An improved deep learning-based optimal object detection system from images
Computer vision technology for detecting objects in a complex environment often includes other key technologies, including pattern recognition, artificial intelligence, and digital image processing. It has been shown that Fast Convolutional Neural Networks (CNNs) with You Only Look Once (YOLO) is op...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 10; pp. 30045 - 30072 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-7721 1380-7501 1573-7721 |
DOI | 10.1007/s11042-023-16736-5 |
Cover
Loading…
Abstract | Computer vision technology for detecting objects in a complex environment often includes other key technologies, including pattern recognition, artificial intelligence, and digital image processing. It has been shown that Fast Convolutional Neural Networks (CNNs) with You Only Look Once (YOLO) is optimal for differentiating similar objects, constant motion, and low image quality. The proposed study aims to resolve these issues by implementing three different object detection algorithms—You Only Look Once (YOLO), Single Stage Detector (SSD), and Faster Region-Based Convolutional Neural Networks (R-CNN). This paper compares three different deep-learning object detection methods to find the best possible combination of feature and accuracy. The R-CNN object detection techniques are performed better than single-stage detectors like Yolo (You Only Look Once) and Single Shot Detector (SSD) in term of accuracy, recall, precision and loss. |
---|---|
AbstractList | Computer vision technology for detecting objects in a complex environment often includes other key technologies, including pattern recognition, artificial intelligence, and digital image processing. It has been shown that Fast Convolutional Neural Networks (CNNs) with You Only Look Once (YOLO) is optimal for differentiating similar objects, constant motion, and low image quality. The proposed study aims to resolve these issues by implementing three different object detection algorithms—You Only Look Once (YOLO), Single Stage Detector (SSD), and Faster Region-Based Convolutional Neural Networks (R-CNN). This paper compares three different deep-learning object detection methods to find the best possible combination of feature and accuracy. The R-CNN object detection techniques are performed better than single-stage detectors like Yolo (You Only Look Once) and Single Shot Detector (SSD) in term of accuracy, recall, precision and loss. |
Author | de Albuquerque, Victor Hugo C. dos Santos Nascimento, Caio Yadav, Satya Prakash Rani, Preeti Jindal, Muskan Kumar, Manoj |
Author_xml | – sequence: 1 givenname: Satya Prakash surname: Yadav fullname: Yadav, Satya Prakash organization: Department of Computer Science and Engineering, G.L. Bajaj Institute of Technology and Management (GLBITM), Graduate Program in Telecommunications Engineering. (PPGET), Federal Institute of Education, Science, and Technology of Ceará (IFCE) – sequence: 2 givenname: Muskan surname: Jindal fullname: Jindal, Muskan organization: Department of Computer Science and Engineering, Amity University – sequence: 3 givenname: Preeti surname: Rani fullname: Rani, Preeti organization: Department of Electronics & Communication Engineering, SRM Institute of Science and Technology – sequence: 4 givenname: Victor Hugo C. surname: de Albuquerque fullname: de Albuquerque, Victor Hugo C. organization: Department of Teleinformatics Engineering, Federal University of Ceará – sequence: 5 givenname: Caio surname: dos Santos Nascimento fullname: dos Santos Nascimento, Caio organization: Department of Teleinformatics Engineering, Federal University of Ceará – sequence: 6 givenname: Manoj orcidid: 0000-0001-5113-0639 surname: Kumar fullname: Kumar, Manoj email: wss.manojkumar@gmail.com organization: School of Computer Sceince, FEIS, University of Wollongong in Dubai, MEU Research Unit, Middle East University |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcDrqN5Z7osxRcW3Og6ZDJJmTKT1CQV-u9NHUFx0dUNl_Ode3JmYOKDtwBcY3SLEZJ3CWPECESEQiwkFZCfgSnmkkIpCZ78eV-AWUpbhLDghE3By9JX3bCL4dO2VWvtruqtjr7zG9joVHZhl7tB91VottbkIslldMFX6ZCyHSoXw1Ac9MamS3DudJ_s1c-cg_eH-7fVE1y_Pj6vlmtoqKAZLuqWYoEaYSXlwrSc1ZIsWIMWThAusEaIW9RK1DpXO8Rq45CxhDEjNGa0pXNwM_qW2B97m7Lahn305aQqPpgRXgtWVPWoMjGkFK1Tpsv6GD1H3fUKI3WsTo3VqVKd-q5O8YKSf-guli_Gw2mIjlAqYr-x8TfVCeoLK1SCQw |
CitedBy_id | crossref_primary_10_21833_ijaas_2024_08_021 crossref_primary_10_1007_s11227_024_06753_y crossref_primary_10_1109_ACCESS_2024_3514455 crossref_primary_10_1007_s10489_024_06213_3 crossref_primary_10_53696_27753719_51164 crossref_primary_10_1007_s13278_024_01255_4 crossref_primary_10_1007_s11042_024_18650_w crossref_primary_10_1080_00051144_2024_2314928 crossref_primary_10_1109_TCE_2024_3445728 crossref_primary_10_1007_s12524_024_02050_6 crossref_primary_10_1007_s13198_024_02640_0 crossref_primary_10_1007_s42979_024_03396_x crossref_primary_10_3390_electronics13132522 crossref_primary_10_1109_JSEN_2024_3439509 crossref_primary_10_1007_s11042_024_19748_x crossref_primary_10_1016_j_eswa_2025_126772 crossref_primary_10_1109_ACCESS_2024_3398142 |
Cites_doi | 10.1007/s10115-020-01538-0 10.1007/978-981-19-8825-7_55 10.1007/s11042-020-10157-4 10.1016/j.cja.2020.02.024 10.1016/j.dsp.2020.102949 10.1109/INFOCOMTECH.2017.8340635 10.1109/TIM.2021.3065438 10.1016/j.physbeh.2018.10.017 10.1016/j.compeleceng.2022.108543 10.1080/03772063.2020.1780164 10.1016/j.procs.2020.04.283 10.1155/2022/3365392 10.1007/978-981-13-9406-5_57 10.1016/j.cviu.2019.102827 10.1109/CVPR.2017.324 10.1016/j.patrec.2007.06.013 10.48550/ARXIV.1804.02767 10.1016/j.cviu.2013.10.008 10.1145/3154979.3154998 10.4018/IJEHMC.309436 10.1109/TPAMI.2014.2345401 10.2478/fcds-2020-0014 10.1007/s11042-021-10768-5 10.1016/j.compeleceng.2021.107226 10.1109/ICACCS48705.2020.9074315 10.1016/j.future.2018.09.068 10.48550/arXiv.1611.04849 10.1109/TMM.2017.2741423 10.1007/s00138-020-01065-6 10.1109/CVPR.2013.271 10.1016/j.cviu.2019.01.006 10.1007/s11042-017-4642-9 10.1007/978-981-13-0923-6_39 10.1145/3177404.3177432 10.1109/INFOCOMTECH.2017.8340630 10.1109/MCE.2020.3003127 10.1007/s11042-021-11419-5 10.1109/ICCWAMTIP53232.2021.9674153 10.1016/j.procs.2018.05.144 10.1109/ICCV.2013.413 10.1016/j.patcog.2019.107131 10.1016/j.image.2020.115987 10.1016/j.ins.2023.01.004 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-16736-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 30072 |
ExternalDocumentID | 10_1007_s11042_023_16736_5 |
GrantInformation_xml | – fundername: The University of Wollongong |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c363t-98d3160b6e7356cd5487294b09f62561a005e0d70dff8f048cf0ce244c6a143d3 |
IEDL.DBID | BENPR |
ISSN | 1573-7721 1380-7501 |
IngestDate | Sat Aug 23 12:29:22 EDT 2025 Tue Jul 01 04:13:26 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Fri Feb 21 02:41:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Chess Piece Identification Object Detection Single Stage Detector (SSD) You Only Look Once (YOLO) Faster Region-Based Convolutional Neural Networks (R-CNN) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-98d3160b6e7356cd5487294b09f62561a005e0d70dff8f048cf0ce244c6a143d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5113-0639 |
OpenAccessLink | https://link.springer.com/10.1007/s11042-023-16736-5 |
PQID | 2941425864 |
PQPubID | 54626 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2941425864 crossref_citationtrail_10_1007_s11042_023_16736_5 crossref_primary_10_1007_s11042_023_16736_5 springer_journals_10_1007_s11042_023_16736_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | DingLXuXCaoYZhaiGYangFQianLDetection and tracking of infrared small target by jointly using SSD and pipeline filterDigit Signal Process202111010294910.1016/j.dsp.2020.102949 Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018). https://doi.org/10.48550/ARXIV.1804.02767 Sharma S, Kumar K, Singh N (2017) D-FES: Deep facial expression recognition system. In: 2017 Conference on Information and Communication Technology (CICT). IEEE, Gwalior, India, pp. 1–6. https://doi.org/10.1109/INFOCOMTECH.2017.8340635 PathakARPandeyMRautaraySApplication of deep learning for object detectionProcedia Computer Science20181321706171710.1016/j.procs.2018.05.144 VillafainaSCollado-MateoDCano-PlasenciaRGusiNFuentesJPElectroencephalographic response of chess players in decision-making processes under time pressurePhysiol Behav20191981401431:CAS:528:DC%2BC1cXitV2hs7vM10.1016/j.physbeh.2018.10.01730389477 Czyzewski MA, Laskowski A, Wasik S (2020) Chessboard and chess piece recognition with the support of neural networks. Found Comput Decis Sci 45(4), Art. no. 4 CaiYYOLOv4-5D: An Effective and Efficient Object Detector for Autonomous DrivingIEEE Trans Instrum Meas20217011310.1109/TIM.2021.3065438 HuJShiC-JRZhangJSaliency-based YOLO for single target detectionKnowl Inf Syst202163371773210.1007/s10115-020-01538-0 Agyemang IO, et al. (2021) On salient concrete crack detection via improved Yolov5. In: 2021 18th International computer conference on wavelet active media technology and information processing (ICCWAMTIP). IEEE. https://doi.org/10.1109/ICCWAMTIP53232.2021.9674153 Abhay A, et al (2017) An automated hierarchical framework for player recognition in sports image. Proceedings of the international conference on video and image processing. https://doi.org/10.1145/3177404.3177432 Ansari G, Rani P, Kumar V (2023) A novel technique of mixed gas identification based on the group method of data handling (GMDH) on time-dependent MOX gas sensor data. In: Mahapatra RP, Peddoju SK, Roy S, Parwekar P (eds.) Proceedings of International Conference on Recent Trends in Computing. Lecture Notes in Networks and Systems, vol. 600. Springer Nature Singapore, Singapore, pp. 641–654. https://doi.org/10.1007/978-981-19-8825-7_55 Hou Q, Cheng M-M, Hu X, Borji A, Tu Z, Torr PH (2017) Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3203–3212. https://doi.org/10.48550/arXiv.1611.04849 Kumar A, Singh N, Kumar P, Vijayvergia A, Kumar K (2017) A novel superpixel based color spatial feature for salient object detection. In: 2017 Conference on Information and Communication Technology (CICT). IEEE, Gwalior, pp. 1–5. https://doi.org/10.1109/INFOCOMTECH.2017.8340630 Kumar K, Kumar A, Bahuguna A (2017) D-CAD: Deep and crowded anomaly detection. Proceedings of the 7th international conference on computer and communication technology. https://doi.org/10.1145/3154979.3154998 SharmaSKumarKSinghNDeep Eigen Space Based ASL Recognition SystemIETE J Res20226853798380810.1080/03772063.2020.1780164 RaniPSinghPNVermaSAliNShuklaPKAlhassanMAn Implementation of Modified Blowfish Technique with Honey Bee Behavior Optimization for Load Balancing in Cloud System EnvironmentWirel Commun Mob Comput2022202211410.1155/2022/3365392 YuanJGated CNN: Integrating multi-scale feature layers for object detectionPattern Recognit202010510713110.1016/j.patcog.2019.107131 KumarKText query based summarized event searching interface system using deep learning over cloudMultimed Tools Appl2021807110791109410.1007/s11042-020-10157-4 RaniPVermaSYadavSPRaiBKNarukaMSKumarDSimulation of the Lightweight Blockchain Technique Based on Privacy and Security for Healthcare Data for the Cloud SystemInt J E-Health Med Commun202213411510.4018/IJEHMC.309436 Wang X, Shrivastava A, Gupta A (2017) A-Fast-RCNN: hard positive generation via adversary for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, pp 3039–3048. https://doi.org/10.1109/CVPR.2017.324 SrivastavaGSrivastavaRUser-interactive salient object detection using YOLOv2, lazy snapping, and gabor filtersMach Vis Appl20203131710.1007/s00138-020-01065-6 KumarASrivastavaSObject detection system based on convolution neural networks using single shot multi-box detectorProcedia Comput Sci20201712610261710.1016/j.procs.2020.04.283 BennettSLasenbyJChESS–Quick and robust detection of chess-board featuresComput Vis Image Underst201411819721010.1016/j.cviu.2013.10.008 RaniPSharmaRIntelligent transportation system for internet of vehicles based vehicular networks for smart citiesComput Electr Eng20231051085410.1016/j.compeleceng.2022.108543 WangQDeep convolutional cross-connected kernel mapping support vector machine based on SelectDropoutInf Sci202362669470910.1016/j.ins.2023.01.004 Cheng M-M, Mitra NJ, Huang X, Torr PH, Hu S-M (2014) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3), Art. no. 3 KumarKShrimankarDDF-DES: Fast and Deep Event SummarizationIEEE Trans Multimed201820232333410.1109/TMM.2017.2741423 Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, pp 2083–2090. https://doi.org/10.1109/CVPR.2013.271 YiCKanekoTImproving counterfactual regret minimization agents training in card game cheat using ordered abstractionAdvances in Computer Games2021ChamSpringer International Publishing313 KoppanatiRKKumarKP-MEC: Polynomial Congruence-Based Multimedia Encryption Technique Over CloudIEEE Consum Electron Mag2021105414610.1109/MCE.2020.3003127 JangYGunesHPatrasIRegistration-free face-ssd: Single shot analysis of smiles, facial attributes, and affect in the wildComput Vis Image Underst2019182172910.1016/j.cviu.2019.01.006 YiJWuPMetaxasDNASSD: Attentive single shot multibox detectorComput Vis Image Underst201918910282710.1016/j.cviu.2019.102827 PanHJiangJChenGTDFSSD: Top-down feature fusion single shot MultiBox detectorSignal Process Image Commun20208911598710.1016/j.image.2020.115987 AhmedIAhmadMAhmadAJeonGIoT-based crowd monitoring system: Using SSD with transfer learningComput Electr Eng20219310722610.1016/j.compeleceng.2021.107226 SakaiYLuHTanJ-KKimHRecognition of surrounding environment from electric wheelchair videos based on modified YOLOv2Future Gener Comput Syst20199215716110.1016/j.future.2018.09.068 Li C, Chen G (2020) Research on Chinese Chess Detection and Recognition Based on Convolutional Neural Network. In: Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018, Springer, pp. 467–473 Li X, Li Y, Shen C, Dick A, Hengel AVD(2013) Contextual hypergraph modeling for salient object detection. In: 2013 IEEE International Conference on Computer Vision, Sydney, pp. 3328–3335. https://doi.org/10.1109/ICCV.2013.413 Adarsh P, Rathi P, Kumar M (2020) YOLO v3-Tiny: object detection and recognition using one stage improved model. In: 2020 6th international conference on advanced computing and communication systems (ICACCS).IEEE, pp 687–694 Fernández A, Salmerón A (2008) BayesChess: A computer chess program based on Bayesian networks. Pattern Recognit Lett 29(8) Art. no. 8, 2008 KumarKShrimankarDDSinghNEratosthenes sieve based key-frame extraction technique for event summarization in videosMultimed Tools Appl20187767383740410.1007/s11042-017-4642-9 SharmaSKumarKASL-3DCNN: American sign language recognition technique using 3-D convolutional neural networksMultimed Tools Appl20218017263192633110.1007/s11042-021-10768-5 Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In: Advances in Neural Information Processing Systems, Curran Associates, Inc.. Accessed: May 09, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html Preeti R, Sharma R (2022) An experimental study of IEEE 802.11 n Devices for Vehicular Networks with Various Propagation Loss Models." International Conference on Signal Processing and Integrated Networks. Singapore: Springer Nature Singapore, 2022. Kumar K, Shrimankar DD, Singh N (2019) Key-Lectures: Keyframes Extraction in Video Lectures. In: Tanveer M, Pachori RB (eds.) Machine Intelligence and Signal Analysis. Advances in Intelligent Systems and Computing, vol. 748. Springer Singapore, Singapore, pp. 453–459. https://doi.org/10.1007/978-981-13-0923-6_39 YundongLIMulti-block SSD based on small object detection for UAV railway scene surveillanceChin J Aeronaut20203361747175510.1016/j.cja.2020.02.024 HalimZZouqAOn identification of big-five personality traits through choice of images in a real-world settingMultimed Tools Appl20218024333773340810.1007/s11042-021-11419-5 16736_CR36 K Kumar (16736_CR33) 2018; 20 P Rani (16736_CR10) 2022; 13 J Hu (16736_CR42) 2021; 63 16736_CR1 L Ding (16736_CR13) 2021; 110 16736_CR39 16736_CR34 C Yi (16736_CR5) 2021 16736_CR31 S Sharma (16736_CR35) 2022; 68 Z Halim (16736_CR14) 2021; 80 AR Pathak (16736_CR30) 2018; 132 S Sharma (16736_CR38) 2021; 80 Y Jang (16736_CR4) 2019; 182 P Rani (16736_CR17) 2022; 2022 16736_CR29 I Ahmed (16736_CR8) 2021; 93 16736_CR25 16736_CR26 LI Yundong (16736_CR15) 2020; 33 16736_CR27 16736_CR28 16736_CR21 16736_CR22 16736_CR44 16736_CR23 Y Cai (16736_CR45) 2021; 70 J Yuan (16736_CR7) 2020; 105 16736_CR24 16736_CR46 A Kumar (16736_CR3) 2020; 171 Q Wang (16736_CR12) 2023; 626 16736_CR41 S Bennett (16736_CR16) 2014; 118 P Rani (16736_CR11) 2023; 105 H Pan (16736_CR9) 2020; 89 K Kumar (16736_CR37) 2021; 80 J Yi (16736_CR20) 2019; 189 K Kumar (16736_CR32) 2018; 77 G Srivastava (16736_CR43) 2020; 31 S Villafaina (16736_CR2) 2019; 198 16736_CR18 16736_CR19 RK Koppanati (16736_CR40) 2021; 10 Y Sakai (16736_CR6) 2019; 92 |
References_xml | – reference: Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018). https://doi.org/10.48550/ARXIV.1804.02767 – reference: AhmedIAhmadMAhmadAJeonGIoT-based crowd monitoring system: Using SSD with transfer learningComput Electr Eng20219310722610.1016/j.compeleceng.2021.107226 – reference: Agyemang IO, et al. (2021) On salient concrete crack detection via improved Yolov5. In: 2021 18th International computer conference on wavelet active media technology and information processing (ICCWAMTIP). IEEE. https://doi.org/10.1109/ICCWAMTIP53232.2021.9674153 – reference: SharmaSKumarKASL-3DCNN: American sign language recognition technique using 3-D convolutional neural networksMultimed Tools Appl20218017263192633110.1007/s11042-021-10768-5 – reference: HuJShiC-JRZhangJSaliency-based YOLO for single target detectionKnowl Inf Syst202163371773210.1007/s10115-020-01538-0 – reference: Cheng M-M, Mitra NJ, Huang X, Torr PH, Hu S-M (2014) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3), Art. no. 3 – reference: DingLXuXCaoYZhaiGYangFQianLDetection and tracking of infrared small target by jointly using SSD and pipeline filterDigit Signal Process202111010294910.1016/j.dsp.2020.102949 – reference: YuanJGated CNN: Integrating multi-scale feature layers for object detectionPattern Recognit202010510713110.1016/j.patcog.2019.107131 – reference: Ansari G, Rani P, Kumar V (2023) A novel technique of mixed gas identification based on the group method of data handling (GMDH) on time-dependent MOX gas sensor data. In: Mahapatra RP, Peddoju SK, Roy S, Parwekar P (eds.) Proceedings of International Conference on Recent Trends in Computing. Lecture Notes in Networks and Systems, vol. 600. Springer Nature Singapore, Singapore, pp. 641–654. https://doi.org/10.1007/978-981-19-8825-7_55 – reference: Kumar K, Shrimankar DD, Singh N (2019) Key-Lectures: Keyframes Extraction in Video Lectures. In: Tanveer M, Pachori RB (eds.) Machine Intelligence and Signal Analysis. Advances in Intelligent Systems and Computing, vol. 748. Springer Singapore, Singapore, pp. 453–459. https://doi.org/10.1007/978-981-13-0923-6_39 – reference: SakaiYLuHTanJ-KKimHRecognition of surrounding environment from electric wheelchair videos based on modified YOLOv2Future Gener Comput Syst20199215716110.1016/j.future.2018.09.068 – reference: RaniPSharmaRIntelligent transportation system for internet of vehicles based vehicular networks for smart citiesComput Electr Eng20231051085410.1016/j.compeleceng.2022.108543 – reference: JangYGunesHPatrasIRegistration-free face-ssd: Single shot analysis of smiles, facial attributes, and affect in the wildComput Vis Image Underst2019182172910.1016/j.cviu.2019.01.006 – reference: Sharma S, Kumar K, Singh N (2017) D-FES: Deep facial expression recognition system. In: 2017 Conference on Information and Communication Technology (CICT). IEEE, Gwalior, India, pp. 1–6. https://doi.org/10.1109/INFOCOMTECH.2017.8340635 – reference: Wang X, Shrivastava A, Gupta A (2017) A-Fast-RCNN: hard positive generation via adversary for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, pp 3039–3048. https://doi.org/10.1109/CVPR.2017.324 – reference: BennettSLasenbyJChESS–Quick and robust detection of chess-board featuresComput Vis Image Underst201411819721010.1016/j.cviu.2013.10.008 – reference: YiJWuPMetaxasDNASSD: Attentive single shot multibox detectorComput Vis Image Underst201918910282710.1016/j.cviu.2019.102827 – reference: Li X, Li Y, Shen C, Dick A, Hengel AVD(2013) Contextual hypergraph modeling for salient object detection. In: 2013 IEEE International Conference on Computer Vision, Sydney, pp. 3328–3335. https://doi.org/10.1109/ICCV.2013.413 – reference: WangQDeep convolutional cross-connected kernel mapping support vector machine based on SelectDropoutInf Sci202362669470910.1016/j.ins.2023.01.004 – reference: VillafainaSCollado-MateoDCano-PlasenciaRGusiNFuentesJPElectroencephalographic response of chess players in decision-making processes under time pressurePhysiol Behav20191981401431:CAS:528:DC%2BC1cXitV2hs7vM10.1016/j.physbeh.2018.10.01730389477 – reference: Preeti R, Sharma R (2022) An experimental study of IEEE 802.11 n Devices for Vehicular Networks with Various Propagation Loss Models." International Conference on Signal Processing and Integrated Networks. Singapore: Springer Nature Singapore, 2022. – reference: YiCKanekoTImproving counterfactual regret minimization agents training in card game cheat using ordered abstractionAdvances in Computer Games2021ChamSpringer International Publishing313 – reference: RaniPSinghPNVermaSAliNShuklaPKAlhassanMAn Implementation of Modified Blowfish Technique with Honey Bee Behavior Optimization for Load Balancing in Cloud System EnvironmentWirel Commun Mob Comput2022202211410.1155/2022/3365392 – reference: PanHJiangJChenGTDFSSD: Top-down feature fusion single shot MultiBox detectorSignal Process Image Commun20208911598710.1016/j.image.2020.115987 – reference: Li C, Chen G (2020) Research on Chinese Chess Detection and Recognition Based on Convolutional Neural Network. In: Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018, Springer, pp. 467–473 – reference: Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, pp 2083–2090. https://doi.org/10.1109/CVPR.2013.271 – reference: PathakARPandeyMRautaraySApplication of deep learning for object detectionProcedia Computer Science20181321706171710.1016/j.procs.2018.05.144 – reference: CaiYYOLOv4-5D: An Effective and Efficient Object Detector for Autonomous DrivingIEEE Trans Instrum Meas20217011310.1109/TIM.2021.3065438 – reference: Kumar K, Kumar A, Bahuguna A (2017) D-CAD: Deep and crowded anomaly detection. Proceedings of the 7th international conference on computer and communication technology. https://doi.org/10.1145/3154979.3154998 – reference: KumarKText query based summarized event searching interface system using deep learning over cloudMultimed Tools Appl2021807110791109410.1007/s11042-020-10157-4 – reference: KoppanatiRKKumarKP-MEC: Polynomial Congruence-Based Multimedia Encryption Technique Over CloudIEEE Consum Electron Mag2021105414610.1109/MCE.2020.3003127 – reference: RaniPVermaSYadavSPRaiBKNarukaMSKumarDSimulation of the Lightweight Blockchain Technique Based on Privacy and Security for Healthcare Data for the Cloud SystemInt J E-Health Med Commun202213411510.4018/IJEHMC.309436 – reference: Kumar A, Singh N, Kumar P, Vijayvergia A, Kumar K (2017) A novel superpixel based color spatial feature for salient object detection. In: 2017 Conference on Information and Communication Technology (CICT). IEEE, Gwalior, pp. 1–5. https://doi.org/10.1109/INFOCOMTECH.2017.8340630 – reference: Fernández A, Salmerón A (2008) BayesChess: A computer chess program based on Bayesian networks. Pattern Recognit Lett 29(8) Art. no. 8, 2008 – reference: Adarsh P, Rathi P, Kumar M (2020) YOLO v3-Tiny: object detection and recognition using one stage improved model. In: 2020 6th international conference on advanced computing and communication systems (ICACCS).IEEE, pp 687–694 – reference: HalimZZouqAOn identification of big-five personality traits through choice of images in a real-world settingMultimed Tools Appl20218024333773340810.1007/s11042-021-11419-5 – reference: Czyzewski MA, Laskowski A, Wasik S (2020) Chessboard and chess piece recognition with the support of neural networks. Found Comput Decis Sci 45(4), Art. no. 4 – reference: KumarASrivastavaSObject detection system based on convolution neural networks using single shot multi-box detectorProcedia Comput Sci20201712610261710.1016/j.procs.2020.04.283 – reference: Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In: Advances in Neural Information Processing Systems, Curran Associates, Inc.. Accessed: May 09, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html – reference: YundongLIMulti-block SSD based on small object detection for UAV railway scene surveillanceChin J Aeronaut20203361747175510.1016/j.cja.2020.02.024 – reference: KumarKShrimankarDDF-DES: Fast and Deep Event SummarizationIEEE Trans Multimed201820232333410.1109/TMM.2017.2741423 – reference: SharmaSKumarKSinghNDeep Eigen Space Based ASL Recognition SystemIETE J Res20226853798380810.1080/03772063.2020.1780164 – reference: SrivastavaGSrivastavaRUser-interactive salient object detection using YOLOv2, lazy snapping, and gabor filtersMach Vis Appl20203131710.1007/s00138-020-01065-6 – reference: KumarKShrimankarDDSinghNEratosthenes sieve based key-frame extraction technique for event summarization in videosMultimed Tools Appl20187767383740410.1007/s11042-017-4642-9 – reference: Abhay A, et al (2017) An automated hierarchical framework for player recognition in sports image. Proceedings of the international conference on video and image processing. https://doi.org/10.1145/3177404.3177432 – reference: Hou Q, Cheng M-M, Hu X, Borji A, Tu Z, Torr PH (2017) Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3203–3212. https://doi.org/10.48550/arXiv.1611.04849 – ident: 16736_CR22 – volume: 63 start-page: 717 issue: 3 year: 2021 ident: 16736_CR42 publication-title: Knowl Inf Syst doi: 10.1007/s10115-020-01538-0 – ident: 16736_CR24 doi: 10.1007/978-981-19-8825-7_55 – volume: 80 start-page: 11079 issue: 7 year: 2021 ident: 16736_CR37 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10157-4 – volume: 33 start-page: 1747 issue: 6 year: 2020 ident: 16736_CR15 publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2020.02.024 – volume: 110 start-page: 102949 year: 2021 ident: 16736_CR13 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2020.102949 – ident: 16736_CR34 doi: 10.1109/INFOCOMTECH.2017.8340635 – volume: 70 start-page: 1 year: 2021 ident: 16736_CR45 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3065438 – volume: 198 start-page: 140 year: 2019 ident: 16736_CR2 publication-title: Physiol Behav doi: 10.1016/j.physbeh.2018.10.017 – volume: 105 start-page: 10854 year: 2023 ident: 16736_CR11 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.108543 – volume: 68 start-page: 3798 issue: 5 year: 2022 ident: 16736_CR35 publication-title: IETE J Res doi: 10.1080/03772063.2020.1780164 – volume: 171 start-page: 2610 year: 2020 ident: 16736_CR3 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.04.283 – volume: 2022 start-page: 1 year: 2022 ident: 16736_CR17 publication-title: Wirel Commun Mob Comput doi: 10.1155/2022/3365392 – start-page: 3 volume-title: Advances in Computer Games year: 2021 ident: 16736_CR5 – ident: 16736_CR18 doi: 10.1007/978-981-13-9406-5_57 – volume: 189 start-page: 102827 year: 2019 ident: 16736_CR20 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2019.102827 – ident: 16736_CR29 doi: 10.1109/CVPR.2017.324 – ident: 16736_CR1 doi: 10.1016/j.patrec.2007.06.013 – ident: 16736_CR44 doi: 10.48550/ARXIV.1804.02767 – volume: 118 start-page: 197 year: 2014 ident: 16736_CR16 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2013.10.008 – ident: 16736_CR41 doi: 10.1145/3154979.3154998 – volume: 13 start-page: 1 issue: 4 year: 2022 ident: 16736_CR10 publication-title: Int J E-Health Med Commun doi: 10.4018/IJEHMC.309436 – ident: 16736_CR26 doi: 10.1109/TPAMI.2014.2345401 – ident: 16736_CR19 doi: 10.2478/fcds-2020-0014 – volume: 80 start-page: 26319 issue: 17 year: 2021 ident: 16736_CR38 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-10768-5 – volume: 93 start-page: 107226 year: 2021 ident: 16736_CR8 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107226 – ident: 16736_CR21 doi: 10.1109/ICACCS48705.2020.9074315 – volume: 92 start-page: 157 year: 2019 ident: 16736_CR6 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2018.09.068 – ident: 16736_CR23 – ident: 16736_CR28 doi: 10.48550/arXiv.1611.04849 – volume: 20 start-page: 323 issue: 2 year: 2018 ident: 16736_CR33 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2741423 – volume: 31 start-page: 17 issue: 3 year: 2020 ident: 16736_CR43 publication-title: Mach Vis Appl doi: 10.1007/s00138-020-01065-6 – ident: 16736_CR27 doi: 10.1109/CVPR.2013.271 – volume: 182 start-page: 17 year: 2019 ident: 16736_CR4 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2019.01.006 – volume: 77 start-page: 7383 issue: 6 year: 2018 ident: 16736_CR32 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-4642-9 – ident: 16736_CR36 doi: 10.1007/978-981-13-0923-6_39 – ident: 16736_CR39 doi: 10.1145/3177404.3177432 – ident: 16736_CR31 doi: 10.1109/INFOCOMTECH.2017.8340630 – volume: 10 start-page: 41 issue: 5 year: 2021 ident: 16736_CR40 publication-title: IEEE Consum Electron Mag doi: 10.1109/MCE.2020.3003127 – volume: 80 start-page: 33377 issue: 24 year: 2021 ident: 16736_CR14 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11419-5 – ident: 16736_CR46 doi: 10.1109/ICCWAMTIP53232.2021.9674153 – volume: 132 start-page: 1706 year: 2018 ident: 16736_CR30 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.05.144 – ident: 16736_CR25 doi: 10.1109/ICCV.2013.413 – volume: 105 start-page: 107131 year: 2020 ident: 16736_CR7 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2019.107131 – volume: 89 start-page: 115987 year: 2020 ident: 16736_CR9 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2020.115987 – volume: 626 start-page: 694 year: 2023 ident: 16736_CR12 publication-title: Inf Sci doi: 10.1016/j.ins.2023.01.004 |
SSID | ssj0016524 |
Score | 2.564951 |
Snippet | Computer vision technology for detecting objects in a complex environment often includes other key technologies, including pattern recognition, artificial... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 30045 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Automation Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Deep learning Digital imaging Human error Identification Image processing Image quality Machine learning Multimedia Multimedia Information Systems Neural networks Object recognition Pattern recognition Sensors Special Purpose and Application-Based Systems Telematics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6q4ukoO3jTQtEnaPS6iLIqeXNhbyasiaHdx6_930qZbFRWk0EsngU4y800yL4BzjjaGUUpQhm-KeFxQldqIOsTiONap1HUB0_sHOZny25mYhaSwZRvt3roka03dJbsxn0qCGEOZD0aiYh02hD-74y6exuOV70CKmIf0mJ_HfYWgzq785gqtEeZmF7aDaUjGzVruwZor-7DTtl0gQQr7sPWphuA-3I1L8lzfDDhLrHMLEhpBPFGPUJbMUSm84rxz7a9ckKSqo69K0hRxJj7BBGdAvbI8gOnN9ePVhIYOCdQkMqnoKLMJk5GWLk2ENNYfP-IR19GowHONZAplzEU2jWxRZAUKqyki4xDRjVRoKNnkEHrlvHRHQEyqrEt0FjMjuOPevRqrTOJjdaoUGwBrmZabUD7cd7F4ybvCx57ROTI6rxmdiwFcrMYsmuIZf1IP27XIgyAtc_wbhmolk3wAl-36dJ9_n-34f-QnsIlbiTfRZUPoVW_v7hTNjUqf1bvrAzlcyx8 priority: 102 providerName: Springer Nature |
Title | An improved deep learning-based optimal object detection system from images |
URI | https://link.springer.com/article/10.1007/s11042-023-16736-5 https://www.proquest.com/docview/2941425864 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdoGBRwFRKJUHNrCI83DSCZWqD1FRIUSlMkWO7SAkSAst_59z4rSARBXJQ-LccPbdd_a9AC58tDGkEAFlOFLE45SKUDlUIxa7bhLyJC9gej_mw4l_Nw2m9sJtYcMqS52YK2o1k-aO_Npt-wz3V8T9m_kHNV2jjHfVttCoQA1VcISHr9ptb_zwuPIj8MC2tY0citjIbNpMkTzHTGoKYhZlJriJBr-haW1v_nGR5sjT34ddazKSTrHGB7Clszrsle0YiJXOOuz8qC14CKNORl7zGwOtiNJ6TmyDiBdqkEuRGSqLd6Q7S8xVDE5Z5lFZGSmKOxOTeIIUUN8sjmDS7z11h9R2TqDS496StiPlMe4kXIdewKUyxxJkYOK0UzzvcCZQ9rSjQkelaZSiEMvUkRqRXnKBBpTyjqGazTJ9AkSGQmkviVwmA1_7xu3qiojjo5JQCNYAVjItlrasuOlu8RavCyIbRsfI6DhndBw04HL1z7woqrFxdrNci9gK2CJeb4cGXJXrs_78P7XTzdTOYNtFs6WIMmtCdfn5pc_R7FgmLahE_UELap3B86jXsjsN33Z5F8eJ2_kGS8DVvQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYCBN6I8PcAEFnEeTjIghIDS0tKpSGzBsR2EBGmhRYg_xW_knEcDSLBVkbLEueH8-b6zz3cHsO-ijyGF8CjDN0U-TqjwlUU1crFtxz6PswKmN13evHWv77y7Kfgsc2HMtcrSJmaGWvWlOSM_tkOXIb4C7p4OXqjpGmWiq2ULjRwWbf3xjlu24UnrAuf3wLYbl73zJi26ClDpcGdEw0A5jFsx177jcamMy47CYytMcC_AmUBcakv5lkqSIEGAy8SSGllQcoHOhXJQ7jTMuI4TmhUVNK7GUQvuFU10A4siE7MiSSdP1WMmEQYZkjJzlYp6P4mw8m5_BWQznmsswULhoJKzHFHLMKXTFVgsmz-QwhaswPy3Soar0D5LyWN2PqEVUVoPSNGO4oEanlSkj6bpGeX2Y3Pwg0NG2R2wlOSlpIlJc0EJaN2Ga3A7EY2uQy3tp3oDiPSF0k4c2Ex6rnZNkNcWAcdHxb4QrA6sVFokiyLmppfGU1SVXzaKjlDRUaboyKvD4fifQV7C49_R2-VcRMVyHkYV-OpwVM5P9flvaZv_S9uD2WbvphN1Wt32FszZ6DDl99u2oTZ6fdM76PCM4t0MZQTuJw3rL21yC7I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD7oBqIPXqbivOZBnzTY9JJ2DyLqHM7pEFHwraZJKoJ2003Ev-av86RNnQr6JoW-ND2Fk6_nO0nOBWDTRx9DChFQhneKfJxSESqHauRi101CnuQFTM-7_OTaP70JbsbgvcyFMWGVpU3MDbXqSbNHvus2fIb4iri_m9qwiItma7__RE0HKXPSWrbTKCDS0W-vuHwb7LWbONdbrts6vjo6obbDAJUe94a0ESmPcSfhOvQCLpVx3_FDidNIcV3AmUCMakeFjkrTKEWwy9SRGhlRcoGOhvJQ7jhUQ1wVORWoHh53Ly4_zzB4YFvqRg5FXmY2ZadI3GMmLQb5kjITWEWD77Q48nV_HM_mrNeahWnrrpKDAl9zMKazGsyUrSCItQw1mPpS13AeOgcZuc93K7QiSus-sc0p7qhhTUV6aKgeUW4vMdtAOGSYR4RlpCgsTUzSC0pAWzdYgOt_0ekiVLJeppeAyFAo7SWRy2Tga98c-boi4nipJBSC1YGVSoulLWluOms8xKNizEbRMSo6zhUdB3XY_nynXxT0-HP0ajkXsf25B_EIinXYKedn9Ph3act_S9uACYR0fNbudlZg0kXvqQh2W4XK8PlFr6H3M0zWLcwI3P43sj8ApTMRRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+deep+learning-based+optimal+object+detection+system+from+images&rft.jtitle=Multimedia+tools+and+applications&rft.au=Yadav%2C+Satya+Prakash&rft.au=Jindal%2C+Muskan&rft.au=Rani%2C+Preeti&rft.au=de+Albuquerque%2C+Victor+Hugo+C.&rft.date=2024-03-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=10&rft.spage=30045&rft.epage=30072&rft_id=info:doi/10.1007%2Fs11042-023-16736-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_16736_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |