Long-range medical image registration through generalized mutual information (GMI): towards a fully automatic volumetric alignment
Objective. Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and e...
Saved in:
Published in | Physics in medicine & biology Vol. 67; no. 5; pp. 55006 - 55019 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
07.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective.
Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration.
Approach.
We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [−1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset.
Main results.
Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy.
Significance.
Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space. |
---|---|
AbstractList | Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration.
We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [-1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset.
Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy.
Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space. Objective.Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration.Approach.We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [-1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset.Main results.Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy.Significance.Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space.Objective.Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration.Approach.We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [-1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset.Main results.Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy.Significance.Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space. Objective. Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration. Approach. We assessed the GMI metric output space using separable affine transforms to seek a better gradient space. The range used was 150 mm for translations, 360° for rotations, [0.5, 2] for scaling, and [−1, 1] for skewness. The data were evaluated using 3D visualization of gradient and contour curves. A simulated gradient descent algorithm was also used to calculate the registration capability. The improvements detected were then tested through Monte Carlo simulation of actual registrations with brain T1 and T2 MRI from the HCP dataset. Main results. Results show significantly prolonged registration ranges, without local minima in the metric space, with a registration capability of 100% for translations, 88.2% for rotations, 100% for scaling and 100% for skewness. Tsallis entropy obtained 99.75% success in the Monte Carlo simulation of 2000 translation registrations with 1113 double randomized subjects T1 and T2 brain MRI against 56.5% success for the Shannon entropy. Significance. Tsallis entropy can improve brain MRI MI affine registration with long-range translation registration, lower-cost interpolation, and faster registrations through a better gradient space. |
Author | Murta, Luiz Otavio Vianna, Vinicius Pavanelli |
Author_xml | – sequence: 1 givenname: Vinicius Pavanelli orcidid: 0000-0001-7947-5954 surname: Vianna fullname: Vianna, Vinicius Pavanelli organization: University of Sao Paulo Department of Physics, Ribeirao Preto, Brazil – sequence: 2 givenname: Luiz Otavio orcidid: 0000-0002-2197-6008 surname: Murta fullname: Murta, Luiz Otavio organization: University of Sao Paulo Department of Computing and Mathematics, Ribeirao Preto, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35130525$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kbtv1jAUxS3Uin4t7EzIG0UirR-1k3RDFZRKX8UCs-U412mqxA5-gMrIX46jlE50ug_97pHuOcfowHkHCL2h5IySpjmnXNJKCknOtRGsbV6g3dPqAO0I4bRqqRBH6DjGe0IobdjFS3TEBeVEMLFDf_beDVXQbgA8Qz8aPeFx1mUKMIwxBZ1G73C6Cz4Pd3gAB0FP42_o8ZxTXmlnfZg37PT69ub9JU7-lw59xBrbPE0PWOfkV8Lgn37KM6RQ2qIyuBlceoUOrZ4ivH6sJ-j750_frr5U-6_XN1cf95XhkqeqAUEpFd0F44ZJSw2jHZd9A7SzFmrZAdFS1DUHqWtrWs5EU0ugbW0lkCJxgk433SX4HxliUvMYDUyTduBzVEwy2bSspnVB3z6iuSuuqCUUT8KD-udbAcgGmOBjDGCfEErUGo1ac1BrDmqLppy8205Gv6h7n4Mrz6pl7pSslVBECEKkWnpbyA__IZ8V_guaPp0u |
CODEN | PHMBA7 |
Cites_doi | 10.1016/j.media.2020.101815 10.1016/j.ijrobp.2004.10.011 10.1117/12.431046 10.1016/j.media.2010.03.005 10.3389/fninf.2011.00004 10.1016/j.swevo.2016.11.002 10.1063/1.532660 10.1016/j.patcog.2016.09.004 10.1016/j.image.2017.04.003 10.1117/12.804801 10.1023/A:1007958904918 10.1109/42.563664 10.1016/j.neuroimage.2013.04.127 10.1016/0375-9601(94)90037-X 10.1103/PhysRevE.58.1442 10.1109/42.876307 10.1007/978-3-540-49197-2_22 10.1016/j.media.2020.101939 10.1109/TMI.2009.2021843 10.1109/TITB.2011.2159806 10.1117/12.237936 10.1016/j.media.2020.101878 10.3390/e16031632 10.1016/S1361-8415(01)80004-9 10.1049/el:20040375 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1117/12.480867 10.1007/BF01016429 10.1007/978-3-540-24672-5_47 10.1016/S0031-3203(98)00091-0 10.3389/fninf.2014.00013 10.1016/j.neuroimage.2021.117821 |
ContentType | Journal Article |
Copyright | 2022 Institute of Physics and Engineering in Medicine 2022 Institute of Physics and Engineering in Medicine. |
Copyright_xml | – notice: 2022 Institute of Physics and Engineering in Medicine – notice: 2022 Institute of Physics and Engineering in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1361-6560/ac5298 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Physics |
EISSN | 1361-6560 |
ExternalDocumentID | 35130525 10_1088_1361_6560_ac5298 pmbac5298 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 |
GroupedDBID | --- -DZ -~X 123 1JI 4.4 5B3 5RE 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP AAYXX ADEQX CITATION CGR CUY CVF ECM EIF NPM 7X8 AEINN |
ID | FETCH-LOGICAL-c363t-8e51115b423c26f1c21b36d8e1bffe76be0a65773e6a7fc9325876e197f6e0363 |
IEDL.DBID | IOP |
ISSN | 0031-9155 1361-6560 |
IngestDate | Tue Aug 05 11:29:29 EDT 2025 Wed Apr 16 06:21:03 EDT 2025 Tue Jul 01 00:25:29 EDT 2025 Wed Aug 21 03:34:57 EDT 2024 Wed Jun 07 11:18:59 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | tsallis entropy brain images mutual information image registration medical imaging |
Language | English |
License | This article is available under the terms of the IOP-Standard License. 2022 Institute of Physics and Engineering in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-8e51115b423c26f1c21b36d8e1bffe76be0a65773e6a7fc9325876e197f6e0363 |
Notes | PMB-112385.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2197-6008 0000-0001-7947-5954 |
OpenAccessLink | https://doi.org/10.1088/1361-6560/ac5298 |
PMID | 35130525 |
PQID | 2626892717 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_35130525 crossref_primary_10_1088_1361_6560_ac5298 iop_journals_10_1088_1361_6560_ac5298 proquest_miscellaneous_2626892717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-07 |
PublicationDateYYYYMMDD | 2022-03-07 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physics in medicine & biology |
PublicationTitleAbbrev | PMB |
PublicationTitleAlternate | Phys. Med. Biol |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Collignon (pmbac5298bib3) 1995 Markiewicz (pmbac5298bib13) 2021; 232 Sedghi (pmbac5298bib22) 2021; 69 Studholme (pmbac5298bib25) 1999; 32 Russakoff (pmbac5298bib21) 2004 Borland (pmbac5298bib2) 1998; 39 Khader (pmbac5298bib8) 2011; 15 Hu (pmbac5298bib7) 2021; 68 Tsallis (pmbac5298bib28) 1998; 58 Frysch (pmbac5298bib4) 2021; 67 Martin (pmbac5298bib14) 2004; 40 Panda (pmbac5298bib17) 2017; 33 Tsallis (pmbac5298bib27) 1994; 195 Glasser (pmbac5298bib5) 2013; 80 Van Essen (pmbac5298bib30) 2011; 5 Maes (pmbac5298bib11) 1997; 16 Mattes (pmbac5298bib15) 2001; vol 4322 So (pmbac5298bib24) 2017; 62 Lancaster (pmbac5298bib9) 2000; 10 Viola (pmbac5298bib31) 1997; 24 Guryanov (pmbac5298bib6) 2017; 59 Markelj (pmbac5298bib12) 2012; 16 Tsallis (pmbac5298bib26) 1988; 52 Tsallis (pmbac5298bib29) 2009 West (pmbac5298bib34) 1996; vol 2710 Amaral-Silva (pmbac5298bib1) 2014; 16 Wells (pmbac5298bib33) 1996; 1 Loeckx (pmbac5298bib10) 2010; 29 Wachowiak (pmbac5298bib32) 2003 McCormick (pmbac5298bib16) 2014; 8 Pluim (pmbac5298bib18) 2000; 19 Rueckert (pmbac5298bib20) 2000; vol 3979 Shannon (pmbac5298bib23) 1949 Pouliot (pmbac5298bib19) 2005; 61 |
References_xml | – volume: 67 year: 2021 ident: pmbac5298bib4 article-title: A novel approach to 2D/3D registration of x-ray images using Grangeat's relation publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101815 – volume: 61 start-page: 552 year: 2005 ident: pmbac5298bib19 article-title: Low-dose megavoltage cone-beam CT for radiation therapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2004.10.011 – volume: vol 4322 start-page: 1609 year: 2001 ident: pmbac5298bib15 article-title: Nonrigid multimodality image registration doi: 10.1117/12.431046 – volume: 16 start-page: 642 year: 2012 ident: pmbac5298bib12 article-title: A review of 3D/2D registration methods for image-guided interventions publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.03.005 – volume: 5 start-page: 1 year: 2011 ident: pmbac5298bib30 article-title: Informatics and data mining tools and strategies for the human connectome project publication-title: Frontiers Neuroinf. doi: 10.3389/fninf.2011.00004 – volume: 33 start-page: 108 year: 2017 ident: pmbac5298bib17 article-title: A novel evolutionary rigid body docking algorithm for medical image registration publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.11.002 – volume: 39 start-page: 6490 year: 1998 ident: pmbac5298bib2 article-title: Information gain within nonextensive thermostatistics publication-title: J. Math. Phys. doi: 10.1063/1.532660 – volume: 62 start-page: 161 year: 2017 ident: pmbac5298bib24 article-title: A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya distances publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.004 – volume: 59 start-page: 12 year: 2017 ident: pmbac5298bib6 article-title: Fast medical image registration using bidirectional empirical mode decomposition publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2017.04.003 – volume: vol 3979 start-page: 438 year: 2000 ident: pmbac5298bib20 article-title: Non-rigid registration using higher-order mutual information doi: 10.1117/12.804801 – volume: 24 start-page: 137 year: 1997 ident: pmbac5298bib31 article-title: Alignment by maximization of mutual information publication-title: Int. J. Comput. Vision doi: 10.1023/A:1007958904918 – volume: 16 start-page: 187 year: 1997 ident: pmbac5298bib11 article-title: Multimodality image registration by maximization of mutual information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.563664 – volume: 80 start-page: 105 year: 2013 ident: pmbac5298bib5 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 195 start-page: 329 year: 1994 ident: pmbac5298bib27 article-title: Nonextensive physics: a possible connection between generalized statistical mechanics and quantum groups publication-title: Phys. Lett. A doi: 10.1016/0375-9601(94)90037-X – volume: 58 start-page: 1442 year: 1998 ident: pmbac5298bib28 article-title: Generalized entropy-based criterion for consistent testing publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.1442 – volume: 19 start-page: 809 year: 2000 ident: pmbac5298bib18 article-title: Image registration by maximization of combined mutual information and gradient information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.876307 – start-page: 195 year: 1995 ident: pmbac5298bib3 article-title: 3D multi-modality medical image registration using feature space clustering doi: 10.1007/978-3-540-49197-2_22 – volume: 69 year: 2021 ident: pmbac5298bib22 article-title: Image registration: maximum likelihood, minimum entropy and deep learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101939 – volume: 29 start-page: 19 year: 2010 ident: pmbac5298bib10 article-title: Nonrigid image registration using conditional mutual information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2021843 – volume: 15 start-page: 681 year: 2011 ident: pmbac5298bib8 article-title: Nonrigid image registration using an entropic similarity publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2159806 – volume: vol 2710 year: 1996 ident: pmbac5298bib34 article-title: Comparison and evaluation of retrospective intermodality image registration techniques doi: 10.1117/12.237936 – volume: 68 year: 2021 ident: pmbac5298bib7 article-title: End-to-end multimodal image registration via reinforcement learning—main publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101878 – volume: 16 start-page: 1632 year: 2014 ident: pmbac5298bib1 article-title: The superiority of tsallis entropy over traditional cost functions for brain mri and spect registration publication-title: Entropy doi: 10.3390/e16031632 – volume: 1 start-page: 35 year: 1996 ident: pmbac5298bib33 article-title: Multi-modal volume registration by maximization of mutual information publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(01)80004-9 – volume: 40 start-page: 595 year: 2004 ident: pmbac5298bib14 article-title: Fast and accurate image registration using tsallis entropy and simultaneous perturbation stochastic approximation publication-title: Electron. Lett doi: 10.1049/el:20040375 – volume: 10 start-page: 120 year: 2000 ident: pmbac5298bib9 article-title: Automated Talairach Atlas labels for functional brain mapping publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – year: 1949 ident: pmbac5298bib23 – year: 2003 ident: pmbac5298bib32 article-title: Similarity metrics based on nonadditive entropies for 2D–3D multimodal biomedical image registration doi: 10.1117/12.480867 – volume: 52 start-page: 479 year: 1988 ident: pmbac5298bib26 article-title: Possible generalization of Boltzmann–Gibbs statistics publication-title: J. Stat. Phys. doi: 10.1007/BF01016429 – start-page: 596 year: 2004 ident: pmbac5298bib21 article-title: Image similarity using mutual information of regions doi: 10.1007/978-3-540-24672-5_47 – year: 2009 ident: pmbac5298bib29 – volume: 32 start-page: 71 year: 1999 ident: pmbac5298bib25 article-title: An overlap invariant entropy measure of 3D medical image alignment publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(98)00091-0 – volume: 8 start-page: 13 year: 2014 ident: pmbac5298bib16 article-title: ITK: enabling reproducible research and open science publication-title: Frontiers Neuroinf. doi: 10.3389/fninf.2014.00013 – volume: 232 year: 2021 ident: pmbac5298bib13 article-title: Uncertainty analysis of MR-PET image registration for precision neuro-PET imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.117821 |
SSID | ssj0011824 |
Score | 2.3797987 |
Snippet | Objective.
Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust... Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it... Objective.Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 55006 |
SubjectTerms | Algorithms Brain - diagnostic imaging brain images Entropy Humans image registration medical imaging Monte Carlo Method mutual information Neuroimaging tsallis entropy |
Title | Long-range medical image registration through generalized mutual information (GMI): towards a fully automatic volumetric alignment |
URI | https://iopscience.iop.org/article/10.1088/1361-6560/ac5298 https://www.ncbi.nlm.nih.gov/pubmed/35130525 https://www.proquest.com/docview/2626892717 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RSAuFMpr24KMBBI9ZJs4tuNtTwhRWsQCByr1gGTZWXtVoU1W3eTQHvvLO37sSkWAELcomjjOeDwZ65v5BuC1rKgJFEOUapqxSphMippmxsrcMWY0lb4aefxFHJ-yT2f8bA0OV7Uw7Ty5_iFeRqLgqMKUECf3i1IUmeeM2dc1pyO5DndKKYRvX3Dy9dsKQsDAmSVc8ndP3foPreO7_hxihl_N0Sb8WE4yZpj8HPadGdZXv_A3_udXPIQHKQQl76LoI1izzRbcjU0pL7fg3jjB7Xgz5IfWi8dw_bltptmFr0Qgs4jtkPMZ-iLiOzssuXdJ6vpDppHM-vzKTsis9yUqJDG0BrG3H8cnewekCym7C6KJBwEuie67NjDIkugzffMAgqNMQ8bCEzg9-vD9_XGW2jdkdSnKLpMWg7mCGwzYaipcUdPClGIibWGcs2gVNteCV1Vpha5cjYEkR9dsi1HlhPX48lPYaNrGPgdSOG4mWjsuNWU2d4ahDUlmmXQ4ijUD2FsupppHlg4V0HUplVe08opWUdEDeINrotJWXfxFjtySm8-MEpXiKsdDXS7UfOIG8GppMgp3pYdadGPbfqEonhPliOJZeQDPoi2tJlZyjBs45dv_OJEduE99zYVPfKt2YaO76O0LjIQ68zJY_A2bnQIa |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiouLZRHl_IwEkj0kN3EiR1vbwhYutAtPVCpN9fO2qsKbbLqJof2yC_v-LGVigAhcYuiiePMjJ2xvplvAN6IkmpPMUSpoklRcp0IXtFEG5HaotCKCleNPDniByfFl1N2Gvuc-lqYZhG3_j5eBqLgoMKYECcGWc6zxHHGDFTF6FAMFlO7BndZznNHnj_-dnwDI2DwXERs8ndP3voXreH7_hxm-t_NaAvOVhMNWSY_-l2r-9XVLxyO__ElD2AzhqLkfRB_CHdMvQ33QnPKy23YmETYHW_6PNFq-Qh-Hjb1LLlwFQlkHjAecj7HPYm4Dg8rDl4Su_-QWSC1Pr8yUzLvXKkKiUytXuzd58l4b5-0PnV3SRRxYMAlUV3beCZZEvZO10SA4Cgzn7nwGE5Gn75_OEhiG4ekQpO0iTAY1GVMY-BWUW6zimY651NhMm2tQe8wqeKsLHPDVWkrDCgZbtEmG5aWG4czP4H1uqnNDpDMMj1VyjKhaGFSqwv0JVGYQlgcxege7K0MKheBrUN6lF0I6ZQtnbJlUHYP3qJdZFyyy7_IkVtyi7mWvJRMpni4S7lEm_Xg9cptJK5OB7mo2jTdUlI8L4ohxTNzD54Gf7qZWM4wfmCUPfvHibyCjeOPI3k4Pvq6C_epK8NwuXDlc1hvLzrzAoOjVr_0C-AaKCQHfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-range+medical+image+registration+through+generalized+mutual+information+%28GMI%29%3A+towards+a+fully+automatic+volumetric+alignment&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Vianna%2C+Vinicius+Pavanelli&rft.au=Murta%2C+Luiz+Otavio&rft.date=2022-03-07&rft.eissn=1361-6560&rft.volume=67&rft.issue=5&rft_id=info:doi/10.1088%2F1361-6560%2Fac5298&rft_id=info%3Apmid%2F35130525&rft.externalDocID=35130525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |