Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity
The presence of methane on lactulose breath test among irritable bowel syndrome (IBS) subjects is highly associated with the constipation-predominant form. Therefore, we set out to determine whether methane gas can alter small intestinal motor function. In dogs, small intestinal fistulae were create...
Saved in:
Published in | American journal of physiology: Gastrointestinal and liver physiology Vol. 290; no. 6; pp. G1089 - G1095 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0193-1857 1522-1547 |
DOI | 10.1152/ajpgi.00574.2004 |
Cover
Loading…
Abstract | The presence of methane on lactulose breath test among irritable bowel syndrome (IBS) subjects is highly associated with the constipation-predominant form. Therefore, we set out to determine whether methane gas can alter small intestinal motor function. In dogs, small intestinal fistulae were created to permit measurement of intestinal transit. Using a radiolabel, we evaluated transit during infusion of room air and subsequently methane. In this model, small intestinal infusion of methane produced a slowing of transit in all dogs by an average of 59%. In a second experiment, guinea pig ileum was pinned into an organ bath for the study of contractile activity in response to brush strokes applied to the mucosa. The force of contraction was measured both orad and aborad to the stimulus. The experiment was repeated while the bath was gassed with methane. Contractile activities orad and aborad to the stimulus were significantly augmented by methane compared with room air ( P < 0.05). In a third experiment, humans with IBS who had undergone a small bowel motility study were compared such that subjects who produced methane on lactulose breath test were compared with those producing hydrogen. The motility index was significantly higher in methane-producing IBS patients (1,851 ± 861) compared with hydrogen producers (1,199 ± 301) ( P < 0.05). Therefore, methane, a gaseous by-product of intestinal bacteria, slows small intestinal transit and appears to do so by augmenting small bowel contractile activity. |
---|---|
AbstractList | The presence of methane on lactulose breath test among irritable bowel syndrome (IBS) subjects is highly associated with the constipation-predominant form. Therefore, we set out to determine whether methane gas can alter small intestinal motor function. In dogs, small intestinal fistulae were created to permit measurement of intestinal transit. Using a radiolabel, we evaluated transit during infusion of room air and subsequently methane. In this model, small intestinal infusion of methane produced a slowing of transit in all dogs by an average of 59%. In a second experiment, guinea pig ileum was pinned into an organ bath for the study of contractile activity in response to brush strokes applied to the mucosa. The force of contraction was measured both orad and aborad to the stimulus. The experiment was repeated while the bath was gassed with methane. Contractile activities orad and aborad to the stimulus were significantly augmented by methane compared with room air (P < 0.05). In a third experiment, humans with IBS who had undergone a small bowel motility study were compared such that subjects who produced methane on lactulose breath test were compared with those producing hydrogen. The motility index was significantly higher in methane-producing IBS patients (1,851 +/- 861) compared with hydrogen producers (1,199 +/- 301) (P < 0.05). Therefore, methane, a gaseous by-product of intestinal bacteria, slows small intestinal transit and appears to do so by augmenting small bowel contractile activity. The presence of methane on lactulose breath test among irritable bowel syndrome (IBS) subjects is highly associated with the constipation-predominant form. Therefore, we set out to determine whether methane gas can alter small intestinal motor function. In dogs, small intestinal fistulae were created to permit measurement of intestinal transit. Using a radiolabel, we evaluated transit during infusion of room air and subsequently methane. In this model, small intestinal infusion of methane produced a slowing of transit in all dogs by an average of 59%. In a second experiment, guinea pig ileum was pinned into an organ bath for the study of contractile activity in response to brush strokes applied to the mucosa. The force of contraction was measured both orad and aborad to the stimulus. The experiment was repeated while the bath was gassed with methane. Contractile activities orad and aborad to the stimulus were significantly augmented by methane compared with room air ( P < 0.05). In a third experiment, humans with IBS who had undergone a small bowel motility study were compared such that subjects who produced methane on lactulose breath test were compared with those producing hydrogen. The motility index was significantly higher in methane-producing IBS patients (1,851 ± 861) compared with hydrogen producers (1,199 ± 301) ( P < 0.05). Therefore, methane, a gaseous by-product of intestinal bacteria, slows small intestinal transit and appears to do so by augmenting small bowel contractile activity. The presence of methane on lactulose breath test among irritable bowel syndrome (IBS) subjects is highly associated with the constipation-predominant form. Therefore, we set out to determine whether methane gas can alter small intestinal motor function. In dogs, small intestinal fistulae were created to permit measurement of intestinal transit. Using a radiolabel, we evaluated transit during infusion of room air and subsequently methane. In this model, small intestinal infusion of methane produced a slowing of transit in all dogs by an average of 59%. In a second experiment, guinea pig ileum was pinned into an organ bath for the study of contractile activity in response to brush strokes applied to the mucosa. The force of contraction was measured both orad and aborad to the stimulus. The experiment was repeated while the bath was gassed with methane. Contractile activities orad and aborad to the stimulus were significantly augmented by methane compared with room air (P < 0.05). In a third experiment, humans with IBS who had undergone a small bowel motility study were compared such that subjects who produced methane on lactulose breath test were compared with those producing hydrogen. The motility index was significantly higher in methane-producing IBS patients (1,851 +/- 861) compared with hydrogen producers (1,199 +/- 301) (P < 0.05). Therefore, methane, a gaseous by-product of intestinal bacteria, slows small intestinal transit and appears to do so by augmenting small bowel contractile activity.The presence of methane on lactulose breath test among irritable bowel syndrome (IBS) subjects is highly associated with the constipation-predominant form. Therefore, we set out to determine whether methane gas can alter small intestinal motor function. In dogs, small intestinal fistulae were created to permit measurement of intestinal transit. Using a radiolabel, we evaluated transit during infusion of room air and subsequently methane. In this model, small intestinal infusion of methane produced a slowing of transit in all dogs by an average of 59%. In a second experiment, guinea pig ileum was pinned into an organ bath for the study of contractile activity in response to brush strokes applied to the mucosa. The force of contraction was measured both orad and aborad to the stimulus. The experiment was repeated while the bath was gassed with methane. Contractile activities orad and aborad to the stimulus were significantly augmented by methane compared with room air (P < 0.05). In a third experiment, humans with IBS who had undergone a small bowel motility study were compared such that subjects who produced methane on lactulose breath test were compared with those producing hydrogen. The motility index was significantly higher in methane-producing IBS patients (1,851 +/- 861) compared with hydrogen producers (1,199 +/- 301) (P < 0.05). Therefore, methane, a gaseous by-product of intestinal bacteria, slows small intestinal transit and appears to do so by augmenting small bowel contractile activity. |
Author | Pimentel, Mark Enayati, Pedram Lee, Hyo-Rang van den Burg, Brian Conklin, Jeffrey Park, Sandy Lin, Henry C. Kong, Yuthana Chen, Jin H. |
Author_xml | – sequence: 1 givenname: Mark surname: Pimentel fullname: Pimentel, Mark – sequence: 2 givenname: Henry C. surname: Lin fullname: Lin, Henry C. – sequence: 3 givenname: Pedram surname: Enayati fullname: Enayati, Pedram – sequence: 4 givenname: Brian surname: van den Burg fullname: van den Burg, Brian – sequence: 5 givenname: Hyo-Rang surname: Lee fullname: Lee, Hyo-Rang – sequence: 6 givenname: Jin H. surname: Chen fullname: Chen, Jin H. – sequence: 7 givenname: Sandy surname: Park fullname: Park, Sandy – sequence: 8 givenname: Yuthana surname: Kong fullname: Kong, Yuthana – sequence: 9 givenname: Jeffrey surname: Conklin fullname: Conklin, Jeffrey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16293652$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1PwzAMhiM0BGNw54Ry4rSOpE3T9ogmvqQhLnCu3MQdQWk7mhTYvycbQyAkTrbs57Vsv0dk1HYtEnLK2YzzNL6Al9XSzBhLMzGLGRN7ZBzKccRTkY3ImPEiiXieZofkyLkXFsCY8wNyyGVcJDKNx-TjHv0ztDilQJfg6Krv9KBQ02pNsfXYG0UrUJsEptTZ7t1RE-rOmxYs9T20zngKraYwLJsgcdQ1YO1vSnVtAJU3FukmvBm_Pib7NViHJ7s4IU_XV4_z22jxcHM3v1xEKpGJj3JEkWhdC6jyQqpaKKE1ZmmBqCvMRR2aTOUyryHmCYBSwFEUeSoZKAl1MiHnX3PDZa9D2KhsjFNobTi6G1wpsyKNWZEE8GwHDlWDulz1poF-XX7_KgDsC1B951yP9Q_Cyo0d5daOcmtHubEjSOQfiTIevNn-w9j_hZ_urJQJ |
CitedBy_id | crossref_primary_10_1007_s10620_020_06721_5 crossref_primary_10_1038_ajg_2015_47 crossref_primary_10_3233_CH_201046 crossref_primary_10_1177_0884533615609896 crossref_primary_10_1111_j_1365_2982_2006_00861_x crossref_primary_10_1007_s10620_019_05967_y crossref_primary_10_1016_j_pan_2015_07_005 crossref_primary_10_1016_j_rgmx_2021_04_005 crossref_primary_10_1111_nmo_12134 crossref_primary_10_1186_s40168_021_01130_w crossref_primary_10_1016_j_rgmx_2014_01_004 crossref_primary_10_1136_gutjnl_2022_328403 crossref_primary_10_1016_j_biochi_2024_02_001 crossref_primary_10_1080_00365520802116448 crossref_primary_10_3389_fmicb_2022_1055494 crossref_primary_10_1088_1752_7163_abf1d0 crossref_primary_10_1016_j_brainres_2015_12_019 crossref_primary_10_26599_FSHW_2022_9250126 crossref_primary_10_1016_j_mib_2020_05_008 crossref_primary_10_1038_oby_2012_141 crossref_primary_10_1097_MEG_0b013e32834b0e5c crossref_primary_10_4166_kjg_2019_74_3_142 crossref_primary_10_5922_2223_2427_2024_9_4_5 crossref_primary_10_1097_MCG_0000000000001150 crossref_primary_10_1007_s12664_022_01292_x crossref_primary_10_5009_gnl15588 crossref_primary_10_1097_CCM_0b013e31823dae05 crossref_primary_10_3389_fphys_2019_01244 crossref_primary_10_3390_microorganisms11092177 crossref_primary_10_1007_s10620_021_07343_1 crossref_primary_10_1007_s11894_013_0356_y crossref_primary_10_1007_s00248_021_01796_7 crossref_primary_10_1038_s44355_024_00006_8 crossref_primary_10_1038_nrgastro_2012_85 crossref_primary_10_3390_nu16030342 crossref_primary_10_1186_s12876_018_0860_5 crossref_primary_10_1016_j_rmclc_2020_05_004 crossref_primary_10_3389_fmed_2021_777961 crossref_primary_10_1016_j_cgh_2023_04_030 crossref_primary_10_1631_jzus_B1900195 crossref_primary_10_3390_toxins14090596 crossref_primary_10_4292_wjgpt_v7_i3_463 crossref_primary_10_5056_jnm_2011_17_2_185 crossref_primary_10_1007_s11894_022_00847_4 crossref_primary_10_5056_jnm_2010_16_4_418 crossref_primary_10_1007_s12325_018_0673_5 crossref_primary_10_1007_s10620_023_08095_w crossref_primary_10_1038_ajgsup_2012_6 crossref_primary_10_1097_MCG_0b013e3181c64c90 crossref_primary_10_1017_S0007114519003052 crossref_primary_10_1016_j_cgh_2006_07_004 crossref_primary_10_1038_s41598_023_27436_3 crossref_primary_10_3390_molecules21111558 crossref_primary_10_1080_17474124_2024_2383635 crossref_primary_10_3389_fpls_2017_00189 crossref_primary_10_1007_s12664_018_0912_3 crossref_primary_10_1111_j_1467_789X_2009_00707_x crossref_primary_10_5009_gnl14344 crossref_primary_10_1016_j_cgh_2022_02_031 crossref_primary_10_1007_s00253_022_11813_5 crossref_primary_10_1007_s10620_011_1590_5 crossref_primary_10_1157_13098293 crossref_primary_10_1155_2014_576249 crossref_primary_10_5056_jnm16042 crossref_primary_10_1016_j_animal_2020_100060 crossref_primary_10_21518_2079_701X_2021_12_200_208 crossref_primary_10_3390_life14121703 crossref_primary_10_1556_oh_2007_27995 crossref_primary_10_1038_s41598_020_57662_y crossref_primary_10_1007_s12664_018_0901_6 crossref_primary_10_1016_j_ajg_2018_02_008 crossref_primary_10_1016_j_ijpharm_2010_04_044 crossref_primary_10_1186_s12893_015_0075_4 crossref_primary_10_1007_s11920_017_0797_3 crossref_primary_10_1053_j_gastro_2015_12_023 crossref_primary_10_1186_s12906_021_03337_8 crossref_primary_10_1111_apt_12087 crossref_primary_10_1177_0884533613485790 crossref_primary_10_1038_nrgastro_2014_40 crossref_primary_10_1080_19490976_2018_1546522 crossref_primary_10_11569_wcjd_v27_i19_1209 crossref_primary_10_1007_s10620_012_2197_1 crossref_primary_10_1097_MCG_0b013e318222e603 crossref_primary_10_1097_MEG_0b013e32835eb916 crossref_primary_10_1097_MOG_0b013e3282f2b0d7 crossref_primary_10_3390_jcm14051491 crossref_primary_10_1016_j_jpeds_2009_03_033 crossref_primary_10_1016_j_cgh_2018_08_054 crossref_primary_10_14309_ctg_0000000000000567 crossref_primary_10_1016_j_micpath_2018_01_029 crossref_primary_10_1155_2016_7424831 crossref_primary_10_1007_s00702_019_02083_z crossref_primary_10_1021_acs_biochem_2c00232 crossref_primary_10_3390_ijerph15102256 crossref_primary_10_3390_nu7095348 crossref_primary_10_1007_s10620_021_06839_0 crossref_primary_10_15446_rfmvz_v66n2_82429 crossref_primary_10_1016_j_mehy_2017_07_005 crossref_primary_10_1002_oby_20277 crossref_primary_10_1093_jn_nxz072 crossref_primary_10_1016_j_jff_2022_105367 crossref_primary_10_1016_j_arcmed_2018_01_001 crossref_primary_10_1088_1752_7155_7_2_024001 crossref_primary_10_1097_MCG_0b013e31821f44c4 crossref_primary_10_1016_j_freeradbiomed_2018_03_024 crossref_primary_10_1016_j_anaerobe_2022_102629 crossref_primary_10_1016_j_schres_2024_07_053 crossref_primary_10_1097_MCG_0b013e31816244ca crossref_primary_10_1111_j_1365_277X_2011_01162_x crossref_primary_10_1016_j_trac_2018_09_006 crossref_primary_10_1097_MCG_0000000000000267 crossref_primary_10_1177_0884533615569886 crossref_primary_10_1016_j_ygeno_2022_110523 crossref_primary_10_1093_ajcn_nqac264 crossref_primary_10_1038_ajg_2014_422 crossref_primary_10_3389_fmicb_2022_994151 crossref_primary_10_1038_s41579_020_0407_y crossref_primary_10_3748_wjg_v22_i45_9871 crossref_primary_10_1016_j_bcp_2023_115546 crossref_primary_10_3748_wjg_v27_i6_513 crossref_primary_10_5217_ir_2010_8_2_106 crossref_primary_10_1007_s10620_009_1026_7 crossref_primary_10_1038_srep28135 crossref_primary_10_1097_DCR_0000000000000999 crossref_primary_10_3945_an_116_014407 crossref_primary_10_1586_17474124_2015_1051029 crossref_primary_10_1080_19490976_2021_1984122 crossref_primary_10_1016_j_bbrc_2015_08_121 crossref_primary_10_1007_s10620_009_0778_4 crossref_primary_10_1007_s10096_017_3060_2 crossref_primary_10_1097_MCG_0000000000001239 crossref_primary_10_1371_journal_pone_0146363 crossref_primary_10_1186_s12916_020_01885_3 crossref_primary_10_1590_fst_54921 crossref_primary_10_1016_j_humic_2016_11_005 crossref_primary_10_1053_j_gastro_2015_10_005 crossref_primary_10_1111_j_1440_1746_2010_06370_x crossref_primary_10_1016_j_bpg_2007_03_007 crossref_primary_10_1186_2045_9912_2_25 crossref_primary_10_1016_j_isci_2022_105870 crossref_primary_10_3389_fped_2019_00363 crossref_primary_10_1111_j_1365_2982_2011_01819_x crossref_primary_10_3390_life14111397 crossref_primary_10_1038_srep29359 crossref_primary_10_1042_ETLS20180037 crossref_primary_10_3390_microorganisms11102369 crossref_primary_10_1016_j_copbio_2010_12_004 crossref_primary_10_1089_ars_2009_2885 crossref_primary_10_1053_j_gastro_2016_02_028 crossref_primary_10_1111_nmo_13056 crossref_primary_10_31146_1682_8658_ecg_196_12_74_82 crossref_primary_10_1016_j_jpeds_2009_10_043 crossref_primary_10_3389_fmed_2017_00195 crossref_primary_10_1038_sc_2013_131 crossref_primary_10_1021_jf402441f crossref_primary_10_3389_fmicb_2019_01136 crossref_primary_10_1016_j_bbrc_2015_12_080 crossref_primary_10_1016_j_buildenv_2022_109713 crossref_primary_10_1038_s41575_022_00673_z crossref_primary_10_1590_s0004_2803_24612024_107 crossref_primary_10_1016_j_anaerobe_2015_01_005 crossref_primary_10_5056_jnm16124 crossref_primary_10_3389_feart_2023_1130107 crossref_primary_10_3389_fmicb_2024_1418857 crossref_primary_10_11569_wcjd_v29_i17_1020 crossref_primary_10_5056_jnm_2010_16_4_363 crossref_primary_10_1016_j_freeradbiomed_2016_12_014 crossref_primary_10_1007_s10620_009_0934_x crossref_primary_10_1097_MCG_0b013e3180517039 crossref_primary_10_1016_j_intimp_2020_106360 crossref_primary_10_1097_MOG_0000000000000614 crossref_primary_10_1093_cdn_nzaa176 crossref_primary_10_1111_nmo_13194 crossref_primary_10_34133_2021_9854040 crossref_primary_10_1097_MOG_0b013e32801424f3 crossref_primary_10_1155_2021_5560310 crossref_primary_10_1111_nmo_13077 crossref_primary_10_14309_ajg_0000000000001997 crossref_primary_10_5056_jnm_2014_20_1_31 crossref_primary_10_3390_microbiolres12020033 crossref_primary_10_1016_j_ejps_2016_04_022 crossref_primary_10_1016_j_rgmxen_2021_11_013 crossref_primary_10_1542_peds_2016_1417 crossref_primary_10_4161_gmic_19897 crossref_primary_10_4166_kjg_2020_75_1_23 crossref_primary_10_1155_2022_1098892 crossref_primary_10_1097_MIB_0000000000001264 crossref_primary_10_1111_jtm_12114 crossref_primary_10_1038_nmicrobiol_2016_93 crossref_primary_10_1016_j_revmed_2024_08_002 crossref_primary_10_1111_j_1572_0241_2008_01785_x crossref_primary_10_1016_j_msard_2019_101427 crossref_primary_10_1097_SHK_0000000000000385 crossref_primary_10_2527_af_2016_0029 crossref_primary_10_1016_j_gtc_2010_12_010 crossref_primary_10_1007_s11894_006_0051_3 crossref_primary_10_1111_apt_13469 crossref_primary_10_1242_dev_194936 crossref_primary_10_1002_oby_21385 crossref_primary_10_1007_s10620_009_1010_2 crossref_primary_10_4049_immunohorizons_2100024 crossref_primary_10_1016_j_giec_2008_12_006 crossref_primary_10_7243_2053_3640_2_2 crossref_primary_10_1155_2015_823081 crossref_primary_10_1177_1756283X11436241 crossref_primary_10_1038_ajg_2009_655 crossref_primary_10_1097_MCG_0b013e3182680201 crossref_primary_10_3390_nu11061251 crossref_primary_10_1371_journal_pcbi_1010714 crossref_primary_10_1016_j_gtc_2021_03_003 crossref_primary_10_1186_s12859_020_03923_6 crossref_primary_10_5056_jnm14142 crossref_primary_10_1146_annurev_food_102308_124101 crossref_primary_10_1097_01_smj_0000232193_65838_c0 crossref_primary_10_1080_17460441_2019_1593369 crossref_primary_10_14309_ctg_0000000000000072 crossref_primary_10_1016_j_exer_2017_03_008 crossref_primary_10_1038_srep12693 crossref_primary_10_1111_nmo_12568 crossref_primary_10_1016_j_gtc_2020_04_010 crossref_primary_10_1371_journal_ppat_1004833 crossref_primary_10_14309_ajg_0000000000002270 crossref_primary_10_1111_j_1365_2982_2008_01142_x crossref_primary_10_1007_s12664_018_0894_1 crossref_primary_10_1088_1752_7155_8_1_014001 crossref_primary_10_5056_jnm_2011_17_2_202 crossref_primary_10_3748_wjg_v20_i34_12144 crossref_primary_10_1099_mic_0_043257_0 crossref_primary_10_11569_wcjd_v31_i22_922 crossref_primary_10_1080_19490976_2021_1933313 crossref_primary_10_1155_2014_464382 crossref_primary_10_1111_j_1440_1746_2009_06133_x crossref_primary_10_14309_ajg_0000000000001607 crossref_primary_10_1007_s10620_023_08197_5 crossref_primary_10_5056_jnm20231 crossref_primary_10_1007_s10735_017_9728_1 crossref_primary_10_1016_j_cgh_2024_07_020 crossref_primary_10_1111_j_1365_2982_2008_01111_x crossref_primary_10_1177_0115426506021004351 crossref_primary_10_3109_00365520903274401 crossref_primary_10_1002_jgh3_12899 crossref_primary_10_1007_s00253_018_9438_y crossref_primary_10_1007_s10620_020_06109_5 crossref_primary_10_1155_2018_1912746 crossref_primary_10_1093_nutrit_nuab030 crossref_primary_10_1136_gutjnl_2022_328166 crossref_primary_10_3389_fendo_2021_604070 crossref_primary_10_1038_ajg_2010_125 crossref_primary_10_14309_ajg_0000000000000501 crossref_primary_10_1016_j_rgmxen_2014_01_001 crossref_primary_10_1185_03007995_2014_908278 crossref_primary_10_1586_egh_12_9 crossref_primary_10_1111_apt_15133 crossref_primary_10_3346_jkms_2013_28_6_901 crossref_primary_10_1016_j_semradonc_2016_03_002 crossref_primary_10_1111_j_1365_2036_2007_03557_x crossref_primary_10_1186_s12944_024_02198_7 crossref_primary_10_5056_jnm_2011_17_2_140 crossref_primary_10_1038_ajg_2009_744 crossref_primary_10_3389_fmicb_2023_1268451 crossref_primary_10_5056_jnm18135 crossref_primary_10_1016_j_brainres_2016_05_037 crossref_primary_10_1038_ajg_2017_46 crossref_primary_10_3390_ijms252212395 crossref_primary_10_26442_00403660_2019_08_000383 crossref_primary_10_1136_gutjnl_2015_309618 crossref_primary_10_1111_j_1600_0684_2009_00361_x crossref_primary_10_1111_nmo_12907 crossref_primary_10_1186_s40168_019_0664_z crossref_primary_10_17235_reed_2017_5017_2017 crossref_primary_10_1097_MCG_0b013e3181f423ea crossref_primary_10_1016_j_freeradbiomed_2022_03_010 crossref_primary_10_1097_SHK_0000000000001310 crossref_primary_10_1007_s10620_009_1012_0 crossref_primary_10_1111_jsap_12959 crossref_primary_10_1088_1752_7155_9_1_014001 crossref_primary_10_1016_j_ijbiomac_2022_01_166 crossref_primary_10_3390_microorganisms11082089 crossref_primary_10_1073_pnas_1000071108 crossref_primary_10_1586_17474124_2016_1098533 crossref_primary_10_3389_fpsyt_2020_00664 crossref_primary_10_1016_j_marpolbul_2024_116174 crossref_primary_10_1016_j_gtc_2007_07_013 crossref_primary_10_1007_s10620_024_08563_x crossref_primary_10_1016_j_bpg_2016_02_001 crossref_primary_10_1053_j_gastro_2024_10_023 crossref_primary_10_1016_j_jshs_2016_05_001 crossref_primary_10_3390_microorganisms10050960 crossref_primary_10_1186_s40635_019_0278_6 crossref_primary_10_1016_j_freeradbiomed_2015_11_017 crossref_primary_10_1016_j_gtc_2021_02_008 crossref_primary_10_3389_fphar_2023_1269878 crossref_primary_10_5056_jnm14109 crossref_primary_10_4235_agmr_2016_20_4_168 crossref_primary_10_1111_j_1600_6143_2008_02359_x crossref_primary_10_3390_nu12051410 crossref_primary_10_1016_j_fshw_2022_07_037 crossref_primary_10_1136_gutjnl_2021_326158 crossref_primary_10_1097_MPG_0000000000001295 crossref_primary_10_1016_j_intimp_2019_03_003 |
Cites_doi | 10.1053/gast.2002.31101 10.1016/0016-5085(82)90314-6 10.1152/ajpgi.00278.2003 10.3109/00365529509101604 10.1007/BF02093823 10.1111/j.1699-0463.1982.tb00114.x 10.1136/gut.49.6.743 10.1007/BF00451492 10.1111/j.1469-7793.1999.0539m.x 10.1053/j.gastro.2003.08.038 10.1097/00000542-199812000-00034 10.1136/bmj.314.7083.779 10.1111/j.1469-7793.1999.0889s.x 10.1111/j.1469-7793.2000.t01-1-00321.x 10.1073/pnas.84.24.9265 10.1136/gut.26.1.69 10.1016/S0196-9781(00)00312-0 10.1152/ajpgi.00230.2003 10.1128/JB.96.6.2178-2179.1968 10.1097/00000542-198804000-00014 10.1084/jem.133.3.572 10.1113/jphysiol.2003.056556 10.1152/ajpgi.2000.278.6.G866 10.1046/j.1365-2982.2002.00325.x 10.1053/gast.1996.v110.pm8613054 10.1136/gut.47.6.804 10.1038/sj.bjp.0704858 10.1016/S0016-5085(49)80154-5 10.1111/j.1572-0241.2000.03368.x 10.1159/000198829 10.1079/BJN19860116 10.1007/s11938-004-0022-4 10.1152/jappl.1999.86.4.1311 10.1007/BF01308039 10.1016/0014-2999(89)90005-8 10.1146/annurev.neuro.26.041002.131047 10.1016/S0016-5085(98)70155-6 10.1016/S0140-6736(96)90341-4 10.1097/00005176-198512000-00014 10.1016/S0016-5085(19)33654-6 10.1136/gut.31.3.300 10.1016/0016-5085(95)90584-7 10.1096/fj.02-0211hyp 10.1023/A:1021738515885 10.1023/A:1018816517404 10.1111/j.1749-6632.1968.tb19033.x 10.1111/j.1365-2362.1993.tb01292.x 10.1093/oxfordjournals.aje.a117548 10.1109/TBME.1982.324897 10.1136/gut.21.11.951 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1152/ajpgi.00574.2004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1547 |
EndPage | G1095 |
ExternalDocumentID | 16293652 10_1152_ajpgi_00574_2004 |
Genre | Research Support, Non-U.S. Gov't Controlled Clinical Trial Journal Article |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 8M5 AAFWJ AAYXX ABJNI ACPRK ADBBV AENEX AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP C1A CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WOQ XSW YSK YYP CGR CUY CVF DIK ECM EIF NPM RHF 7X8 |
ID | FETCH-LOGICAL-c363t-8ee43ddf4ab896cf4c4dde759eedbe84f3dd0c868fa213aacca1e498560ac6af3 |
ISSN | 0193-1857 |
IngestDate | Thu Jul 10 19:03:25 EDT 2025 Sat Sep 28 07:59:43 EDT 2024 Thu Apr 24 22:59:46 EDT 2025 Tue Jul 01 00:25:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c363t-8ee43ddf4ab896cf4c4dde759eedbe84f3dd0c868fa213aacca1e498560ac6af3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 16293652 |
PQID | 67952093 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_67952093 pubmed_primary_16293652 crossref_primary_10_1152_ajpgi_00574_2004 crossref_citationtrail_10_1152_ajpgi_00574_2004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-06-00 2006-Jun 20060601 |
PublicationDateYYYYMMDD | 2006-06-01 |
PublicationDate_xml | – month: 06 year: 2006 text: 2006-06-00 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of physiology: Gastrointestinal and liver physiology |
PublicationTitleAlternate | Am J Physiol Gastrointest Liver Physiol |
PublicationYear | 2006 |
References | R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R53 R12 R11 R14 R13 R16 R15 R18 R17 R19 |
References_xml | – ident: R5 doi: 10.1053/gast.2002.31101 – ident: R13 doi: 10.1016/0016-5085(82)90314-6 – ident: R23 doi: 10.1152/ajpgi.00278.2003 – ident: R15 doi: 10.3109/00365529509101604 – ident: R18 doi: 10.1007/BF02093823 – ident: R25 doi: 10.1111/j.1699-0463.1982.tb00114.x – ident: R7 doi: 10.1136/gut.49.6.743 – ident: R27 doi: 10.1007/BF00451492 – ident: R43 doi: 10.1111/j.1469-7793.1999.0539m.x – ident: R32 doi: 10.1053/j.gastro.2003.08.038 – ident: R12 doi: 10.1097/00000542-199812000-00034 – ident: R1 – ident: R30 doi: 10.1136/bmj.314.7083.779 – ident: R42 doi: 10.1111/j.1469-7793.1999.0889s.x – ident: R44 doi: 10.1111/j.1469-7793.2000.t01-1-00321.x – ident: R11 doi: 10.1073/pnas.84.24.9265 – ident: R24 doi: 10.1136/gut.26.1.69 – ident: R21 doi: 10.1016/S0196-9781(00)00312-0 – ident: R22 doi: 10.1152/ajpgi.00230.2003 – ident: R31 doi: 10.1128/JB.96.6.2178-2179.1968 – ident: R37 doi: 10.1097/00000542-198804000-00014 – ident: R3 doi: 10.1084/jem.133.3.572 – ident: R9 doi: 10.1113/jphysiol.2003.056556 – ident: R53 doi: 10.1152/ajpgi.2000.278.6.G866 – ident: R28 doi: 10.1046/j.1365-2982.2002.00325.x – ident: R20 doi: 10.1053/gast.1996.v110.pm8613054 – ident: R45 doi: 10.1136/gut.47.6.804 – ident: R50 doi: 10.1038/sj.bjp.0704858 – ident: R14 doi: 10.1016/S0016-5085(49)80154-5 – ident: R33 doi: 10.1111/j.1572-0241.2000.03368.x – ident: R39 doi: 10.1159/000198829 – ident: R46 doi: 10.1079/BJN19860116 – ident: R40 doi: 10.1007/s11938-004-0022-4 – ident: R38 doi: 10.1152/jappl.1999.86.4.1311 – ident: R47 doi: 10.1007/BF01308039 – ident: R41 doi: 10.1016/0014-2999(89)90005-8 – ident: R2 doi: 10.1146/annurev.neuro.26.041002.131047 – ident: R4 doi: 10.1016/S0016-5085(98)70155-6 – ident: R10 doi: 10.1016/S0140-6736(96)90341-4 – ident: R8 doi: 10.1097/00005176-198512000-00014 – ident: R16 doi: 10.1016/S0016-5085(19)33654-6 – ident: R6 doi: 10.1136/gut.31.3.300 – ident: R29 doi: 10.1016/0016-5085(95)90584-7 – ident: R52 doi: 10.1096/fj.02-0211hyp – ident: R35 doi: 10.1023/A:1021738515885 – ident: R19 doi: 10.1023/A:1018816517404 – ident: R17 doi: 10.1111/j.1749-6632.1968.tb19033.x – ident: R26 doi: 10.1111/j.1365-2362.1993.tb01292.x – ident: R49 doi: 10.1093/oxfordjournals.aje.a117548 – ident: R48 doi: 10.1109/TBME.1982.324897 – ident: R36 doi: 10.1136/gut.21.11.951 – ident: R34 – ident: R51 |
SSID | ssj0005211 |
Score | 2.3796337 |
Snippet | The presence of methane on lactulose breath test among irritable bowel syndrome (IBS) subjects is highly associated with the constipation-predominant form.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | G1089 |
SubjectTerms | Animals Breath Tests Dogs Dose-Response Relationship, Drug Gastrointestinal Motility - drug effects Gastrointestinal Motility - physiology Guinea Pigs Infusions, Parenteral Intestine, Small - drug effects Intestine, Small - microbiology Intestine, Small - physiology Lactulose - metabolism Methane - administration & dosage Muscle Contraction - drug effects Muscle Contraction - physiology Muscle, Smooth - drug effects Muscle, Smooth - physiology |
Title | Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16293652 https://www.proquest.com/docview/67952093 |
Volume | 290 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYuZVz8gJBQl62JndR57NDYBBQNaZP2FtmuUxX1pibRKL-Mn8fxrTWFIeAlqmLXaX2-2Mf2d76D0CsmU8FLlka8K1REBU0invbySMJCLI55UoqeDhQefMrOLun7q_Sq1foesJaaWhzKb7-NK_kfq8I9sKuOkv0Hy64bhRvwGewLV7AwXP_KxgOlN75t1vbOiFeabTVspHUqtdimpskLq8dsnMRqMr-ujEQEvNmWZw5T1diyzHkzsvFu1VSfVwe1DJ9dR0BMrPiGzjcRerXrY59Ah8JsmdhQGNLvnPKqXs6DJvUDJ5oTElRcD9NjqxS6HUv00eodmLiKze7uyYyvuCUlnKvhkk99gY7MglG1c9xYBtvx0r8KwS6HZ2P5jc-cRFq3Khy5E5tp1EE0HIdP467NTPTrDJFqxVn-ZTEaH-pIXLOvRsOq0CuLqUFMnIEzlFmF3S1Vbl90C91OYIGip4QPn1lALopdJkz7q_0BeZocbT9ay9a6xn72jW5Y8BjH5-I-uudWLLhv4fcAtdRsF-31Z7yeT1f4NT5f228X3Rk4qsYe-urAeYA5BmhiD00sVthBE3toHmADTLzBB3bAxIAT7IGJDTDDWgEwsQfmQ3T57uTi7Vnk0nxEkmSkjphSlAyHJeWC5ZksqaQw5_bSHNw3oRgtobArWcZKnsSEcxhzYkVzBr46lxkvySO0M5vP1BOEM0kkizlRcSppzLqiC3-kpJQQSniW5m105Du4kE4DX6dimRRmLZwmhbFOYayjM7TSNnqz_sbC6r_8oe5Lb7MCBml98gbdPG-qIuvlmm5G2uixNeWmLWf6pzeW7KO7mxfiGdqpl416Do5wLV4YzP0Akpm5ng |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane%2C+a+gas+produced+by+enteric+bacteria%2C+slows+intestinal+transit+and+augments+small+intestinal+contractile+activity&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Pimentel%2C+Mark&rft.au=Lin%2C+Henry+C&rft.au=Enayati%2C+Pedram&rft.au=van+den+Burg%2C+Brian&rft.date=2006-06-01&rft.issn=0193-1857&rft.volume=290&rft.issue=6&rft.spage=G1089&rft_id=info:doi/10.1152%2Fajpgi.00574.2004&rft_id=info%3Apmid%2F16293652&rft.externalDocID=16293652 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon |