A recurrent neural network architecture to model physical activity energy expenditure in older people

Through the quantification of physical activity energy expenditure (PAEE), health care monitoring has the potential to stimulate vital and healthy ageing, inducing behavioural changes in older people and linking these to personal health gains. To be able to measure PAEE in a health care perspective,...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 36; no. 1; pp. 477 - 512
Main Authors Paraschiakos, Stylianos, de Sá, Cláudio Rebelo, Okai, Jeremiah, Slagboom, P. Eline, Beekman, Marian, Knobbe, Arno
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Through the quantification of physical activity energy expenditure (PAEE), health care monitoring has the potential to stimulate vital and healthy ageing, inducing behavioural changes in older people and linking these to personal health gains. To be able to measure PAEE in a health care perspective, methods from wearable accelerometers have been developed, however, mainly targeted towards younger people. Since elderly subjects differ in energy requirements and range of physical activities, the current models may not be suitable for estimating PAEE among the elderly. Furthermore, currently available methods seem to be either simple but non-generalizable or require elaborate (manual) feature construction steps. Because past activities influence present PAEE, we propose a modeling approach known for its ability to model sequential data, the recurrent neural network (RNN). To train the RNN for an elderly population, we used the growing old together validation (GOTOV) dataset with 34 healthy participants of 60 years and older (mean 65 years old), performing 16 different activities. We used accelerometers placed on wrist and ankle, and measurements of energy counts by means of indirect calorimetry. After optimization, we propose an architecture consisting of an RNN with 3 GRU layers and a feedforward network combining both accelerometer and participant-level data. Our efforts included switching mean to standard deviation for down-sampling the input data and combining temporal and static data (person-specific details such as age, weight, BMI). The resulting architecture produces accurate PAEE estimations while decreasing training input and time by a factor of 10. Subsequently, compared to the state-of-the-art, it is capable to integrate longer activity data which lead to more accurate estimations of low intensity activities EE. It can thus be employed to investigate associations of PAEE with vitality parameters of older people related to metabolic and cognitive health and mental well-being.
AbstractList Through the quantification of physical activity energy expenditure (PAEE), health care monitoring has the potential to stimulate vital and healthy ageing, inducing behavioural changes in older people and linking these to personal health gains. To be able to measure PAEE in a health care perspective, methods from wearable accelerometers have been developed, however, mainly targeted towards younger people. Since elderly subjects differ in energy requirements and range of physical activities, the current models may not be suitable for estimating PAEE among the elderly. Furthermore, currently available methods seem to be either simple but non-generalizable or require elaborate (manual) feature construction steps. Because past activities influence present PAEE, we propose a modeling approach known for its ability to model sequential data, the recurrent neural network (RNN). To train the RNN for an elderly population, we used the growing old together validation (GOTOV) dataset with 34 healthy participants of 60 years and older (mean 65 years old), performing 16 different activities. We used accelerometers placed on wrist and ankle, and measurements of energy counts by means of indirect calorimetry. After optimization, we propose an architecture consisting of an RNN with 3 GRU layers and a feedforward network combining both accelerometer and participant-level data. Our efforts included switching mean to standard deviation for down-sampling the input data and combining temporal and static data (person-specific details such as age, weight, BMI). The resulting architecture produces accurate PAEE estimations while decreasing training input and time by a factor of 10. Subsequently, compared to the state-of-the-art, it is capable to integrate longer activity data which lead to more accurate estimations of low intensity activities EE. It can thus be employed to investigate associations of PAEE with vitality parameters of older people related to metabolic and cognitive health and mental well-being.
Author Slagboom, P. Eline
Paraschiakos, Stylianos
de Sá, Cláudio Rebelo
Knobbe, Arno
Beekman, Marian
Okai, Jeremiah
Author_xml – sequence: 1
  givenname: Stylianos
  orcidid: 0000-0003-3473-3811
  surname: Paraschiakos
  fullname: Paraschiakos, Stylianos
  email: s.paraschiakos@lumc.nl
  organization: Molecular Epidemiology, Department Biomedical Data Science, LUMC, Leiden Institute of Advanced Computer Science, Leiden University
– sequence: 2
  givenname: Cláudio Rebelo
  surname: de Sá
  fullname: de Sá, Cláudio Rebelo
  organization: Data Science research group, University of Twente
– sequence: 3
  givenname: Jeremiah
  surname: Okai
  fullname: Okai, Jeremiah
  organization: Leiden Institute of Advanced Computer Science, Leiden University
– sequence: 4
  givenname: P. Eline
  surname: Slagboom
  fullname: Slagboom, P. Eline
  organization: Molecular Epidemiology, Department Biomedical Data Science, LUMC
– sequence: 5
  givenname: Marian
  surname: Beekman
  fullname: Beekman, Marian
  organization: Molecular Epidemiology, Department Biomedical Data Science, LUMC
– sequence: 6
  givenname: Arno
  surname: Knobbe
  fullname: Knobbe, Arno
  organization: Leiden Institute of Advanced Computer Science, Leiden University
BookMark eNp9kE1r3DAQhkVJoJuPP5CTIGe3-rAt-RiWtikEemkgN6GVR4kSR3JHcrf776PsBgI95PTO4XlmhveEHMUUgZALzr5wxtTXzFnPdcMEbxjTXDXbT2TFOyUb1fV3R3WWum06zdlncpLzI2OsE5KtCFxRBLcgQiw0woJ2qlG2CZ-oRfcQCriyINCS6HMaYaLzwy4HVzHrSvgbyo5CBLyv8W-GOIY9HSJN0whIZ0jzBGfk2Nspw_lbnpLb799-r6-bm18_fq6vbhone1magfsWPOudsl5b1Y2bTqiN860YWt8JL71qtWJqaHvFQfQaVKeF1uOofMW5PCWXh70zpj8L5GIe04KxnjSiF3yQSqihUuJAOUw5I3gzY3i2uDOcmdc6zaFOU-s0-zrNtkr6P8mFYktIsaAN08eqPKi53on3gO9ffWC9ANCyjiE
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105295
crossref_primary_10_3390_wevj13100186
crossref_primary_10_7736_JKSPE_023_126
crossref_primary_10_1007_s10489_024_05817_z
crossref_primary_10_1061_JPSEA2_PSENG_1380
crossref_primary_10_3390_s24020414
crossref_primary_10_1142_S1469026824500287
Cites_doi 10.1007/s00421-010-1639-8
10.1109/jbhi.2014.2313039
10.1093/gerona/62.7.752
10.1145/3090076
10.1186/s12911-017-0453-1
10.1371/journal.pmed.1001779
10.1111/jgs.12893
10.1016/j.exger.2020.110894
10.1002/ajhb.22260
10.1177/1010539511404397
10.1007/s10654-012-9656-z
10.1152/japplphysiol.00150.2009
10.3389/fnut.2014.00005
10.1093/gerona/58.5.m453
10.1152/japplphysiol.00465.2009
10.1123/jpah.6.3.327
10.1038/oby.2009.55
10.1142/S0218488598000094
10.1249/MSS.0b013e31825e825a
10.1113/jphysiol.1949.sp004363
10.1111/j.1532-5415.2011.03655.x
10.1079/PHN2005794
10.1080/1091367X.2017.1337638
10.1080/00029890.2002.11919838
10.1007/s11257-020-09268-2
10.18632/aging.100877
10.1016/0026-0495(73)90071-1
10.2196/jmir.2843
10.1088/0967-3334/35/11/2191
10.1093/ajcn/55.4.790
10.1001/jama.296.2.171
10.1055/s-2001-13816
10.1088/1361-6579/38/2/343
10.1038/s41586-019-1390-1
10.1109/HealthCom.2015.7454554
10.1186/s11556-019-0210-9
10.1109/EMBC.2019.8857288
10.1007/978-3-030-01298-4_30
10.1109/EMBC.2013.6610138
10.1111/j.1532-5415.2009.02381.x
10.1080/02640414.2020.1746088
10.1145/2493432.2493517
10.1109/ICASSP.2018.8462334
10.2459/JCM.0b013e3283516798
10.1109/IPIN.2016.7743581
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-021-00817-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 512
ExternalDocumentID 10_1007_s10618_021_00817_w
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-91f4ef06c7af8a75db527bcf4294f52f3f74870794671e268e758288dd7fa7513
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Sat Aug 16 17:52:42 EDT 2025
Tue Jul 01 00:40:32 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Fri Feb 21 02:46:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Accelerometer
Wearables
Recurrent neural networks
Monitoring older adults
Indirect calorimetry
Physical activity energy expenditure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-91f4ef06c7af8a75db527bcf4294f52f3f74870794671e268e758288dd7fa7513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3473-3811
OpenAccessLink https://doi.org/10.1007/s10618-021-00817-w
PQID 2621937279
PQPubID 43030
PageCount 36
ParticipantIDs proquest_journals_2621937279
crossref_primary_10_1007_s10618_021_00817_w
crossref_citationtrail_10_1007_s10618_021_00817_w
springer_journals_10_1007_s10618_021_00817_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Caron, Peyrot, Caderby, Verkindt, Dalleau (CR3) 2020; 134
Leonard (CR22) 2012; 24
Lyden, Kozey, Staudenmeyer, Freedson (CR25) 2011; 111
van de Rest, Schutte, Deelen, Stassen, van den Akker, van Heemst, Dibbets-Schneider, van Dipten-van der Veen, Kelderman, Hankemeier, Mooijaart, van der Grond, Houwing-Duistermaat, Beekman, Feskens, Slagboom (CR41) 2016; 8
Hortobágyi, Mizelle, Beam, DeVita (CR15) 2003; 58
Jones, Waters, Legge (CR16) 2009; 6
Hochreiter (CR14) 1998; 06
Montoye, Conger, Connolly, Imboden, Nelson, Bock, Kaminsky (CR31) 2017; 21
Volchan (CR43) 2002; 109
Wijsman, Westendorp, Verhagen, Catt, Slagboom, de Craen, Broekhuizen, van Mechelen, van Heemst, van der Ouderaa, Mooijaart (CR47) 2013; 15
CR19
Altini, Penders, Vullers, Amft (CR1) 2015; 19
van Hees, van Lummel, Westerterp (CR42) 2009; 17
Guan, Plötz (CR12) 2017; 1
Manini, Everhart, Patel, Schoeller, Colbert, Visser, Tylavsky, Bauer, Goodpaster, Harris (CR26) 2006; 296
CR11
CR33
Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray, Liu, Matthews, Ong, Pell, Silman, Young, Sprosen, Peakman, Collins (CR38) 2015; 12
Weir (CR45) 1949; 109
CR32
Paraschiakos, Cachucho, Moed, van Heemst, Mooijaart, Slagboom, Knobbe, Beekman (CR34) 2020; 30
Kim, Oh, Kim, Lim, Oh, Choi (CR18) 2017; 17
Roberts, Dallal (CR36) 2005; 8
Petersen, Gronbaek, Helge, Thygesen, Schnohr, Tolstrup (CR35) 2012; 27
Weinsier, Schutz, Bracco (CR44) 1992; 55
Frisard, Broussard, Davies, Roberts, Rood, de Jonge, Fang, Jazwinski, Deutsch, Ravussin (CR10) 2007; 62
Liu, Gao, Freedson (CR24) 2012; 44
Bonomi, Plasqui, Goris, Westerterp (CR2) 2009; 107
Ellis, Kerr, Godbole, Lanckriet, Wing, Marshall (CR9) 2014; 35
Keys, Taylor, Grande (CR17) 1973; 22
Chen, Fox, Ku, Sun, Chou (CR4) 2012; 24
CR6
CR5
CR8
CR7
Hills, Mokhtar, Byrne (CR13) 2014; 1
CR27
Martin, Koster, Murphy, Van Domelen, Hung, Brychta, Chen, Harris (CR28) 2014; 62
CR48
Montoye, Begum, Henning, Pfeiffer (CR30) 2017; 38
CR46
CR23
McLaughlin, King, Howley, Bassett, Ainsworth (CR29) 2001; 22
CR21
Staudenmayer, Pobe, Crouter, Bassett, Freedson (CR37) 2009; 107
Knaggs, Larkin, Manini (CR20) 2011; 59
CR40
Tomašev, Glorot, Rae, Zielinski, Askham, Saraiva, Mottram, Meyer, Ravuri, Protsyuk, Connell, Hughes, Karthikesalingam, Cornebise, Montgomery, Rees, Laing, Baker, Peterson, Reeves, Hassabis, King, Suleyman, Back, Nielson, Ledsam, Mohamed (CR39) 2019; 572
L Jones (817_CR16) 2009; 6
O van de Rest (817_CR41) 2016; 8
Y Guan (817_CR12) 2017; 1
817_CR32
N Caron (817_CR3) 2020; 134
JD Knaggs (817_CR20) 2011; 59
817_CR19
KR Martin (817_CR28) 2014; 62
A Montoye (817_CR31) 2017; 21
JDV Weir (817_CR45) 1949; 109
817_CR11
A Montoye (817_CR30) 2017; 38
817_CR33
S Paraschiakos (817_CR34) 2020; 30
CB Petersen (817_CR35) 2012; 27
L Chen (817_CR4) 2012; 24
S Liu (817_CR24) 2012; 44
A Keys (817_CR17) 1973; 22
CA Wijsman (817_CR47) 2013; 15
W Leonard (817_CR22) 2012; 24
M Altini (817_CR1) 2015; 19
817_CR40
AG Bonomi (817_CR2) 2009; 107
817_CR8
S Hochreiter (817_CR14) 1998; 06
817_CR21
817_CR5
K Ellis (817_CR9) 2014; 35
ZM Kim (817_CR18) 2017; 17
817_CR7
AP Hills (817_CR13) 2014; 1
817_CR6
JE McLaughlin (817_CR29) 2001; 22
SB Volchan (817_CR43) 2002; 109
J Staudenmayer (817_CR37) 2009; 107
VT van Hees (817_CR42) 2009; 17
SB Roberts (817_CR36) 2005; 8
N Tomašev (817_CR39) 2019; 572
RL Weinsier (817_CR44) 1992; 55
817_CR23
C Sudlow (817_CR38) 2015; 12
MI Frisard (817_CR10) 2007; 62
817_CR46
T Hortobágyi (817_CR15) 2003; 58
K Lyden (817_CR25) 2011; 111
817_CR48
TM Manini (817_CR26) 2006; 296
817_CR27
References_xml – volume: 111
  start-page: 187
  issue: 2
  year: 2011
  end-page: 201
  ident: CR25
  article-title: A comprehensive evaluation of commonly used accelerometer energy expenditure and met prediction equations
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-010-1639-8
– volume: 19
  start-page: 219
  issue: 1
  year: 2015
  end-page: 26
  ident: CR1
  article-title: Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/jbhi.2014.2313039
– volume: 62
  start-page: 752
  issue: 7
  year: 2007
  end-page: 9
  ident: CR10
  article-title: Louisiana healthy aging study aging, resting metabolic rate, and oxidative damage: results from the Louisiana healthy aging study
  publication-title: J Gerontol: Ser A
  doi: 10.1093/gerona/62.7.752
– volume: 1
  start-page: 1
  issue: 2
  year: 2017
  end-page: 28
  ident: CR12
  article-title: Ensembles of deep lstm learners for activity recognition using wearables
  publication-title: Proc ACM Interact, Mob, Wearab Ubiquitous Technol
  doi: 10.1145/3090076
– volume: 17
  start-page: 57
  year: 2017
  ident: CR18
  article-title: Modeling long-term human activeness using recurrent neural networks for biometric data
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-017-0453-1
– volume: 12
  start-page: 1
  issue: 3
  year: 2015
  end-page: 10
  ident: CR38
  article-title: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 62
  start-page: 1263
  issue: 7
  year: 2014
  end-page: 71
  ident: CR28
  article-title: Changes in daily activity patterns with age in U.S. men and women: national health and nutrition examination survey 2003–04 and 2005–06
  publication-title: J Am Geriatr Soc
  doi: 10.1111/jgs.12893
– volume: 134
  start-page: 110894
  year: 2020
  ident: CR3
  article-title: Estimating energy expenditure from accelerometer data in healthy adults and patients with type 2 diabetes
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2020.110894
– volume: 24
  start-page: 372
  issue: 3
  year: 2012
  end-page: 84
  ident: CR22
  article-title: Laboratory and field methods for measuring human energy expenditure
  publication-title: Am J Hum Biol
  doi: 10.1002/ajhb.22260
– ident: CR33
– volume: 24
  start-page: 795
  issue: 5
  year: 2012
  end-page: 805
  ident: CR4
  article-title: Prospective associations between household-, work-, and leisure-based physical activity and all-cause mortality among older taiwanese adults
  publication-title: Asia Pac J Public Health
  doi: 10.1177/1010539511404397
– ident: CR6
– ident: CR8
– volume: 27
  start-page: 91
  issue: 2
  year: 2012
  end-page: 9
  ident: CR35
  article-title: Changes in physical activity in leisure time and the risk of myocardial infarction, ischemic heart disease, and all-cause mortality
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-012-9656-z
– volume: 107
  start-page: 655
  issue: 3
  year: 2009
  end-page: 661
  ident: CR2
  article-title: Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00150.2009
– ident: CR40
– volume: 1
  start-page: 5
  year: 2014
  ident: CR13
  article-title: Assessment of physical activity and energy expenditure: an overview of objective measures
  publication-title: Front Nutr
  doi: 10.3389/fnut.2014.00005
– volume: 58
  start-page: 453
  issue: 5
  year: 2003
  end-page: 60
  ident: CR15
  article-title: Old adults perform activities of daily living near their maximal capabilities
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/58.5.m453
– ident: CR27
– volume: 107
  start-page: 1300
  issue: 3
  year: 2009
  end-page: 7
  ident: CR37
  article-title: An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00465.2009
– volume: 6
  start-page: 327
  issue: 3
  year: 2009
  end-page: 32
  ident: CR16
  article-title: Walking speed at self-selected exercise pace is lower but energy cost higher in older versus younger women
  publication-title: J Phys Act Health
  doi: 10.1123/jpah.6.3.327
– ident: CR23
– volume: 17
  start-page: 1287
  issue: 6
  year: 2009
  end-page: 1292
  ident: CR42
  article-title: Estimating activity-related energy expenditure under sedentary conditions using a tri-axial seismic accelerometer
  publication-title: Obesity
  doi: 10.1038/oby.2009.55
– volume: 06
  start-page: 107
  issue: 02
  year: 1998
  end-page: 116
  ident: CR14
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Int J Uncertain Fuzziness Knowl-Based Syst
  doi: 10.1142/S0218488598000094
– volume: 44
  start-page: 2138
  issue: 11
  year: 2012
  end-page: 46
  ident: CR24
  article-title: Computational methods for estimating energy expenditure in human physical activities
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e31825e825a
– ident: CR21
– volume: 109
  start-page: 1
  issue: 1–2
  year: 1949
  end-page: 9
  ident: CR45
  article-title: New methods for calculating metabolic rate with special reference to protein metabolism
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1949.sp004363
– ident: CR46
– ident: CR19
– ident: CR48
– volume: 59
  start-page: 2118
  issue: 11
  year: 2011
  end-page: 23
  ident: CR20
  article-title: Metabolic cost of daily activities and effect of mobility impairment in older adults
  publication-title: J Am Geriatr Soc
  doi: 10.1111/j.1532-5415.2011.03655.x
– volume: 8
  start-page: 1028
  issue: 7a
  year: 2005
  end-page: 1036
  ident: CR36
  article-title: Energy requirements and aging
  publication-title: Public Health Nutr
  doi: 10.1079/PHN2005794
– volume: 21
  start-page: 223
  issue: 4
  year: 2017
  end-page: 234
  ident: CR31
  article-title: Validation of accelerometer-based energy expenditure prediction models in structured and simulated free-living settings
  publication-title: Meas Phys Educ Exerc Sci
  doi: 10.1080/1091367X.2017.1337638
– volume: 109
  start-page: 46
  issue: 1
  year: 2002
  end-page: 63
  ident: CR43
  article-title: What is a random sequence?
  publication-title: Am Math Mon
  doi: 10.1080/00029890.2002.11919838
– volume: 30
  start-page: 567
  year: 2020
  end-page: 605
  ident: CR34
  article-title: Activity recognition using wearable sensors for tracking the elderly
  publication-title: User Model User-Adap Int
  doi: 10.1007/s11257-020-09268-2
– ident: CR11
– volume: 8
  start-page: 111
  issue: 1
  year: 2016
  end-page: 124
  ident: CR41
  article-title: Metabolic effects of a 13-weeks lifestyle intervention in older adults: the growing old together study
  publication-title: Aging
  doi: 10.18632/aging.100877
– volume: 22
  start-page: 579
  issue: 4
  year: 1973
  end-page: 87
  ident: CR17
  article-title: Basal metabolism and age of adult man
  publication-title: Metabolism
  doi: 10.1016/0026-0495(73)90071-1
– ident: CR32
– volume: 15
  start-page: e233
  issue: 11
  year: 2013
  ident: CR47
  article-title: Effects of a web-based intervention on physical activity and metabolism in older adults: randomized controlled trial
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.2843
– volume: 35
  start-page: 2191
  issue: 11
  year: 2014
  end-page: 2203
  ident: CR9
  article-title: A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/35/11/2191
– volume: 55
  start-page: 790
  issue: 4
  year: 1992
  end-page: 4
  ident: CR44
  article-title: Reexamination of the relationship of resting metabolic rate to fat-free mass and to the metabolically active components of fat-free mass in humans
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/55.4.790
– ident: CR5
– volume: 296
  start-page: 171
  issue: 2
  year: 2006
  end-page: 9
  ident: CR26
  article-title: Daily activity energy expenditure and mortality among older adults
  publication-title: J Am Med Assoc (JAMA)
  doi: 10.1001/jama.296.2.171
– ident: CR7
– volume: 22
  start-page: 280
  issue: 4
  year: 2001
  end-page: 4
  ident: CR29
  article-title: Validation of the cosmed k4 b2 portable metabolic system
  publication-title: Int J Sports Med
  doi: 10.1055/s-2001-13816
– volume: 38
  start-page: 343
  issue: 2
  year: 2017
  end-page: 57
  ident: CR30
  article-title: Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/38/2/343
– volume: 572
  start-page: 116
  year: 2019
  end-page: 119
  ident: CR39
  article-title: A clinically applicable approach to continuous prediction of future acute kidney injury
  publication-title: Nature
  doi: 10.1038/s41586-019-1390-1
– ident: 817_CR5
– volume: 62
  start-page: 752
  issue: 7
  year: 2007
  ident: 817_CR10
  publication-title: J Gerontol: Ser A
  doi: 10.1093/gerona/62.7.752
– ident: 817_CR48
  doi: 10.1109/HealthCom.2015.7454554
– volume: 30
  start-page: 567
  year: 2020
  ident: 817_CR34
  publication-title: User Model User-Adap Int
  doi: 10.1007/s11257-020-09268-2
– volume: 35
  start-page: 2191
  issue: 11
  year: 2014
  ident: 817_CR9
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/35/11/2191
– volume: 1
  start-page: 5
  year: 2014
  ident: 817_CR13
  publication-title: Front Nutr
  doi: 10.3389/fnut.2014.00005
– volume: 06
  start-page: 107
  issue: 02
  year: 1998
  ident: 817_CR14
  publication-title: Int J Uncertain Fuzziness Knowl-Based Syst
  doi: 10.1142/S0218488598000094
– volume: 22
  start-page: 579
  issue: 4
  year: 1973
  ident: 817_CR17
  publication-title: Metabolism
  doi: 10.1016/0026-0495(73)90071-1
– volume: 572
  start-page: 116
  year: 2019
  ident: 817_CR39
  publication-title: Nature
  doi: 10.1038/s41586-019-1390-1
– ident: 817_CR19
– volume: 24
  start-page: 372
  issue: 3
  year: 2012
  ident: 817_CR22
  publication-title: Am J Hum Biol
  doi: 10.1002/ajhb.22260
– ident: 817_CR40
  doi: 10.1186/s11556-019-0210-9
– volume: 38
  start-page: 343
  issue: 2
  year: 2017
  ident: 817_CR30
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/38/2/343
– volume: 296
  start-page: 171
  issue: 2
  year: 2006
  ident: 817_CR26
  publication-title: J Am Med Assoc (JAMA)
  doi: 10.1001/jama.296.2.171
– volume: 15
  start-page: e233
  issue: 11
  year: 2013
  ident: 817_CR47
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.2843
– ident: 817_CR32
  doi: 10.1109/EMBC.2019.8857288
– volume: 27
  start-page: 91
  issue: 2
  year: 2012
  ident: 817_CR35
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-012-9656-z
– volume: 59
  start-page: 2118
  issue: 11
  year: 2011
  ident: 817_CR20
  publication-title: J Am Geriatr Soc
  doi: 10.1111/j.1532-5415.2011.03655.x
– volume: 111
  start-page: 187
  issue: 2
  year: 2011
  ident: 817_CR25
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-010-1639-8
– volume: 6
  start-page: 327
  issue: 3
  year: 2009
  ident: 817_CR16
  publication-title: J Phys Act Health
  doi: 10.1123/jpah.6.3.327
– volume: 62
  start-page: 1263
  issue: 7
  year: 2014
  ident: 817_CR28
  publication-title: J Am Geriatr Soc
  doi: 10.1111/jgs.12893
– volume: 24
  start-page: 795
  issue: 5
  year: 2012
  ident: 817_CR4
  publication-title: Asia Pac J Public Health
  doi: 10.1177/1010539511404397
– volume: 107
  start-page: 1300
  issue: 3
  year: 2009
  ident: 817_CR37
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00465.2009
– volume: 21
  start-page: 223
  issue: 4
  year: 2017
  ident: 817_CR31
  publication-title: Meas Phys Educ Exerc Sci
  doi: 10.1080/1091367X.2017.1337638
– volume: 8
  start-page: 111
  issue: 1
  year: 2016
  ident: 817_CR41
  publication-title: Aging
  doi: 10.18632/aging.100877
– volume: 44
  start-page: 2138
  issue: 11
  year: 2012
  ident: 817_CR24
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e31825e825a
– volume: 12
  start-page: 1
  issue: 3
  year: 2015
  ident: 817_CR38
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 109
  start-page: 46
  issue: 1
  year: 2002
  ident: 817_CR43
  publication-title: Am Math Mon
  doi: 10.1080/00029890.2002.11919838
– volume: 19
  start-page: 219
  issue: 1
  year: 2015
  ident: 817_CR1
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/jbhi.2014.2313039
– ident: 817_CR23
  doi: 10.1007/978-3-030-01298-4_30
– volume: 107
  start-page: 655
  issue: 3
  year: 2009
  ident: 817_CR2
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00150.2009
– ident: 817_CR7
  doi: 10.1109/EMBC.2013.6610138
– ident: 817_CR46
  doi: 10.1111/j.1532-5415.2009.02381.x
– volume: 17
  start-page: 57
  year: 2017
  ident: 817_CR18
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-017-0453-1
– ident: 817_CR33
  doi: 10.1080/02640414.2020.1746088
– volume: 8
  start-page: 1028
  issue: 7a
  year: 2005
  ident: 817_CR36
  publication-title: Public Health Nutr
  doi: 10.1079/PHN2005794
– ident: 817_CR11
  doi: 10.1145/2493432.2493517
– volume: 1
  start-page: 1
  issue: 2
  year: 2017
  ident: 817_CR12
  publication-title: Proc ACM Interact, Mob, Wearab Ubiquitous Technol
  doi: 10.1145/3090076
– volume: 22
  start-page: 280
  issue: 4
  year: 2001
  ident: 817_CR29
  publication-title: Int J Sports Med
  doi: 10.1055/s-2001-13816
– volume: 109
  start-page: 1
  issue: 1–2
  year: 1949
  ident: 817_CR45
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1949.sp004363
– ident: 817_CR21
  doi: 10.1109/ICASSP.2018.8462334
– ident: 817_CR27
– volume: 17
  start-page: 1287
  issue: 6
  year: 2009
  ident: 817_CR42
  publication-title: Obesity
  doi: 10.1038/oby.2009.55
– ident: 817_CR6
  doi: 10.2459/JCM.0b013e3283516798
– ident: 817_CR8
  doi: 10.1109/IPIN.2016.7743581
– volume: 58
  start-page: 453
  issue: 5
  year: 2003
  ident: 817_CR15
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/58.5.m453
– volume: 134
  start-page: 110894
  year: 2020
  ident: 817_CR3
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2020.110894
– volume: 55
  start-page: 790
  issue: 4
  year: 1992
  ident: 817_CR44
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/55.4.790
SSID ssj0005230
Score 2.385133
Snippet Through the quantification of physical activity energy expenditure (PAEE), health care monitoring has the potential to stimulate vital and healthy ageing,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 477
SubjectTerms Accelerometers
Artificial Intelligence
Chemistry and Earth Sciences
Computer architecture
Computer Science
Data Mining and Knowledge Discovery
Energy requirements
Exercise
Health care
Information Storage and Retrieval
Neural networks
Older people
Optimization
Personal health
Physics
Recurrent neural networks
Special Issue: Mining for Health
Statistics for Engineering
Wrist
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Ivjix1ScTsmDbxpom-Zjj2M4hqBPDvYW1jQBQbqxdezfN9embg4VfO4llLsk90vu7ncA91x5jO96EfXnv6OpMCn1OC6hiREYZnKqJtN5eRWjcfo84ZNAk4O1MDvxeyxxE7GimEiA3kvS9T4c8JhJbNMwEIOtdA5WVwSrlOIPhAKZn-f47oQ2yHInGFr5mOEpHAdwSPq1Nc9gzxZtOGkaL5CwD9twWOVtmuU52D5Z4Is5ciwR5Kb0w4s6s5tsxwhIOSNV0xsyD4YhWNGAjSOIrcr_CHL9Y_wapd8LMsP23aROML-A8fDpbTCioXMCNUyw0p9gLrUuEkZOnZpKnmc8kZlx3vmkjieOOekvKhGSy8vYJkJZieEzlefSefGYXUKrmBX2CghS1MUustwi877J_PUonWY2d4xbj5ZEB-JGldoEWnHsbvGhN4TIqH7t1a8r9et1Bx6-xsxrUo0_pbuNhXTYYEudCH_UMg--eh14bKy2-fz7bNf_E7-BowQLHqpHly60ysXK3noYUmZ31fr7BEIT0jM
  priority: 102
  providerName: Springer Nature
Title A recurrent neural network architecture to model physical activity energy expenditure in older people
URI https://link.springer.com/article/10.1007/s10618-021-00817-w
https://www.proquest.com/docview/2621937279
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se_HiW6zWsgdvupjnZnuSWvpAsYhYqKfQJLsgSFrbSP--M8nGVMFeckh2lzCzOzM7j28ArnyJNr7uWBzlv-aeiD2OdpzDnVhQmEnLAkznaSxGE-9h6k-Nw21l0ipLmZgL6mQek4_81hF4tlzUtp27xSenrlEUXTUtNGrQQBEsZR0a9_3x88tGkodb1AlLj9NvmbIZUzwnbMkpRYH0YsDXv1VTZW_-CZHmmmdwAHvGZGTdgseHsKPSI9gv2zEwczqPQXXZkrznhLfECKcSJ6VFljfbjBewbM7yBjhsYZjEqLqBmkgwlZcCMsL9p1g2jX5P2ZxaebMi2fwEJoP-a2_ETRcFHrvCzVCaaU9pS8TBTMtZ4CeR7wRRrFERedp3tKsDvLRYBDQf2MoRUgUUSpNJEmgcbrunUE_nqToDRnB1traUrwiFP47wquTNIpVo11doOYkm2CUBw9hAjFOni4-wAkcmoodI9DAnerhuwvXPnEUBsLF1dKvkS2gO2yqstkYTbkpeVZ__X-18-2oXsOtQsUPucGlBPVt-qUs0QbKoDTU5GLah0R2-PfbbZtfh257o4XPidL8B6L_bpw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHvTi24ii7kFPupFu2205GENUBHmcIOFWabubmJiCUEP8U_5GZ_oQNJEb530cZmdnZndmvg_gwnYxxtfVCkf7r7klA4tjHCe4CCSlmbSbgul0urLRt54H9qAAX3kvDJVV5jYxMdThKKA_8hsh8W6Z6G2rd-N3TqxRlF3NKTRStWipzxk-2aa3zQc830sh6o-9-wbPWAV4YEozxtutLaUrMnCG2h06dujbwvEDjYbZ0rbQpnYwiK8Q8LpjKCFd5VBqyQ1DR-N0w8R912DdMtGTU2d6_WmhpMRMu5Jdi5MQsiadrFVPGi6nggjywg6f_XaE8-j2T0I28XP1HdjKAlRWSzVqFwoq2oPtnPyBZbZgH1SNTeivntCdGKFi4qIorSlni9kJFo9YQrfDxplKMOqlIMoKppLGQ0YsA5Q5p9mvERsRcThLS9sPoL8S6R5CMRpF6ggYgeMZuqJsRZj_gY8PM2voq1CbtsI4TZbAyAXoBRmgOfFqvHlzKGYSuodC9xKhe7MSXP2sGadwHktnl_Nz8bKrPfXmiliC6_ys5sP_73a8fLdz2Gj0Om2v3ey2TmBTUJtF8tVThmI8-VCnGPzE_lmicQxeVq3i38c-EgI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGJiEuvBGDATnACSLWtE3KAaHxmIDBNCGQuJW1TSQk1I0xNPHX-HXYbcoAid12zuPgOLYT298HsOsHGOObozpH-2-4J2OPYxwnuIglpZlMkIPp3Lbl5YN3_eg_luCz6IWhssrCJmaGOunF9Ed-KCTeLRe97dGhsWURnfPmSf-VE4MUZVoLOo1cRVr6Y4TPt7fjq3M86z0hmhf3Z5fcMgzw2JXuEG-68bSpy1h1TdBVfhL5QkWxQSPtGV8Y1ygM6OsEwq4cLWSgFaWZgiRRBqc7Lu47AxVFr6IyVE4v2p27HwUmbt6jHHicRGJbdmzjnnQCTuUR5JMVH_12i-NY9096NvN6zUWYt-Eqa-T6tQQlnS7DQkEFwaxlWAHdYAP6uSesJ0YYmbgozSvM2c9cBRv2WEa-w_pWQRh1VhCBBdNZGyIjzgHKo9Ps55T1iEac5YXuq_AwFfmuQTntpXodGEHlOaaufU0MAHGEzzSvG-nEuL7GqE1WwSkEGMYW3pxYNl7CMTAzCT1EoYeZ0MNRFfa_1_RzcI-Js2vFuYT2or-FY7WswkFxVuPh_3fbmLzbDsyieoc3V-3WJswJ6rnI_n1qUB4O3vUWRkLDaNuqHIOnaWv5FzQJF5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+recurrent+neural+network+architecture+to+model+physical+activity+energy+expenditure+in+older+people&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Paraschiakos+Stylianos&rft.au=de+S%C3%A1+Cl%C3%A1udio+Rebelo&rft.au=Okai+Jeremiah&rft.au=Eline%2C+Slagboom+P&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=36&rft.issue=1&rft.spage=477&rft.epage=512&rft_id=info:doi/10.1007%2Fs10618-021-00817-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon