Long-range medical image registration through generalized mutual information (GMI): towards a fully automatic volumetric alignment

Objective. Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and e...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 67; no. 5; pp. 55006 - 55019
Main Authors Vianna, Vinicius Pavanelli, Murta, Luiz Otavio
Format Journal Article
LanguageEnglish
Published England IOP Publishing 07.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective. Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration. Approach. We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [−1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset. Main results. Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy. Significance. Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space.
AbstractList Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration. We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [-1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset. Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy. Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space.
Objective.Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration.Approach.We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [-1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset.Main results.Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy.Significance.Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space.Objective.Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration.Approach.We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [-1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset.Main results.Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy.Significance.Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space.
Objective. Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration. Approach. We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [−1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset. Main results. Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy. Significance. Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space.
Author Murta, Luiz Otavio
Vianna, Vinicius Pavanelli
Author_xml – sequence: 1
  givenname: Vinicius Pavanelli
  orcidid: 0000-0001-7947-5954
  surname: Vianna
  fullname: Vianna, Vinicius Pavanelli
  organization: University of Sao Paulo Department of Physics, Ribeirao Preto, Brazil
– sequence: 2
  givenname: Luiz Otavio
  orcidid: 0000-0002-2197-6008
  surname: Murta
  fullname: Murta, Luiz Otavio
  organization: University of Sao Paulo Department of Computing and Mathematics, Ribeirao Preto, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35130525$$D View this record in MEDLINE/PubMed
BookMark eNp1kbtv1jAUxS3Uin4t7EzIG0UirR-1k3RDFZRKX8UCs-U412mqxA5-gMrIX46jlE50ug_97pHuOcfowHkHCL2h5IySpjmnXNJKCknOtRGsbV6g3dPqAO0I4bRqqRBH6DjGe0IobdjFS3TEBeVEMLFDf_beDVXQbgA8Qz8aPeFx1mUKMIwxBZ1G73C6Cz4Pd3gAB0FP42_o8ZxTXmlnfZg37PT69ub9JU7-lw59xBrbPE0PWOfkV8Lgn37KM6RQ2qIyuBlceoUOrZ4ivH6sJ-j750_frr5U-6_XN1cf95XhkqeqAUEpFd0F44ZJSw2jHZd9A7SzFmrZAdFS1DUHqWtrWs5EU0ugbW0lkCJxgk433SX4HxliUvMYDUyTduBzVEwy2bSspnVB3z6iuSuuqCUUT8KD-udbAcgGmOBjDGCfEErUGo1ac1BrDmqLppy8205Gv6h7n4Mrz6pl7pSslVBECEKkWnpbyA__IZ8V_guaPp0u
CODEN PHMBA7
Cites_doi 10.1016/j.media.2020.101815
10.1016/j.ijrobp.2004.10.011
10.1117/12.431046
10.1016/j.media.2010.03.005
10.3389/fninf.2011.00004
10.1016/j.swevo.2016.11.002
10.1063/1.532660
10.1016/j.patcog.2016.09.004
10.1016/j.image.2017.04.003
10.1117/12.804801
10.1023/A:1007958904918
10.1109/42.563664
10.1016/j.neuroimage.2013.04.127
10.1016/0375-9601(94)90037-X
10.1103/PhysRevE.58.1442
10.1109/42.876307
10.1007/978-3-540-49197-2_22
10.1016/j.media.2020.101939
10.1109/TMI.2009.2021843
10.1109/TITB.2011.2159806
10.1117/12.237936
10.1016/j.media.2020.101878
10.3390/e16031632
10.1016/S1361-8415(01)80004-9
10.1049/el:20040375
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1117/12.480867
10.1007/BF01016429
10.1007/978-3-540-24672-5_47
10.1016/S0031-3203(98)00091-0
10.3389/fninf.2014.00013
10.1016/j.neuroimage.2021.117821
ContentType Journal Article
Copyright 2022 Institute of Physics and Engineering in Medicine
2022 Institute of Physics and Engineering in Medicine.
Copyright_xml – notice: 2022 Institute of Physics and Engineering in Medicine
– notice: 2022 Institute of Physics and Engineering in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1361-6560/ac5298
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID 35130525
10_1088_1361_6560_ac5298
pmbac5298
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
ID FETCH-LOGICAL-c363t-8e51115b423c26f1c21b36d8e1bffe76be0a65773e6a7fc9325876e197f6e0363
IEDL.DBID IOP
ISSN 0031-9155
1361-6560
IngestDate Tue Aug 05 11:29:29 EDT 2025
Wed Apr 16 06:21:03 EDT 2025
Tue Jul 01 00:25:29 EDT 2025
Wed Aug 21 03:34:57 EDT 2024
Wed Jun 07 11:18:59 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords tsallis entropy
brain images
mutual information
image registration
medical imaging
Language English
License This article is available under the terms of the IOP-Standard License.
2022 Institute of Physics and Engineering in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-8e51115b423c26f1c21b36d8e1bffe76be0a65773e6a7fc9325876e197f6e0363
Notes PMB-112385.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2197-6008
0000-0001-7947-5954
OpenAccessLink https://doi.org/10.1088/1361-6560/ac5298
PMID 35130525
PQID 2626892717
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_35130525
crossref_primary_10_1088_1361_6560_ac5298
iop_journals_10_1088_1361_6560_ac5298
proquest_miscellaneous_2626892717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-07
PublicationDateYYYYMMDD 2022-03-07
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Collignon (pmbac5298bib3) 1995
Markiewicz (pmbac5298bib13) 2021; 232
Sedghi (pmbac5298bib22) 2021; 69
Studholme (pmbac5298bib25) 1999; 32
Russakoff (pmbac5298bib21) 2004
Borland (pmbac5298bib2) 1998; 39
Khader (pmbac5298bib8) 2011; 15
Hu (pmbac5298bib7) 2021; 68
Tsallis (pmbac5298bib28) 1998; 58
Frysch (pmbac5298bib4) 2021; 67
Martin (pmbac5298bib14) 2004; 40
Panda (pmbac5298bib17) 2017; 33
Tsallis (pmbac5298bib27) 1994; 195
Glasser (pmbac5298bib5) 2013; 80
Van Essen (pmbac5298bib30) 2011; 5
Maes (pmbac5298bib11) 1997; 16
Mattes (pmbac5298bib15) 2001; vol 4322
So (pmbac5298bib24) 2017; 62
Lancaster (pmbac5298bib9) 2000; 10
Viola (pmbac5298bib31) 1997; 24
Guryanov (pmbac5298bib6) 2017; 59
Markelj (pmbac5298bib12) 2012; 16
Tsallis (pmbac5298bib26) 1988; 52
Tsallis (pmbac5298bib29) 2009
West (pmbac5298bib34) 1996; vol 2710
Amaral-Silva (pmbac5298bib1) 2014; 16
Wells (pmbac5298bib33) 1996; 1
Loeckx (pmbac5298bib10) 2010; 29
Wachowiak (pmbac5298bib32) 2003
McCormick (pmbac5298bib16) 2014; 8
Pluim (pmbac5298bib18) 2000; 19
Rueckert (pmbac5298bib20) 2000; vol 3979
Shannon (pmbac5298bib23) 1949
Pouliot (pmbac5298bib19) 2005; 61
References_xml – volume: 67
  year: 2021
  ident: pmbac5298bib4
  article-title: A novel approach to 2D/3D registration of x-ray images using Grangeat's relation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101815
– volume: 61
  start-page: 552
  year: 2005
  ident: pmbac5298bib19
  article-title: Low-dose megavoltage cone-beam CT for radiation therapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2004.10.011
– volume: vol 4322
  start-page: 1609
  year: 2001
  ident: pmbac5298bib15
  article-title: Nonrigid multimodality image registration
  doi: 10.1117/12.431046
– volume: 16
  start-page: 642
  year: 2012
  ident: pmbac5298bib12
  article-title: A review of 3D/2D registration methods for image-guided interventions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.03.005
– volume: 5
  start-page: 1
  year: 2011
  ident: pmbac5298bib30
  article-title: Informatics and data mining tools and strategies for the human connectome project
  publication-title: Frontiers Neuroinf.
  doi: 10.3389/fninf.2011.00004
– volume: 33
  start-page: 108
  year: 2017
  ident: pmbac5298bib17
  article-title: A novel evolutionary rigid body docking algorithm for medical image registration
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.11.002
– volume: 39
  start-page: 6490
  year: 1998
  ident: pmbac5298bib2
  article-title: Information gain within nonextensive thermostatistics
  publication-title: J. Math. Phys.
  doi: 10.1063/1.532660
– volume: 62
  start-page: 161
  year: 2017
  ident: pmbac5298bib24
  article-title: A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya distances
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.004
– volume: 59
  start-page: 12
  year: 2017
  ident: pmbac5298bib6
  article-title: Fast medical image registration using bidirectional empirical mode decomposition
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2017.04.003
– volume: vol 3979
  start-page: 438
  year: 2000
  ident: pmbac5298bib20
  article-title: Non-rigid registration using higher-order mutual information
  doi: 10.1117/12.804801
– volume: 24
  start-page: 137
  year: 1997
  ident: pmbac5298bib31
  article-title: Alignment by maximization of mutual information
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/A:1007958904918
– volume: 16
  start-page: 187
  year: 1997
  ident: pmbac5298bib11
  article-title: Multimodality image registration by maximization of mutual information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.563664
– volume: 80
  start-page: 105
  year: 2013
  ident: pmbac5298bib5
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 195
  start-page: 329
  year: 1994
  ident: pmbac5298bib27
  article-title: Nonextensive physics: a possible connection between generalized statistical mechanics and quantum groups
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(94)90037-X
– volume: 58
  start-page: 1442
  year: 1998
  ident: pmbac5298bib28
  article-title: Generalized entropy-based criterion for consistent testing
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.1442
– volume: 19
  start-page: 809
  year: 2000
  ident: pmbac5298bib18
  article-title: Image registration by maximization of combined mutual information and gradient information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.876307
– start-page: 195
  year: 1995
  ident: pmbac5298bib3
  article-title: 3D multi-modality medical image registration using feature space clustering
  doi: 10.1007/978-3-540-49197-2_22
– volume: 69
  year: 2021
  ident: pmbac5298bib22
  article-title: Image registration: maximum likelihood, minimum entropy and deep learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101939
– volume: 29
  start-page: 19
  year: 2010
  ident: pmbac5298bib10
  article-title: Nonrigid image registration using conditional mutual information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2021843
– volume: 15
  start-page: 681
  year: 2011
  ident: pmbac5298bib8
  article-title: Nonrigid image registration using an entropic similarity
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2159806
– volume: vol 2710
  year: 1996
  ident: pmbac5298bib34
  article-title: Comparison and evaluation of retrospective intermodality image registration techniques
  doi: 10.1117/12.237936
– volume: 68
  year: 2021
  ident: pmbac5298bib7
  article-title: End-to-end multimodal image registration via reinforcement learning—main
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101878
– volume: 16
  start-page: 1632
  year: 2014
  ident: pmbac5298bib1
  article-title: The superiority of tsallis entropy over traditional cost functions for brain mri and spect registration
  publication-title: Entropy
  doi: 10.3390/e16031632
– volume: 1
  start-page: 35
  year: 1996
  ident: pmbac5298bib33
  article-title: Multi-modal volume registration by maximization of mutual information
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)80004-9
– volume: 40
  start-page: 595
  year: 2004
  ident: pmbac5298bib14
  article-title: Fast and accurate image registration using tsallis entropy and simultaneous perturbation stochastic approximation
  publication-title: Electron. Lett
  doi: 10.1049/el:20040375
– volume: 10
  start-page: 120
  year: 2000
  ident: pmbac5298bib9
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– year: 1949
  ident: pmbac5298bib23
– year: 2003
  ident: pmbac5298bib32
  article-title: Similarity metrics based on nonadditive entropies for 2D–3D multimodal biomedical image registration
  doi: 10.1117/12.480867
– volume: 52
  start-page: 479
  year: 1988
  ident: pmbac5298bib26
  article-title: Possible generalization of Boltzmann–Gibbs statistics
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01016429
– start-page: 596
  year: 2004
  ident: pmbac5298bib21
  article-title: Image similarity using mutual information of regions
  doi: 10.1007/978-3-540-24672-5_47
– year: 2009
  ident: pmbac5298bib29
– volume: 32
  start-page: 71
  year: 1999
  ident: pmbac5298bib25
  article-title: An overlap invariant entropy measure of 3D medical image alignment
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(98)00091-0
– volume: 8
  start-page: 13
  year: 2014
  ident: pmbac5298bib16
  article-title: ITK: enabling reproducible research and open science
  publication-title: Frontiers Neuroinf.
  doi: 10.3389/fninf.2014.00013
– volume: 232
  year: 2021
  ident: pmbac5298bib13
  article-title: Uncertainty analysis of MR-PET image registration for precision neuro-PET imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.117821
SSID ssj0011824
Score 2.3797987
Snippet Objective. Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust...
Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it...
Objective.Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55006
SubjectTerms Algorithms
Brain - diagnostic imaging
brain images
Entropy
Humans
image registration
medical imaging
Monte Carlo Method
mutual information
Neuroimaging
tsallis entropy
Title Long-range medical image registration through generalized mutual information (GMI): towards a fully automatic volumetric alignment
URI https://iopscience.iop.org/article/10.1088/1361-6560/ac5298
https://www.ncbi.nlm.nih.gov/pubmed/35130525
https://www.proquest.com/docview/2626892717
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RSAuFMpr24KMBBI9ZJs4tuNtTwhRWsQCByr1gGTZWXtVoU1W3eTQHvvLO37sSkWAELcomjjOeDwZ65v5BuC1rKgJFEOUapqxSphMippmxsrcMWY0lb4aefxFHJ-yT2f8bA0OV7Uw7Ty5_iFeRqLgqMKUECf3i1IUmeeM2dc1pyO5DndKKYRvX3Dy9dsKQsDAmSVc8ndP3foPreO7_hxihl_N0Sb8WE4yZpj8HPadGdZXv_A3_udXPIQHKQQl76LoI1izzRbcjU0pL7fg3jjB7Xgz5IfWi8dw_bltptmFr0Qgs4jtkPMZ-iLiOzssuXdJ6vpDppHM-vzKTsis9yUqJDG0BrG3H8cnewekCym7C6KJBwEuie67NjDIkugzffMAgqNMQ8bCEzg9-vD9_XGW2jdkdSnKLpMWg7mCGwzYaipcUdPClGIibWGcs2gVNteCV1Vpha5cjYEkR9dsi1HlhPX48lPYaNrGPgdSOG4mWjsuNWU2d4ahDUlmmXQ4ijUD2FsupppHlg4V0HUplVe08opWUdEDeINrotJWXfxFjtySm8-MEpXiKsdDXS7UfOIG8GppMgp3pYdadGPbfqEonhPliOJZeQDPoi2tJlZyjBs45dv_OJEduE99zYVPfKt2YaO76O0LjIQ68zJY_A2bnQIa
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiouLZRHl_IwEkj0kN3EiR1vbwhYutAtPVCpN9fO2qsKbbLqJof2yC_v-LGVigAhcYuiiePMjJ2xvplvAN6IkmpPMUSpoklRcp0IXtFEG5HaotCKCleNPDniByfFl1N2Gvuc-lqYZhG3_j5eBqLgoMKYECcGWc6zxHHGDFTF6FAMFlO7BndZznNHnj_-dnwDI2DwXERs8ndP3voXreH7_hxm-t_NaAvOVhMNWSY_-l2r-9XVLxyO__ElD2AzhqLkfRB_CHdMvQ33QnPKy23YmETYHW_6PNFq-Qh-Hjb1LLlwFQlkHjAecj7HPYm4Dg8rDl4Su_-QWSC1Pr8yUzLvXKkKiUytXuzd58l4b5-0PnV3SRRxYMAlUV3beCZZEvZO10SA4Cgzn7nwGE5Gn75_OEhiG4ekQpO0iTAY1GVMY-BWUW6zimY651NhMm2tQe8wqeKsLHPDVWkrDCgZbtEmG5aWG4czP4H1uqnNDpDMMj1VyjKhaGFSqwv0JVGYQlgcxege7K0MKheBrUN6lF0I6ZQtnbJlUHYP3qJdZFyyy7_IkVtyi7mWvJRMpni4S7lEm_Xg9cptJK5OB7mo2jTdUlI8L4ohxTNzD54Gf7qZWM4wfmCUPfvHibyCjeOPI3k4Pvq6C_epK8NwuXDlc1hvLzrzAoOjVr_0C-AaKCQHfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-range+medical+image+registration+through+generalized+mutual+information+%28GMI%29%3A+towards+a+fully+automatic+volumetric+alignment&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Vianna%2C+Vinicius+Pavanelli&rft.au=Murta%2C+Luiz+Otavio&rft.date=2022-03-07&rft.eissn=1361-6560&rft.volume=67&rft.issue=5&rft_id=info:doi/10.1088%2F1361-6560%2Fac5298&rft_id=info%3Apmid%2F35130525&rft.externalDocID=35130525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon