A recurrent neural network architecture to model physical activity energy expenditure in older people
Through the quantification of physical activity energy expenditure (PAEE), health care monitoring has the potential to stimulate vital and healthy ageing, inducing behavioural changes in older people and linking these to personal health gains. To be able to measure PAEE in a health care perspective,...
Saved in:
Published in | Data mining and knowledge discovery Vol. 36; no. 1; pp. 477 - 512 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Through the quantification of physical activity energy expenditure (PAEE), health care monitoring has the potential to stimulate vital and healthy ageing, inducing behavioural changes in older people and linking these to personal health gains. To be able to measure PAEE in a health care perspective, methods from wearable accelerometers have been developed, however, mainly targeted towards younger people. Since elderly subjects differ in energy requirements and range of physical activities, the current models may not be suitable for estimating PAEE among the elderly. Furthermore, currently available methods seem to be either simple but non-generalizable or require elaborate (manual) feature construction steps. Because past activities influence present PAEE, we propose a modeling approach known for its ability to model sequential data, the recurrent neural network (RNN). To train the RNN for an elderly population, we used the growing old together validation (GOTOV) dataset with 34 healthy participants of 60 years and older (mean 65 years old), performing 16 different activities. We used accelerometers placed on wrist and ankle, and measurements of energy counts by means of indirect calorimetry. After optimization, we propose an architecture consisting of an RNN with 3 GRU layers and a feedforward network combining both accelerometer and participant-level data. Our efforts included switching mean to standard deviation for down-sampling the input data and combining temporal and static data (person-specific details such as age, weight, BMI). The resulting architecture produces accurate PAEE estimations while decreasing training input and time by a factor of 10. Subsequently, compared to the state-of-the-art, it is capable to integrate longer activity data which lead to more accurate estimations of low intensity activities EE. It can thus be employed to investigate associations of PAEE with vitality parameters of older people related to metabolic and cognitive health and mental well-being. |
---|---|
AbstractList | Through the quantification of physical activity energy expenditure (PAEE), health care monitoring has the potential to stimulate vital and healthy ageing, inducing behavioural changes in older people and linking these to personal health gains. To be able to measure PAEE in a health care perspective, methods from wearable accelerometers have been developed, however, mainly targeted towards younger people. Since elderly subjects differ in energy requirements and range of physical activities, the current models may not be suitable for estimating PAEE among the elderly. Furthermore, currently available methods seem to be either simple but non-generalizable or require elaborate (manual) feature construction steps. Because past activities influence present PAEE, we propose a modeling approach known for its ability to model sequential data, the recurrent neural network (RNN). To train the RNN for an elderly population, we used the growing old together validation (GOTOV) dataset with 34 healthy participants of 60 years and older (mean 65 years old), performing 16 different activities. We used accelerometers placed on wrist and ankle, and measurements of energy counts by means of indirect calorimetry. After optimization, we propose an architecture consisting of an RNN with 3 GRU layers and a feedforward network combining both accelerometer and participant-level data. Our efforts included switching mean to standard deviation for down-sampling the input data and combining temporal and static data (person-specific details such as age, weight, BMI). The resulting architecture produces accurate PAEE estimations while decreasing training input and time by a factor of 10. Subsequently, compared to the state-of-the-art, it is capable to integrate longer activity data which lead to more accurate estimations of low intensity activities EE. It can thus be employed to investigate associations of PAEE with vitality parameters of older people related to metabolic and cognitive health and mental well-being. |
Author | Slagboom, P. Eline Paraschiakos, Stylianos de Sá, Cláudio Rebelo Knobbe, Arno Beekman, Marian Okai, Jeremiah |
Author_xml | – sequence: 1 givenname: Stylianos orcidid: 0000-0003-3473-3811 surname: Paraschiakos fullname: Paraschiakos, Stylianos email: s.paraschiakos@lumc.nl organization: Molecular Epidemiology, Department Biomedical Data Science, LUMC, Leiden Institute of Advanced Computer Science, Leiden University – sequence: 2 givenname: Cláudio Rebelo surname: de Sá fullname: de Sá, Cláudio Rebelo organization: Data Science research group, University of Twente – sequence: 3 givenname: Jeremiah surname: Okai fullname: Okai, Jeremiah organization: Leiden Institute of Advanced Computer Science, Leiden University – sequence: 4 givenname: P. Eline surname: Slagboom fullname: Slagboom, P. Eline organization: Molecular Epidemiology, Department Biomedical Data Science, LUMC – sequence: 5 givenname: Marian surname: Beekman fullname: Beekman, Marian organization: Molecular Epidemiology, Department Biomedical Data Science, LUMC – sequence: 6 givenname: Arno surname: Knobbe fullname: Knobbe, Arno organization: Leiden Institute of Advanced Computer Science, Leiden University |
BookMark | eNp9kE1r3DAQhkVJoJuPP5CTIGe3-rAt-RiWtikEemkgN6GVR4kSR3JHcrf776PsBgI95PTO4XlmhveEHMUUgZALzr5wxtTXzFnPdcMEbxjTXDXbT2TFOyUb1fV3R3WWum06zdlncpLzI2OsE5KtCFxRBLcgQiw0woJ2qlG2CZ-oRfcQCriyINCS6HMaYaLzwy4HVzHrSvgbyo5CBLyv8W-GOIY9HSJN0whIZ0jzBGfk2Nspw_lbnpLb799-r6-bm18_fq6vbhone1magfsWPOudsl5b1Y2bTqiN860YWt8JL71qtWJqaHvFQfQaVKeF1uOofMW5PCWXh70zpj8L5GIe04KxnjSiF3yQSqihUuJAOUw5I3gzY3i2uDOcmdc6zaFOU-s0-zrNtkr6P8mFYktIsaAN08eqPKi53on3gO9ffWC9ANCyjiE |
CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105295 crossref_primary_10_3390_wevj13100186 crossref_primary_10_7736_JKSPE_023_126 crossref_primary_10_1007_s10489_024_05817_z crossref_primary_10_1061_JPSEA2_PSENG_1380 crossref_primary_10_3390_s24020414 crossref_primary_10_1142_S1469026824500287 |
Cites_doi | 10.1007/s00421-010-1639-8 10.1109/jbhi.2014.2313039 10.1093/gerona/62.7.752 10.1145/3090076 10.1186/s12911-017-0453-1 10.1371/journal.pmed.1001779 10.1111/jgs.12893 10.1016/j.exger.2020.110894 10.1002/ajhb.22260 10.1177/1010539511404397 10.1007/s10654-012-9656-z 10.1152/japplphysiol.00150.2009 10.3389/fnut.2014.00005 10.1093/gerona/58.5.m453 10.1152/japplphysiol.00465.2009 10.1123/jpah.6.3.327 10.1038/oby.2009.55 10.1142/S0218488598000094 10.1249/MSS.0b013e31825e825a 10.1113/jphysiol.1949.sp004363 10.1111/j.1532-5415.2011.03655.x 10.1079/PHN2005794 10.1080/1091367X.2017.1337638 10.1080/00029890.2002.11919838 10.1007/s11257-020-09268-2 10.18632/aging.100877 10.1016/0026-0495(73)90071-1 10.2196/jmir.2843 10.1088/0967-3334/35/11/2191 10.1093/ajcn/55.4.790 10.1001/jama.296.2.171 10.1055/s-2001-13816 10.1088/1361-6579/38/2/343 10.1038/s41586-019-1390-1 10.1109/HealthCom.2015.7454554 10.1186/s11556-019-0210-9 10.1109/EMBC.2019.8857288 10.1007/978-3-030-01298-4_30 10.1109/EMBC.2013.6610138 10.1111/j.1532-5415.2009.02381.x 10.1080/02640414.2020.1746088 10.1145/2493432.2493517 10.1109/ICASSP.2018.8462334 10.2459/JCM.0b013e3283516798 10.1109/IPIN.2016.7743581 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-021-00817-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 512 |
ExternalDocumentID | 10_1007_s10618_021_00817_w |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c363t-91f4ef06c7af8a75db527bcf4294f52f3f74870794671e268e758288dd7fa7513 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Sat Aug 16 17:52:42 EDT 2025 Tue Jul 01 00:40:32 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Fri Feb 21 02:46:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Accelerometer Wearables Recurrent neural networks Monitoring older adults Indirect calorimetry Physical activity energy expenditure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-91f4ef06c7af8a75db527bcf4294f52f3f74870794671e268e758288dd7fa7513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3473-3811 |
OpenAccessLink | https://doi.org/10.1007/s10618-021-00817-w |
PQID | 2621937279 |
PQPubID | 43030 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2621937279 crossref_primary_10_1007_s10618_021_00817_w crossref_citationtrail_10_1007_s10618_021_00817_w springer_journals_10_1007_s10618_021_00817_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Caron, Peyrot, Caderby, Verkindt, Dalleau (CR3) 2020; 134 Leonard (CR22) 2012; 24 Lyden, Kozey, Staudenmeyer, Freedson (CR25) 2011; 111 van de Rest, Schutte, Deelen, Stassen, van den Akker, van Heemst, Dibbets-Schneider, van Dipten-van der Veen, Kelderman, Hankemeier, Mooijaart, van der Grond, Houwing-Duistermaat, Beekman, Feskens, Slagboom (CR41) 2016; 8 Hortobágyi, Mizelle, Beam, DeVita (CR15) 2003; 58 Jones, Waters, Legge (CR16) 2009; 6 Hochreiter (CR14) 1998; 06 Montoye, Conger, Connolly, Imboden, Nelson, Bock, Kaminsky (CR31) 2017; 21 Volchan (CR43) 2002; 109 Wijsman, Westendorp, Verhagen, Catt, Slagboom, de Craen, Broekhuizen, van Mechelen, van Heemst, van der Ouderaa, Mooijaart (CR47) 2013; 15 CR19 Altini, Penders, Vullers, Amft (CR1) 2015; 19 van Hees, van Lummel, Westerterp (CR42) 2009; 17 Guan, Plötz (CR12) 2017; 1 Manini, Everhart, Patel, Schoeller, Colbert, Visser, Tylavsky, Bauer, Goodpaster, Harris (CR26) 2006; 296 CR11 CR33 Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray, Liu, Matthews, Ong, Pell, Silman, Young, Sprosen, Peakman, Collins (CR38) 2015; 12 Weir (CR45) 1949; 109 CR32 Paraschiakos, Cachucho, Moed, van Heemst, Mooijaart, Slagboom, Knobbe, Beekman (CR34) 2020; 30 Kim, Oh, Kim, Lim, Oh, Choi (CR18) 2017; 17 Roberts, Dallal (CR36) 2005; 8 Petersen, Gronbaek, Helge, Thygesen, Schnohr, Tolstrup (CR35) 2012; 27 Weinsier, Schutz, Bracco (CR44) 1992; 55 Frisard, Broussard, Davies, Roberts, Rood, de Jonge, Fang, Jazwinski, Deutsch, Ravussin (CR10) 2007; 62 Liu, Gao, Freedson (CR24) 2012; 44 Bonomi, Plasqui, Goris, Westerterp (CR2) 2009; 107 Ellis, Kerr, Godbole, Lanckriet, Wing, Marshall (CR9) 2014; 35 Keys, Taylor, Grande (CR17) 1973; 22 Chen, Fox, Ku, Sun, Chou (CR4) 2012; 24 CR6 CR5 CR8 CR7 Hills, Mokhtar, Byrne (CR13) 2014; 1 CR27 Martin, Koster, Murphy, Van Domelen, Hung, Brychta, Chen, Harris (CR28) 2014; 62 CR48 Montoye, Begum, Henning, Pfeiffer (CR30) 2017; 38 CR46 CR23 McLaughlin, King, Howley, Bassett, Ainsworth (CR29) 2001; 22 CR21 Staudenmayer, Pobe, Crouter, Bassett, Freedson (CR37) 2009; 107 Knaggs, Larkin, Manini (CR20) 2011; 59 CR40 Tomašev, Glorot, Rae, Zielinski, Askham, Saraiva, Mottram, Meyer, Ravuri, Protsyuk, Connell, Hughes, Karthikesalingam, Cornebise, Montgomery, Rees, Laing, Baker, Peterson, Reeves, Hassabis, King, Suleyman, Back, Nielson, Ledsam, Mohamed (CR39) 2019; 572 L Jones (817_CR16) 2009; 6 O van de Rest (817_CR41) 2016; 8 Y Guan (817_CR12) 2017; 1 817_CR32 N Caron (817_CR3) 2020; 134 JD Knaggs (817_CR20) 2011; 59 817_CR19 KR Martin (817_CR28) 2014; 62 A Montoye (817_CR31) 2017; 21 JDV Weir (817_CR45) 1949; 109 817_CR11 A Montoye (817_CR30) 2017; 38 817_CR33 S Paraschiakos (817_CR34) 2020; 30 CB Petersen (817_CR35) 2012; 27 L Chen (817_CR4) 2012; 24 S Liu (817_CR24) 2012; 44 A Keys (817_CR17) 1973; 22 CA Wijsman (817_CR47) 2013; 15 W Leonard (817_CR22) 2012; 24 M Altini (817_CR1) 2015; 19 817_CR40 AG Bonomi (817_CR2) 2009; 107 817_CR8 S Hochreiter (817_CR14) 1998; 06 817_CR21 817_CR5 K Ellis (817_CR9) 2014; 35 ZM Kim (817_CR18) 2017; 17 817_CR7 AP Hills (817_CR13) 2014; 1 817_CR6 JE McLaughlin (817_CR29) 2001; 22 SB Volchan (817_CR43) 2002; 109 J Staudenmayer (817_CR37) 2009; 107 VT van Hees (817_CR42) 2009; 17 SB Roberts (817_CR36) 2005; 8 N Tomašev (817_CR39) 2019; 572 RL Weinsier (817_CR44) 1992; 55 817_CR23 C Sudlow (817_CR38) 2015; 12 MI Frisard (817_CR10) 2007; 62 817_CR46 T Hortobágyi (817_CR15) 2003; 58 K Lyden (817_CR25) 2011; 111 817_CR48 TM Manini (817_CR26) 2006; 296 817_CR27 |
References_xml | – volume: 111 start-page: 187 issue: 2 year: 2011 end-page: 201 ident: CR25 article-title: A comprehensive evaluation of commonly used accelerometer energy expenditure and met prediction equations publication-title: Eur J Appl Physiol doi: 10.1007/s00421-010-1639-8 – volume: 19 start-page: 219 issue: 1 year: 2015 end-page: 26 ident: CR1 article-title: Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning publication-title: IEEE J Biomed Health Inform doi: 10.1109/jbhi.2014.2313039 – volume: 62 start-page: 752 issue: 7 year: 2007 end-page: 9 ident: CR10 article-title: Louisiana healthy aging study aging, resting metabolic rate, and oxidative damage: results from the Louisiana healthy aging study publication-title: J Gerontol: Ser A doi: 10.1093/gerona/62.7.752 – volume: 1 start-page: 1 issue: 2 year: 2017 end-page: 28 ident: CR12 article-title: Ensembles of deep lstm learners for activity recognition using wearables publication-title: Proc ACM Interact, Mob, Wearab Ubiquitous Technol doi: 10.1145/3090076 – volume: 17 start-page: 57 year: 2017 ident: CR18 article-title: Modeling long-term human activeness using recurrent neural networks for biometric data publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-017-0453-1 – volume: 12 start-page: 1 issue: 3 year: 2015 end-page: 10 ident: CR38 article-title: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med doi: 10.1371/journal.pmed.1001779 – volume: 62 start-page: 1263 issue: 7 year: 2014 end-page: 71 ident: CR28 article-title: Changes in daily activity patterns with age in U.S. men and women: national health and nutrition examination survey 2003–04 and 2005–06 publication-title: J Am Geriatr Soc doi: 10.1111/jgs.12893 – volume: 134 start-page: 110894 year: 2020 ident: CR3 article-title: Estimating energy expenditure from accelerometer data in healthy adults and patients with type 2 diabetes publication-title: Exp Gerontol doi: 10.1016/j.exger.2020.110894 – volume: 24 start-page: 372 issue: 3 year: 2012 end-page: 84 ident: CR22 article-title: Laboratory and field methods for measuring human energy expenditure publication-title: Am J Hum Biol doi: 10.1002/ajhb.22260 – ident: CR33 – volume: 24 start-page: 795 issue: 5 year: 2012 end-page: 805 ident: CR4 article-title: Prospective associations between household-, work-, and leisure-based physical activity and all-cause mortality among older taiwanese adults publication-title: Asia Pac J Public Health doi: 10.1177/1010539511404397 – ident: CR6 – ident: CR8 – volume: 27 start-page: 91 issue: 2 year: 2012 end-page: 9 ident: CR35 article-title: Changes in physical activity in leisure time and the risk of myocardial infarction, ischemic heart disease, and all-cause mortality publication-title: Eur J Epidemiol doi: 10.1007/s10654-012-9656-z – volume: 107 start-page: 655 issue: 3 year: 2009 end-page: 661 ident: CR2 article-title: Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00150.2009 – ident: CR40 – volume: 1 start-page: 5 year: 2014 ident: CR13 article-title: Assessment of physical activity and energy expenditure: an overview of objective measures publication-title: Front Nutr doi: 10.3389/fnut.2014.00005 – volume: 58 start-page: 453 issue: 5 year: 2003 end-page: 60 ident: CR15 article-title: Old adults perform activities of daily living near their maximal capabilities publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/58.5.m453 – ident: CR27 – volume: 107 start-page: 1300 issue: 3 year: 2009 end-page: 7 ident: CR37 article-title: An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00465.2009 – volume: 6 start-page: 327 issue: 3 year: 2009 end-page: 32 ident: CR16 article-title: Walking speed at self-selected exercise pace is lower but energy cost higher in older versus younger women publication-title: J Phys Act Health doi: 10.1123/jpah.6.3.327 – ident: CR23 – volume: 17 start-page: 1287 issue: 6 year: 2009 end-page: 1292 ident: CR42 article-title: Estimating activity-related energy expenditure under sedentary conditions using a tri-axial seismic accelerometer publication-title: Obesity doi: 10.1038/oby.2009.55 – volume: 06 start-page: 107 issue: 02 year: 1998 end-page: 116 ident: CR14 article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions publication-title: Int J Uncertain Fuzziness Knowl-Based Syst doi: 10.1142/S0218488598000094 – volume: 44 start-page: 2138 issue: 11 year: 2012 end-page: 46 ident: CR24 article-title: Computational methods for estimating energy expenditure in human physical activities publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e31825e825a – ident: CR21 – volume: 109 start-page: 1 issue: 1–2 year: 1949 end-page: 9 ident: CR45 article-title: New methods for calculating metabolic rate with special reference to protein metabolism publication-title: J Physiol doi: 10.1113/jphysiol.1949.sp004363 – ident: CR46 – ident: CR19 – ident: CR48 – volume: 59 start-page: 2118 issue: 11 year: 2011 end-page: 23 ident: CR20 article-title: Metabolic cost of daily activities and effect of mobility impairment in older adults publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.2011.03655.x – volume: 8 start-page: 1028 issue: 7a year: 2005 end-page: 1036 ident: CR36 article-title: Energy requirements and aging publication-title: Public Health Nutr doi: 10.1079/PHN2005794 – volume: 21 start-page: 223 issue: 4 year: 2017 end-page: 234 ident: CR31 article-title: Validation of accelerometer-based energy expenditure prediction models in structured and simulated free-living settings publication-title: Meas Phys Educ Exerc Sci doi: 10.1080/1091367X.2017.1337638 – volume: 109 start-page: 46 issue: 1 year: 2002 end-page: 63 ident: CR43 article-title: What is a random sequence? publication-title: Am Math Mon doi: 10.1080/00029890.2002.11919838 – volume: 30 start-page: 567 year: 2020 end-page: 605 ident: CR34 article-title: Activity recognition using wearable sensors for tracking the elderly publication-title: User Model User-Adap Int doi: 10.1007/s11257-020-09268-2 – ident: CR11 – volume: 8 start-page: 111 issue: 1 year: 2016 end-page: 124 ident: CR41 article-title: Metabolic effects of a 13-weeks lifestyle intervention in older adults: the growing old together study publication-title: Aging doi: 10.18632/aging.100877 – volume: 22 start-page: 579 issue: 4 year: 1973 end-page: 87 ident: CR17 article-title: Basal metabolism and age of adult man publication-title: Metabolism doi: 10.1016/0026-0495(73)90071-1 – ident: CR32 – volume: 15 start-page: e233 issue: 11 year: 2013 ident: CR47 article-title: Effects of a web-based intervention on physical activity and metabolism in older adults: randomized controlled trial publication-title: J Med Internet Res doi: 10.2196/jmir.2843 – volume: 35 start-page: 2191 issue: 11 year: 2014 end-page: 2203 ident: CR9 article-title: A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers publication-title: Physiol Meas doi: 10.1088/0967-3334/35/11/2191 – volume: 55 start-page: 790 issue: 4 year: 1992 end-page: 4 ident: CR44 article-title: Reexamination of the relationship of resting metabolic rate to fat-free mass and to the metabolically active components of fat-free mass in humans publication-title: Am J Clin Nutr doi: 10.1093/ajcn/55.4.790 – ident: CR5 – volume: 296 start-page: 171 issue: 2 year: 2006 end-page: 9 ident: CR26 article-title: Daily activity energy expenditure and mortality among older adults publication-title: J Am Med Assoc (JAMA) doi: 10.1001/jama.296.2.171 – ident: CR7 – volume: 22 start-page: 280 issue: 4 year: 2001 end-page: 4 ident: CR29 article-title: Validation of the cosmed k4 b2 portable metabolic system publication-title: Int J Sports Med doi: 10.1055/s-2001-13816 – volume: 38 start-page: 343 issue: 2 year: 2017 end-page: 57 ident: CR30 article-title: Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data publication-title: Physiol Meas doi: 10.1088/1361-6579/38/2/343 – volume: 572 start-page: 116 year: 2019 end-page: 119 ident: CR39 article-title: A clinically applicable approach to continuous prediction of future acute kidney injury publication-title: Nature doi: 10.1038/s41586-019-1390-1 – ident: 817_CR5 – volume: 62 start-page: 752 issue: 7 year: 2007 ident: 817_CR10 publication-title: J Gerontol: Ser A doi: 10.1093/gerona/62.7.752 – ident: 817_CR48 doi: 10.1109/HealthCom.2015.7454554 – volume: 30 start-page: 567 year: 2020 ident: 817_CR34 publication-title: User Model User-Adap Int doi: 10.1007/s11257-020-09268-2 – volume: 35 start-page: 2191 issue: 11 year: 2014 ident: 817_CR9 publication-title: Physiol Meas doi: 10.1088/0967-3334/35/11/2191 – volume: 1 start-page: 5 year: 2014 ident: 817_CR13 publication-title: Front Nutr doi: 10.3389/fnut.2014.00005 – volume: 06 start-page: 107 issue: 02 year: 1998 ident: 817_CR14 publication-title: Int J Uncertain Fuzziness Knowl-Based Syst doi: 10.1142/S0218488598000094 – volume: 22 start-page: 579 issue: 4 year: 1973 ident: 817_CR17 publication-title: Metabolism doi: 10.1016/0026-0495(73)90071-1 – volume: 572 start-page: 116 year: 2019 ident: 817_CR39 publication-title: Nature doi: 10.1038/s41586-019-1390-1 – ident: 817_CR19 – volume: 24 start-page: 372 issue: 3 year: 2012 ident: 817_CR22 publication-title: Am J Hum Biol doi: 10.1002/ajhb.22260 – ident: 817_CR40 doi: 10.1186/s11556-019-0210-9 – volume: 38 start-page: 343 issue: 2 year: 2017 ident: 817_CR30 publication-title: Physiol Meas doi: 10.1088/1361-6579/38/2/343 – volume: 296 start-page: 171 issue: 2 year: 2006 ident: 817_CR26 publication-title: J Am Med Assoc (JAMA) doi: 10.1001/jama.296.2.171 – volume: 15 start-page: e233 issue: 11 year: 2013 ident: 817_CR47 publication-title: J Med Internet Res doi: 10.2196/jmir.2843 – ident: 817_CR32 doi: 10.1109/EMBC.2019.8857288 – volume: 27 start-page: 91 issue: 2 year: 2012 ident: 817_CR35 publication-title: Eur J Epidemiol doi: 10.1007/s10654-012-9656-z – volume: 59 start-page: 2118 issue: 11 year: 2011 ident: 817_CR20 publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.2011.03655.x – volume: 111 start-page: 187 issue: 2 year: 2011 ident: 817_CR25 publication-title: Eur J Appl Physiol doi: 10.1007/s00421-010-1639-8 – volume: 6 start-page: 327 issue: 3 year: 2009 ident: 817_CR16 publication-title: J Phys Act Health doi: 10.1123/jpah.6.3.327 – volume: 62 start-page: 1263 issue: 7 year: 2014 ident: 817_CR28 publication-title: J Am Geriatr Soc doi: 10.1111/jgs.12893 – volume: 24 start-page: 795 issue: 5 year: 2012 ident: 817_CR4 publication-title: Asia Pac J Public Health doi: 10.1177/1010539511404397 – volume: 107 start-page: 1300 issue: 3 year: 2009 ident: 817_CR37 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00465.2009 – volume: 21 start-page: 223 issue: 4 year: 2017 ident: 817_CR31 publication-title: Meas Phys Educ Exerc Sci doi: 10.1080/1091367X.2017.1337638 – volume: 8 start-page: 111 issue: 1 year: 2016 ident: 817_CR41 publication-title: Aging doi: 10.18632/aging.100877 – volume: 44 start-page: 2138 issue: 11 year: 2012 ident: 817_CR24 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e31825e825a – volume: 12 start-page: 1 issue: 3 year: 2015 ident: 817_CR38 publication-title: PLoS Med doi: 10.1371/journal.pmed.1001779 – volume: 109 start-page: 46 issue: 1 year: 2002 ident: 817_CR43 publication-title: Am Math Mon doi: 10.1080/00029890.2002.11919838 – volume: 19 start-page: 219 issue: 1 year: 2015 ident: 817_CR1 publication-title: IEEE J Biomed Health Inform doi: 10.1109/jbhi.2014.2313039 – ident: 817_CR23 doi: 10.1007/978-3-030-01298-4_30 – volume: 107 start-page: 655 issue: 3 year: 2009 ident: 817_CR2 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00150.2009 – ident: 817_CR7 doi: 10.1109/EMBC.2013.6610138 – ident: 817_CR46 doi: 10.1111/j.1532-5415.2009.02381.x – volume: 17 start-page: 57 year: 2017 ident: 817_CR18 publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-017-0453-1 – ident: 817_CR33 doi: 10.1080/02640414.2020.1746088 – volume: 8 start-page: 1028 issue: 7a year: 2005 ident: 817_CR36 publication-title: Public Health Nutr doi: 10.1079/PHN2005794 – ident: 817_CR11 doi: 10.1145/2493432.2493517 – volume: 1 start-page: 1 issue: 2 year: 2017 ident: 817_CR12 publication-title: Proc ACM Interact, Mob, Wearab Ubiquitous Technol doi: 10.1145/3090076 – volume: 22 start-page: 280 issue: 4 year: 2001 ident: 817_CR29 publication-title: Int J Sports Med doi: 10.1055/s-2001-13816 – volume: 109 start-page: 1 issue: 1–2 year: 1949 ident: 817_CR45 publication-title: J Physiol doi: 10.1113/jphysiol.1949.sp004363 – ident: 817_CR21 doi: 10.1109/ICASSP.2018.8462334 – ident: 817_CR27 – volume: 17 start-page: 1287 issue: 6 year: 2009 ident: 817_CR42 publication-title: Obesity doi: 10.1038/oby.2009.55 – ident: 817_CR6 doi: 10.2459/JCM.0b013e3283516798 – ident: 817_CR8 doi: 10.1109/IPIN.2016.7743581 – volume: 58 start-page: 453 issue: 5 year: 2003 ident: 817_CR15 publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/58.5.m453 – volume: 134 start-page: 110894 year: 2020 ident: 817_CR3 publication-title: Exp Gerontol doi: 10.1016/j.exger.2020.110894 – volume: 55 start-page: 790 issue: 4 year: 1992 ident: 817_CR44 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/55.4.790 |
SSID | ssj0005230 |
Score | 2.385133 |
Snippet | Through the quantification of physical activity energy expenditure (PAEE), health care monitoring has the potential to stimulate vital and healthy ageing,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 477 |
SubjectTerms | Accelerometers Artificial Intelligence Chemistry and Earth Sciences Computer architecture Computer Science Data Mining and Knowledge Discovery Energy requirements Exercise Health care Information Storage and Retrieval Neural networks Older people Optimization Personal health Physics Recurrent neural networks Special Issue: Mining for Health Statistics for Engineering Wrist |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Ivjix1ScTsmDbxpom-Zjj2M4hqBPDvYW1jQBQbqxdezfN9embg4VfO4llLsk90vu7ncA91x5jO96EfXnv6OpMCn1OC6hiREYZnKqJtN5eRWjcfo84ZNAk4O1MDvxeyxxE7GimEiA3kvS9T4c8JhJbNMwEIOtdA5WVwSrlOIPhAKZn-f47oQ2yHInGFr5mOEpHAdwSPq1Nc9gzxZtOGkaL5CwD9twWOVtmuU52D5Z4Is5ciwR5Kb0w4s6s5tsxwhIOSNV0xsyD4YhWNGAjSOIrcr_CHL9Y_wapd8LMsP23aROML-A8fDpbTCioXMCNUyw0p9gLrUuEkZOnZpKnmc8kZlx3vmkjieOOekvKhGSy8vYJkJZieEzlefSefGYXUKrmBX2CghS1MUustwi877J_PUonWY2d4xbj5ZEB-JGldoEWnHsbvGhN4TIqH7t1a8r9et1Bx6-xsxrUo0_pbuNhXTYYEudCH_UMg--eh14bKy2-fz7bNf_E7-BowQLHqpHly60ysXK3noYUmZ31fr7BEIT0jM priority: 102 providerName: Springer Nature |
Title | A recurrent neural network architecture to model physical activity energy expenditure in older people |
URI | https://link.springer.com/article/10.1007/s10618-021-00817-w https://www.proquest.com/docview/2621937279 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se_HiW6zWsgdvupjnZnuSWvpAsYhYqKfQJLsgSFrbSP--M8nGVMFeckh2lzCzOzM7j28ArnyJNr7uWBzlv-aeiD2OdpzDnVhQmEnLAkznaSxGE-9h6k-Nw21l0ipLmZgL6mQek4_81hF4tlzUtp27xSenrlEUXTUtNGrQQBEsZR0a9_3x88tGkodb1AlLj9NvmbIZUzwnbMkpRYH0YsDXv1VTZW_-CZHmmmdwAHvGZGTdgseHsKPSI9gv2zEwczqPQXXZkrznhLfECKcSJ6VFljfbjBewbM7yBjhsYZjEqLqBmkgwlZcCMsL9p1g2jX5P2ZxaebMi2fwEJoP-a2_ETRcFHrvCzVCaaU9pS8TBTMtZ4CeR7wRRrFERedp3tKsDvLRYBDQf2MoRUgUUSpNJEmgcbrunUE_nqToDRnB1traUrwiFP47wquTNIpVo11doOYkm2CUBw9hAjFOni4-wAkcmoodI9DAnerhuwvXPnEUBsLF1dKvkS2gO2yqstkYTbkpeVZ__X-18-2oXsOtQsUPucGlBPVt-qUs0QbKoDTU5GLah0R2-PfbbZtfh257o4XPidL8B6L_bpw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHvTi24ii7kFPupFu2205GENUBHmcIOFWabubmJiCUEP8U_5GZ_oQNJEb530cZmdnZndmvg_gwnYxxtfVCkf7r7klA4tjHCe4CCSlmbSbgul0urLRt54H9qAAX3kvDJVV5jYxMdThKKA_8hsh8W6Z6G2rd-N3TqxRlF3NKTRStWipzxk-2aa3zQc830sh6o-9-wbPWAV4YEozxtutLaUrMnCG2h06dujbwvEDjYbZ0rbQpnYwiK8Q8LpjKCFd5VBqyQ1DR-N0w8R912DdMtGTU2d6_WmhpMRMu5Jdi5MQsiadrFVPGi6nggjywg6f_XaE8-j2T0I28XP1HdjKAlRWSzVqFwoq2oPtnPyBZbZgH1SNTeivntCdGKFi4qIorSlni9kJFo9YQrfDxplKMOqlIMoKppLGQ0YsA5Q5p9mvERsRcThLS9sPoL8S6R5CMRpF6ggYgeMZuqJsRZj_gY8PM2voq1CbtsI4TZbAyAXoBRmgOfFqvHlzKGYSuodC9xKhe7MSXP2sGadwHktnl_Nz8bKrPfXmiliC6_ys5sP_73a8fLdz2Gj0Om2v3ey2TmBTUJtF8tVThmI8-VCnGPzE_lmicQxeVq3i38c-EgI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGJiEuvBGDATnACSLWtE3KAaHxmIDBNCGQuJW1TSQk1I0xNPHX-HXYbcoAid12zuPgOLYT298HsOsHGOObozpH-2-4J2OPYxwnuIglpZlMkIPp3Lbl5YN3_eg_luCz6IWhssrCJmaGOunF9Ed-KCTeLRe97dGhsWURnfPmSf-VE4MUZVoLOo1cRVr6Y4TPt7fjq3M86z0hmhf3Z5fcMgzw2JXuEG-68bSpy1h1TdBVfhL5QkWxQSPtGV8Y1ygM6OsEwq4cLWSgFaWZgiRRBqc7Lu47AxVFr6IyVE4v2p27HwUmbt6jHHicRGJbdmzjnnQCTuUR5JMVH_12i-NY9096NvN6zUWYt-Eqa-T6tQQlnS7DQkEFwaxlWAHdYAP6uSesJ0YYmbgozSvM2c9cBRv2WEa-w_pWQRh1VhCBBdNZGyIjzgHKo9Ps55T1iEac5YXuq_AwFfmuQTntpXodGEHlOaaufU0MAHGEzzSvG-nEuL7GqE1WwSkEGMYW3pxYNl7CMTAzCT1EoYeZ0MNRFfa_1_RzcI-Js2vFuYT2or-FY7WswkFxVuPh_3fbmLzbDsyieoc3V-3WJswJ6rnI_n1qUB4O3vUWRkLDaNuqHIOnaWv5FzQJF5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+recurrent+neural+network+architecture+to+model+physical+activity+energy+expenditure+in+older+people&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Paraschiakos+Stylianos&rft.au=de+S%C3%A1+Cl%C3%A1udio+Rebelo&rft.au=Okai+Jeremiah&rft.au=Eline%2C+Slagboom+P&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=36&rft.issue=1&rft.spage=477&rft.epage=512&rft_id=info:doi/10.1007%2Fs10618-021-00817-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |