Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification

In recent years, feature selection for multilabel classification has attracted attention in machine learning and data mining. However, some feature selection methods ignore the correlations among labels, resulting in low performance, and most of them face challenges in determining an appropriate nei...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 578; pp. 887 - 912
Main Authors Sun, Lin, Wang, Tianxiang, Ding, Weiping, Xu, Jiucheng, Lin, Yaojin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, feature selection for multilabel classification has attracted attention in machine learning and data mining. However, some feature selection methods ignore the correlations among labels, resulting in low performance, and most of them face challenges in determining an appropriate neighborhood radius for neighborhood systems and suffer from expensive time cost. To overcome the issues, we propose a novel feature selection method using Fisher score and multilabel neighborhood rough sets (MNRS) in multilabel neighborhood decision systems. First, to identify the correlations between labels under a binary distribution, two types of new mutual information between labels are considered, and their balance coefficients are defined. By enhancing strong correlations and weakening weak correlations between labels, a mutual information-based Fisher score model with a second-order correlation between labels is designed to fit multilabel data. Second, to address the problem of automatically choosing a neighborhood radius, a subset of heterogeneous and homogeneous samples is employed to develop a new classification margin as a neighborhood radius, and some concepts of neighborhood, neighborhood class, and upper and lower approximations are formulated for multilabel neighborhood decision systems. The weight and dependency degree are presented to effectively measure the uncertainty of samples in multilabel neighborhood decision systems. Thus, we further present a new classification margin-based MNRS model. Finally, a filter-wrapper preprocessing algorithm for feature selection using the improved Fisher score model is proposed to decrease the spatiotemporal complexity of multilabel data, and a heuristic feature selection algorithm is designed for improve classification performance on multilabel datasets. Experimental results on thirteen multilabel datasets show that the proposed algorithm is effective in selecting significant features, demonstrating its excellent classification ability in multilabel datasets.
AbstractList In recent years, feature selection for multilabel classification has attracted attention in machine learning and data mining. However, some feature selection methods ignore the correlations among labels, resulting in low performance, and most of them face challenges in determining an appropriate neighborhood radius for neighborhood systems and suffer from expensive time cost. To overcome the issues, we propose a novel feature selection method using Fisher score and multilabel neighborhood rough sets (MNRS) in multilabel neighborhood decision systems. First, to identify the correlations between labels under a binary distribution, two types of new mutual information between labels are considered, and their balance coefficients are defined. By enhancing strong correlations and weakening weak correlations between labels, a mutual information-based Fisher score model with a second-order correlation between labels is designed to fit multilabel data. Second, to address the problem of automatically choosing a neighborhood radius, a subset of heterogeneous and homogeneous samples is employed to develop a new classification margin as a neighborhood radius, and some concepts of neighborhood, neighborhood class, and upper and lower approximations are formulated for multilabel neighborhood decision systems. The weight and dependency degree are presented to effectively measure the uncertainty of samples in multilabel neighborhood decision systems. Thus, we further present a new classification margin-based MNRS model. Finally, a filter-wrapper preprocessing algorithm for feature selection using the improved Fisher score model is proposed to decrease the spatiotemporal complexity of multilabel data, and a heuristic feature selection algorithm is designed for improve classification performance on multilabel datasets. Experimental results on thirteen multilabel datasets show that the proposed algorithm is effective in selecting significant features, demonstrating its excellent classification ability in multilabel datasets.
Author Xu, Jiucheng
Sun, Lin
Ding, Weiping
Wang, Tianxiang
Lin, Yaojin
Author_xml – sequence: 1
  givenname: Lin
  surname: Sun
  fullname: Sun, Lin
  email: sunlin@htu.edu.cn
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
– sequence: 2
  givenname: Tianxiang
  surname: Wang
  fullname: Wang, Tianxiang
  email: wtx0719@126.com
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
– sequence: 3
  givenname: Weiping
  orcidid: 0000-0002-3180-7347
  surname: Ding
  fullname: Ding, Weiping
  email: dwp9988@163.com
  organization: School of Information Science and Technology, Nantong University, Nantong 226019, China
– sequence: 4
  givenname: Jiucheng
  surname: Xu
  fullname: Xu, Jiucheng
  email: jiuchxu@gmail.com
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
– sequence: 5
  givenname: Yaojin
  surname: Lin
  fullname: Lin, Yaojin
  email: zzlinyaojin@163.com
  organization: Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou 363000, China
BookMark eNp9kLFOwzAQhi1UJNrCA7D5BRLOTmI7YkIVBaRKLDBbjn1pXaUxshMk3p6UMiCGTjf89_26-xZk1oceCbllkDNg4m6f-z7lHDjLQeVQ8AsyZ0ryTPCazcgcgEMGvKquyCKlPQCUUog58Ws0wxiRJuzQDj70dEy-39K1TzuMNNkwhaZ39DB2g-9Mgx3t0W93TYi7EByNYdzuJnxItA3x75rtTEq-9dYce6_JZWu6hDe_c0ne149vq-ds8_r0snrYZLYQxZApZ2VjoQLuQAlhsZJlVdbGSaWkqNuqMqyUtWrqojYIgrtWuaLlOOElU3WxJOzUa2NIKWKrP6I_mPilGeijK73Xkyt9dKVB6cnVxMh_jPXDz9VDNL47S96fSJxe-vQYdbIee4vOx8mndsGfob8BXXOIMw
CitedBy_id crossref_primary_10_1016_j_ecolind_2023_110234
crossref_primary_10_1002_cpe_7067
crossref_primary_10_1016_j_ins_2022_08_066
crossref_primary_10_1007_s10489_022_03987_2
crossref_primary_10_1016_j_artmed_2023_102753
crossref_primary_10_1016_j_engappai_2025_110191
crossref_primary_10_3390_math11092084
crossref_primary_10_1016_j_knosys_2023_110817
crossref_primary_10_1016_j_knosys_2023_110938
crossref_primary_10_1109_TKDE_2024_3397878
crossref_primary_10_1155_2024_5529847
crossref_primary_10_1109_TAI_2023_3237203
crossref_primary_10_3390_app14051960
crossref_primary_10_1007_s13042_022_01653_0
crossref_primary_10_1016_j_eswa_2023_121956
crossref_primary_10_7717_peerj_cs_988
crossref_primary_10_3390_s23094461
crossref_primary_10_1016_j_compeleceng_2024_109631
crossref_primary_10_1155_2024_6666054
crossref_primary_10_1016_j_knosys_2025_113252
crossref_primary_10_1088_1361_6560_acbadf
crossref_primary_10_1109_ACCESS_2024_3520482
crossref_primary_10_1016_j_ins_2024_120647
crossref_primary_10_1080_03081079_2024_2436887
crossref_primary_10_1109_TBDATA_2023_3342643
crossref_primary_10_1109_TFUZZ_2022_3161747
crossref_primary_10_1109_TFUZZ_2022_3222941
crossref_primary_10_1016_j_asoc_2022_109958
crossref_primary_10_1016_j_inffus_2023_02_016
crossref_primary_10_1109_JSEN_2021_3118490
crossref_primary_10_3233_IDT_220077
crossref_primary_10_1016_j_ins_2022_07_130
crossref_primary_10_2139_ssrn_4086695
crossref_primary_10_1016_j_ijar_2022_09_012
crossref_primary_10_1007_s10489_024_05555_2
crossref_primary_10_1016_j_ijar_2025_109420
crossref_primary_10_1016_j_jmapro_2023_02_059
crossref_primary_10_1016_j_compeleceng_2024_109346
crossref_primary_10_1016_j_knosys_2022_109092
crossref_primary_10_1016_j_compchemeng_2024_108623
crossref_primary_10_1016_j_knosys_2023_111102
crossref_primary_10_1016_j_patcog_2023_110081
crossref_primary_10_1016_j_ijar_2022_03_009
crossref_primary_10_1007_s13042_023_01897_4
crossref_primary_10_1007_s40815_024_01788_y
crossref_primary_10_1007_s10489_022_04405_3
crossref_primary_10_1109_TKDE_2024_3405489
crossref_primary_10_21015_vtse_v12i2_1811
crossref_primary_10_1007_s13042_024_02362_6
crossref_primary_10_1016_j_asoc_2024_112284
crossref_primary_10_1016_j_engappai_2023_106509
crossref_primary_10_1007_s10462_024_11029_1
crossref_primary_10_1016_j_asoc_2023_110211
crossref_primary_10_1007_s13042_023_01924_4
crossref_primary_10_1016_j_ejor_2024_11_038
crossref_primary_10_3390_s24113414
crossref_primary_10_1007_s10115_024_02258_5
crossref_primary_10_1109_TFUZZ_2023_3287193
crossref_primary_10_1016_j_ins_2024_120501
crossref_primary_10_3390_math10162913
crossref_primary_10_3390_s23010184
crossref_primary_10_1016_j_neucom_2022_11_096
crossref_primary_10_1016_j_asoc_2022_108800
crossref_primary_10_1093_tse_tdac076
crossref_primary_10_1109_TFUZZ_2022_3182441
crossref_primary_10_1109_TPAMI_2024_3486319
crossref_primary_10_1007_s13042_023_01788_8
crossref_primary_10_1016_j_ins_2022_08_118
crossref_primary_10_1016_j_ijar_2024_109149
crossref_primary_10_1016_j_ins_2022_11_156
crossref_primary_10_1016_j_ins_2022_02_024
crossref_primary_10_1016_j_ins_2024_121163
crossref_primary_10_1007_s10489_021_03142_3
crossref_primary_10_1155_2022_5675200
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1016_j_watres_2024_121336
crossref_primary_10_1002_cpe_7666
crossref_primary_10_1016_j_conengprac_2023_105630
crossref_primary_10_3390_axioms11090444
crossref_primary_10_1111_itor_13467
crossref_primary_10_1016_j_asoc_2024_111692
crossref_primary_10_1109_ACCESS_2022_3231871
crossref_primary_10_1016_j_bspc_2023_105045
crossref_primary_10_1016_j_engappai_2024_108108
crossref_primary_10_1016_j_inffus_2023_102150
crossref_primary_10_1007_s10489_022_03696_w
crossref_primary_10_1016_j_engappai_2023_107659
crossref_primary_10_1016_j_compag_2024_109051
crossref_primary_10_1007_s10489_023_05136_9
crossref_primary_10_1007_s13042_023_01846_1
crossref_primary_10_1016_j_bcra_2024_100253
crossref_primary_10_3390_app13169089
crossref_primary_10_1016_j_knosys_2024_112125
crossref_primary_10_3390_s23156836
crossref_primary_10_1016_j_eswa_2025_126898
crossref_primary_10_1038_s41598_022_25788_w
crossref_primary_10_1177_17483026241232295
crossref_primary_10_1016_j_jag_2025_104403
crossref_primary_10_3390_sym14091828
crossref_primary_10_1016_j_ins_2023_119215
crossref_primary_10_1016_j_jmapro_2024_06_059
crossref_primary_10_1109_JBHI_2024_3409163
crossref_primary_10_1109_ACCESS_2023_3318319
crossref_primary_10_1109_TGRS_2024_3462752
crossref_primary_10_1016_j_ins_2022_02_004
crossref_primary_10_1016_j_inffus_2023_01_019
crossref_primary_10_1007_s11517_024_03247_0
crossref_primary_10_1016_j_eswa_2022_117923
crossref_primary_10_1155_2022_9238968
crossref_primary_10_1016_j_patcog_2024_110580
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_1007_s00500_023_08573_3
crossref_primary_10_2478_jaiscr_2025_0008
crossref_primary_10_1016_j_patcog_2024_110791
crossref_primary_10_1016_j_ins_2023_03_144
crossref_primary_10_1016_j_knosys_2022_109849
crossref_primary_10_1016_j_ins_2022_11_060
crossref_primary_10_3390_machines10121155
crossref_primary_10_3390_info13080385
crossref_primary_10_1016_j_ijar_2023_109062
crossref_primary_10_1109_ACCESS_2024_3454516
crossref_primary_10_1016_j_knosys_2023_110307
crossref_primary_10_1021_acs_jpcc_3c02539
crossref_primary_10_1007_s10489_022_03554_9
crossref_primary_10_1007_s10586_024_04716_9
crossref_primary_10_1002_int_22861
crossref_primary_10_1007_s10489_022_03366_x
crossref_primary_10_1016_j_specom_2023_102960
crossref_primary_10_1016_j_cmpb_2024_108032
crossref_primary_10_1038_s41598_022_07337_7
crossref_primary_10_1109_TIM_2023_3334370
crossref_primary_10_1155_2023_4196920
crossref_primary_10_1016_j_asoc_2024_111656
crossref_primary_10_1007_s40747_022_00763_0
crossref_primary_10_1016_j_ins_2022_05_125
crossref_primary_10_1109_TIM_2023_3259035
crossref_primary_10_23939_mmc2023_03_693
crossref_primary_10_1007_s11571_024_10096_y
crossref_primary_10_1016_j_asoc_2022_109025
crossref_primary_10_1515_jisys_2023_0307
Cites_doi 10.1109/ACCESS.2020.3010314
10.1109/TFUZZ.2019.2949765
10.1109/TCYB.2019.2923430
10.1016/j.ijar.2013.06.003
10.1007/978-3-540-35488-8_13
10.1109/TFUZZ.2020.2989098
10.1016/j.patrec.2018.08.021
10.1109/ACCESS.2020.2976162
10.1016/j.patcog.2018.07.021
10.1007/s13042-017-0647-y
10.1109/TKDE.2016.2608339
10.1109/JAS.2017.7510781
10.1214/aoms/1177731944
10.1109/TCYB.2018.2834390
10.1016/j.patcog.2019.06.003
10.1016/j.neucom.2015.06.010
10.1016/j.knosys.2012.06.010
10.1016/j.ins.2019.10.022
10.1016/j.ins.2017.12.034
10.1007/s10489-018-1320-1
10.1109/TNNLS.2018.2872974
10.1109/TKDE.2017.2785795
10.1109/ACCESS.2019.2957662
10.1016/j.ins.2019.05.072
10.1609/aaai.v32i1.11656
10.1016/j.asoc.2015.10.009
10.1016/j.patrec.2017.02.004
10.1016/j.knosys.2019.105373
10.1007/978-3-319-46128-1_34
10.1016/j.patcog.2006.12.019
10.1016/j.patrec.2019.08.009
10.1109/ACCESS.2020.2982536
10.1109/TMM.2012.2187179
10.1023/A:1012487302797
10.1016/j.knosys.2019.104942
10.1016/j.ins.2020.05.102
10.1109/TFUZZ.2020.2975152
10.1016/j.knosys.2017.10.028
10.1016/j.eswa.2009.05.075
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.08.032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 912
ExternalDocumentID 10_1016_j_ins_2021_08_032
S002002552100832X
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c363t-8dc7bc0502d0866ce574549ad788769f55a14798b939ae062df8d3f2ec3641893
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Tue Jul 01 01:26:48 EDT 2025
Thu Apr 24 22:55:27 EDT 2025
Fri Feb 23 02:43:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neighborhood rough sets
Multilabel classification
Feature selection
Fisher Score
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-8dc7bc0502d0866ce574549ad788769f55a14798b939ae062df8d3f2ec3641893
ORCID 0000-0002-3180-7347
PageCount 26
ParticipantIDs crossref_primary_10_1016_j_ins_2021_08_032
crossref_citationtrail_10_1016_j_ins_2021_08_032
elsevier_sciencedirect_doi_10_1016_j_ins_2021_08_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Huang, Sun, Xu, Zhang (b0080) 2020; 8
Wu, Guo (b0205) 2019; 38
Vluymans, Cornelis, Herrera, Saeys (b0185) 2018; 433-434
Sun, Yin, Ding, Xu (b0170) 2019; 7
Wang, Huang, Shao, Hu, Chen (b0195) 2020; 50
Huang, Li, Huang, Wu (b0075) 2016; 28
Ding, Lin, Cao (b0045) 2019; 30
Zhu, Kwok, Zhou (b0250) 2018; 30
Chen, Lin, Liu (b0025) 2020; 8
Saha, Rangwala, Domeniconi (b0130) 2012
Wang, Lin, Tang, Fu, Lin (b0190) 2018; 31
Guyon, Weston, Barnhill (b0065) 2002; 46
Cai, Zhu (b0010) 2018; 9
Wang, Wang, Shao, Qian, Chen (b0200) 2020; 28
Ding, Lin, Cao (b0040) 2019; 49
Sun, Wang, Ding, Qian, Xu (b0145) 2021; 29
Ma, Nie, Yang, Uijlings, Sebe (b0115) 2012; 14
L. Sun, L.Y. Wang, Y.H. Qian, J.C. Xu, S.G. Zhang, Feature selection using Lebesgue and entropy measures for incomplete neighborhood decision systems, Knowl.-Based Syst. 186 (2019) Art. no. 104942.
Sun, Zhang, Qian, Xu, Zhang (b0175) 2019; 502
Huang, Jiang, Sun (b0085) 2018; 112
Hancer, Xue, Zhang (b0070) 2018; 140
Ding, Pedrycz, Triguero, Cao, Lin (b0050) 2021; 29
Deng, Zheng, Deng, Wang, He, Zhang (b0035) 2020; 8
Lin, Hu, Liu, Duan (b0105) 2015; 168
Q.W. Zhang, Y. Zhong, M.L. Zhang, Feature-induced labeling information enrichment for multi-label learning, in: Proceedings of Association for the Advancement of Artificial Intelligence, 2018, pp. 4446-4453.
Lin, Hu, Liu, Chen, Duan (b0100) 2016; 38
Liu, Lin, Li, Weng, Wu (b0110) 2018; 84
L. Sun, L.Y. Wang, W.P. Ding, Y.H. Qian, J.C. Xu, Neighborhood multi-granulation rough sets-based attribute reduction using Lebesgue and entropy measures in incomplete neighborhood decision systems, Knowl.-Based Syst. 192 (2020) Art. no. 105373.
Nie, Huang, Cai, Ding (b0120) 2010; 23
Jian, Li, Shu, Liu (b0090) 2016
Lim, Lee, Kim (b0095) 2017; 89
Cai, Zhu (b0005) 2017; 5
Duan, Hu, Zhang, Qian, Li (b0055) 2015; 52
P. Yan, Y. Li, Graph-margin based multi-label feature selection, in: Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2016, pp. 540-555.
Chen, Lin (b0030) 2006
Zhang, Zhou (b0240) 2007; 40
Sun, Zhang, Qian, Xu, Zhang, Tian (b0180) 2019; 49
H.T. Xu, L.Y. Xu, Multi-label feature selection algorithm based on label pairwise ranking comparison transformation, in: Proceedings of IEEE International Joint Conference on Neural Networks, 2017, pp. 1210-1217.
L. Yang, X.Z. Wu, Y. Jiang, Z.H. Zhou, Multi-label learning with deep forest, arXiv (2019) arXiv:1911.06557.
Yu, Pedrycz, Miao (b0225) 2013; 54
Güneş, Polat, Yosunkaya (b0135) 2010; 37
Sun, Yin, Ding, Qian, Xu (b0165) 2020; 537
Sun, Yin, Ding, Qian, Xu (b0160) 2021
Zhang, Luo, Li, Zhou, Li (b0235) 2019; 95
Friedman (b0060) 1960; 11
Sadhukhan, Palit (b0125) 2019; 125
Yu, Pedrycz, Miao, Zhang (b0230) 2013
Che, Chen, Mi (b0020) 2020; 512
Chang, Nie, Yang, Huang (b0015) 2014
Sun, Xu, Tian (b0140) 2012; 36
Friedman (10.1016/j.ins.2021.08.032_b0060) 1960; 11
Cai (10.1016/j.ins.2021.08.032_b0005) 2017; 5
Duan (10.1016/j.ins.2021.08.032_b0055) 2015; 52
Zhu (10.1016/j.ins.2021.08.032_b0250) 2018; 30
Chang (10.1016/j.ins.2021.08.032_b0015) 2014
10.1016/j.ins.2021.08.032_b0150
10.1016/j.ins.2021.08.032_b0155
Sun (10.1016/j.ins.2021.08.032_b0145) 2021; 29
Sun (10.1016/j.ins.2021.08.032_b0160) 2021
Lin (10.1016/j.ins.2021.08.032_b0105) 2015; 168
Che (10.1016/j.ins.2021.08.032_b0020) 2020; 512
Wang (10.1016/j.ins.2021.08.032_b0200) 2020; 28
Ding (10.1016/j.ins.2021.08.032_b0040) 2019; 49
Lim (10.1016/j.ins.2021.08.032_b0095) 2017; 89
Guyon (10.1016/j.ins.2021.08.032_b0065) 2002; 46
Lin (10.1016/j.ins.2021.08.032_b0100) 2016; 38
Sadhukhan (10.1016/j.ins.2021.08.032_b0125) 2019; 125
Chen (10.1016/j.ins.2021.08.032_b0030) 2006
Ding (10.1016/j.ins.2021.08.032_b0050) 2021; 29
Sun (10.1016/j.ins.2021.08.032_b0180) 2019; 49
Cai (10.1016/j.ins.2021.08.032_b0010) 2018; 9
Wang (10.1016/j.ins.2021.08.032_b0195) 2020; 50
Ma (10.1016/j.ins.2021.08.032_b0115) 2012; 14
Sun (10.1016/j.ins.2021.08.032_b0170) 2019; 7
10.1016/j.ins.2021.08.032_b0210
Ding (10.1016/j.ins.2021.08.032_b0045) 2019; 30
Saha (10.1016/j.ins.2021.08.032_b0130) 2012
Zhang (10.1016/j.ins.2021.08.032_b0235) 2019; 95
Yu (10.1016/j.ins.2021.08.032_b0225) 2013; 54
10.1016/j.ins.2021.08.032_b0245
Huang (10.1016/j.ins.2021.08.032_b0080) 2020; 8
Nie (10.1016/j.ins.2021.08.032_b0120) 2010; 23
Wu (10.1016/j.ins.2021.08.032_b0205) 2019; 38
Zhang (10.1016/j.ins.2021.08.032_b0240) 2007; 40
Sun (10.1016/j.ins.2021.08.032_b0140) 2012; 36
Sun (10.1016/j.ins.2021.08.032_b0165) 2020; 537
Vluymans (10.1016/j.ins.2021.08.032_b0185) 2018; 433-434
Wang (10.1016/j.ins.2021.08.032_b0190) 2018; 31
Huang (10.1016/j.ins.2021.08.032_b0075) 2016; 28
10.1016/j.ins.2021.08.032_b0220
Chen (10.1016/j.ins.2021.08.032_b0025) 2020; 8
10.1016/j.ins.2021.08.032_b0215
Huang (10.1016/j.ins.2021.08.032_b0085) 2018; 112
Liu (10.1016/j.ins.2021.08.032_b0110) 2018; 84
Jian (10.1016/j.ins.2021.08.032_b0090) 2016
Sun (10.1016/j.ins.2021.08.032_b0175) 2019; 502
Deng (10.1016/j.ins.2021.08.032_b0035) 2020; 8
Hancer (10.1016/j.ins.2021.08.032_b0070) 2018; 140
Yu (10.1016/j.ins.2021.08.032_b0230) 2013
Güneş (10.1016/j.ins.2021.08.032_b0135) 2010; 37
References_xml – volume: 11
  start-page: 86
  year: 1960
  end-page: 92
  ident: b0060
  article-title: A comparison of alternative tests of significance for the problem of
  publication-title: Ann. Math. Stat.
– volume: 38
  start-page: 244
  year: 2016
  end-page: 256
  ident: b0100
  article-title: Multi-label feature selection based on neighborhood mutual information
  publication-title: Appl. Soft Comput.
– volume: 502
  start-page: 18
  year: 2019
  end-page: 41
  ident: b0175
  article-title: Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification
  publication-title: Inf. Sci.
– volume: 38
  start-page: 472
  year: 2019
  end-page: 479
  ident: b0205
  article-title: An improved Fisher Score feature selection method and its application
  publication-title: Chinese Journal of Liaoning Technical University
– volume: 23
  start-page: 1813
  year: 2010
  end-page: 1821
  ident: b0120
  article-title: Efficient and robust feature selection via joint ℓ2, 1-norms minimization
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1171
  year: 2014
  end-page: 1177
  ident: b0015
  article-title: A convex formulation for semi-supervised multi-label feature selection
  publication-title: in: Proceedings of the National Conference on Artificial Intelligence
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: b0065
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learning
– year: 2021
  ident: b0160
  article-title: Feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 537
  start-page: 401
  year: 2020
  end-page: 424
  ident: b0165
  article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems
  publication-title: Inf. Sci.
– volume: 28
  start-page: 3309
  year: 2016
  end-page: 3323
  ident: b0075
  article-title: Learning label-specific features and class-dependent labels for multi-label classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 125
  start-page: 813
  year: 2019
  end-page: 820
  ident: b0125
  article-title: Reverse-nearest neighborhood based oversampling for imbalanced, multi-label datasets
  publication-title: Pattern Recogn. Lett.
– start-page: 1627
  year: 2016
  end-page: 1633
  ident: b0090
  article-title: Multi-label informed feature selection, in
  publication-title: Proceedings of International Joint Conference on Artificial Intelligence
– volume: 30
  start-page: 2013
  year: 2019
  end-page: 2027
  ident: b0045
  article-title: Shared nearest-neighbor quantum game-based attribute reduction with hierarchical coevolutionary spark and its application in consistent segmentation of neonatal cerebral cortical surfaces
  publication-title: IEEE Transactions on Neural Network and Learning System
– volume: 49
  start-page: 1245
  year: 2019
  end-page: 1259
  ident: b0180
  article-title: Joint neighborhood entropy-based gene selection method with fisher score for tumor classification
  publication-title: Applied Intelligence
– volume: 112
  start-page: 346
  year: 2018
  end-page: 352
  ident: b0085
  article-title: Manifold-based constraint Laplacian score for multi-label feature selection
  publication-title: Pattern Recogn. Lett.
– start-page: 427
  year: 2012
  end-page: 432
  ident: b0130
  article-title: Multi-label collective classification using adaptive neighborhoods, in
  publication-title: Proceedings of the 11th International Conference on Machine Learning and Applications
– volume: 29
  start-page: 1395
  year: 2021
  end-page: 1408
  ident: b0050
  article-title: Multigranulation super-trust model for attribute reduction
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 28
  start-page: 818
  year: 2020
  end-page: 830
  ident: b0200
  article-title: Fuzzy rough attribute reduction for categorical data
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 89
  start-page: 25
  year: 2017
  end-page: 30
  ident: b0095
  article-title: Optimization approach for feature selection in multi-label classification
  publication-title: Pattern Recogn. Lett.
– volume: 54
  start-page: 1373
  year: 2013
  end-page: 1387
  ident: b0225
  article-title: Neighborhood rough sets based multi-label classification for automatic image annotation
  publication-title: Int. J. Approximate Reasoning
– volume: 7
  start-page: 175793
  year: 2019
  end-page: 175815
  ident: b0170
  article-title: Hybrid multilabel feature selection using BPSO and neighborhood rough sets for multilabel neighborhood decision systems
  publication-title: IEEE Access
– reference: H.T. Xu, L.Y. Xu, Multi-label feature selection algorithm based on label pairwise ranking comparison transformation, in: Proceedings of IEEE International Joint Conference on Neural Networks, 2017, pp. 1210-1217.
– volume: 31
  start-page: 123
  year: 2018
  end-page: 131
  ident: b0190
  article-title: Multi-label feature selection based on information granulation
  publication-title: Chinese Pattern Recognition and Artificial Intelligence
– reference: L. Sun, L.Y. Wang, Y.H. Qian, J.C. Xu, S.G. Zhang, Feature selection using Lebesgue and entropy measures for incomplete neighborhood decision systems, Knowl.-Based Syst. 186 (2019) Art. no. 104942.
– volume: 29
  start-page: 19
  year: 2021
  end-page: 33
  ident: b0145
  article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 8
  start-page: 62011
  year: 2020
  end-page: 62031
  ident: b0080
  article-title: Multilabel feature selection using relief and minimum redundancy maximum relevance based on neighborhood rough sets
  publication-title: IEEE Access
– volume: 168
  start-page: 92
  year: 2015
  end-page: 103
  ident: b0105
  article-title: Multi-label feature selection based on max-dependency and min-redundancy
  publication-title: Neurocomputing
– reference: Q.W. Zhang, Y. Zhong, M.L. Zhang, Feature-induced labeling information enrichment for multi-label learning, in: Proceedings of Association for the Advancement of Artificial Intelligence, 2018, pp. 4446-4453.
– start-page: 315
  year: 2006
  end-page: 324
  ident: b0030
  article-title: Combining SVMs with various feature selection strategies
  publication-title: Studies in Fuzziness and Soft Computing Feature Extraction
– volume: 8
  start-page: 133565
  year: 2020
  end-page: 133576
  ident: b0025
  article-title: Multi-label attribute reduction based on variable precision fuzzy neighborhood rough set
  publication-title: IEEE Access
– volume: 49
  start-page: 2744
  year: 2019
  end-page: 2757
  ident: b0040
  article-title: Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping PSO with nearest-neighbor memeplexes
  publication-title: IEEE Trans. Cybern.
– volume: 9
  start-page: 1321
  year: 2018
  end-page: 1334
  ident: b0010
  article-title: Multi-label feature selection via feature manifold learning and sparsity regularization
  publication-title: Int. J. Mach. Learn. Cybern.
– reference: L. Sun, L.Y. Wang, W.P. Ding, Y.H. Qian, J.C. Xu, Neighborhood multi-granulation rough sets-based attribute reduction using Lebesgue and entropy measures in incomplete neighborhood decision systems, Knowl.-Based Syst. 192 (2020) Art. no. 105373.
– reference: L. Yang, X.Z. Wu, Y. Jiang, Z.H. Zhou, Multi-label learning with deep forest, arXiv (2019) arXiv:1911.06557.
– volume: 40
  start-page: 2038
  year: 2007
  end-page: 2048
  ident: b0240
  article-title: ML-KNN: A lazy learning approach to multi-label learning
  publication-title: Pattern Recogn.
– volume: 433-434
  start-page: 96
  year: 2018
  end-page: 114
  ident: b0185
  article-title: Multi-label classification using a fuzzy rough neighborhood consensus
  publication-title: Inf. Sci.
– volume: 140
  start-page: 103
  year: 2018
  end-page: 119
  ident: b0070
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowl.-Based Syst.
– volume: 512
  start-page: 795
  year: 2020
  end-page: 812
  ident: b0020
  article-title: A novel approach for learning label correlation with application to feature selection of multi-label data
  publication-title: Inf. Sci.
– volume: 8
  start-page: 39678
  year: 2020
  end-page: 39688
  ident: b0035
  article-title: Feature selection for multi-label learning based on F-neighborhood rough sets
  publication-title: IEEE Access
– start-page: 86
  year: 2013
  end-page: 90
  ident: b0230
  article-title: Neighborhood rough sets based multi-label classification, in
  publication-title: Proceedings of Joint IFSA World Congress and NAFIPS Annual Meeting
– volume: 84
  start-page: 273
  year: 2018
  end-page: 287
  ident: b0110
  article-title: Online multi-label streaming feature selection based on neighborhood rough set
  publication-title: Pattern Recogn.
– reference: P. Yan, Y. Li, Graph-margin based multi-label feature selection, in: Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2016, pp. 540-555.
– volume: 52
  start-page: 56
  year: 2015
  end-page: 65
  ident: b0055
  article-title: Feature selection for multi-label classification based on neighborhood rough sets
  publication-title: Chinese Journal of Computer Research and Development
– volume: 14
  start-page: 1021
  year: 2012
  end-page: 1030
  ident: b0115
  article-title: Web image annotation via subspace-sparsity collaborated feature selection
  publication-title: IEEE Trans. Multimedia
– volume: 36
  start-page: 206
  year: 2012
  end-page: 216
  ident: b0140
  article-title: Feature selection using rough entropy-based uncertainty measures in incomplete decision systems
  publication-title: Knowl.-Based Syst.
– volume: 50
  start-page: 4031
  year: 2020
  end-page: 4042
  ident: b0195
  article-title: Feature selection based on neighborhood self-information
  publication-title: IEEE Trans. Cybern.
– volume: 37
  start-page: 998
  year: 2010
  end-page: 1004
  ident: b0135
  article-title: Multi-class f-score feature selection approach to classification of obstructive sleep apnea syndrome
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 320
  year: 2017
  end-page: 330
  ident: b0005
  article-title: Feature selection for multi-label classification using neighborhood preservation
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 95
  start-page: 136
  year: 2019
  end-page: 150
  ident: b0235
  article-title: Manifold regularized discriminative feature selection for multi-label learning
  publication-title: Pattern Recogn.
– volume: 30
  start-page: 1081
  year: 2018
  end-page: 1094
  ident: b0250
  article-title: Multi-label learning with global and local label correlation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 8
  start-page: 133565
  year: 2020
  ident: 10.1016/j.ins.2021.08.032_b0025
  article-title: Multi-label attribute reduction based on variable precision fuzzy neighborhood rough set
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010314
– volume: 28
  start-page: 818
  issue: 5
  year: 2020
  ident: 10.1016/j.ins.2021.08.032_b0200
  article-title: Fuzzy rough attribute reduction for categorical data
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2949765
– volume: 50
  start-page: 4031
  issue: 9
  year: 2020
  ident: 10.1016/j.ins.2021.08.032_b0195
  article-title: Feature selection based on neighborhood self-information
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2923430
– volume: 54
  start-page: 1373
  issue: 9
  year: 2013
  ident: 10.1016/j.ins.2021.08.032_b0225
  article-title: Neighborhood rough sets based multi-label classification for automatic image annotation
  publication-title: Int. J. Approximate Reasoning
  doi: 10.1016/j.ijar.2013.06.003
– start-page: 315
  year: 2006
  ident: 10.1016/j.ins.2021.08.032_b0030
  article-title: Combining SVMs with various feature selection strategies
  doi: 10.1007/978-3-540-35488-8_13
– start-page: 427
  year: 2012
  ident: 10.1016/j.ins.2021.08.032_b0130
  article-title: Multi-label collective classification using adaptive neighborhoods, in
– volume: 29
  start-page: 19
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2021.08.032_b0145
  article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2989098
– volume: 112
  start-page: 346
  year: 2018
  ident: 10.1016/j.ins.2021.08.032_b0085
  article-title: Manifold-based constraint Laplacian score for multi-label feature selection
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.08.021
– year: 2021
  ident: 10.1016/j.ins.2021.08.032_b0160
  article-title: Feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 8
  start-page: 39678
  year: 2020
  ident: 10.1016/j.ins.2021.08.032_b0035
  article-title: Feature selection for multi-label learning based on F-neighborhood rough sets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976162
– volume: 84
  start-page: 273
  year: 2018
  ident: 10.1016/j.ins.2021.08.032_b0110
  article-title: Online multi-label streaming feature selection based on neighborhood rough set
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.07.021
– volume: 9
  start-page: 1321
  issue: 8
  year: 2018
  ident: 10.1016/j.ins.2021.08.032_b0010
  article-title: Multi-label feature selection via feature manifold learning and sparsity regularization
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-017-0647-y
– volume: 28
  start-page: 3309
  issue: 12
  year: 2016
  ident: 10.1016/j.ins.2021.08.032_b0075
  article-title: Learning label-specific features and class-dependent labels for multi-label classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2608339
– start-page: 1627
  year: 2016
  ident: 10.1016/j.ins.2021.08.032_b0090
  article-title: Multi-label informed feature selection, in
– ident: 10.1016/j.ins.2021.08.032_b0210
– volume: 5
  start-page: 320
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2021.08.032_b0005
  article-title: Feature selection for multi-label classification using neighborhood preservation
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510781
– volume: 11
  start-page: 86
  issue: 1
  year: 1960
  ident: 10.1016/j.ins.2021.08.032_b0060
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– volume: 49
  start-page: 2744
  issue: 7
  year: 2019
  ident: 10.1016/j.ins.2021.08.032_b0040
  article-title: Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping PSO with nearest-neighbor memeplexes
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2834390
– start-page: 86
  year: 2013
  ident: 10.1016/j.ins.2021.08.032_b0230
  article-title: Neighborhood rough sets based multi-label classification, in
– volume: 95
  start-page: 136
  year: 2019
  ident: 10.1016/j.ins.2021.08.032_b0235
  article-title: Manifold regularized discriminative feature selection for multi-label learning
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.06.003
– volume: 23
  start-page: 1813
  year: 2010
  ident: 10.1016/j.ins.2021.08.032_b0120
  article-title: Efficient and robust feature selection via joint ℓ2, 1-norms minimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 168
  start-page: 92
  issue: 30
  year: 2015
  ident: 10.1016/j.ins.2021.08.032_b0105
  article-title: Multi-label feature selection based on max-dependency and min-redundancy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.010
– volume: 36
  start-page: 206
  year: 2012
  ident: 10.1016/j.ins.2021.08.032_b0140
  article-title: Feature selection using rough entropy-based uncertainty measures in incomplete decision systems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.06.010
– volume: 512
  start-page: 795
  year: 2020
  ident: 10.1016/j.ins.2021.08.032_b0020
  article-title: A novel approach for learning label correlation with application to feature selection of multi-label data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.022
– volume: 433-434
  start-page: 96
  year: 2018
  ident: 10.1016/j.ins.2021.08.032_b0185
  article-title: Multi-label classification using a fuzzy rough neighborhood consensus
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.12.034
– volume: 49
  start-page: 1245
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2021.08.032_b0180
  article-title: Joint neighborhood entropy-based gene selection method with fisher score for tumor classification
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1320-1
– volume: 30
  start-page: 2013
  issue: 7
  year: 2019
  ident: 10.1016/j.ins.2021.08.032_b0045
  article-title: Shared nearest-neighbor quantum game-based attribute reduction with hierarchical coevolutionary spark and its application in consistent segmentation of neonatal cerebral cortical surfaces
  publication-title: IEEE Transactions on Neural Network and Learning System
  doi: 10.1109/TNNLS.2018.2872974
– volume: 30
  start-page: 1081
  issue: 6
  year: 2018
  ident: 10.1016/j.ins.2021.08.032_b0250
  article-title: Multi-label learning with global and local label correlation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2785795
– volume: 7
  start-page: 175793
  year: 2019
  ident: 10.1016/j.ins.2021.08.032_b0170
  article-title: Hybrid multilabel feature selection using BPSO and neighborhood rough sets for multilabel neighborhood decision systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957662
– volume: 31
  start-page: 123
  issue: 2
  year: 2018
  ident: 10.1016/j.ins.2021.08.032_b0190
  article-title: Multi-label feature selection based on information granulation
  publication-title: Chinese Pattern Recognition and Artificial Intelligence
– volume: 502
  start-page: 18
  year: 2019
  ident: 10.1016/j.ins.2021.08.032_b0175
  article-title: Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.05.072
– ident: 10.1016/j.ins.2021.08.032_b0245
  doi: 10.1609/aaai.v32i1.11656
– ident: 10.1016/j.ins.2021.08.032_b0220
– volume: 38
  start-page: 244
  year: 2016
  ident: 10.1016/j.ins.2021.08.032_b0100
  article-title: Multi-label feature selection based on neighborhood mutual information
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.009
– volume: 38
  start-page: 472
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2021.08.032_b0205
  article-title: An improved Fisher Score feature selection method and its application
  publication-title: Chinese Journal of Liaoning Technical University
– volume: 89
  start-page: 25
  year: 2017
  ident: 10.1016/j.ins.2021.08.032_b0095
  article-title: Optimization approach for feature selection in multi-label classification
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.02.004
– ident: 10.1016/j.ins.2021.08.032_b0150
  doi: 10.1016/j.knosys.2019.105373
– ident: 10.1016/j.ins.2021.08.032_b0215
  doi: 10.1007/978-3-319-46128-1_34
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  ident: 10.1016/j.ins.2021.08.032_b0240
  article-title: ML-KNN: A lazy learning approach to multi-label learning
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2006.12.019
– volume: 125
  start-page: 813
  year: 2019
  ident: 10.1016/j.ins.2021.08.032_b0125
  article-title: Reverse-nearest neighborhood based oversampling for imbalanced, multi-label datasets
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.08.009
– volume: 8
  start-page: 62011
  year: 2020
  ident: 10.1016/j.ins.2021.08.032_b0080
  article-title: Multilabel feature selection using relief and minimum redundancy maximum relevance based on neighborhood rough sets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982536
– volume: 52
  start-page: 56
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2021.08.032_b0055
  article-title: Feature selection for multi-label classification based on neighborhood rough sets
  publication-title: Chinese Journal of Computer Research and Development
– volume: 14
  start-page: 1021
  issue: 4
  year: 2012
  ident: 10.1016/j.ins.2021.08.032_b0115
  article-title: Web image annotation via subspace-sparsity collaborated feature selection
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2012.2187179
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.ins.2021.08.032_b0065
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learning
  doi: 10.1023/A:1012487302797
– ident: 10.1016/j.ins.2021.08.032_b0155
  doi: 10.1016/j.knosys.2019.104942
– volume: 537
  start-page: 401
  year: 2020
  ident: 10.1016/j.ins.2021.08.032_b0165
  article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.05.102
– volume: 29
  start-page: 1395
  issue: 6
  year: 2021
  ident: 10.1016/j.ins.2021.08.032_b0050
  article-title: Multigranulation super-trust model for attribute reduction
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2975152
– start-page: 1171
  year: 2014
  ident: 10.1016/j.ins.2021.08.032_b0015
  article-title: A convex formulation for semi-supervised multi-label feature selection
– volume: 140
  start-page: 103
  year: 2018
  ident: 10.1016/j.ins.2021.08.032_b0070
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.028
– volume: 37
  start-page: 998
  issue: 2
  year: 2010
  ident: 10.1016/j.ins.2021.08.032_b0135
  article-title: Multi-class f-score feature selection approach to classification of obstructive sleep apnea syndrome
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.075
SSID ssj0004766
Score 2.651792
Snippet In recent years, feature selection for multilabel classification has attracted attention in machine learning and data mining. However, some feature selection...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 887
SubjectTerms Feature selection
Fisher Score
Multilabel classification
Neighborhood rough sets
Title Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification
URI https://dx.doi.org/10.1016/j.ins.2021.08.032
Volume 578
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAoIAo0MoDYkAKTf2KM1YVqIDoRKVukeO4KKgKVR8rv527xIEiAQNjHF8S-c6-s_Pdd4Rc6sz2wXGBBnA2CQgJgthkOtCpjlOVGqtizHd-GqvRRDxM5bRBhnUuDMIq_dpfrenlau1ben40e4s8xxxfVkbEDPlpOJtiBruI0Mpv3r9gHtCiKphHGGDv-s9mifHKC2TsZhWLJ2c_-6Ytf3N3QPZ9oEgH1bcckoYrWmRviz6wRTo-6YBeUZ9VhKNM_XQ9IjnGd5ulo6uy2A3eQ5j7C63qndMVUlhSU2S0hBWCPbg5LfCsFAwD6Y5pWcMHxNcrCs_f7mYx6kaYUfnOYzK5u30ejgJfWiGwXPF1ACqKUhvKkGWwp1HWyUjATtFkCC5U8UxK0xdRrNOYx8aFimUznfEZcyAu-hDjnJBm8Va4U0JhxkurdKhSbYTVkdFaOgMbTyNdGDveJmE9qIn1vONY_mKe1ACz1wT0kKAeEiyJyVmbXH-KLCrSjb86i1pTyTfLScAp_C529j-xc7KLV1U24gVprpcb14GwZJ12S7vrkp3B_eNo_AGZYeI5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOCAaINzkgDkjVurRJ0yOaQIM9Tpu0W5WmGRqayrSN_4_dpjAk4MC1qdvKduIvjf0Z4EZlpo2BCy1AsylESODFOlOeSlWcylQbGVO982Aou-PweSImNehUtTCUVunW_nJNL1Zrd6XltNlazGZU48sLRMyJnybgky1oEDuVqEPj_qnXHX6VR0blkSXtlEigOtws0rxmOZF285LIM-A_h6eNkPO4D3sOK7L78nMOoGbzJuxuMAg24dLVHbBb5gqLSNHMzdhDmBHEe19atir63dAYZbq_sLLlOVsRiyXTecaKzEJ0CTtnOf0uRd8gxmNWtPFB8fWK4fM3bzMEvCnTqHjnEYwfH0adrue6K3gmkMHaQytFqfGFzzPc1khjRYTqQ0NRfqGMp0LodhjFKo2DWFtf8myqsmDKLYqHbYQ5x1DP33J7AgwnvTBS-TJVOjQq0koJq3HvqYX1Yxucgl8pNTGOepw6YMyTKsfsNUE7JGSHhLpiBvwU7j5FFiXvxl83h5Wlkm_Ok2Bc-F3s7H9i17DdHQ36Sf9p2DuHHRopixMvoL5evttLRCnr9Mp54QdhH-Tq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+Fisher+score+and+multilabel+neighborhood+rough+sets+for+multilabel+classification&rft.jtitle=Information+sciences&rft.au=Sun%2C+Lin&rft.au=Wang%2C+Tianxiang&rft.au=Ding%2C+Weiping&rft.au=Xu%2C+Jiucheng&rft.date=2021-11-01&rft.issn=0020-0255&rft.volume=578&rft.spage=887&rft.epage=912&rft_id=info:doi/10.1016%2Fj.ins.2021.08.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_08_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon