: ManteuffelTARugeJSouthworthBSNonsymmetric algebraic multigrid based on local approximate ideal restriction (lAIR)SIAM J Sci Comput.2018406A4105A413010.1137/17M11443501412.65130 – reference: YangHSunSLiYYangCA scalable fully implicit framework for reservoir simulation on parallel computersComput Methods Appl Mech Eng.2018330334350375909910.1016/j.cma.2017.10.0161439.76103 – reference: ManteuffelTAMünzenmaierSRugeJSouthworthBNonsymmetric reduction-based algebraic multigridSIAM J Sci Comput.2019415S242S268402476210.1137/18M11937611436.65027 – reference: XuJZikatanovLAlgebraic multigrid methodsActa Numer.201726591721365385510.1017/S09624929170000831378.65182 – reference: AarnesJEKippeVLieKAMixed multiscale finite elements and streamline methods for reservoir simulation of large geomodelsAdv Water Resour.200528325727110.1016/j.advwatres.2004.10.007 – reference: ChaventGRobertsJEA unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problemsAdv Water Resour.199114632934810.1016/0309-1708(91)90020-O – reference: Quandalle P, Savary D. An implicit in pressure and saturations approach to fully compositional simulation. In: SPE Symp Reserv Simul. Houston, Texas: Society of Petroleum Engineers; 1989. p. SPE–18423–MS. Available from: http://www.onepetro.org/doi/10.2118/18423-MS – reference: Boot-HandfordMEAbanadesJCAnthonyEJBluntMJBrandaniSMac DowellNCarbon capture and storage updateEnergy Environ Sci20147113018910.1039/C3EE42350F – reference: Manea AM, Hajibeygi H, Vassilevski P, Tchelepi HA. Parallel enriched algebraic multiscale solver. In: SPE Reserv Simul Conf. Montgomery, Texas, USA: SPE; 2017. p. SPE–182694–MS. Available from: https://onepetro.org/spersc/proceedings/17RSC/1-17RSC/Montgomery,Texas,USA/208231 – reference: AlfargeDWeiMBaiBFundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs2020Amsterdam, NetherlandsElsevier – reference: Spillette AG, Hillestad JG, Stone HL. A high-stability sequential solution approach to reservoir simulation. In: Fall Meet Soc Pet Eng AIME. Las Vegas, Nevada: Society of Petroleum Engineers; 1973. p. SPE–4542–MS. Available from: https://onepetro.org/SPEATCE/proceedings/73FM/All-73FM/LasVegas,Nevada/139340 – reference: ChenQJiaoXYangORobust and efficient multilevel-ILU preconditioning of hybrid Newton-GMRES for incompressible Navier-Stokes equationsInt J Numer Methods Fluids.2021436993910.1002/fld.5039 – reference: Saad Y. Iterative Methods for Sparse Linear Systems. Philadelphia, USA: Society for Industrial and Applied Mathematics; 2003. Available from: http://epubs.siam.org/doi/book/10.1137/1.9780898718003 – reference: Wallis JR, Foster JA, Kendall RP. A new parallel iterative linear solution method for large-scale reservoir simulation. In: SPE Symp Reserv Simul. Anaheim, California, USA: Society of Petroleum Engineers; 1991. p. SPE–21209–MS. Available from: http://www.onepetro.org/doi/10.2118/21209-MS – reference: E Killough J, A Foster J, S Nolen J, R Wallis J, Xiao J. Parallelization of a general-purpose reservoir simulator. In: ECMOR V - 5th Eur Conf Math Oil Recover. Leoben, Austria: European Association of Geoscientists & Engineers; 1996. p. 29–42. Available from: https://www.earthdoc.org/content/papers/10.3997/2214-4609.201406864 – reference: ChenRCaiXCA parallel two-level domain decomposition based one-shot method for shape optimization problemsInt J Numer Methods Eng.20149913945965325793010.1002/nme.47111352.76046 – reference: Tchelepi HA, Jiang Y. Scalable multistage linear solver for coupled systems of multisegment wells and unstructured reservoir models. In: SPE Reserv Simul Symp. The Woodlands, Texas, USA: Society of Petroleum Engineers; 2009. p. SPE–119175–MS. Available from: http://www.onepetro.org/doi/10.2118/119175-MS – reference: AdlerJHGasparFJHuXOhmPRodrigoCZikatanovLTRobust preconditioners for a new stabilized discretization of the poroelastic equationsSIAM J Sci Comput.2020423B761B791410697510.1137/19M12612501448.65145 – reference: WangKLiuHLuoJChenZEfficient CPR-type preconditioner and its adaptive strategies for large-scale parallel reservoir simulationsJ Comput Appl Math.2018328443468369711310.1016/j.cam.2017.07.0221375.65049 – reference: Kumar Khataniar S, De Brito Dias D, Xu R. Aspects of multiscale flow simulation with potential to enhance reservoir engineering practice. In: SPE Reserv Simul Conf. On demand: SPE; 2021. p. SPE–203996–MS. Available from: https://onepetro.org/spersc/proceedings/21RSC/1-21RSC/D011S004R003/470796 – reference: SaadYILUM: A Multi-Elimination ILU preconditioner for general sparse matricesSIAM J Sci Comput.1996174830847139535010.1137/09170540858.65029 – reference: LiuHWangKChenZA family of constrained pressure residual preconditioners for parallel reservoir simulationsNumer Linear Algebr with Appl.2016231120146343964510.1002/nla.20171413.65045 – reference: Burrows R, Ponting D, Wood L. Parallel reservoir simulation with nested factorisation. In: ECMOR V - 5th Eur Conf Math Oil Recover. Leoben, Austria: European Association of Geoscientists & Engineers; 1996. p. 19–28. Available from: https://www.earthdoc.org/content/papers/10.3997/2214-4609.201406863 – reference: Hysom D, Pothen A. Efficient parallel computation of ILU(k) preconditioners. In: Proc 1999 ACM/IEEE Conf Supercomput - Supercomput ’99. New York, New York, USA: ACM Press; 1999. p. 1–19. Available from: http://portal.acm.org/citation.cfm?doid=331532.331561 – reference: Lie KA. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave. Cambridge, United Kingdom: Cambridge University Press; 2019. Available from: https://www.cambridge.org/core/product/identifier/9781108591416/type/book – reference: VaněkPMandelJBrezinaMAlgebraic multigrid by smoothed aggregation for second and fourth order elliptic problemsComputing.199656179196139300610.1007/BF022385110851.65087 – reference: Bosma SBM, Klevtsov S, Møyner O, Castelletto N (2021) Enhanced multiscale restriction-smoothed basis (MsRSB) preconditioning with applications to porous media flow and geomechanics. J Comput Phys. 428:109934, 109934. https://doi.org/10.1016/j.jcp.2020.109934 – reference: JennyPLeeSHTchelepiHAAdaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous mediaJ Comput Phys.20062172627641226061710.1016/j.jcp.2006.01.0281160.76373 – reference: Stüben K, Ruge JW, Clees T, Gries S. Algebraic multigrid: From academia to industry. In: Griebel M, Schuller A, Schweitzer M, editors. Sci Comput Algorithms Ind Simulations. Cham, Switzerland: Springer International Publishing; 2017. p. 83–119. Available from: http://link.springer.com/10.1007/978-3-319-62458-7_5 – reference: van der VorstHABi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systemsSIAM J Sci Stat Comput.1992132631644114911110.1137/09130350761.65023 – reference: Collins DA, Grabenstetter JE, Sammon PH. A shared-memory parallel black-oil simulator with a parallel ILU linear solver. In: SPE Reserv Simul Symp. Houston, Texas: Society of Petroleum Engineers; 2003. p. SPE 79713. Available from: http://www.onepetro.org/doi/10.2118/79713-MS – reference: LeeSHWolfsteinerCTchelepiHAMultiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravityComput Geosci.2008123351366243494910.1007/s10596-007-9069-31259.76049 – reference: HouTYWuXHA multiscale finite element method for elliptic problems in composite materials and porous mediaJ Comput Phys.19971341169189145526110.1006/jcph.1997.56820880.73065 – reference: Gratien JM (2020) A robust and scalable multi-level domain decomposition preconditioner for multi-core architecture with large number of cores. J Comput Appl Math. 373:112614. https://doi.org/10.1016/j.cam.2019.112614 – reference: Wang S, Lukyanov A, Wu YS. Application of algebraic smoothing aggregation two level preconditioner to multiphysical fluid flow simulations in porous media. In: SPE Reserv Simul Conf. Galveston,Texas, USA: Society of Petroleum Engineers; 2019. p. SPE–193870–MS. Available from: http://www.onepetro.org/doi/10.2118/193870-MS – reference: MeijerinkJAvan der VorstHAAn iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrixMath Comput.19773113714816243868110.2307/20057860349.65020 – reference: AarnesJEKrogstadSLieKAA hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse gridsMultiscale Model Simul.200652337363224775410.1137/0506345661124.76022 – reference: DoleanVJolivetPNatafFAn Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation2015Philadelphia, PA, USASIAM10.1137/1.9781611974065 – reference: AnztHChowEDongarraJParILUT–A new parallel phreshold ILU factorizationSIAM J Sci Comput.2018404C503C51910.1137/16M10795061391.65055 – reference: WheelerMFYotovIA multipoint flux mixed finite element methodSIAM J Numer Anal.200644520822106226304110.1137/0506384731121.76040 – reference: Hajibeygi H, Tchelepi HAA (2014) Compositional multiscale finite-volume formulation. SPE J. 19(02):16364, 100052. https://doi.org/10.2118/163664-PA – reference: BehieAForsythPAComparison of fast iterative methods for symmetric systemsIMA J Numer Anal.198331416370508010.1093/imanum/3.1.410514.65076 – reference: Schlumberger. Intersect: Technical description; 2020 – reference: DassiosIFountoulakisKGondzioJA preconditioner for a primal-dual Newton conjugate gradient method for compressed sensing problemsSIAM J Sci Comput.2015376A2783A2812342704810.1137/1410020621371.65049 – reference: HeuvelineVLukarskiDWeissJPEnhanced parallel ILU(p)-based preconditioners for multi-core CPUs and GPUs - the power(q)-pattern method2011Karlsruhe, GermanyKarlsruhe Institute of Technology – reference: Wallis JR, Kendall RP, Little TE. Constrained residual acceleration of conjugate residual methods. In: SPE Reserv Simul Symp. Dallas, Texas: Society of Petroleum Engineers; 1985. p. SPE–13536–MS. Available from: http://www.onepetro.org/doi/10.2118/13536-MS – reference: ParramoreEEdwardsMGPalMLamineSMultiscale finite-volume CVD-MPFA formulations on structured and unstructured gridsMultiscale Model Simul.2016142559594348439110.1137/1409536911381.76224 – reference: WuSLBergamaschiLLiCXA note on eigenvalue distribution of constraint-preconditioned symmetric saddle point matricesNumer Linear Algebr with Appl.201421117117410.1002/nla.18871324.65046 – reference: CusiniMLukyanovAANatvigJHajibeygiHConstrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous mediaJ Comput Phys.2015299472486338473710.1016/j.jcp.2015.07.0191351.76055 – reference: BrambleJHMultigrid Methods1993Boca Raton, Florida, USAChapman and Hall/CRC0786.65094 – reference: BuiQMOsei-KuffuorDCastellettoNWhiteJAA scalable multigrid reduction framework for multiphase poromechanics of heterogeneous mediaSIAM J Sci Comput.2020422B379B396407534010.1137/19M12561171435.65153 – reference: JennyPLunatiIModeling complex wells with the multi-scale finite-volume methodJ Comput Phys.20092283687702247778310.1016/j.jcp.2008.09.0261155.76040 – reference: WangKLiuHChenZA scalable parallel black oil simulator on distributed memory parallel computersJ Comput Phys.20153011934340271610.1016/j.jcp.2015.08.0161349.76833 – reference: PakzadMLloydJLPhillipsCIndependent columns: A new parallel ILU preconditioner for the PCG methodParallel Comput.1997236637647145308310.1016/S0167-8191(97)00026-40907.68030 – reference: White JA, Castelletto N, Klevtsov S, Bui QM, Osei-Kuffuor D, Tchelepi HA (2019) A two-stage preconditioner for multiphase poromechanics in reservoir simulation. Comput Methods Appl Mech Eng. 357:112575, 112575. https://doi.org/10.1016/j.cma.2019.112575 – reference: D’ambraPFilipponeSVassilevskiPSBootCMatchACM Trans Math Softw.201844412510.1145/31906471484.65059 – reference: Moncorgé A, Tchelepi HA, Jenny P (2018) Sequential fully implicit formulation for compositional simulation using natural variables. J Comput Phys 371:690–711 https://doi.org/10.1016/j.jcp.2018.05.048 – reference: van der VorstHAHigh performance preconditioningSIAM J Sci Stat Comput.198910611741185102553710.1137/09100710693.65027 – reference: RasmussenAFSandveTHBaoKLauserAHoveJSkaflestadBThe open porous media flow reservoir simulatorComput Math with Appl.202181159185418980610.1016/j.camwa.2020.05.0141457.76107 – reference: Trottenberg U, Oosterlee CW, Schuller A. Multigrid. San Diego, California, USA: Academic Press; 2001 – reference: RoyTJönsthövelTBLemonCWathenAJA block preconditioner for non-isothermal flow in porous mediaJ Comput Phys.2019395636652397572710.1016/j.jcp.2019.06.0381452.65053 – reference: Zhu Y, Sameh AH. How to generate effective block Jacobi preconditioners for solving large sparse linear systems. In: Bazilevs Y, Takizawa K, editors. Adv Comput Fluid-Structure Interact Flow Simul. Modeling and Simulation in Science, Engineering and Technology. Cham, Switzerland: Springer International Publishing; 2016. p. 231–244. Available from: http://link.springer.com/10.1007/978-3-319-40827-9http://link.springer.com/10.1007/978-3-319-40827-9_18 – reference: Appleyard JR. Nested Factorization. In: SPE Reserv Simul Symp. San Francisco, California: Society of Petroleum Engineers; 1983. p. SPE–12264–MS. Available from: http://www.onepetro.org/doi/10.2118/12264-MS – reference: PruessKOldenburgCMoridisGTOUGH2 user’s guide, version 22012Berkeley, California, USAEarth Sciences Division, Lawrence Berkeley National Laboratory – reference: LipnikovKManziniGMoultonJDShashkovMThe mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficientJ Comput Phys.2016305111126342957210.1016/j.jcp.2015.10.0311349.65315 – reference: van DuinACNScalable parallel preconditioning with the sparse approximate inverse of triangular matricesSIAM J Matrix Anal Appl.19992049871006169979010.1137/S08954798973177880936.65028 – reference: SaadYSchultzMHFitzgibbonWEParallel implementation of preconditioned conjugate gradient methodsMath Comput Methods Seism Explor Reserv Model1986Philadelphia, USASIAM108127 – reference: EfendievYGalvisJHouTYGeneralized multiscale finite element methods (GMsFEM)J Comput Phys.2013251116135309491110.1016/j.jcp.2013.04.0451349.65617 – reference: Baena-MorenoFMRodríguez-GalánMVegaFAlonso-FariñasBVilches ArenasLFNavarreteBCarbon capture and utilization technologies: A literature review and recent advancesEnergy Sources, Part A Recover Util Environ Eff.201941121403143310.1080/15567036.2018.1548518 – reference: EslerKGandhamRPatacchiniLGaripovTSamardzicAPanfiliPA graphics processing unit-based, industrial grade compositional reservoir simulatorSPE J.202110.2118/203929-PA – reference: BrooksRHCoreyATHydraulic properties of porous media1964Fort Collins, Colorado, USAColorado State University – reference: Cusini M, Fryer B, van Kruijsdijk C, Hajibeygi H (2018) Algebraic dynamic multilevel method for compositional flow in heterogeneous porous media. J Comput Phys 354:593–612, 109607. https://doi.org/10.1016/j.jcp.2017.10.052 – reference: Karypis G, Kumar V. Parallel threshold-based ILU factorization. In: Proc 1997 ACM/IEEE Conf Supercomput - Supercomput ’97. San Jose, CA, USA: ACM Press; 1997. p. 1–24. Available from: http://portal.acm.org/citation.cfm?doid=509593.509621 – reference: Jiang J, Tomin P, Zhou Y (2021) Inexact methods for sequential fully implicit (SFI) reservoir simulation. Comput Geosci. https://doi.org/10.1007/s10596-021-10072-z – reference: AnztHDongarraJFlegarGQuintana-OrtíESVariable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning on graphics processorsParallel Comput.201981131146391312810.1016/j.parco.2017.12.006 – reference: Osei-KuffuorDLiRSaadYMatrix reordering using multilevel graph coarsening for ILU preconditioningSIAM J Sci Comput.2015371A391A419331098210.1137/1309366101315.65033 – reference: MøynerOMoncorgéANonlinear domain decomposition scheme for sequential fully implicit formulation of compositional multiphase flowComput Geosci.2020242789806408740810.1007/s10596-019-09848-11434.86005 – reference: SaadYILUT: A dual threshold incomplete LU factorizationNumer Linear Algebr with Appl.199414387402130670010.1002/nla.16800104050838.65026 – reference: LeeSHZhouHTchelepiHAAdaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formationsJ Comput Phys.20092282490369058255879810.1016/j.jcp.2009.09.0091388.76179 – reference: Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems (1934). J Res Natl Bur Stand. 49(6):409–436, 149690. https://doi.org/10.6028/jres.049.044 – reference: LiLAbushaikhaAA fully-implicit parallel framework for complex reservoir simulation with mimetic finite difference discretization and operator-based linearizationComput Geosci.202110.1007/s10596-021-10096-5 – reference: Li J, Tomin P, Tchelepi H (2021) Sequential fully implicit Newton method for compositional flow and transport. J Comput Phys. https://doi.org/10.1016/j.jcp.2021.110541 – reference: Wallis JR. Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration. In: SPE Reserv Simul Symp. San Francisco, California: Society of Petroleum Engineers; 1983. p. 325–334. Available from: http://www.onepetro.org/doi/10.2118/12265-MS – reference: AndersonESaadYSolving sparse triangular linear systems on parallel computersInt J High Speed Comput.198911739510.1142/S01290533890000560726.65026 – reference: Anciaux-SedrakianAGottschlingPGratienJMGuignonTSurvey on efficient linear solvers for porous media flow models on recent hardware architecturesOil Gas Sci Technol - Rev d’IFP Energies Nouv.201469475376610.2516/ogst/2013184 – reference: ForsythPASammonPHPractical considerations for adaptive implicit methods in reservoir simulationJ Comput Phys.198662226528182813210.1016/0021-9991(86)90127-00605.76104 – reference: MunksgaardNSolving sparse symmetric sets of linear equations by preconditioned conjugate gradientsACM Trans Math Softw.19806220621910.1145/355887.3558930438.65035 – reference: BrandtABrannickJKahlKLivshitsIBootstrap Algebraic Multigrid: Status Report, Open Problems, and OutlookNumer Math Theory, Methods Appl.201581112135339538410.4208/nmtma.2015.w06si1340.65289 – reference: Li G, Wallis J. Enhanced constrained pressure residual ECPR preconditioning for solving difficult large scale thermal models. In: SPE Reserv Simul Conf. Montgomery, Texas: Society of Petroleum Engineers; 2017. p. SPE–182619–MS. Available from: http://www.onepetro.org/doi/10.2118/182619-MS – reference: YangALZhangGFWuYJGeneral constraint preconditioning iteration method for singular saddle-point problemsJ Comput Appl Math.2015282157166331309710.1016/j.cam.2014.12.0421309.65036 – reference: CastellettoNKlevtsovSHajibeygiHTchelepiHAMultiscale two-stage solver for Biot’s poroelasticity equations in subsurface mediaComput Geosci.201923207224394193810.1007/s10596-018-9791-z1414.76053 – reference: NordbottenJMBjørstadPEOn the relationship between the multiscale finite-volume method and domain decomposition preconditionersComput Geosci.2008123367376243495010.1007/s10596-007-9066-61155.76042 – reference: KünzeRLunatiILeeSHA Multilevel multiscale finite-volume methodJ Comput Phys.2013255502520310980110.1016/j.jcp.2013.08.0421349.76351 – reference: ŢeneMAl KobaisiMSHajibeygiHAlgebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS)J Comput Phys.2016321819845352759210.1016/j.jcp.2016.06.0121349.76394 – reference: Appleyard JR, Cheshire IM, Pollard RK. Special techniques for fully implicit simulators. In: Eur Symp Enhanc Oil Recover. Bournemouth, United Kingdom; 1981. p. 395–408 – reference: ManeaAMSewallJTchelepiHAParallel multiscale linear solver for highly detailed reservoir modelsSPE J.201621062062207810.2118/173259-PA – reference: Liu L, Keyes DE, Sun S. Fully implicit two-phase reservoir simulation with the additive Schwarz preconditioned inexact Newton method. In: SPE Reserv Charact Simul Conf Exhib. Abu Dhabi, UAE: Society of Petroleum Engineers; 2013. p. SPE–166062–MS. Available from: http://www.onepetro.org/doi/10.2118/166062-MS – reference: WathenAJPreconditioningActa Numer.201524329376334931110.1017/S09624929150000211316.65039 – reference: DoleanVGanderMJKherijiWKwokFMassonRNonlinear preconditioning: How to use a nonlinear Schwarz method to precondition Newton’s methodSIAM J Sci Comput.2016386A3357A3380356690710.1137/15M102887X1352.65326 – reference: Møyner O, Tchelepi HA (2018) A mass-conservative sequential implicit multiscale method for isothermal equation-of-state compositional problems. SPE J. 23(6):182679, 182679. https://doi.org/10.2118/182679-PA – reference: Lie KA, Møyner O, editors. Advanced Modeling with the MATLAB Reservoir Simulation Toolbox. Cambridge, United Kingdom: Cambridge University Press; 2021. Available from: https://www.cambridge.org/core/product/identifier/9781009019781/type/book – reference: BabaeiMKingPRA modified nested-gridding for upscaling-downscaling in reservoir simulationTransp Porous Media.201293375377510.1007/s11242-012-9981-4 – reference: Zhang N, Abushaikha AS (2021) An implementation of mimetic finite difference method for fractured reservoirs using a fully implicit approach and discrete fracture models. J Comput Phys. https://doi.org/10.1016/j.jcp.2021.110665 – reference: MuskatMMeresMWThe flow of heterogeneous fluids through porous mediaPhysics (College Park Md).19367934636310.1063/1.174540362.1565.01 – reference: AarnesJEOn the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulationMultiscale Model Simul.200423421439211170110.1137/0306006551181.76125 – reference: KellerCGouldNIMWathenAJConstraint preconditioning for indefinite linear systemsSIAM J Matrix Anal Appl.200021413001317178027410.1137/S08954798993518050960.65052 – reference: Bergamaschi L, De Simone V, di Serafino D, Martínez A (2018) BFGS-like updates of constraint preconditioners for sequences of KKT linear systems in quadratic programming. Numer Linear Algebr with Appl. 25(5):e2144, e2144. https://doi.org/10.1002/nla.2144 – reference: Coats KH (1980) An equation of state compositional model. Soc Pet Eng J 20(5):363–376, 109607. https://doi.org/10.2118/8284-PA – reference: Lee SH, Ţene M, Du S, Wen X, Efendiev Y (2021) A conservative sequential fully implicit method for compositional reservoir simulation. J Comput Phys. 428:109961. https://doi.org/10.1016/j.jcp.2020.109961 – reference: HosseiniMehrMCusiniMVuikCHajibeygiHAlgebraic dynamic multilevel method for embedded discrete fracture model (F-ADM)J Comput Phys.2018373324345385414810.1016/j.jcp.2018.06.0751416.76151 – reference: Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Philadelphia, USA: Society for Industrial and Applied Mathematics; 1994. Available from: http://epubs.siam.org/doi/book/10.1137/1.9781611971538 – reference: ArbogastTImplementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flowComput Geosci.200263–4453481195602610.1023/A:10212952153831094.76532 – reference: Booth JD, Bolet G (2020) An on-node scalable sparse incomplete LU factorization for a many-core iterative solver with Javelin. Parallel Comput. 94–95:102622. https://doi.org/10.1016/j.parco.2020.102622 – reference: Lanczos C (1952) Solution of systems of linear equations by minimized iterations (1934). J Res Natl Bur Stand. 49(1):33–53, 149690 – reference: ThomasGWThurnauDHReservoir simulation using an adaptive implicit methodSPE J.1983230575976810.2118/10120-PA – reference: Klemetsdal ØS, Moncorgé A, Nilsen HM, Møyner O, Lie KA. An adaptive sequential fully implicit domain-decomposition solver. SPE J. 2021 ;p. SPE–203991–PA. DOI: 10.2118/203991-PA – reference: Wang L, Osei-Kuffuor D, Falgout R, Mishev I, Li J. Multigrid reduction for coupled flow problems with application to reservoir simulation. In: SPE Reserv Simul Conf. Montgomery, Texas, USA: Society of Petroleum Engineers; 2017. p. SPE–182723–MS. Available from: http://www.onepetro.org/doi/10.2118/182723-MS – reference: Liu J, Yang W, Dong M, Marsden AL (2020) The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations. Comput Methods Appl Mech Eng. 367:113122, 113122. https://doi.org/10.1016/j.cma.2020.113122 – reference: AnztHChowESaakJDongarraJUpdating incomplete factorization preconditioners for model order reductionNumer Algorithms.201673611630356486210.1007/s11075-016-0110-21353.65022 – reference: MøynerOLieKAA multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured gridsJ Comput Phys.20163044671342240310.1016/j.jcp.2015.10.0101349.76824 – reference: BergamaschiLFerronatoMGambolatiGNovel preconditioners for the iterative solution to FE-discretized coupled consolidation equationsComput Methods Appl Mech Eng.200719625–2826472656297668610.1016/j.cma.2007.01.0131173.76330 – reference: BenziMGolubGHLiesenJNumerical solution of saddle point problemsActa Numer.2005141137216834210.1017/S09624929040002121115.65034 – reference: LiuLKeyesDEField-split preconditioned inexact Newton algorithmsSIAM J Sci Comput.2015373A1388A1409335261310.1137/1409703791328.65122 – reference: FranceschiniACastellettoNFerronatoMBlock preconditioning for fault/fracture mechanics saddle-point problemsComput Methods Appl Mech Eng.2019344376401387386310.1016/j.cma.2018.09.0391440.74473 – reference: HerouxMAVuPYangCA parallel preconditioned conjugate gradient package for solving sparse linear systems on a Cray Y-MPAppl Numer Math.1991829311510.1016/0168-9274(91)90045-20738.65025 – reference: SchwarzHAÜber einen GrenzuÜbergang durch alternierendes VerfahrenVierteljahrsschrift der Naturforschenden Gesellschaft ZÜrich.187015272286 – reference: Nardean S, Abushaikha A, Ferronato M. A block preconditioning framework for the efficient solution of flow simulations in hydrocarbon reservoirs. In: Third EAGE WIPIC Work Reserv Manag Carbonates. Doha, Qatar: European Association of Geoscientists & Engineers; 2019. p. 1–5. Available from: https://www.earthdoc.org/content/papers/10.3997/2214-4609.201903117 – reference: Lake LW, Johns R, Rossen B, Pope G. Fundamentals of Enhanced Oil Recovery. Richardson, Texas, USA: Society of Petroleum Engineers; 2014. Available from: https://store.spe.org/Fundamentals-ofEnhanced-Oil-Recovery-P921.aspx – reference: Magras JF, Quandalle P, Bia P. High-performance reservoir simulation with parallel ATHOS. In: SPE Reserv Simul Symp. Houston, Texas, USA: Society of Petroleum Engineers; 2001. p. SPE–66342–MS. Available from: https://onepetro.org/spersc/proceedings/01RSS/All-01RSS/Houston,Texas/133525 – reference: Schlumberger. Eclipse: Technical description; 2020 – reference: LieKKrogstadSLigaardenISNatvigJRNilsenHMSkaflestadBOpen-source MATLAB implementation of consistent discretisations on complex gridsComput Geosci.201216229732210.1007/s10596-011-9244-41348.86002 – reference: Fletcher R. Conjugate gradient methods for indefinite systems. In: Watson GA, editor. Numer Anal Lect Notes Math. Berlin, Heidelberg: Springer; 1976. p. 73–89. Available from: http://link.springer.com/10.1007/BFb0080116 – reference: JungYPauGSHFinsterleSDoughtyCTOUGH3: User’s guide2018Berkeley, California, USALawrence Berkeley National Laboratory10.2172/1461175 – reference: Gries S. Algebraic wavefront parallelization for ILU(0) smoothing in reservoir simulation. In: ECMOR XVII - 17th Eur Conf Math Oil Recover. European Association of Geoscientists & Engineers; 2020. p. 1–17. Available from: https://www.earthdoc.org/content/papers/10.3997/2214-4609.202035046 – reference: ArbogastTWheelerMFYotovIMixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differencesSIAM J Numer Anal.1997342828852144294010.1137/S00361429942625850880.65084 – reference: Bergamaschi L, Gondzio J, Martínez Á, Pearson JW, Pougkakiotis S (2021) A new preconditioning approach for an interior point-proximal method of multipliers for linear and convex quadratic programming. Numer Linear Algebr with Appl. 28(4):e2361, e2361. https://doi.org/10.1002/nla.2361 – reference: PooleELOrtegaJMMulticolor ICCG methods for vector computersSIAM J Numer Anal.19872461394141891745910.1137/07240900646.65032 – reference: CusiniMvan KruijsdijkCHajibeygiHAlgebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous mediaJ Comput Phys.20163146079348492310.1016/j.jcp.2016.03.0071349.76813 – reference: LacroixSVassilevskiYVWheelerMFDecoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS)Numer Linear Algebr with Appl.200188537549186881910.1002/nla.2641071.76583 – reference: PhillipsEGShadidJNCyrECElmanHCPawlowskiRPBlock preconditioners for stable mixed nodal and edge finite element representations of incompressible resistive MHDSIAM J Sci Comput.2016386B1009B1031357331410.1137/16M10740841349.76903 – reference: CastellettoNHajibeygiHTchelepiHAMultiscale finite-element method for linear elastic geomechanicsJ Comput Phys.2017331337356358869510.1016/j.jcp.2016.11.0441378.86014 – reference: Stueben K, Clees T, Klie H, Lu B, Wheeler MF. Algebraic multigrid methods (AMG) for the efficient solution of fully implicit formulations in reservoir simulation. In: SPE Reserv Simul Symp. Houston, Texas, USA: SPE; 2007. p. SPE–105832–MS. Available from: https://onepetro.org/spersc/proceedings/07RSS/All-07RSS/SPE-105832-MS/143498 – reference: MoséRSiegelPAckererPChaventGApplication of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?Water Resour Res.199430113001301210.1029/94WR01786 – reference: AxelssonOBlahetaRByczanskiPStable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matricesComput Vis Sci.201215191207314814210.1007/s00791-013-0209-01388.74035 – reference: KongFCaiXCA highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity problems on domains with complex geometrySIAM J Sci Comput.2016382C73C95347485510.1137/15M10105671380.65404 – reference: JonesMTPlassmannPEAn improved incomplete Cholesky factorizationACM Trans Math Softw.1995211517136581010.1145/200979.2009810886.65024 – reference: BuiQMWangLOsei-KuffuorDAlgebraic multigrid preconditioners for two-phase flow in porous media with phase transitionsAdv Water Resour.2018114192810.1016/j.advwatres.2018.01.027 – reference: HeinemannZEBrandCWMunkaMChenYMModeling reservoir geometry with irregular gridsSPE Reserv Eng.199160222523210.2118/18412-PA – reference: Dong X, Cooperman G. A Bit-Compatible Parallelization for ILU(k) Preconditioning. In: Jeannot E, Namyst R, Roman J, editors. Euro-Par 2011 Parallel Process Euro-Par 2011 Lect Notes Comput Sci. Berlin, Heidelberg: Springer, Berlin, Heidelberg; 2011. p. 66–77. Available from: http://link.springer.com/10.1007/978-3-642-23397-5_8 – reference: Ruge JW, Stüben K. Algebraic Multigrid. In: McCormick SF, editor. Multigrid Methods. Philadelphia, PA , USA: SIAM; 1987. p. 73–130. Available from: http://epubs.siam.org/doi/10.1137/1.9781611971057.ch4 – reference: SmithBFBjørstadPEGroppWDDomain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations1996Cambridge, United KingdomCambridge University Press0857.65126 – reference: Computer Modeling Group. Stars: User guide; 2016 – reference: NardeanSFerronatoMAbushaikhaASA novel block non-symmetric preconditioner for mixed-hybrid finite-element-based Darcy flow simulationsJ Comput Phys2021427422410.1016/j.jcp.2021.11051307513811 – reference: DuffISMeurantGAThe effect of ordering on preconditioned conjugate gradientsBIT.1989294635657103812210.1007/BF019327380687.65037 – reference: GonzalesPCabaleiroJCPenaTFParallel incomplete LU factorization as a preconditioner for Krylov subspace methodsParallel Process Lett.19999446747410.1142/S0129626499000438 – reference: Gratien JM, Guignon T, Magras JF, Quandalle P, Ricois OM. Scalability and load balancing problems in parallel reservoir simulation. In: SPE Reserv Simul Symp. Houston, Texas, USA: SPE; 2007. p. SPE–106023–MS. Available from: https://onepetro.org/spersc/proceedings/07RSS/All-07RSS/Houston,Texas,U.S.A./143513 – reference: Gautier Y, Blunt MJ, Christie MA. Nested gridding and streamline-based simulation for fast reservoir performance prediction. In: SPE Reserv Simul Symp. Houston, Texas, USA: Society of Petroleum Engineers; 1999. p. SPE–51931–MS. Available from: https://onepetro.org/spersc/proceedings/99RSS/All-99RSS/Houston,Texas/60263 – reference: LieKAMøynerONatvigJRKozlovaABratvedtKWatanabeSSuccessful application of multiscale methods in a real reservoir simulator environmentComput Geosci.2017215–6981998373603610.1007/s10596-017-9627-2 – reference: Cao H, Tchelepi HA, Wallis JR, Yardumian HE. Parallel scalable unstructured CPR-type linear solver for reservoir simulation. In: SPE Annu Tech Conf Exhib. Dallas, Texas: Society of Petroleum Engineers; 2005. p. SPE–96809–MS. Available from: http://www.onepetro.org/doi/10.2118/96809-MS – reference: ZhouHTchelepiHATwo-stage algebraic multiscale linear solver for highly heterogeneous reservoir modelsSPE J.201217252353910.2118/141473-PA – reference: Gries S, Metsch B, Terekhov KM, Tomin P. System-AMG for fully coupled reservoir simulation with geomechanics. In: SPE Reserv Simul Conf. Galveston,Texas, USA: Society of Petroleum Engineers; 2019. p. SPE–193887–MS. Available from: https://onepetro.org/spersc/proceedings/19RSC/2-19RSC/Galveston,Texas,USA/219550 – reference: LunatiIJennyPMultiscale finite-volume method for compressible multiphase flow in porous mediaJ Comput Phys.20062162616636223538610.1016/j.jcp.2006.01.0011220.76049 – reference: LiWChenZEwingREHuanGLiBComparison of the GMRES and ORTHOMIN for the black oil model in porous mediaInt J Numer Methods Fluids.2005485501519214581810.1002/fld.9361067.76069 – reference: OlsonLNSchroderJBTuminaroRSA general interpolation strategy for algebraic multigrid using energy minimizationSIAM J Sci Comput.2011332966991280119710.1137/1008030311233.65096 – reference: JiangJTchelepiHANonlinear acceleration of sequential fully implicit (SFI) method for coupled flow and transport in porous mediaComput Methods Appl Mech Eng.2019352246275394875610.1016/j.cma.2019.04.0301441.76080 – reference: YangHSunSLiYYangCA fully implicit constraint-preserving simulator for the black oil model of petroleum reservoirsJ Comput Phys.2019396347363398417110.1016/j.jcp.2019.05.0381452.76138 – reference: WathenMGreifCSchötzauDPreconditioners for mixed finite element discretizations of incompressible MHD equationsSIAM J Sci Comput.2017396A2993A3013373831710.1137/16M109899106822612 – reference: MassarwehOAbushaikhaASThe use of surfactants in enhanced oil recovery: A review of recent advancesEnergy Reports202063150317810.1016/j.egyr.2020.11.009 – reference: YangYFuSChungETA two-grid preconditioner with an adaptive coarse space for flow simulations in highly heterogeneous mediaJ Comput Phys.2019391113394271910.1016/j.jcp.2019.03.0381452.76241 – reference: ZhouHTchelepiHAOperator-based multiscale method for compressible flowSPE J.200813226727310.2118/106254-PA – reference: DouglasJJEwingREWheelerMFThe approximation of the pressure by a mixed method in the simulation of miscible displacementESAIM Math Model Numer Anal - Modélisation Mathématique Anal Numérique.198317117336954500516.76094 – reference: Li R, Yang H, Yang C (2020) Parallel multilevel restricted Schwarz preconditioners for implicit simulation of subsurface flows with Peng-Robinson equation of state. J Comput Phys. 422:109745. https://doi.org/10.1016/j.jcp.2020.109745 – reference: K Ponting D. Corner point geometry in reservoir simulation. In: ECMOR I - 1st Eur Conf Math Oil Recover. Cambridge, United Kingdom: European Association of Geoscientists & Engineers; 1989. p. 45–65. Available from: https://www.earthdoc.org/content/papers/10.3997/2214-4609.201411305 – reference: BellaviaSGondzioJMoriniBA matrix-free preconditioner for sparse symmetric positive definite systems and least-squares problemsSIAM J Sci Comput.2013351A192A211303304310.1137/1108408191264.65036 – reference: JennyPLeeSHTchelepiHAMulti-scale finite-volume method for elliptic problems in subsurface flow simulationJ Comput Phys.20031871476710.1016/S0021-9991(03)00075-51047.76538 – reference: RodrigoCGasparFJLisbonaFJMultigrid methods on semi-structured gridsArch Comput Methods Eng.2012194499538300662210.1007/s11831-012-9078-91354.65264 – reference: MøynerOLieKAThe multiscale finite-volume method on stratigraphic gridsSPE J.201419581683110.2118/163649-PA – reference: BenziMPreconditioning techniques for large linear systems: A surveyJ Comput Phys.20021822418477194184810.1006/jcph.2002.71761015.65018 – reference: QuarteroniAValliADomain Decomposition Methods for Partial Differential Equations1999Oxford, United KingdomOxford University Press0931.65118 – reference: LiNSaadYChowECrout versions of ILU for general sparse matricesSIAM J Sci Comput.2003252716728205808410.1137/S10648275024050941042.65025 – reference: RiesMTrottenbergUWinterGA note on MGR methodsLinear Algebra Appl.19834912668837310.1016/0024-3795(83)90091-50515.65070 – reference: Chen S, Hong Q, Xu J, Yang K (2020) Robust block preconditioners for poroelasticity. Comput Methods Appl Mech Eng. 369:113229, 113229. https://doi.org/10.1016/j.cma.2020.113229 – reference: SaadYSuchomelBARMS: An algebraic recursive multilevel solver for general sparse linear systemsNumer Linear Algebr with Appl.200295359378191321010.1002/nla.2791071.65001 – reference: BuiMAdjimanCSBardowAAnthonyEJBostonABrownSCarbon capture and storage (CCS): The way forwardEnergy Environ Sci.20181151062117610.1039/C7EE02342A – reference: SaadYZhangJBILUM: Block Versions of Multielimination and Multilevel ILU Preconditioner for General Sparse Linear SystemsSIAM J Sci Comput.199920621032121170329410.1137/S106482759732753X0956.65026 – reference: FaberVManteuffelTNecessary and sufficient conditions for the existence of a conjugate gradient methodSIAM J Numer Anal.198421235236273633710.1137/07210260546.65010 – reference: LacroixSVassilevskiYWheelerJWheelerMIterative solution methods for modeling multiphase flow in porous media fully implicitlySIAM J Sci Comput.2003253905926204611710.1137/S106482750240443X1163.65310 – reference: Dryja M, Widlund OB. Additive Schwarz methods for elliptic finite element problems in three dimensions. In: Fifth Int Symp Domain Decompos Methods Partial Differ Equations. Philadelphia, PA , USA: SIAM; 1992. p. 3–18 – reference: EdwardsMGRogersCFFinite volume discretization with imposed flux continuity for the general tensor pressure equationComput Geosci.19982259290168642910.1023/A:10115105054060945.76049 – reference: Paludetto MagriVAFranceschiniAJannaCA novel algebraic multigrid approach based on adaptive smoothing and prolongation for ill-conditioned systemsSIAM J Sci Comput.2019411A190A219389534210.1137/17M11611781433.65069 – reference: Vinsome PKW. Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In: SPE Symp Numer Simul Reserv Perform. Los Angeles, CA, USA: SPE; 1976. p. SPE–5729–MS. Available from: https://onepetro.org/SPENSS/proceedings/76NSS/All-76NSS/LosAngeles,California/138793 – reference: AavatsmarkIAn introduction to multipoint flux approximations for quadrilateral gridsComput Geosci.20026405432195602410.1023/A:10212911144751094.76550 – reference: HajibeygiHBonfigliGHesseMAJennyPIterative multiscale finite-volume methodJ Comput Phys.20082271986048621245608410.1016/j.jcp.2008.06.0131151.65091 – reference: Luo L, Liu L, Cai XC, Keyes DE (2020) Fully implicit hybrid two-level domain decomposition algorithms for two-phase flows in porous media on 3D unstructured grids. J Comput Phys. 409:109312. https://doi.org/10.1016/j.jcp.2020.109312 – reference: Appleyard JR, Appleyard JD, Wakefield MA, Desitter AL. Accelerating reservoir simulators using GPU technology. In: SPE Reserv Simul Symp. The Woodlands, Texas, USA: Society of Petroleum Engineers; 2011. p. SPE–141402–MS. Available from: https://onepetro.org/spersc/proceedings/11RSS/All-11RSS/TheWoodlands,Texas,USA/151093 – reference: ArbogastTBryantSLA two-scale numerical subgrid technique for waterflood simulationsSPE J.20027444645710.2118/81909-PA – reference: BrandtABrannickJKahlKLivshitsIBootstrap AMGSIAM J Sci Comput.2011332612632278596410.1137/0907529731227.65120 – reference: FarmerCLUpscaling: A reviewInt J Numer Methods Fluids.2002401–26378192831710.1002/fld.2671058.76574 – reference: Gries S, Plum HJ. Status of system-AMG for reservoir simulation applications. In: SPE Reserv Simul Symp. Houston, Texas, USA: Society of Petroleum Engineers; 2015. p. SPE–173241–MS – reference: Kozlova A, Li Z, Natvig JR, Watanabe S, Zhou Y, Bratvedt K et al (2016) A real-field multiscale black-oil reservoir simulator. SPE J. 21(06):173226, 173226. https://doi.org/10.2118/173226-PA – reference: WattsJWA compositional formulation of the pressure and saturation equationsSPE Reserv Eng.198610324325210.2118/12244-PA – reference: ChowEAnztHScottJDongarraJUsing Jacobi iterations and blocking for solving sparse triangular systems in incomplete factorization preconditioningJ Parallel Distrib Comput.201811921923010.1016/j.jpdc.2018.04.017 – reference: Delpopolo Carciopolo L, Cusini M, Formaggia L, Hajibeygi H (2020) Adaptive multilevel space-time-stepping scheme for transport in heterogeneous porous media (ADM-LTS). J Comput Phys X. 6:100052, 100052. https://doi.org/10.1016/j.jcpx.2020.100052 – year: 2021 ident: 9739_CR44 publication-title: Comput Geosci. doi: 10.1007/s10596-021-10096-5 – volume: 23 start-page: 637 issue: 6 year: 1997 ident: 9739_CR114 publication-title: Parallel Comput. doi: 10.1016/S0167-8191(97)00026-4 – volume: 25 start-page: 905 issue: 3 year: 2003 ident: 9739_CR280 publication-title: SIAM J Sci Comput. doi: 10.1137/S106482750240443X – ident: 9739_CR200 doi: 10.2118/203991-PA – ident: 9739_CR95 doi: 10.1016/j.parco.2020.102622 – volume: 6 start-page: 3150 year: 2020 ident: 9739_CR3 publication-title: Energy Reports doi: 10.1016/j.egyr.2020.11.009 – ident: 9739_CR259 doi: 10.2118/182679-PA – volume: 42 start-page: B57 issue: 1 year: 2020 ident: 9739_CR314 publication-title: SIAM J Sci Comput. doi: 10.1137/19M1255409 – volume: 26 start-page: 43 issue: 1 year: 1978 ident: 9739_CR87 publication-title: J Comput Phys. doi: 10.1016/0021-9991(78)90098-0 – volume: 19 start-page: 816 issue: 5 year: 2014 ident: 9739_CR249 publication-title: SPE J. doi: 10.2118/163649-PA – ident: 9739_CR159 doi: 10.1016/j.cam.2019.112614 – volume: 251 start-page: 116 year: 2013 ident: 9739_CR221 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2013.04.045 – volume: 376 start-page: 660 year: 2019 ident: 9739_CR248 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2018.09.054 – volume: 10 start-page: 1174 issue: 6 year: 1989 ident: 9739_CR111 publication-title: SIAM J Sci Stat Comput. doi: 10.1137/0910071 – volume: 12 start-page: 367 issue: 3 year: 2008 ident: 9739_CR210 publication-title: Comput Geosci. doi: 10.1007/s10596-007-9066-6 – volume: 228 start-page: 9036 issue: 24 year: 2009 ident: 9739_CR264 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2009.09.009 – year: 2021 ident: 9739_CR11 publication-title: SPE J. doi: 10.2118/203929-PA – volume: 395 start-page: 636 year: 2019 ident: 9739_CR293 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2019.06.038 – ident: 9739_CR27 doi: 10.1016/j.jcp.2018.05.048 – volume: 39 start-page: A2993 issue: 6 year: 2017 ident: 9739_CR313 publication-title: SIAM J Sci Comput. doi: 10.1137/16M1098991 – ident: 9739_CR104 doi: 10.2118/21209-MS – volume: 314 start-page: 60 year: 2016 ident: 9739_CR218 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2016.03.007 – volume: 41 start-page: 1403 issue: 12 year: 2019 ident: 9739_CR7 publication-title: Energy Sources, Part A Recover Util Environ Eff. doi: 10.1080/15567036.2018.1548518 – volume: 230 start-page: 1849 issue: 5 year: 2011 ident: 9739_CR213 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2010.11.036 – volume: 1 start-page: 73 issue: 1 year: 1989 ident: 9739_CR112 publication-title: Int J High Speed Comput. doi: 10.1142/S0129053389000056 – ident: 9739_CR78 doi: 10.1007/BFb0080116 – volume: 30 start-page: 3001 issue: 11 year: 1994 ident: 9739_CR49 publication-title: Water Resour Res. doi: 10.1029/94WR01786 – ident: 9739_CR61 doi: 10.1016/j.jcp.2021.110665 – volume: 15 start-page: 272 year: 1870 ident: 9739_CR177 publication-title: Vierteljahrsschrift der Naturforschenden Gesellschaft ZÜrich. – ident: 9739_CR267 – volume: 22 start-page: 1039 year: 2018 ident: 9739_CR271 publication-title: Comput Geosci. doi: 10.1007/s10596-018-9737-5 – volume: 196 start-page: 2647 issue: 25–28 year: 2007 ident: 9739_CR324 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2007.01.013 – volume: 321 start-page: 819 year: 2016 ident: 9739_CR247 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2016.06.012 – volume: 41 start-page: S269 issue: 5 year: 2019 ident: 9739_CR169 publication-title: SIAM J Sci Comput. doi: 10.1137/18M1193773 – volume: 13 start-page: 267 issue: 2 year: 2008 ident: 9739_CR211 publication-title: SPE J. doi: 10.2118/106254-PA – volume: 217 start-page: 627 issue: 2 year: 2006 ident: 9739_CR25 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2006.01.028 – volume: 23 start-page: 120 issue: 1 year: 2016 ident: 9739_CR184 publication-title: Numer Linear Algebr with Appl. doi: 10.1002/nla.2017 – ident: 9739_CR204 – ident: 9739_CR266 doi: 10.1002/nag.3192 – volume: 37 start-page: C169 issue: 2 year: 2015 ident: 9739_CR122 publication-title: SIAM J Sci Comput. doi: 10.1137/140968896 – volume: 39 start-page: S662 issue: 5 year: 2017 ident: 9739_CR290 publication-title: SIAM J Sci Comput. doi: 10.1137/16M1082652 – volume: 391 start-page: 1 year: 2019 ident: 9739_CR222 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2019.03.038 – year: 2021 ident: 9739_CR284 publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110513 – ident: 9739_CR237 doi: 10.1016/j.jcpx.2020.100052 – volume: 304 start-page: 46 year: 2016 ident: 9739_CR238 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2015.10.010 – volume: 38 start-page: C73 issue: 2 year: 2016 ident: 9739_CR193 publication-title: SIAM J Sci Comput. doi: 10.1137/15M1010567 – ident: 9739_CR187 doi: 10.1016/j.jcp.2020.109745 – ident: 9739_CR13 – volume: 19 start-page: 726 issue: 4 year: 2014 ident: 9739_CR285 publication-title: SPE J. doi: 10.2118/163608-PA – volume: 396 start-page: 347 year: 2019 ident: 9739_CR186 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2019.05.038 – ident: 9739_CR70 – volume: 17 start-page: 1039 issue: 6 year: 2018 ident: 9739_CR83 publication-title: IEEE Antennas Wirel Propag Lett. doi: 10.1109/LAWP.2018.2830124 – ident: 9739_CR47 doi: 10.1007/978-1-4612-3172-1 – ident: 9739_CR196 doi: 10.2118/166062-MS – volume: 56 start-page: 179 year: 1996 ident: 9739_CR141 publication-title: Computing. doi: 10.1007/BF02238511 – volume: 114 start-page: 19 year: 2018 ident: 9739_CR148 publication-title: Adv Water Resour. doi: 10.1016/j.advwatres.2018.01.027 – volume: 41 start-page: S242 issue: 5 year: 2019 ident: 9739_CR170 publication-title: SIAM J Sci Comput. doi: 10.1137/18M1193761 – volume: 12 start-page: 617 issue: 4 year: 1975 ident: 9739_CR64 publication-title: SIAM J Numer Anal. doi: 10.1137/0712047 – volume: 12 start-page: 337 issue: 3 year: 2008 ident: 9739_CR241 publication-title: Comput Geosci. doi: 10.1007/s10596-007-9071-9 – ident: 9739_CR63 doi: 10.1137/1.9781611971538 – volume: 38 start-page: A3357 issue: 6 year: 2016 ident: 9739_CR199 publication-title: SIAM J Sci Comput. doi: 10.1137/15M102887X – ident: 9739_CR8 doi: 10.2118/66342-MS – volume: 230 start-page: 8729 issue: 24 year: 2011 ident: 9739_CR245 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2011.08.021 – ident: 9739_CR69 – volume: 7 start-page: 856 issue: 3 year: 1986 ident: 9739_CR75 publication-title: SIAM J Sci Stat Comput. doi: 10.1137/0907058 – volume: 28 start-page: 257 issue: 3 year: 2005 ident: 9739_CR230 publication-title: Adv Water Resour. doi: 10.1016/j.advwatres.2004.10.007 – volume: 21 start-page: 981 issue: 5–6 year: 2017 ident: 9739_CR239 publication-title: Comput Geosci. doi: 10.1007/s10596-017-9627-2 – volume: 2 start-page: 259 year: 1998 ident: 9739_CR40 publication-title: Comput Geosci. doi: 10.1023/A:1011510505406 – ident: 9739_CR17 doi: 10.1016/j.jcp.2020.109607 – volume: 17 start-page: 830 issue: 4 year: 1996 ident: 9739_CR109 publication-title: SIAM J Sci Comput. doi: 10.1137/0917054 – ident: 9739_CR273 doi: 10.2174/978160805306311201010042 – volume-title: An additive variant of the Schwarz alternating method for the case of many subregions year: 1987 ident: 9739_CR178 – volume: 24 start-page: 183 issue: 1 year: 2002 ident: 9739_CR197 publication-title: SIAM J Sci Comput. doi: 10.1137/S106482750037620X – volume: 42 start-page: 287 issue: 3 year: 1984 ident: 9739_CR131 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/0045-7825(84)90010-0 – volume: 187 start-page: 47 issue: 1 year: 2003 ident: 9739_CR232 publication-title: J Comput Phys. doi: 10.1016/S0021-9991(03)00075-5 – volume: 33 start-page: 612 issue: 2 year: 2011 ident: 9739_CR151 publication-title: SIAM J Sci Comput. doi: 10.1137/090752973 – volume: 197 start-page: 3922 issue: 45–48 year: 2008 ident: 9739_CR315 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2008.03.008 – ident: 9739_CR33 doi: 10.1016/j.jcp.2020.109961 – ident: 9739_CR161 doi: 10.2118/193887-MS – year: 2020 ident: 9739_CR203 publication-title: Arch Comput Methods Eng. doi: 10.1007/s11831-019-09394-0 – ident: 9739_CR236 doi: 10.1016/j.jcp.2019.109134 – ident: 9739_CR132 doi: 10.2118/79713-MS – ident: 9739_CR277 doi: 10.2118/13536-MS – volume: 1 start-page: 243 issue: 03 year: 1986 ident: 9739_CR23 publication-title: SPE Reserv Eng. doi: 10.2118/12244-PA – volume: 21 start-page: 792 issue: 2 year: 1999 ident: 9739_CR190 publication-title: SIAM J Sci Comput. doi: 10.1137/S106482759732678X – volume: 19 start-page: 499 issue: 4 year: 2012 ident: 9739_CR139 publication-title: Arch Comput Methods Eng. doi: 10.1007/s11831-012-9078-9 – volume: 14 start-page: 329 issue: 6 year: 1991 ident: 9739_CR48 publication-title: Adv Water Resour. doi: 10.1016/0309-1708(91)90020-O – ident: 9739_CR105 doi: 10.3997/2214-4609.201406863 – volume: 6 start-page: 405 year: 2002 ident: 9739_CR43 publication-title: Comput Geosci. doi: 10.1023/A:1021291114475 – volume: 15 start-page: 1533 issue: 10 year: 2005 ident: 9739_CR53 publication-title: Math Model Methods Appl Sci. doi: 10.1142/S0218202505000832 – volume: 23 start-page: 305 issue: 2 year: 2019 ident: 9739_CR223 publication-title: Comput Geosci. doi: 10.1007/s10596-018-9798-5 – ident: 9739_CR20 doi: 10.1016/j.jcp.2017.10.052 – ident: 9739_CR24 doi: 10.2118/18423-MS – volume: 330 start-page: 334 year: 2018 ident: 9739_CR185 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2017.10.016 – ident: 9739_CR59 doi: 10.1017/9781108591416 – volume: 22 start-page: 2194 issue: 6 year: 2001 ident: 9739_CR120 publication-title: SIAM J Sci Comput. doi: 10.1137/S1064827500376193 – volume: 37 start-page: A2783 issue: 6 year: 2015 ident: 9739_CR303 publication-title: SIAM J Sci Comput. doi: 10.1137/141002062 – volume: 5 start-page: 900 issue: 3 year: 2006 ident: 9739_CR243 publication-title: Multiscale Model Simul. doi: 10.1137/050640771 – volume: 352 start-page: 246 year: 2019 ident: 9739_CR28 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2019.04.030 – ident: 9739_CR80 doi: 10.1007/978-3-319-40827-9_18 – volume: 331 start-page: 337 year: 2017 ident: 9739_CR260 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2016.11.044 – volume: 24 start-page: 789 issue: 2 year: 2020 ident: 9739_CR29 publication-title: Comput Geosci. doi: 10.1007/s10596-019-09848-1 – ident: 9739_CR127 – ident: 9739_CR31 doi: 10.1016/j.jcp.2021.110541 – volume: 9 start-page: 359 issue: 5 year: 2002 ident: 9739_CR144 publication-title: Numer Linear Algebr with Appl. doi: 10.1002/nla.279 – ident: 9739_CR46 doi: 10.2118/10501-PA – volume: 62 start-page: 265 issue: 2 year: 1986 ident: 9739_CR36 publication-title: J Comput Phys. doi: 10.1016/0021-9991(86)90127-0 – volume: 348 start-page: 549 year: 2017 ident: 9739_CR58 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2017.07.019 – volume: 6 start-page: 453 issue: 3–4 year: 2002 ident: 9739_CR224 publication-title: Comput Geosci. doi: 10.1023/A:1021295215383 – ident: 9739_CR189 doi: 10.2118/173226-PA – volume: 227 start-page: 8604 issue: 19 year: 2008 ident: 9739_CR253 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2008.06.013 – volume: 31 start-page: 148 issue: 137 year: 1977 ident: 9739_CR86 publication-title: Math Comput. doi: 10.2307/2005786 – volume-title: Enhanced parallel ILU(p)-based preconditioners for multi-core CPUs and GPUs - the power(q)-pattern method year: 2011 ident: 9739_CR121 – volume: 41 start-page: A3073 issue: 5 year: 2019 ident: 9739_CR297 publication-title: SIAM J Sci Comput. doi: 10.1137/18M1219370 – volume: 12 start-page: 351 issue: 3 year: 2008 ident: 9739_CR240 publication-title: Comput Geosci. doi: 10.1007/s10596-007-9069-3 – ident: 9739_CR39 – volume: 48 start-page: 1004 issue: 11 year: 1996 ident: 9739_CR205 publication-title: J Pet Technol. doi: 10.2118/37324-JPT – volume-title: TOUGH2 user’s guide, version 2 year: 2012 ident: 9739_CR129 – ident: 9739_CR52 doi: 10.1029/2008RG000277 – volume: 18 start-page: 142 issue: 2 year: 1978 ident: 9739_CR89 publication-title: BIT. doi: 10.1007/BF01931691 – volume: 336 start-page: 664 year: 2017 ident: 9739_CR282 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2017.02.037 – ident: 9739_CR172 – volume: 21 start-page: 2062 issue: 06 year: 2016 ident: 9739_CR255 publication-title: SPE J. doi: 10.2118/173259-PA – volume: 24 start-page: 1394 issue: 6 year: 1987 ident: 9739_CR98 publication-title: SIAM J Numer Anal. doi: 10.1137/0724090 – ident: 9739_CR107 doi: 10.2118/163588-MS – volume: 23 start-page: 759 issue: 05 year: 1983 ident: 9739_CR35 publication-title: SPE J. doi: 10.2118/10120-PA – ident: 9739_CR117 doi: 10.3997/2214-4609.201406864 – volume: 38 start-page: B1009 issue: 6 year: 2016 ident: 9739_CR312 publication-title: SIAM J Sci Comput. doi: 10.1137/16M1074084 – volume: 72 start-page: 541 issue: 242 year: 2003 ident: 9739_CR228 publication-title: Math Comput. doi: 10.1090/S0025-5718-02-01441-2 – ident: 9739_CR188 doi: 10.1016/j.jcp.2020.109312 – volume: 93 start-page: 753 issue: 3 year: 2012 ident: 9739_CR208 publication-title: Transp Porous Media. doi: 10.1007/s11242-012-9981-4 – volume: 23 start-page: 207 year: 2019 ident: 9739_CR262 publication-title: Comput Geosci. doi: 10.1007/s10596-018-9791-z – volume: 328 start-page: 443 year: 2018 ident: 9739_CR10 publication-title: J Comput Appl Math. doi: 10.1016/j.cam.2017.07.022 – volume: 38 start-page: A668 issue: 2 year: 2016 ident: 9739_CR323 publication-title: SIAM J Sci Comput. doi: 10.1137/15M1032156 – ident: 9739_CR116 doi: 10.1007/978-3-642-23397-5_8 – volume: 39 start-page: S723 issue: 5 year: 2017 ident: 9739_CR143 publication-title: SIAM J Sci Comput. doi: 10.1137/16M1082706 – volume: 234 start-page: 439 year: 2013 ident: 9739_CR181 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2012.10.001 – volume: 19 start-page: 754 issue: 4 year: 2012 ident: 9739_CR320 publication-title: Numer Linear Algebr with Appl. doi: 10.1002/nla.806 – volume: 21 start-page: 5 issue: 1 year: 1995 ident: 9739_CR93 publication-title: ACM Trans Math Softw. doi: 10.1145/200979.200981 – volume: 24 start-page: 329 year: 2015 ident: 9739_CR79 publication-title: Acta Numer. doi: 10.1017/S0962492915000021 – volume: 17 start-page: 17 issue: 1 year: 1983 ident: 9739_CR45 publication-title: ESAIM Math Model Numer Anal - Modélisation Mathématique Anal Numérique. – volume: 20 start-page: 753 issue: 5 year: 1994 ident: 9739_CR101 publication-title: Parallel Comput. doi: 10.1016/0167-8191(94)90004-3 – volume: 8 start-page: 93 issue: 2 year: 1991 ident: 9739_CR113 publication-title: Appl Numer Math. doi: 10.1016/0168-9274(91)90045-2 – volume: 42 start-page: B379 issue: 2 year: 2020 ident: 9739_CR149 publication-title: SIAM J Sci Comput. doi: 10.1137/19M1256117 – volume: 44 start-page: 1150 issue: 3 year: 2006 ident: 9739_CR227 publication-title: SIAM J Numer Anal. doi: 10.1137/050631811 – volume: 16 start-page: 297 issue: 2 year: 2012 ident: 9739_CR54 publication-title: Comput Geosci. doi: 10.1007/s10596-011-9244-4 – ident: 9739_CR176 doi: 10.1007/b137868 – volume: 17 start-page: 197 issue: 2 year: 2013 ident: 9739_CR269 publication-title: Comput Geosci. doi: 10.1007/s10596-012-9324-0 – volume: 43 start-page: 945 issue: 5 year: 2003 ident: 9739_CR192 publication-title: BIT Numer Math. doi: 10.1023/B:BITN.0000014563.33622.1d – volume: 35 start-page: A192 issue: 1 year: 2013 ident: 9739_CR302 publication-title: SIAM J Sci Comput. doi: 10.1137/110840819 – ident: 9739_CR84 doi: 10.1017/CBO9780511624100 – volume: 20 start-page: 2103 issue: 6 year: 1999 ident: 9739_CR110 publication-title: SIAM J Sci Comput. doi: 10.1137/S106482759732753X – volume: 8 start-page: 537 issue: 8 year: 2001 ident: 9739_CR272 publication-title: Numer Linear Algebr with Appl. doi: 10.1002/nla.264 – ident: 9739_CR37 doi: 10.3997/2214-4609.201411305 – ident: 9739_CR126 – ident: 9739_CR12 doi: 10.1137/1.9780898718003 – volume: 40 start-page: 63 issue: 1–2 year: 2002 ident: 9739_CR206 publication-title: Int J Numer Methods Fluids. doi: 10.1002/fld.267 – volume: 134 start-page: 169 issue: 1 year: 1997 ident: 9739_CR209 publication-title: J Comput Phys. doi: 10.1006/jcph.1997.5682 – volume: 257 start-page: 1163 year: 2014 ident: 9739_CR56 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2013.07.031 – ident: 9739_CR291 doi: 10.2118/173207-MS – volume: 227 start-page: 9885 issue: 23 year: 2008 ident: 9739_CR325 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2008.08.002 – volume: 221–222 start-page: 54 year: 2012 ident: 9739_CR326 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2012.02.004 – volume: 21 start-page: 345 issue: 3 year: 1981 ident: 9739_CR90 publication-title: Soc Pet Eng J. doi: 10.2118/8252-PA – ident: 9739_CR263 doi: 10.2118/193870-MS – volume: 3 start-page: 50 issue: 1 year: 2005 ident: 9739_CR233 publication-title: Multiscale Model Simul. doi: 10.1137/030600795 – ident: 9739_CR289 doi: 10.1016/j.petrol.2020.107506 – volume: 305 start-page: 111 year: 2016 ident: 9739_CR57 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2015.10.031 – volume: 8 start-page: 112 issue: 1 year: 2015 ident: 9739_CR153 publication-title: Numer Math Theory, Methods Appl. doi: 10.4208/nmtma.2015.w06si – volume: 33 start-page: 966 issue: 2 year: 2011 ident: 9739_CR142 publication-title: SIAM J Sci Comput. doi: 10.1137/100803031 – volume-title: TOUGH3: User’s guide year: 2018 ident: 9739_CR130 doi: 10.2172/1461175 – volume: 42 start-page: B761 issue: 3 year: 2020 ident: 9739_CR309 publication-title: SIAM J Sci Comput. doi: 10.1137/19M1261250 – volume-title: An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation year: 2015 ident: 9739_CR182 doi: 10.1137/1.9781611974065 – volume-title: Distributed ILU(0) and SOR preconditioners for unstructured sparse linear systems year: 1998 ident: 9739_CR118 – ident: 9739_CR136 doi: 10.2118/182723-MS – volume: 20 start-page: 987 issue: 4 year: 1999 ident: 9739_CR123 publication-title: SIAM J Matrix Anal Appl. doi: 10.1137/S0895479897317788 – ident: 9739_CR32 doi: 10.1007/s10596-021-10072-z – volume-title: System-AMG approaches for industrial fully and adaptive implicit oil reservoir simulation [PhD dissertation] year: 2016 ident: 9739_CR162 – ident: 9739_CR42 doi: 10.1137/S1064827595293594 – volume: 25 start-page: 383 year: 2016 ident: 9739_CR62 publication-title: Acta Numer. doi: 10.1017/S0962492916000076 – ident: 9739_CR73 doi: 10.6028/jres.049.044 – volume: 227 start-page: 6727 issue: 14 year: 2008 ident: 9739_CR215 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2008.03.029 – volume: 1 start-page: 387 issue: 4 year: 1994 ident: 9739_CR94 publication-title: Numer Linear Algebr with Appl. doi: 10.1002/nla.1680010405 – volume: 228 start-page: 687 issue: 3 year: 2009 ident: 9739_CR244 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2008.09.026 – year: 2021 ident: 9739_CR328 publication-title: Int J Numer Methods Fluids. doi: 10.1002/fld.5039 – volume: 6 start-page: 225 issue: 02 year: 1991 ident: 9739_CR38 publication-title: SPE Reserv Eng. doi: 10.2118/18412-PA – volume: 122 start-page: 1 year: 2017 ident: 9739_CR308 publication-title: Appl Numer Math. doi: 10.1016/j.apnum.2017.07.007 – volume: 29 start-page: 635 issue: 4 year: 1989 ident: 9739_CR99 publication-title: BIT. doi: 10.1007/BF01932738 – ident: 9739_CR103 doi: 10.2523/12264-MS – volume: 5 start-page: 337 issue: 2 year: 2006 ident: 9739_CR231 publication-title: Multiscale Model Simul. doi: 10.1137/050634566 – ident: 9739_CR275 – volume: 303 start-page: 55 year: 2016 ident: 9739_CR307 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2016.01.008 – volume: 49 start-page: 1 year: 1983 ident: 9739_CR147 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(83)90091-5 – volume: 35 start-page: B701 issue: 3 year: 2013 ident: 9739_CR311 publication-title: SIAM J Sci Comput. doi: 10.1137/12088879X – volume: 25 start-page: 716 issue: 2 year: 2003 ident: 9739_CR92 publication-title: SIAM J Sci Comput. doi: 10.1137/S1064827502405094 – volume-title: Fundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs year: 2020 ident: 9739_CR2 – ident: 9739_CR41 doi: 10.1137/S1064827595293582 – ident: 9739_CR265 doi: 10.1016/j.cma.2019.112575 – ident: 9739_CR292 doi: 10.2118/182619-MS – ident: 9739_CR242 doi: 10.2118/163664-PA – volume: 259 start-page: 284 year: 2014 ident: 9739_CR251 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2013.11.024 – volume: 282 start-page: 157 year: 2015 ident: 9739_CR296 publication-title: J Comput Appl Math. doi: 10.1016/j.cam.2014.12.042 – volume: 14 start-page: 1 year: 2005 ident: 9739_CR295 publication-title: Acta Numer. doi: 10.1017/S0962492904000212 – ident: 9739_CR34 doi: 10.2118/105832-MS – volume: 9 start-page: 467 issue: 4 year: 1999 ident: 9739_CR115 publication-title: Parallel Process Lett. doi: 10.1142/S0129626499000438 – volume: 13 start-page: 199 issue: 8 year: 2020 ident: 9739_CR300 publication-title: Algorithms. doi: 10.3390/a13080199 – volume: 40 start-page: C503 issue: 4 year: 2018 ident: 9739_CR165 publication-title: SIAM J Sci Comput. doi: 10.1137/16M1079506 – volume-title: Graph Theory with Applications year: 1976 ident: 9739_CR96 doi: 10.1007/978-1-349-03521-2 – volume: 29 start-page: 938 issue: 4 year: 1989 ident: 9739_CR281 publication-title: BIT Numer Math. doi: 10.1007/BF01932753 – ident: 9739_CR287 doi: 10.2118/195472-MS – volume-title: Multigrid Methods year: 1993 ident: 9739_CR171 – year: 2021 ident: 9739_CR201 publication-title: Comput Geosci. doi: 10.1007/s10596-021-10090-x – volume: 352 start-page: 389 year: 2019 ident: 9739_CR157 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2019.04.034 – ident: 9739_CR88 doi: 10.5402/2012/127647 – ident: 9739_CR220 doi: 10.1016/j.jcpx.2020.100061 – volume: 40 start-page: 1463 issue: 12 year: 2002 ident: 9739_CR195 publication-title: Int J Numer Methods Fluids. doi: 10.1002/fld.404 – volume: 42 start-page: B1014 issue: 4 year: 2020 ident: 9739_CR286 publication-title: SIAM J Sci Comput. doi: 10.1137/19M1292023 – ident: 9739_CR22 doi: 10.2118/4542-MS – volume: 40 start-page: A1473 issue: 3 year: 2018 ident: 9739_CR168 publication-title: SIAM J Sci Comput. doi: 10.1137/17M1123456 – ident: 9739_CR329 doi: 10.1137/S1064827599355153 – volume: 21 start-page: 1300 issue: 4 year: 2000 ident: 9739_CR318 publication-title: SIAM J Matrix Anal Appl. doi: 10.1137/S0895479899351805 – volume: 44 start-page: 1 issue: 4 year: 2018 ident: 9739_CR156 publication-title: ACM Trans Math Softw. doi: 10.1145/3190647 – volume: 81 start-page: 159 year: 2021 ident: 9739_CR128 publication-title: Comput Math with Appl. doi: 10.1016/j.camwa.2020.05.014 – ident: 9739_CR217 doi: 10.3997/2214-4609.202035063 – volume: 2 start-page: 421 issue: 3 year: 2004 ident: 9739_CR229 publication-title: Multiscale Model Simul. doi: 10.1137/030600655 – volume: 34 start-page: 828 issue: 2 year: 1997 ident: 9739_CR50 publication-title: SIAM J Numer Anal. doi: 10.1137/S0036142994262585 – ident: 9739_CR14 doi: 10.1137/1.9780898718942 – ident: 9739_CR119 doi: 10.1145/331532.331561 – volume: 44 start-page: 472 year: 2015 ident: 9739_CR154 publication-title: Electron Trans Numer Anal. – volume: 73 start-page: 611 year: 2016 ident: 9739_CR164 publication-title: Numer Algorithms. doi: 10.1007/s11075-016-0110-2 – volume: 438 start-page: 2683 issue: 6 year: 2013 ident: 9739_CR321 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2012.11.022 – ident: 9739_CR72 – ident: 9739_CR106 doi: 10.2118/141402-MS – volume: 1 start-page: 215 year: 1997 ident: 9739_CR278 publication-title: Comput Geosci. doi: 10.1023/A:1011521413158 – ident: 9739_CR26 doi: 10.1016/j.jcp.2017.02.032 – volume: 109 start-page: 1159 issue: 8 year: 2017 ident: 9739_CR254 publication-title: Int J Numer Methods Eng. doi: 10.1002/nme.5320 – volume: 216 start-page: 616 issue: 2 year: 2006 ident: 9739_CR234 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2006.01.001 – ident: 9739_CR55 doi: 10.2118/149690-PA – ident: 9739_CR81 doi: 10.1002/cpe.4460 – volume: 5 start-page: 245 issue: 3 year: 2000 ident: 9739_CR279 publication-title: SPE J. doi: 10.2118/65092-PA – ident: 9739_CR133 doi: 10.2118/106023-MS – volume: 128 start-page: 281 issue: 1–2 year: 2001 ident: 9739_CR173 publication-title: J Comput Appl Math. doi: 10.1016/S0377-0427(00)00516-1 – ident: 9739_CR207 doi: 10.2118/51931-MS – volume: 42 start-page: 576 issue: 2 year: 2004 ident: 9739_CR226 publication-title: SIAM J Numer Anal. doi: 10.1137/S0036142902406636 – volume: 39 start-page: 463 issue: 2 year: 2001 ident: 9739_CR191 publication-title: SIAM J Numer Anal. doi: 10.1137/S0036142900370824 – volume: 327 start-page: 894 year: 2016 ident: 9739_CR306 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2016.09.063 – volume: 375 start-page: 337 year: 2018 ident: 9739_CR274 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2018.08.043 – volume: 11 start-page: 507 issue: 2 year: 2013 ident: 9739_CR9 publication-title: Multiscale Model Simul. doi: 10.1137/120885188 – ident: 9739_CR270 doi: 10.2118/163592-MS – ident: 9739_CR310 doi: 10.1016/j.cma.2020.113229 – volume: 23 start-page: 589 issue: 02 year: 2018 ident: 9739_CR163 publication-title: SPE J. doi: 10.2118/182630-PA – volume: 93 start-page: 179 issue: 1 year: 2016 ident: 9739_CR108 publication-title: Int J Comput Math. doi: 10.1080/00207160.2014.998208 – volume: 31 start-page: 333 issue: 138 year: 1977 ident: 9739_CR137 publication-title: Math Comput. doi: 10.2307/2006422 – ident: 9739_CR268 – volume: 299 start-page: 472 year: 2015 ident: 9739_CR252 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2015.07.019 – volume: 19 start-page: 178 issue: 2 year: 2012 ident: 9739_CR152 publication-title: Numer Linear Algebr with Appl. doi: 10.1002/nla.1821 – ident: 9739_CR175 doi: 10.1007/978-3-319-62458-7_5 – volume: 41 start-page: A190 issue: 1 year: 2019 ident: 9739_CR150 publication-title: SIAM J Sci Comput. doi: 10.1137/17M1161178 – ident: 9739_CR18 doi: 10.2118/8284-PA – volume: 22 start-page: 658 issue: 5 year: 1982 ident: 9739_CR66 publication-title: Soc Pet Eng J. doi: 10.2118/9303-PA – volume: 7 start-page: 346 issue: 9 year: 1936 ident: 9739_CR16 publication-title: Physics (College Park Md). doi: 10.1063/1.1745403 – volume: 82–83 start-page: 101 year: 2012 ident: 9739_CR15 publication-title: J Pet Sci Eng. doi: 10.1016/j.petrol.2011.10.012 – volume: 40 start-page: A4105 issue: 6 year: 2018 ident: 9739_CR167 publication-title: SIAM J Sci Comput. doi: 10.1137/17M1144350 – ident: 9739_CR299 doi: 10.1016/j.cma.2020.113122 – volume: 255 start-page: 502 year: 2013 ident: 9739_CR216 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2013.08.042 – volume: 69 start-page: 753 issue: 4 year: 2014 ident: 9739_CR158 publication-title: Oil Gas Sci Technol - Rev d’IFP Energies Nouv. doi: 10.2516/ogst/2013184 – ident: 9739_CR102 – volume: 93 start-page: 1788 issue: 6 year: 2021 ident: 9739_CR301 publication-title: Int J Numer Methods Fluids. doi: 10.1002/fld.4952 – ident: 9739_CR65 doi: 10.2118/5729-MS – volume: 337 start-page: 84 year: 2017 ident: 9739_CR235 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2017.01.052 – volume: 21 start-page: 352 issue: 2 year: 1984 ident: 9739_CR76 publication-title: SIAM J Numer Anal. doi: 10.1137/0721026 – volume: 37 start-page: A1388 issue: 3 year: 2015 ident: 9739_CR198 publication-title: SIAM J Sci Comput. doi: 10.1137/140970379 – volume: 37 start-page: A391 issue: 1 year: 2015 ident: 9739_CR135 publication-title: SIAM J Sci Comput. doi: 10.1137/130936610 – ident: 9739_CR179 – volume: 8 start-page: 96 issue: 1 year: 2009 ident: 9739_CR212 publication-title: Multiscale Model Simul. doi: 10.1137/080742117 – volume: 10 start-page: 485 issue: 5–6 year: 2003 ident: 9739_CR145 publication-title: Numer Linear Algebr with Appl. doi: 10.1002/nla.325 – ident: 9739_CR261 doi: 10.1016/j.jcp.2020.109934 – ident: 9739_CR294 doi: 10.2118/182694-MS – volume: 99 start-page: 945 issue: 13 year: 2014 ident: 9739_CR194 publication-title: Int J Numer Methods Eng. doi: 10.1002/nme.4711 – volume: 11 start-page: 1062 issue: 5 year: 2018 ident: 9739_CR6 publication-title: Energy Environ Sci. doi: 10.1039/C7EE02342A – volume: 7 start-page: 446 issue: 4 year: 2002 ident: 9739_CR225 publication-title: SPE J. doi: 10.2118/81909-PA – volume: 182 start-page: 418 issue: 2 year: 2002 ident: 9739_CR125 publication-title: J Comput Phys. doi: 10.1006/jcph.2002.7176 – ident: 9739_CR317 doi: 10.1016/j.jcp.2019.108887 – ident: 9739_CR327 doi: 10.3997/2214-4609.201903117 – ident: 9739_CR160 doi: 10.2118/173241-MS – ident: 9739_CR257 doi: 10.1017/9781009019781 – ident: 9739_CR1 doi: 10.2118/9781613993286 – ident: 9739_CR166 doi: 10.3997/2214-4609.202035046 – volume: 3 start-page: 41 issue: 1 year: 1983 ident: 9739_CR67 publication-title: IMA J Numer Anal. doi: 10.1093/imanum/3.1.41 – ident: 9739_CR256 – volume: 25 start-page: 701 issue: 2 year: 2021 ident: 9739_CR283 publication-title: Comput Geosci. doi: 10.1007/s10596-020-09981-2 – start-page: 108 volume-title: Math Comput Methods Seism Explor Reserv Model year: 1986 ident: 9739_CR97 – volume: 318 start-page: 36 year: 2016 ident: 9739_CR246 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2016.05.001 – volume: 41 start-page: B843 issue: 4 year: 2019 ident: 9739_CR298 publication-title: SIAM J Sci Comput. doi: 10.1137/17M1153674 – volume-title: Petroleum Reservoir Simulation year: 1979 ident: 9739_CR21 – ident: 9739_CR140 doi: 10.1137/1.9781611971057.ch4 – volume: 95 start-page: 145 issue: 1 year: 2003 ident: 9739_CR180 publication-title: Numer Math. doi: 10.1007/s00211-002-0444-7 – ident: 9739_CR304 doi: 10.1002/nla.2361 – volume: 373 start-page: 324 year: 2018 ident: 9739_CR219 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2018.06.075 – year: 2021 ident: 9739_CR4 publication-title: Petroleum doi: 10.1016/j.petlm.2021.05.002 – volume: 6 start-page: 206 issue: 2 year: 1980 ident: 9739_CR91 publication-title: ACM Trans Math Softw. doi: 10.1145/355887.355893 – volume: 119 start-page: 219 year: 2018 ident: 9739_CR124 publication-title: J Parallel Distrib Comput. doi: 10.1016/j.jpdc.2018.04.017 – volume: 24 start-page: 533 issue: 2 year: 2020 ident: 9739_CR30 publication-title: Comput Geosci. doi: 10.1007/s10596-019-09835-6 – volume: 21 start-page: 171 issue: 1 year: 2014 ident: 9739_CR322 publication-title: Numer Linear Algebr with Appl. doi: 10.1002/nla.1887 – volume-title: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations year: 1996 ident: 9739_CR138 – volume: 48 start-page: 501 issue: 5 year: 2005 ident: 9739_CR68 publication-title: Int J Numer Methods Fluids. doi: 10.1002/fld.936 – volume: 344 start-page: 376 year: 2019 ident: 9739_CR316 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2018.09.039 – ident: 9739_CR60 doi: 10.1016/j.jcp.2019.109194 – ident: 9739_CR146 – volume: 44 start-page: 2082 issue: 5 year: 2006 ident: 9739_CR51 publication-title: SIAM J Numer Anal. doi: 10.1137/050638473 – ident: 9739_CR319 doi: 10.1002/nla.2144 – volume: 26 start-page: 591 year: 2017 ident: 9739_CR174 publication-title: Acta Numer. doi: 10.1017/S0962492917000083 – ident: 9739_CR276 doi: 10.2118/12265-MS – ident: 9739_CR74 doi: 10.6028/jres.049.006 – volume: 301 start-page: 19 year: 2015 ident: 9739_CR288 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2015.08.016 – volume-title: Domain Decomposition Methods for Partial Differential Equations year: 1999 ident: 9739_CR202 doi: 10.1093/oso/9780198501787.001.0001 – volume: 15 start-page: 191 year: 2012 ident: 9739_CR305 publication-title: Comput Vis Sci. doi: 10.1007/s00791-013-0209-0 – volume: 17 start-page: 523 issue: 2 year: 2012 ident: 9739_CR183 publication-title: SPE J. doi: 10.2118/141473-PA – volume: 24 start-page: 459 issue: 2 year: 2020 ident: 9739_CR214 publication-title: Comput Geosci. doi: 10.1007/s10596-019-9827-z – volume: 53 start-page: 253 issue: 1–3 year: 1989 ident: 9739_CR100 publication-title: Comput Phys Commun. doi: 10.1016/0010-4655(89)90164-1 – ident: 9739_CR134 doi: 10.2118/96809-MS – volume: 22 start-page: 1929 issue: 6 year: 2017 ident: 9739_CR258 publication-title: SPE J. doi: 10.2118/182701-PA – volume: 7 start-page: 130 issue: 1 year: 2014 ident: 9739_CR5 publication-title: Energy Environ Sci doi: 10.1039/C3EE42350F – volume: 14 start-page: 559 issue: 2 year: 2016 ident: 9739_CR250 publication-title: Multiscale Model Simul. doi: 10.1137/140953691 – volume: 326 start-page: 526 year: 2017 ident: 9739_CR155 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2017.08.025 – volume-title: Hydraulic properties of porous media year: 1964 ident: 9739_CR19 – ident: 9739_CR85 doi: 10.1145/509593.509621 – volume: 13 start-page: 631 issue: 2 year: 1992 ident: 9739_CR77 publication-title: SIAM J Sci Stat Comput. doi: 10.1137/0913035 – ident: 9739_CR71 – volume: 81 start-page: 131 year: 2019 ident: 9739_CR82 publication-title: Parallel Comput. doi: 10.1016/j.parco.2017.12.006 |
SSID | ssj0054992 |
Score | 2.3498404 |
SecondaryResourceType | review_article |
Snippet | Linear solvers for reservoir simulation applications are the objective of this review. Specifically, we focus on techniques for Fully Implicit (FI) solution... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4341 |
SubjectTerms | Convergence Engineering Iterative methods Mathematical and Computational Engineering Mathematical models Partial differential equations Preconditioning Reservoirs Review Article Simulation Solvers State-of-the-art reviews |
Title | Linear Solvers for Reservoir Simulation Problems: An Overview and Recent Developments |
URI | https://link.springer.com/article/10.1007/s11831-022-09739-2 https://www.proquest.com/docview/2716216520 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oe9GDj6qxWps9eFMSYGFBb6S2Nr6TSlJPhMdu0kTBlFr_vrPbRapRE08ksHCYmZ35Pnb2W4BjJ84S6qW-4QsvMTBCUiP2pYqom1GcgRnGkVL7vGPD0Lkau2O9Kaysut2rJUmVqevNbhh9SH2RPEmJmTMDE2_Tldwdozi0gyr_SsKj1jgtKv_5M1Nvlfn5G1_LUY0xvy2Lqmoz2IINDRNJsPDrNqzwvAWbGjISPSHLFqwv6QnuQIjMEiOXjArZ71wSBKREttZN58UE705e9Fld5GFxjEx5ToKc3M9lvuDvJM4zHC7bNclSL1G5C-Gg_9gbGvrcBCOljM4MhBxmajKR-MLMuEm5J7ACITFggmOJThLXsZFlUEq5yT3KYsvOTOFK5uEkmcfpHjTyIuf7QBDepQ5CRM8SzHE5YoPUj7mrJHpsKlgbrMp8UapFxeXZFs9RLYcsTR6hySNl8shuw8nnO68LSY0_R3cqr0R6epWRLXWvLIbeb8Np5an68e9fO_jf8ENYs2WwqOa9DjRm0zd-hCBklnShGVzc3ozk9fLput-F1R7rdVUkfgA5j9Mx |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2hMgADHwVEoYAHNohw7MQJbFVFVaAUJFqpm5UPW6oEKWpK-fucU4eWCpBYE8fD-c73Xnx-B3DmRWnMgyR0Qh3EDnpI4kShURH1U44RmKIfFWqfXdHue3cDf2BlcsxdmKXz-8scATBHwouUyQjLXDm43a56yJRN-V5TNMtd19Cc4mTT5eZPv6D2gszPc3xPQnNkuXQYWuSY1jZsWnBIGrPV3IEVlVVhywJFYsMwr8LGgorgLvSRT6K_kueRqXLOCcJQYgrqxtPREJ8OX22HLvI0ax6TX5NGRh6nZpdQHyTKUhxuijTJQgVRvgf91k2v2XZstwQn4YJPHAQaNKFCx6GmqaJcBRrzDtIBoRUm5jj2PYbcgnOuqAq4iFyWUu0bvuHFaaD4PlSyUaYOgCCoSzwEhoGrhecrRARJGCm_EOZhXIsauKX5ZGKlxE1Hixc5F0E2JpdoclmYXLIanH998zYT0vhzdL1cFWmDKpfMqF25wme0BhflSs1f_z7b4f-Gn8Jau_fQkZ3b7v0RrDPjOEX5Xh0qk_G7OkYYMolPCv_7BIVdzf4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yQfTgj6k4nZqDNy1Lmzat3sZ0zB_MgQ52C22TwEC7sdb57_uSpm6KCl7bNIeXl7zva977HkJnfiwSGqaRE6kwccBDUieOtIpoICjsQAF-ZNQ--6w39O9GwWipit9ku1dXkmVNg1ZpyorWVKjWovANPBFoMBApLTdz6cAhvApMxVzUdlinOos1-TH3nS7V__8ZsWUzP8_xNTQt8Oa3K1ITebrbaNNCRtwu13gHrcisjrYsfMR2c-Z1tLGkLbiLhsAywYvx00TnPucYwCnWaXaz-WQMT8evtm8XHpQtZfIr3M7w41yfHfIdx5mA4Tp1Ey_lFeV7aNi9ee70HNtDwUkpo4UD8IOkhKkkUkRIQmWoIBoBSWBKQrhOksD3gHFQSiWRIWWx6wmiAs1C_ESEku6jWjbJ5AHCAPVSH-Bi6CrmBxJwQhrFMjByPR5VrIHcynw8tQLjus_FC19II2uTczA5NybnXgOdf34zLeU1_hzdrFaF262Wc09rYLks8EgDXVQrtXj9-2yH_xt-itYG113-cNu_P0LrnvYbk9PXRLVi9iaPAZsUyYlxvw-SU9ZF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Solvers+for+Reservoir+Simulation+Problems%3A+An+Overview+and+Recent+Developments&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Nardean%2C+Stefano&rft.au=Ferronato%2C+Massimiliano&rft.au=Abushaikha%2C+Ahmad&rft.date=2022-10-01&rft.pub=Springer+Netherlands&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=29&rft.issue=6&rft.spage=4341&rft.epage=4378&rft_id=info:doi/10.1007%2Fs11831-022-09739-2&rft.externalDocID=10_1007_s11831_022_09739_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |