An improved deep learning-based optimal object detection system from images

Computer vision technology for detecting objects in a complex environment often includes other key technologies, including pattern recognition, artificial intelligence, and digital image processing. It has been shown that Fast Convolutional Neural Networks (CNNs) with You Only Look Once (YOLO) is op...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 10; pp. 30045 - 30072
Main Authors Yadav, Satya Prakash, Jindal, Muskan, Rani, Preeti, de Albuquerque, Victor Hugo C., dos Santos Nascimento, Caio, Kumar, Manoj
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-023-16736-5

Cover

Loading…
Abstract Computer vision technology for detecting objects in a complex environment often includes other key technologies, including pattern recognition, artificial intelligence, and digital image processing. It has been shown that Fast Convolutional Neural Networks (CNNs) with You Only Look Once (YOLO) is optimal for differentiating similar objects, constant motion, and low image quality. The proposed study aims to resolve these issues by implementing three different object detection algorithms—You Only Look Once (YOLO), Single Stage Detector (SSD), and Faster Region-Based Convolutional Neural Networks (R-CNN). This paper compares three different deep-learning object detection methods to find the best possible combination of feature and accuracy. The R-CNN object detection techniques are performed better than single-stage detectors like Yolo (You Only Look Once) and Single Shot Detector (SSD) in term of accuracy, recall, precision and loss.
AbstractList Computer vision technology for detecting objects in a complex environment often includes other key technologies, including pattern recognition, artificial intelligence, and digital image processing. It has been shown that Fast Convolutional Neural Networks (CNNs) with You Only Look Once (YOLO) is optimal for differentiating similar objects, constant motion, and low image quality. The proposed study aims to resolve these issues by implementing three different object detection algorithms—You Only Look Once (YOLO), Single Stage Detector (SSD), and Faster Region-Based Convolutional Neural Networks (R-CNN). This paper compares three different deep-learning object detection methods to find the best possible combination of feature and accuracy. The R-CNN object detection techniques are performed better than single-stage detectors like Yolo (You Only Look Once) and Single Shot Detector (SSD) in term of accuracy, recall, precision and loss.
Author de Albuquerque, Victor Hugo C.
dos Santos Nascimento, Caio
Yadav, Satya Prakash
Rani, Preeti
Jindal, Muskan
Kumar, Manoj
Author_xml – sequence: 1
  givenname: Satya Prakash
  surname: Yadav
  fullname: Yadav, Satya Prakash
  organization: Department of Computer Science and Engineering, G.L. Bajaj Institute of Technology and Management (GLBITM), Graduate Program in Telecommunications Engineering. (PPGET), Federal Institute of Education, Science, and Technology of Ceará (IFCE)
– sequence: 2
  givenname: Muskan
  surname: Jindal
  fullname: Jindal, Muskan
  organization: Department of Computer Science and Engineering, Amity University
– sequence: 3
  givenname: Preeti
  surname: Rani
  fullname: Rani, Preeti
  organization: Department of Electronics & Communication Engineering, SRM Institute of Science and Technology
– sequence: 4
  givenname: Victor Hugo C.
  surname: de Albuquerque
  fullname: de Albuquerque, Victor Hugo C.
  organization: Department of Teleinformatics Engineering, Federal University of Ceará
– sequence: 5
  givenname: Caio
  surname: dos Santos Nascimento
  fullname: dos Santos Nascimento, Caio
  organization: Department of Teleinformatics Engineering, Federal University of Ceará
– sequence: 6
  givenname: Manoj
  orcidid: 0000-0001-5113-0639
  surname: Kumar
  fullname: Kumar, Manoj
  email: wss.manojkumar@gmail.com
  organization: School of Computer Sceince, FEIS, University of Wollongong in Dubai, MEU Research Unit, Middle East University
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrqN5Z7osxRcW3Og6ZDJJmTKT1CQV-u9NHUFx0dUNl_Ode3JmYOKDtwBcY3SLEZJ3CWPECESEQiwkFZCfgSnmkkIpCZ78eV-AWUpbhLDghE3By9JX3bCL4dO2VWvtruqtjr7zG9joVHZhl7tB91VottbkIslldMFX6ZCyHSoXw1Ac9MamS3DudJ_s1c-cg_eH-7fVE1y_Pj6vlmtoqKAZLuqWYoEaYSXlwrSc1ZIsWIMWThAusEaIW9RK1DpXO8Rq45CxhDEjNGa0pXNwM_qW2B97m7Lahn305aQqPpgRXgtWVPWoMjGkFK1Tpsv6GD1H3fUKI3WsTo3VqVKd-q5O8YKSf-guli_Gw2mIjlAqYr-x8TfVCeoLK1SCQw
CitedBy_id crossref_primary_10_21833_ijaas_2024_08_021
crossref_primary_10_1007_s11227_024_06753_y
crossref_primary_10_1109_ACCESS_2024_3514455
crossref_primary_10_1007_s10489_024_06213_3
crossref_primary_10_53696_27753719_51164
crossref_primary_10_1007_s13278_024_01255_4
crossref_primary_10_1007_s11042_024_18650_w
crossref_primary_10_1080_00051144_2024_2314928
crossref_primary_10_1109_TCE_2024_3445728
crossref_primary_10_1007_s12524_024_02050_6
crossref_primary_10_1007_s13198_024_02640_0
crossref_primary_10_1007_s42979_024_03396_x
crossref_primary_10_3390_electronics13132522
crossref_primary_10_1109_JSEN_2024_3439509
crossref_primary_10_1007_s11042_024_19748_x
crossref_primary_10_1016_j_eswa_2025_126772
crossref_primary_10_1109_ACCESS_2024_3398142
Cites_doi 10.1007/s10115-020-01538-0
10.1007/978-981-19-8825-7_55
10.1007/s11042-020-10157-4
10.1016/j.cja.2020.02.024
10.1016/j.dsp.2020.102949
10.1109/INFOCOMTECH.2017.8340635
10.1109/TIM.2021.3065438
10.1016/j.physbeh.2018.10.017
10.1016/j.compeleceng.2022.108543
10.1080/03772063.2020.1780164
10.1016/j.procs.2020.04.283
10.1155/2022/3365392
10.1007/978-981-13-9406-5_57
10.1016/j.cviu.2019.102827
10.1109/CVPR.2017.324
10.1016/j.patrec.2007.06.013
10.48550/ARXIV.1804.02767
10.1016/j.cviu.2013.10.008
10.1145/3154979.3154998
10.4018/IJEHMC.309436
10.1109/TPAMI.2014.2345401
10.2478/fcds-2020-0014
10.1007/s11042-021-10768-5
10.1016/j.compeleceng.2021.107226
10.1109/ICACCS48705.2020.9074315
10.1016/j.future.2018.09.068
10.48550/arXiv.1611.04849
10.1109/TMM.2017.2741423
10.1007/s00138-020-01065-6
10.1109/CVPR.2013.271
10.1016/j.cviu.2019.01.006
10.1007/s11042-017-4642-9
10.1007/978-981-13-0923-6_39
10.1145/3177404.3177432
10.1109/INFOCOMTECH.2017.8340630
10.1109/MCE.2020.3003127
10.1007/s11042-021-11419-5
10.1109/ICCWAMTIP53232.2021.9674153
10.1016/j.procs.2018.05.144
10.1109/ICCV.2013.413
10.1016/j.patcog.2019.107131
10.1016/j.image.2020.115987
10.1016/j.ins.2023.01.004
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-16736-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 30072
ExternalDocumentID 10_1007_s11042_023_16736_5
GrantInformation_xml – fundername: The University of Wollongong
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c363t-98d3160b6e7356cd5487294b09f62561a005e0d70dff8f048cf0ce244c6a143d3
IEDL.DBID BENPR
ISSN 1573-7721
1380-7501
IngestDate Sat Aug 23 12:29:22 EDT 2025
Tue Jul 01 04:13:26 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Fri Feb 21 02:41:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Chess Piece Identification
Object Detection
Single Stage Detector (SSD)
You Only Look Once (YOLO)
Faster Region-Based Convolutional Neural Networks (R-CNN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-98d3160b6e7356cd5487294b09f62561a005e0d70dff8f048cf0ce244c6a143d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5113-0639
OpenAccessLink https://link.springer.com/10.1007/s11042-023-16736-5
PQID 2941425864
PQPubID 54626
PageCount 28
ParticipantIDs proquest_journals_2941425864
crossref_citationtrail_10_1007_s11042_023_16736_5
crossref_primary_10_1007_s11042_023_16736_5
springer_journals_10_1007_s11042_023_16736_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DingLXuXCaoYZhaiGYangFQianLDetection and tracking of infrared small target by jointly using SSD and pipeline filterDigit Signal Process202111010294910.1016/j.dsp.2020.102949
Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018). https://doi.org/10.48550/ARXIV.1804.02767
Sharma S, Kumar K, Singh N (2017) D-FES: Deep facial expression recognition system. In: 2017 Conference on Information and Communication Technology (CICT). IEEE, Gwalior, India, pp. 1–6. https://doi.org/10.1109/INFOCOMTECH.2017.8340635
PathakARPandeyMRautaraySApplication of deep learning for object detectionProcedia Computer Science20181321706171710.1016/j.procs.2018.05.144
VillafainaSCollado-MateoDCano-PlasenciaRGusiNFuentesJPElectroencephalographic response of chess players in decision-making processes under time pressurePhysiol Behav20191981401431:CAS:528:DC%2BC1cXitV2hs7vM10.1016/j.physbeh.2018.10.01730389477
Czyzewski MA, Laskowski A, Wasik S (2020) Chessboard and chess piece recognition with the support of neural networks. Found Comput Decis Sci 45(4), Art. no. 4
CaiYYOLOv4-5D: An Effective and Efficient Object Detector for Autonomous DrivingIEEE Trans Instrum Meas20217011310.1109/TIM.2021.3065438
HuJShiC-JRZhangJSaliency-based YOLO for single target detectionKnowl Inf Syst202163371773210.1007/s10115-020-01538-0
Agyemang IO, et al. (2021) On salient concrete crack detection via improved Yolov5. In: 2021 18th International computer conference on wavelet active media technology and information processing (ICCWAMTIP). IEEE. https://doi.org/10.1109/ICCWAMTIP53232.2021.9674153
Abhay A, et al (2017) An automated hierarchical framework for player recognition in sports image. Proceedings of the international conference on video and image processing. https://doi.org/10.1145/3177404.3177432
Ansari G, Rani P, Kumar V (2023) A novel technique of mixed gas identification based on the group method of data handling (GMDH) on time-dependent MOX gas sensor data. In: Mahapatra RP, Peddoju SK, Roy S, Parwekar P (eds.) Proceedings of International Conference on Recent Trends in Computing. Lecture Notes in Networks and Systems, vol. 600. Springer Nature Singapore, Singapore, pp. 641–654. https://doi.org/10.1007/978-981-19-8825-7_55
Hou Q, Cheng M-M, Hu X, Borji A, Tu Z, Torr PH (2017) Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3203–3212. https://doi.org/10.48550/arXiv.1611.04849
Kumar A, Singh N, Kumar P, Vijayvergia A, Kumar K (2017) A novel superpixel based color spatial feature for salient object detection. In: 2017 Conference on Information and Communication Technology (CICT). IEEE, Gwalior, pp. 1–5. https://doi.org/10.1109/INFOCOMTECH.2017.8340630
Kumar K, Kumar A, Bahuguna A (2017) D-CAD: Deep and crowded anomaly detection. Proceedings of the 7th international conference on computer and communication technology. https://doi.org/10.1145/3154979.3154998
SharmaSKumarKSinghNDeep Eigen Space Based ASL Recognition SystemIETE J Res20226853798380810.1080/03772063.2020.1780164
RaniPSinghPNVermaSAliNShuklaPKAlhassanMAn Implementation of Modified Blowfish Technique with Honey Bee Behavior Optimization for Load Balancing in Cloud System EnvironmentWirel Commun Mob Comput2022202211410.1155/2022/3365392
YuanJGated CNN: Integrating multi-scale feature layers for object detectionPattern Recognit202010510713110.1016/j.patcog.2019.107131
KumarKText query based summarized event searching interface system using deep learning over cloudMultimed Tools Appl2021807110791109410.1007/s11042-020-10157-4
RaniPVermaSYadavSPRaiBKNarukaMSKumarDSimulation of the Lightweight Blockchain Technique Based on Privacy and Security for Healthcare Data for the Cloud SystemInt J E-Health Med Commun202213411510.4018/IJEHMC.309436
Wang X, Shrivastava A, Gupta A (2017) A-Fast-RCNN: hard positive generation via adversary for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, pp 3039–3048. https://doi.org/10.1109/CVPR.2017.324
SrivastavaGSrivastavaRUser-interactive salient object detection using YOLOv2, lazy snapping, and gabor filtersMach Vis Appl20203131710.1007/s00138-020-01065-6
KumarASrivastavaSObject detection system based on convolution neural networks using single shot multi-box detectorProcedia Comput Sci20201712610261710.1016/j.procs.2020.04.283
BennettSLasenbyJChESS–Quick and robust detection of chess-board featuresComput Vis Image Underst201411819721010.1016/j.cviu.2013.10.008
RaniPSharmaRIntelligent transportation system for internet of vehicles based vehicular networks for smart citiesComput Electr Eng20231051085410.1016/j.compeleceng.2022.108543
WangQDeep convolutional cross-connected kernel mapping support vector machine based on SelectDropoutInf Sci202362669470910.1016/j.ins.2023.01.004
Cheng M-M, Mitra NJ, Huang X, Torr PH, Hu S-M (2014) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3), Art. no. 3
KumarKShrimankarDDF-DES: Fast and Deep Event SummarizationIEEE Trans Multimed201820232333410.1109/TMM.2017.2741423
Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, pp 2083–2090. https://doi.org/10.1109/CVPR.2013.271
YiCKanekoTImproving counterfactual regret minimization agents training in card game cheat using ordered abstractionAdvances in Computer Games2021ChamSpringer International Publishing313
KoppanatiRKKumarKP-MEC: Polynomial Congruence-Based Multimedia Encryption Technique Over CloudIEEE Consum Electron Mag2021105414610.1109/MCE.2020.3003127
JangYGunesHPatrasIRegistration-free face-ssd: Single shot analysis of smiles, facial attributes, and affect in the wildComput Vis Image Underst2019182172910.1016/j.cviu.2019.01.006
YiJWuPMetaxasDNASSD: Attentive single shot multibox detectorComput Vis Image Underst201918910282710.1016/j.cviu.2019.102827
PanHJiangJChenGTDFSSD: Top-down feature fusion single shot MultiBox detectorSignal Process Image Commun20208911598710.1016/j.image.2020.115987
AhmedIAhmadMAhmadAJeonGIoT-based crowd monitoring system: Using SSD with transfer learningComput Electr Eng20219310722610.1016/j.compeleceng.2021.107226
SakaiYLuHTanJ-KKimHRecognition of surrounding environment from electric wheelchair videos based on modified YOLOv2Future Gener Comput Syst20199215716110.1016/j.future.2018.09.068
Li C, Chen G (2020) Research on Chinese Chess Detection and Recognition Based on Convolutional Neural Network. In: Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018, Springer, pp. 467–473
Li X, Li Y, Shen C, Dick A, Hengel AVD(2013) Contextual hypergraph modeling for salient object detection. In: 2013 IEEE International Conference on Computer Vision, Sydney, pp. 3328–3335. https://doi.org/10.1109/ICCV.2013.413
Adarsh P, Rathi P, Kumar M (2020) YOLO v3-Tiny: object detection and recognition using one stage improved model. In: 2020 6th international conference on advanced computing and communication systems (ICACCS).IEEE, pp 687–694
Fernández A, Salmerón A (2008) BayesChess: A computer chess program based on Bayesian networks. Pattern Recognit Lett 29(8) Art. no. 8, 2008
KumarKShrimankarDDSinghNEratosthenes sieve based key-frame extraction technique for event summarization in videosMultimed Tools Appl20187767383740410.1007/s11042-017-4642-9
SharmaSKumarKASL-3DCNN: American sign language recognition technique using 3-D convolutional neural networksMultimed Tools Appl20218017263192633110.1007/s11042-021-10768-5
Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In: Advances in Neural Information Processing Systems, Curran Associates, Inc.. Accessed: May 09, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
Preeti R, Sharma R (2022) An experimental study of IEEE 802.11 n Devices for Vehicular Networks with Various Propagation Loss Models." International Conference on Signal Processing and Integrated Networks. Singapore: Springer Nature Singapore, 2022.
Kumar K, Shrimankar DD, Singh N (2019) Key-Lectures: Keyframes Extraction in Video Lectures. In: Tanveer M, Pachori RB (eds.) Machine Intelligence and Signal Analysis. Advances in Intelligent Systems and Computing, vol. 748. Springer Singapore, Singapore, pp. 453–459. https://doi.org/10.1007/978-981-13-0923-6_39
YundongLIMulti-block SSD based on small object detection for UAV railway scene surveillanceChin J Aeronaut20203361747175510.1016/j.cja.2020.02.024
HalimZZouqAOn identification of big-five personality traits through choice of images in a real-world settingMultimed Tools Appl20218024333773340810.1007/s11042-021-11419-5
16736_CR36
K Kumar (16736_CR33) 2018; 20
P Rani (16736_CR10) 2022; 13
J Hu (16736_CR42) 2021; 63
16736_CR1
L Ding (16736_CR13) 2021; 110
16736_CR39
16736_CR34
C Yi (16736_CR5) 2021
16736_CR31
S Sharma (16736_CR35) 2022; 68
Z Halim (16736_CR14) 2021; 80
AR Pathak (16736_CR30) 2018; 132
S Sharma (16736_CR38) 2021; 80
Y Jang (16736_CR4) 2019; 182
P Rani (16736_CR17) 2022; 2022
16736_CR29
I Ahmed (16736_CR8) 2021; 93
16736_CR25
16736_CR26
LI Yundong (16736_CR15) 2020; 33
16736_CR27
16736_CR28
16736_CR21
16736_CR22
16736_CR44
16736_CR23
Y Cai (16736_CR45) 2021; 70
J Yuan (16736_CR7) 2020; 105
16736_CR24
16736_CR46
A Kumar (16736_CR3) 2020; 171
Q Wang (16736_CR12) 2023; 626
16736_CR41
S Bennett (16736_CR16) 2014; 118
P Rani (16736_CR11) 2023; 105
H Pan (16736_CR9) 2020; 89
K Kumar (16736_CR37) 2021; 80
J Yi (16736_CR20) 2019; 189
K Kumar (16736_CR32) 2018; 77
G Srivastava (16736_CR43) 2020; 31
S Villafaina (16736_CR2) 2019; 198
16736_CR18
16736_CR19
RK Koppanati (16736_CR40) 2021; 10
Y Sakai (16736_CR6) 2019; 92
References_xml – reference: Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018). https://doi.org/10.48550/ARXIV.1804.02767
– reference: AhmedIAhmadMAhmadAJeonGIoT-based crowd monitoring system: Using SSD with transfer learningComput Electr Eng20219310722610.1016/j.compeleceng.2021.107226
– reference: Agyemang IO, et al. (2021) On salient concrete crack detection via improved Yolov5. In: 2021 18th International computer conference on wavelet active media technology and information processing (ICCWAMTIP). IEEE. https://doi.org/10.1109/ICCWAMTIP53232.2021.9674153
– reference: SharmaSKumarKASL-3DCNN: American sign language recognition technique using 3-D convolutional neural networksMultimed Tools Appl20218017263192633110.1007/s11042-021-10768-5
– reference: HuJShiC-JRZhangJSaliency-based YOLO for single target detectionKnowl Inf Syst202163371773210.1007/s10115-020-01538-0
– reference: Cheng M-M, Mitra NJ, Huang X, Torr PH, Hu S-M (2014) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3), Art. no. 3
– reference: DingLXuXCaoYZhaiGYangFQianLDetection and tracking of infrared small target by jointly using SSD and pipeline filterDigit Signal Process202111010294910.1016/j.dsp.2020.102949
– reference: YuanJGated CNN: Integrating multi-scale feature layers for object detectionPattern Recognit202010510713110.1016/j.patcog.2019.107131
– reference: Ansari G, Rani P, Kumar V (2023) A novel technique of mixed gas identification based on the group method of data handling (GMDH) on time-dependent MOX gas sensor data. In: Mahapatra RP, Peddoju SK, Roy S, Parwekar P (eds.) Proceedings of International Conference on Recent Trends in Computing. Lecture Notes in Networks and Systems, vol. 600. Springer Nature Singapore, Singapore, pp. 641–654. https://doi.org/10.1007/978-981-19-8825-7_55
– reference: Kumar K, Shrimankar DD, Singh N (2019) Key-Lectures: Keyframes Extraction in Video Lectures. In: Tanveer M, Pachori RB (eds.) Machine Intelligence and Signal Analysis. Advances in Intelligent Systems and Computing, vol. 748. Springer Singapore, Singapore, pp. 453–459. https://doi.org/10.1007/978-981-13-0923-6_39
– reference: SakaiYLuHTanJ-KKimHRecognition of surrounding environment from electric wheelchair videos based on modified YOLOv2Future Gener Comput Syst20199215716110.1016/j.future.2018.09.068
– reference: RaniPSharmaRIntelligent transportation system for internet of vehicles based vehicular networks for smart citiesComput Electr Eng20231051085410.1016/j.compeleceng.2022.108543
– reference: JangYGunesHPatrasIRegistration-free face-ssd: Single shot analysis of smiles, facial attributes, and affect in the wildComput Vis Image Underst2019182172910.1016/j.cviu.2019.01.006
– reference: Sharma S, Kumar K, Singh N (2017) D-FES: Deep facial expression recognition system. In: 2017 Conference on Information and Communication Technology (CICT). IEEE, Gwalior, India, pp. 1–6. https://doi.org/10.1109/INFOCOMTECH.2017.8340635
– reference: Wang X, Shrivastava A, Gupta A (2017) A-Fast-RCNN: hard positive generation via adversary for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, pp 3039–3048. https://doi.org/10.1109/CVPR.2017.324
– reference: BennettSLasenbyJChESS–Quick and robust detection of chess-board featuresComput Vis Image Underst201411819721010.1016/j.cviu.2013.10.008
– reference: YiJWuPMetaxasDNASSD: Attentive single shot multibox detectorComput Vis Image Underst201918910282710.1016/j.cviu.2019.102827
– reference: Li X, Li Y, Shen C, Dick A, Hengel AVD(2013) Contextual hypergraph modeling for salient object detection. In: 2013 IEEE International Conference on Computer Vision, Sydney, pp. 3328–3335. https://doi.org/10.1109/ICCV.2013.413
– reference: WangQDeep convolutional cross-connected kernel mapping support vector machine based on SelectDropoutInf Sci202362669470910.1016/j.ins.2023.01.004
– reference: VillafainaSCollado-MateoDCano-PlasenciaRGusiNFuentesJPElectroencephalographic response of chess players in decision-making processes under time pressurePhysiol Behav20191981401431:CAS:528:DC%2BC1cXitV2hs7vM10.1016/j.physbeh.2018.10.01730389477
– reference: Preeti R, Sharma R (2022) An experimental study of IEEE 802.11 n Devices for Vehicular Networks with Various Propagation Loss Models." International Conference on Signal Processing and Integrated Networks. Singapore: Springer Nature Singapore, 2022.
– reference: YiCKanekoTImproving counterfactual regret minimization agents training in card game cheat using ordered abstractionAdvances in Computer Games2021ChamSpringer International Publishing313
– reference: RaniPSinghPNVermaSAliNShuklaPKAlhassanMAn Implementation of Modified Blowfish Technique with Honey Bee Behavior Optimization for Load Balancing in Cloud System EnvironmentWirel Commun Mob Comput2022202211410.1155/2022/3365392
– reference: PanHJiangJChenGTDFSSD: Top-down feature fusion single shot MultiBox detectorSignal Process Image Commun20208911598710.1016/j.image.2020.115987
– reference: Li C, Chen G (2020) Research on Chinese Chess Detection and Recognition Based on Convolutional Neural Network. In: Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018, Springer, pp. 467–473
– reference: Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, pp 2083–2090. https://doi.org/10.1109/CVPR.2013.271
– reference: PathakARPandeyMRautaraySApplication of deep learning for object detectionProcedia Computer Science20181321706171710.1016/j.procs.2018.05.144
– reference: CaiYYOLOv4-5D: An Effective and Efficient Object Detector for Autonomous DrivingIEEE Trans Instrum Meas20217011310.1109/TIM.2021.3065438
– reference: Kumar K, Kumar A, Bahuguna A (2017) D-CAD: Deep and crowded anomaly detection. Proceedings of the 7th international conference on computer and communication technology. https://doi.org/10.1145/3154979.3154998
– reference: KumarKText query based summarized event searching interface system using deep learning over cloudMultimed Tools Appl2021807110791109410.1007/s11042-020-10157-4
– reference: KoppanatiRKKumarKP-MEC: Polynomial Congruence-Based Multimedia Encryption Technique Over CloudIEEE Consum Electron Mag2021105414610.1109/MCE.2020.3003127
– reference: RaniPVermaSYadavSPRaiBKNarukaMSKumarDSimulation of the Lightweight Blockchain Technique Based on Privacy and Security for Healthcare Data for the Cloud SystemInt J E-Health Med Commun202213411510.4018/IJEHMC.309436
– reference: Kumar A, Singh N, Kumar P, Vijayvergia A, Kumar K (2017) A novel superpixel based color spatial feature for salient object detection. In: 2017 Conference on Information and Communication Technology (CICT). IEEE, Gwalior, pp. 1–5. https://doi.org/10.1109/INFOCOMTECH.2017.8340630
– reference: Fernández A, Salmerón A (2008) BayesChess: A computer chess program based on Bayesian networks. Pattern Recognit Lett 29(8) Art. no. 8, 2008
– reference: Adarsh P, Rathi P, Kumar M (2020) YOLO v3-Tiny: object detection and recognition using one stage improved model. In: 2020 6th international conference on advanced computing and communication systems (ICACCS).IEEE, pp 687–694
– reference: HalimZZouqAOn identification of big-five personality traits through choice of images in a real-world settingMultimed Tools Appl20218024333773340810.1007/s11042-021-11419-5
– reference: Czyzewski MA, Laskowski A, Wasik S (2020) Chessboard and chess piece recognition with the support of neural networks. Found Comput Decis Sci 45(4), Art. no. 4
– reference: KumarASrivastavaSObject detection system based on convolution neural networks using single shot multi-box detectorProcedia Comput Sci20201712610261710.1016/j.procs.2020.04.283
– reference: Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In: Advances in Neural Information Processing Systems, Curran Associates, Inc.. Accessed: May 09, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
– reference: YundongLIMulti-block SSD based on small object detection for UAV railway scene surveillanceChin J Aeronaut20203361747175510.1016/j.cja.2020.02.024
– reference: KumarKShrimankarDDF-DES: Fast and Deep Event SummarizationIEEE Trans Multimed201820232333410.1109/TMM.2017.2741423
– reference: SharmaSKumarKSinghNDeep Eigen Space Based ASL Recognition SystemIETE J Res20226853798380810.1080/03772063.2020.1780164
– reference: SrivastavaGSrivastavaRUser-interactive salient object detection using YOLOv2, lazy snapping, and gabor filtersMach Vis Appl20203131710.1007/s00138-020-01065-6
– reference: KumarKShrimankarDDSinghNEratosthenes sieve based key-frame extraction technique for event summarization in videosMultimed Tools Appl20187767383740410.1007/s11042-017-4642-9
– reference: Abhay A, et al (2017) An automated hierarchical framework for player recognition in sports image. Proceedings of the international conference on video and image processing. https://doi.org/10.1145/3177404.3177432
– reference: Hou Q, Cheng M-M, Hu X, Borji A, Tu Z, Torr PH (2017) Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3203–3212. https://doi.org/10.48550/arXiv.1611.04849
– ident: 16736_CR22
– volume: 63
  start-page: 717
  issue: 3
  year: 2021
  ident: 16736_CR42
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-020-01538-0
– ident: 16736_CR24
  doi: 10.1007/978-981-19-8825-7_55
– volume: 80
  start-page: 11079
  issue: 7
  year: 2021
  ident: 16736_CR37
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10157-4
– volume: 33
  start-page: 1747
  issue: 6
  year: 2020
  ident: 16736_CR15
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2020.02.024
– volume: 110
  start-page: 102949
  year: 2021
  ident: 16736_CR13
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2020.102949
– ident: 16736_CR34
  doi: 10.1109/INFOCOMTECH.2017.8340635
– volume: 70
  start-page: 1
  year: 2021
  ident: 16736_CR45
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2021.3065438
– volume: 198
  start-page: 140
  year: 2019
  ident: 16736_CR2
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2018.10.017
– volume: 105
  start-page: 10854
  year: 2023
  ident: 16736_CR11
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.108543
– volume: 68
  start-page: 3798
  issue: 5
  year: 2022
  ident: 16736_CR35
  publication-title: IETE J Res
  doi: 10.1080/03772063.2020.1780164
– volume: 171
  start-page: 2610
  year: 2020
  ident: 16736_CR3
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.04.283
– volume: 2022
  start-page: 1
  year: 2022
  ident: 16736_CR17
  publication-title: Wirel Commun Mob Comput
  doi: 10.1155/2022/3365392
– start-page: 3
  volume-title: Advances in Computer Games
  year: 2021
  ident: 16736_CR5
– ident: 16736_CR18
  doi: 10.1007/978-981-13-9406-5_57
– volume: 189
  start-page: 102827
  year: 2019
  ident: 16736_CR20
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2019.102827
– ident: 16736_CR29
  doi: 10.1109/CVPR.2017.324
– ident: 16736_CR1
  doi: 10.1016/j.patrec.2007.06.013
– ident: 16736_CR44
  doi: 10.48550/ARXIV.1804.02767
– volume: 118
  start-page: 197
  year: 2014
  ident: 16736_CR16
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2013.10.008
– ident: 16736_CR41
  doi: 10.1145/3154979.3154998
– volume: 13
  start-page: 1
  issue: 4
  year: 2022
  ident: 16736_CR10
  publication-title: Int J E-Health Med Commun
  doi: 10.4018/IJEHMC.309436
– ident: 16736_CR26
  doi: 10.1109/TPAMI.2014.2345401
– ident: 16736_CR19
  doi: 10.2478/fcds-2020-0014
– volume: 80
  start-page: 26319
  issue: 17
  year: 2021
  ident: 16736_CR38
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-10768-5
– volume: 93
  start-page: 107226
  year: 2021
  ident: 16736_CR8
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107226
– ident: 16736_CR21
  doi: 10.1109/ICACCS48705.2020.9074315
– volume: 92
  start-page: 157
  year: 2019
  ident: 16736_CR6
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2018.09.068
– ident: 16736_CR23
– ident: 16736_CR28
  doi: 10.48550/arXiv.1611.04849
– volume: 20
  start-page: 323
  issue: 2
  year: 2018
  ident: 16736_CR33
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2741423
– volume: 31
  start-page: 17
  issue: 3
  year: 2020
  ident: 16736_CR43
  publication-title: Mach Vis Appl
  doi: 10.1007/s00138-020-01065-6
– ident: 16736_CR27
  doi: 10.1109/CVPR.2013.271
– volume: 182
  start-page: 17
  year: 2019
  ident: 16736_CR4
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2019.01.006
– volume: 77
  start-page: 7383
  issue: 6
  year: 2018
  ident: 16736_CR32
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4642-9
– ident: 16736_CR36
  doi: 10.1007/978-981-13-0923-6_39
– ident: 16736_CR39
  doi: 10.1145/3177404.3177432
– ident: 16736_CR31
  doi: 10.1109/INFOCOMTECH.2017.8340630
– volume: 10
  start-page: 41
  issue: 5
  year: 2021
  ident: 16736_CR40
  publication-title: IEEE Consum Electron Mag
  doi: 10.1109/MCE.2020.3003127
– volume: 80
  start-page: 33377
  issue: 24
  year: 2021
  ident: 16736_CR14
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11419-5
– ident: 16736_CR46
  doi: 10.1109/ICCWAMTIP53232.2021.9674153
– volume: 132
  start-page: 1706
  year: 2018
  ident: 16736_CR30
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.05.144
– ident: 16736_CR25
  doi: 10.1109/ICCV.2013.413
– volume: 105
  start-page: 107131
  year: 2020
  ident: 16736_CR7
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.107131
– volume: 89
  start-page: 115987
  year: 2020
  ident: 16736_CR9
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2020.115987
– volume: 626
  start-page: 694
  year: 2023
  ident: 16736_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.01.004
SSID ssj0016524
Score 2.564951
Snippet Computer vision technology for detecting objects in a complex environment often includes other key technologies, including pattern recognition, artificial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30045
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Automation
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Deep learning
Digital imaging
Human error
Identification
Image processing
Image quality
Machine learning
Multimedia
Multimedia Information Systems
Neural networks
Object recognition
Pattern recognition
Sensors
Special Purpose and Application-Based Systems
Telematics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6q4ukoO3jTQtEnaPS6iLIqeXNhbyasiaHdx6_930qZbFRWk0EsngU4y800yL4BzjjaGUUpQhm-KeFxQldqIOsTiONap1HUB0_sHOZny25mYhaSwZRvt3roka03dJbsxn0qCGEOZD0aiYh02hD-74y6exuOV70CKmIf0mJ_HfYWgzq785gqtEeZmF7aDaUjGzVruwZor-7DTtl0gQQr7sPWphuA-3I1L8lzfDDhLrHMLEhpBPFGPUJbMUSm84rxz7a9ckKSqo69K0hRxJj7BBGdAvbI8gOnN9ePVhIYOCdQkMqnoKLMJk5GWLk2ENNYfP-IR19GowHONZAplzEU2jWxRZAUKqyki4xDRjVRoKNnkEHrlvHRHQEyqrEt0FjMjuOPevRqrTOJjdaoUGwBrmZabUD7cd7F4ybvCx57ROTI6rxmdiwFcrMYsmuIZf1IP27XIgyAtc_wbhmolk3wAl-36dJ9_n-34f-QnsIlbiTfRZUPoVW_v7hTNjUqf1bvrAzlcyx8
  priority: 102
  providerName: Springer Nature
Title An improved deep learning-based optimal object detection system from images
URI https://link.springer.com/article/10.1007/s11042-023-16736-5
https://www.proquest.com/docview/2941425864
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdoGBRwFRKJUHNrCI83DSCZWqD1FRIUSlMkWO7SAkSAst_59z4rSARBXJQ-LccPbdd_a9AC58tDGkEAFlOFLE45SKUDlUIxa7bhLyJC9gej_mw4l_Nw2m9sJtYcMqS52YK2o1k-aO_Npt-wz3V8T9m_kHNV2jjHfVttCoQA1VcISHr9ptb_zwuPIj8MC2tY0citjIbNpMkTzHTGoKYhZlJriJBr-haW1v_nGR5sjT34ddazKSTrHGB7Clszrsle0YiJXOOuz8qC14CKNORl7zGwOtiNJ6TmyDiBdqkEuRGSqLd6Q7S8xVDE5Z5lFZGSmKOxOTeIIUUN8sjmDS7z11h9R2TqDS496StiPlMe4kXIdewKUyxxJkYOK0UzzvcCZQ9rSjQkelaZSiEMvUkRqRXnKBBpTyjqGazTJ9AkSGQmkviVwmA1_7xu3qiojjo5JQCNYAVjItlrasuOlu8RavCyIbRsfI6DhndBw04HL1z7woqrFxdrNci9gK2CJeb4cGXJXrs_78P7XTzdTOYNtFs6WIMmtCdfn5pc_R7FgmLahE_UELap3B86jXsjsN33Z5F8eJ2_kGS8DVvQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYCBN6I8PcAEFnEeTjIghIDS0tKpSGzBsR2EBGmhRYg_xW_knEcDSLBVkbLEueH8-b6zz3cHsO-ijyGF8CjDN0U-TqjwlUU1crFtxz6PswKmN13evHWv77y7Kfgsc2HMtcrSJmaGWvWlOSM_tkOXIb4C7p4OXqjpGmWiq2ULjRwWbf3xjlu24UnrAuf3wLYbl73zJi26ClDpcGdEw0A5jFsx177jcamMy47CYytMcC_AmUBcakv5lkqSIEGAy8SSGllQcoHOhXJQ7jTMuI4TmhUVNK7GUQvuFU10A4siE7MiSSdP1WMmEQYZkjJzlYp6P4mw8m5_BWQznmsswULhoJKzHFHLMKXTFVgsmz-QwhaswPy3Soar0D5LyWN2PqEVUVoPSNGO4oEanlSkj6bpGeX2Y3Pwg0NG2R2wlOSlpIlJc0EJaN2Ga3A7EY2uQy3tp3oDiPSF0k4c2Ex6rnZNkNcWAcdHxb4QrA6sVFokiyLmppfGU1SVXzaKjlDRUaboyKvD4fifQV7C49_R2-VcRMVyHkYV-OpwVM5P9flvaZv_S9uD2WbvphN1Wt32FszZ6DDl99u2oTZ6fdM76PCM4t0MZQTuJw3rL21yC7I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD7oBqIPXqbivOZBnzTY9JJ2DyLqHM7pEFHwraZJKoJ2003Ev-av86RNnQr6JoW-ND2Fk6_nO0nOBWDTRx9DChFQhneKfJxSESqHauRi101CnuQFTM-7_OTaP70JbsbgvcyFMWGVpU3MDbXqSbNHvus2fIb4iri_m9qwiItma7__RE0HKXPSWrbTKCDS0W-vuHwb7LWbONdbrts6vjo6obbDAJUe94a0ESmPcSfhOvQCLpVx3_FDidNIcV3AmUCMakeFjkrTKEWwy9SRGhlRcoGOhvJQ7jhUQ1wVORWoHh53Ly4_zzB4YFvqRg5FXmY2ZadI3GMmLQb5kjITWEWD77Q48nV_HM_mrNeahWnrrpKDAl9zMKazGsyUrSCItQw1mPpS13AeOgcZuc93K7QiSus-sc0p7qhhTUV6aKgeUW4vMdtAOGSYR4RlpCgsTUzSC0pAWzdYgOt_0ekiVLJeppeAyFAo7SWRy2Tga98c-boi4nipJBSC1YGVSoulLWluOms8xKNizEbRMSo6zhUdB3XY_nynXxT0-HP0ajkXsf25B_EIinXYKedn9Ph3act_S9uACYR0fNbudlZg0kXvqQh2W4XK8PlFr6H3M0zWLcwI3P43sj8ApTMRRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+deep+learning-based+optimal+object+detection+system+from+images&rft.jtitle=Multimedia+tools+and+applications&rft.au=Yadav%2C+Satya+Prakash&rft.au=Jindal%2C+Muskan&rft.au=Rani%2C+Preeti&rft.au=de+Albuquerque%2C+Victor+Hugo+C.&rft.date=2024-03-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=10&rft.spage=30045&rft.epage=30072&rft_id=info:doi/10.1007%2Fs11042-023-16736-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_16736_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon