Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification
In recent years, feature selection for multilabel classification has attracted attention in machine learning and data mining. However, some feature selection methods ignore the correlations among labels, resulting in low performance, and most of them face challenges in determining an appropriate nei...
Saved in:
Published in | Information sciences Vol. 578; pp. 887 - 912 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, feature selection for multilabel classification has attracted attention in machine learning and data mining. However, some feature selection methods ignore the correlations among labels, resulting in low performance, and most of them face challenges in determining an appropriate neighborhood radius for neighborhood systems and suffer from expensive time cost. To overcome the issues, we propose a novel feature selection method using Fisher score and multilabel neighborhood rough sets (MNRS) in multilabel neighborhood decision systems. First, to identify the correlations between labels under a binary distribution, two types of new mutual information between labels are considered, and their balance coefficients are defined. By enhancing strong correlations and weakening weak correlations between labels, a mutual information-based Fisher score model with a second-order correlation between labels is designed to fit multilabel data. Second, to address the problem of automatically choosing a neighborhood radius, a subset of heterogeneous and homogeneous samples is employed to develop a new classification margin as a neighborhood radius, and some concepts of neighborhood, neighborhood class, and upper and lower approximations are formulated for multilabel neighborhood decision systems. The weight and dependency degree are presented to effectively measure the uncertainty of samples in multilabel neighborhood decision systems. Thus, we further present a new classification margin-based MNRS model. Finally, a filter-wrapper preprocessing algorithm for feature selection using the improved Fisher score model is proposed to decrease the spatiotemporal complexity of multilabel data, and a heuristic feature selection algorithm is designed for improve classification performance on multilabel datasets. Experimental results on thirteen multilabel datasets show that the proposed algorithm is effective in selecting significant features, demonstrating its excellent classification ability in multilabel datasets. |
---|---|
AbstractList | In recent years, feature selection for multilabel classification has attracted attention in machine learning and data mining. However, some feature selection methods ignore the correlations among labels, resulting in low performance, and most of them face challenges in determining an appropriate neighborhood radius for neighborhood systems and suffer from expensive time cost. To overcome the issues, we propose a novel feature selection method using Fisher score and multilabel neighborhood rough sets (MNRS) in multilabel neighborhood decision systems. First, to identify the correlations between labels under a binary distribution, two types of new mutual information between labels are considered, and their balance coefficients are defined. By enhancing strong correlations and weakening weak correlations between labels, a mutual information-based Fisher score model with a second-order correlation between labels is designed to fit multilabel data. Second, to address the problem of automatically choosing a neighborhood radius, a subset of heterogeneous and homogeneous samples is employed to develop a new classification margin as a neighborhood radius, and some concepts of neighborhood, neighborhood class, and upper and lower approximations are formulated for multilabel neighborhood decision systems. The weight and dependency degree are presented to effectively measure the uncertainty of samples in multilabel neighborhood decision systems. Thus, we further present a new classification margin-based MNRS model. Finally, a filter-wrapper preprocessing algorithm for feature selection using the improved Fisher score model is proposed to decrease the spatiotemporal complexity of multilabel data, and a heuristic feature selection algorithm is designed for improve classification performance on multilabel datasets. Experimental results on thirteen multilabel datasets show that the proposed algorithm is effective in selecting significant features, demonstrating its excellent classification ability in multilabel datasets. |
Author | Xu, Jiucheng Sun, Lin Ding, Weiping Wang, Tianxiang Lin, Yaojin |
Author_xml | – sequence: 1 givenname: Lin surname: Sun fullname: Sun, Lin email: sunlin@htu.edu.cn organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China – sequence: 2 givenname: Tianxiang surname: Wang fullname: Wang, Tianxiang email: wtx0719@126.com organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China – sequence: 3 givenname: Weiping orcidid: 0000-0002-3180-7347 surname: Ding fullname: Ding, Weiping email: dwp9988@163.com organization: School of Information Science and Technology, Nantong University, Nantong 226019, China – sequence: 4 givenname: Jiucheng surname: Xu fullname: Xu, Jiucheng email: jiuchxu@gmail.com organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China – sequence: 5 givenname: Yaojin surname: Lin fullname: Lin, Yaojin email: zzlinyaojin@163.com organization: Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou 363000, China |
BookMark | eNp9kLFOwzAQhi1UJNrCA7D5BRLOTmI7YkIVBaRKLDBbjn1pXaUxshMk3p6UMiCGTjf89_26-xZk1oceCbllkDNg4m6f-z7lHDjLQeVQ8AsyZ0ryTPCazcgcgEMGvKquyCKlPQCUUog58Ws0wxiRJuzQDj70dEy-39K1TzuMNNkwhaZ39DB2g-9Mgx3t0W93TYi7EByNYdzuJnxItA3x75rtTEq-9dYce6_JZWu6hDe_c0ne149vq-ds8_r0snrYZLYQxZApZ2VjoQLuQAlhsZJlVdbGSaWkqNuqMqyUtWrqojYIgrtWuaLlOOElU3WxJOzUa2NIKWKrP6I_mPilGeijK73Xkyt9dKVB6cnVxMh_jPXDz9VDNL47S96fSJxe-vQYdbIee4vOx8mndsGfob8BXXOIMw |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2023_110234 crossref_primary_10_1002_cpe_7067 crossref_primary_10_1016_j_ins_2022_08_066 crossref_primary_10_1007_s10489_022_03987_2 crossref_primary_10_1016_j_artmed_2023_102753 crossref_primary_10_1016_j_engappai_2025_110191 crossref_primary_10_3390_math11092084 crossref_primary_10_1016_j_knosys_2023_110817 crossref_primary_10_1016_j_knosys_2023_110938 crossref_primary_10_1109_TKDE_2024_3397878 crossref_primary_10_1155_2024_5529847 crossref_primary_10_1109_TAI_2023_3237203 crossref_primary_10_3390_app14051960 crossref_primary_10_1007_s13042_022_01653_0 crossref_primary_10_1016_j_eswa_2023_121956 crossref_primary_10_7717_peerj_cs_988 crossref_primary_10_3390_s23094461 crossref_primary_10_1016_j_compeleceng_2024_109631 crossref_primary_10_1155_2024_6666054 crossref_primary_10_1016_j_knosys_2025_113252 crossref_primary_10_1088_1361_6560_acbadf crossref_primary_10_1109_ACCESS_2024_3520482 crossref_primary_10_1016_j_ins_2024_120647 crossref_primary_10_1080_03081079_2024_2436887 crossref_primary_10_1109_TBDATA_2023_3342643 crossref_primary_10_1109_TFUZZ_2022_3161747 crossref_primary_10_1109_TFUZZ_2022_3222941 crossref_primary_10_1016_j_asoc_2022_109958 crossref_primary_10_1016_j_inffus_2023_02_016 crossref_primary_10_1109_JSEN_2021_3118490 crossref_primary_10_3233_IDT_220077 crossref_primary_10_1016_j_ins_2022_07_130 crossref_primary_10_2139_ssrn_4086695 crossref_primary_10_1016_j_ijar_2022_09_012 crossref_primary_10_1007_s10489_024_05555_2 crossref_primary_10_1016_j_ijar_2025_109420 crossref_primary_10_1016_j_jmapro_2023_02_059 crossref_primary_10_1016_j_compeleceng_2024_109346 crossref_primary_10_1016_j_knosys_2022_109092 crossref_primary_10_1016_j_compchemeng_2024_108623 crossref_primary_10_1016_j_knosys_2023_111102 crossref_primary_10_1016_j_patcog_2023_110081 crossref_primary_10_1016_j_ijar_2022_03_009 crossref_primary_10_1007_s13042_023_01897_4 crossref_primary_10_1007_s40815_024_01788_y crossref_primary_10_1007_s10489_022_04405_3 crossref_primary_10_1109_TKDE_2024_3405489 crossref_primary_10_21015_vtse_v12i2_1811 crossref_primary_10_1007_s13042_024_02362_6 crossref_primary_10_1016_j_asoc_2024_112284 crossref_primary_10_1016_j_engappai_2023_106509 crossref_primary_10_1007_s10462_024_11029_1 crossref_primary_10_1016_j_asoc_2023_110211 crossref_primary_10_1007_s13042_023_01924_4 crossref_primary_10_1016_j_ejor_2024_11_038 crossref_primary_10_3390_s24113414 crossref_primary_10_1007_s10115_024_02258_5 crossref_primary_10_1109_TFUZZ_2023_3287193 crossref_primary_10_1016_j_ins_2024_120501 crossref_primary_10_3390_math10162913 crossref_primary_10_3390_s23010184 crossref_primary_10_1016_j_neucom_2022_11_096 crossref_primary_10_1016_j_asoc_2022_108800 crossref_primary_10_1093_tse_tdac076 crossref_primary_10_1109_TFUZZ_2022_3182441 crossref_primary_10_1109_TPAMI_2024_3486319 crossref_primary_10_1007_s13042_023_01788_8 crossref_primary_10_1016_j_ins_2022_08_118 crossref_primary_10_1016_j_ijar_2024_109149 crossref_primary_10_1016_j_ins_2022_11_156 crossref_primary_10_1016_j_ins_2022_02_024 crossref_primary_10_1016_j_ins_2024_121163 crossref_primary_10_1007_s10489_021_03142_3 crossref_primary_10_1155_2022_5675200 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1016_j_watres_2024_121336 crossref_primary_10_1002_cpe_7666 crossref_primary_10_1016_j_conengprac_2023_105630 crossref_primary_10_3390_axioms11090444 crossref_primary_10_1111_itor_13467 crossref_primary_10_1016_j_asoc_2024_111692 crossref_primary_10_1109_ACCESS_2022_3231871 crossref_primary_10_1016_j_bspc_2023_105045 crossref_primary_10_1016_j_engappai_2024_108108 crossref_primary_10_1016_j_inffus_2023_102150 crossref_primary_10_1007_s10489_022_03696_w crossref_primary_10_1016_j_engappai_2023_107659 crossref_primary_10_1016_j_compag_2024_109051 crossref_primary_10_1007_s10489_023_05136_9 crossref_primary_10_1007_s13042_023_01846_1 crossref_primary_10_1016_j_bcra_2024_100253 crossref_primary_10_3390_app13169089 crossref_primary_10_1016_j_knosys_2024_112125 crossref_primary_10_3390_s23156836 crossref_primary_10_1016_j_eswa_2025_126898 crossref_primary_10_1038_s41598_022_25788_w crossref_primary_10_1177_17483026241232295 crossref_primary_10_1016_j_jag_2025_104403 crossref_primary_10_3390_sym14091828 crossref_primary_10_1016_j_ins_2023_119215 crossref_primary_10_1016_j_jmapro_2024_06_059 crossref_primary_10_1109_JBHI_2024_3409163 crossref_primary_10_1109_ACCESS_2023_3318319 crossref_primary_10_1109_TGRS_2024_3462752 crossref_primary_10_1016_j_ins_2022_02_004 crossref_primary_10_1016_j_inffus_2023_01_019 crossref_primary_10_1007_s11517_024_03247_0 crossref_primary_10_1016_j_eswa_2022_117923 crossref_primary_10_1155_2022_9238968 crossref_primary_10_1016_j_patcog_2024_110580 crossref_primary_10_1016_j_swevo_2024_101661 crossref_primary_10_1007_s00500_023_08573_3 crossref_primary_10_2478_jaiscr_2025_0008 crossref_primary_10_1016_j_patcog_2024_110791 crossref_primary_10_1016_j_ins_2023_03_144 crossref_primary_10_1016_j_knosys_2022_109849 crossref_primary_10_1016_j_ins_2022_11_060 crossref_primary_10_3390_machines10121155 crossref_primary_10_3390_info13080385 crossref_primary_10_1016_j_ijar_2023_109062 crossref_primary_10_1109_ACCESS_2024_3454516 crossref_primary_10_1016_j_knosys_2023_110307 crossref_primary_10_1021_acs_jpcc_3c02539 crossref_primary_10_1007_s10489_022_03554_9 crossref_primary_10_1007_s10586_024_04716_9 crossref_primary_10_1002_int_22861 crossref_primary_10_1007_s10489_022_03366_x crossref_primary_10_1016_j_specom_2023_102960 crossref_primary_10_1016_j_cmpb_2024_108032 crossref_primary_10_1038_s41598_022_07337_7 crossref_primary_10_1109_TIM_2023_3334370 crossref_primary_10_1155_2023_4196920 crossref_primary_10_1016_j_asoc_2024_111656 crossref_primary_10_1007_s40747_022_00763_0 crossref_primary_10_1016_j_ins_2022_05_125 crossref_primary_10_1109_TIM_2023_3259035 crossref_primary_10_23939_mmc2023_03_693 crossref_primary_10_1007_s11571_024_10096_y crossref_primary_10_1016_j_asoc_2022_109025 crossref_primary_10_1515_jisys_2023_0307 |
Cites_doi | 10.1109/ACCESS.2020.3010314 10.1109/TFUZZ.2019.2949765 10.1109/TCYB.2019.2923430 10.1016/j.ijar.2013.06.003 10.1007/978-3-540-35488-8_13 10.1109/TFUZZ.2020.2989098 10.1016/j.patrec.2018.08.021 10.1109/ACCESS.2020.2976162 10.1016/j.patcog.2018.07.021 10.1007/s13042-017-0647-y 10.1109/TKDE.2016.2608339 10.1109/JAS.2017.7510781 10.1214/aoms/1177731944 10.1109/TCYB.2018.2834390 10.1016/j.patcog.2019.06.003 10.1016/j.neucom.2015.06.010 10.1016/j.knosys.2012.06.010 10.1016/j.ins.2019.10.022 10.1016/j.ins.2017.12.034 10.1007/s10489-018-1320-1 10.1109/TNNLS.2018.2872974 10.1109/TKDE.2017.2785795 10.1109/ACCESS.2019.2957662 10.1016/j.ins.2019.05.072 10.1609/aaai.v32i1.11656 10.1016/j.asoc.2015.10.009 10.1016/j.patrec.2017.02.004 10.1016/j.knosys.2019.105373 10.1007/978-3-319-46128-1_34 10.1016/j.patcog.2006.12.019 10.1016/j.patrec.2019.08.009 10.1109/ACCESS.2020.2982536 10.1109/TMM.2012.2187179 10.1023/A:1012487302797 10.1016/j.knosys.2019.104942 10.1016/j.ins.2020.05.102 10.1109/TFUZZ.2020.2975152 10.1016/j.knosys.2017.10.028 10.1016/j.eswa.2009.05.075 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2021.08.032 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 912 |
ExternalDocumentID | 10_1016_j_ins_2021_08_032 S002002552100832X |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c363t-8dc7bc0502d0866ce574549ad788769f55a14798b939ae062df8d3f2ec3641893 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Tue Jul 01 01:26:48 EDT 2025 Thu Apr 24 22:55:27 EDT 2025 Fri Feb 23 02:43:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neighborhood rough sets Multilabel classification Feature selection Fisher Score |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-8dc7bc0502d0866ce574549ad788769f55a14798b939ae062df8d3f2ec3641893 |
ORCID | 0000-0002-3180-7347 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1016_j_ins_2021_08_032 crossref_citationtrail_10_1016_j_ins_2021_08_032 elsevier_sciencedirect_doi_10_1016_j_ins_2021_08_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Information sciences |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Huang, Sun, Xu, Zhang (b0080) 2020; 8 Wu, Guo (b0205) 2019; 38 Vluymans, Cornelis, Herrera, Saeys (b0185) 2018; 433-434 Sun, Yin, Ding, Xu (b0170) 2019; 7 Wang, Huang, Shao, Hu, Chen (b0195) 2020; 50 Huang, Li, Huang, Wu (b0075) 2016; 28 Ding, Lin, Cao (b0045) 2019; 30 Zhu, Kwok, Zhou (b0250) 2018; 30 Chen, Lin, Liu (b0025) 2020; 8 Saha, Rangwala, Domeniconi (b0130) 2012 Wang, Lin, Tang, Fu, Lin (b0190) 2018; 31 Guyon, Weston, Barnhill (b0065) 2002; 46 Cai, Zhu (b0010) 2018; 9 Wang, Wang, Shao, Qian, Chen (b0200) 2020; 28 Ding, Lin, Cao (b0040) 2019; 49 Sun, Wang, Ding, Qian, Xu (b0145) 2021; 29 Ma, Nie, Yang, Uijlings, Sebe (b0115) 2012; 14 L. Sun, L.Y. Wang, Y.H. Qian, J.C. Xu, S.G. Zhang, Feature selection using Lebesgue and entropy measures for incomplete neighborhood decision systems, Knowl.-Based Syst. 186 (2019) Art. no. 104942. Sun, Zhang, Qian, Xu, Zhang (b0175) 2019; 502 Huang, Jiang, Sun (b0085) 2018; 112 Hancer, Xue, Zhang (b0070) 2018; 140 Ding, Pedrycz, Triguero, Cao, Lin (b0050) 2021; 29 Deng, Zheng, Deng, Wang, He, Zhang (b0035) 2020; 8 Lin, Hu, Liu, Duan (b0105) 2015; 168 Q.W. Zhang, Y. Zhong, M.L. Zhang, Feature-induced labeling information enrichment for multi-label learning, in: Proceedings of Association for the Advancement of Artificial Intelligence, 2018, pp. 4446-4453. Lin, Hu, Liu, Chen, Duan (b0100) 2016; 38 Liu, Lin, Li, Weng, Wu (b0110) 2018; 84 L. Sun, L.Y. Wang, W.P. Ding, Y.H. Qian, J.C. Xu, Neighborhood multi-granulation rough sets-based attribute reduction using Lebesgue and entropy measures in incomplete neighborhood decision systems, Knowl.-Based Syst. 192 (2020) Art. no. 105373. Nie, Huang, Cai, Ding (b0120) 2010; 23 Jian, Li, Shu, Liu (b0090) 2016 Lim, Lee, Kim (b0095) 2017; 89 Cai, Zhu (b0005) 2017; 5 Duan, Hu, Zhang, Qian, Li (b0055) 2015; 52 P. Yan, Y. Li, Graph-margin based multi-label feature selection, in: Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2016, pp. 540-555. Chen, Lin (b0030) 2006 Zhang, Zhou (b0240) 2007; 40 Sun, Zhang, Qian, Xu, Zhang, Tian (b0180) 2019; 49 H.T. Xu, L.Y. Xu, Multi-label feature selection algorithm based on label pairwise ranking comparison transformation, in: Proceedings of IEEE International Joint Conference on Neural Networks, 2017, pp. 1210-1217. L. Yang, X.Z. Wu, Y. Jiang, Z.H. Zhou, Multi-label learning with deep forest, arXiv (2019) arXiv:1911.06557. Yu, Pedrycz, Miao (b0225) 2013; 54 Güneş, Polat, Yosunkaya (b0135) 2010; 37 Sun, Yin, Ding, Qian, Xu (b0165) 2020; 537 Sun, Yin, Ding, Qian, Xu (b0160) 2021 Zhang, Luo, Li, Zhou, Li (b0235) 2019; 95 Friedman (b0060) 1960; 11 Sadhukhan, Palit (b0125) 2019; 125 Yu, Pedrycz, Miao, Zhang (b0230) 2013 Che, Chen, Mi (b0020) 2020; 512 Chang, Nie, Yang, Huang (b0015) 2014 Sun, Xu, Tian (b0140) 2012; 36 Friedman (10.1016/j.ins.2021.08.032_b0060) 1960; 11 Cai (10.1016/j.ins.2021.08.032_b0005) 2017; 5 Duan (10.1016/j.ins.2021.08.032_b0055) 2015; 52 Zhu (10.1016/j.ins.2021.08.032_b0250) 2018; 30 Chang (10.1016/j.ins.2021.08.032_b0015) 2014 10.1016/j.ins.2021.08.032_b0150 10.1016/j.ins.2021.08.032_b0155 Sun (10.1016/j.ins.2021.08.032_b0145) 2021; 29 Sun (10.1016/j.ins.2021.08.032_b0160) 2021 Lin (10.1016/j.ins.2021.08.032_b0105) 2015; 168 Che (10.1016/j.ins.2021.08.032_b0020) 2020; 512 Wang (10.1016/j.ins.2021.08.032_b0200) 2020; 28 Ding (10.1016/j.ins.2021.08.032_b0040) 2019; 49 Lim (10.1016/j.ins.2021.08.032_b0095) 2017; 89 Guyon (10.1016/j.ins.2021.08.032_b0065) 2002; 46 Lin (10.1016/j.ins.2021.08.032_b0100) 2016; 38 Sadhukhan (10.1016/j.ins.2021.08.032_b0125) 2019; 125 Chen (10.1016/j.ins.2021.08.032_b0030) 2006 Ding (10.1016/j.ins.2021.08.032_b0050) 2021; 29 Sun (10.1016/j.ins.2021.08.032_b0180) 2019; 49 Cai (10.1016/j.ins.2021.08.032_b0010) 2018; 9 Wang (10.1016/j.ins.2021.08.032_b0195) 2020; 50 Ma (10.1016/j.ins.2021.08.032_b0115) 2012; 14 Sun (10.1016/j.ins.2021.08.032_b0170) 2019; 7 10.1016/j.ins.2021.08.032_b0210 Ding (10.1016/j.ins.2021.08.032_b0045) 2019; 30 Saha (10.1016/j.ins.2021.08.032_b0130) 2012 Zhang (10.1016/j.ins.2021.08.032_b0235) 2019; 95 Yu (10.1016/j.ins.2021.08.032_b0225) 2013; 54 10.1016/j.ins.2021.08.032_b0245 Huang (10.1016/j.ins.2021.08.032_b0080) 2020; 8 Nie (10.1016/j.ins.2021.08.032_b0120) 2010; 23 Wu (10.1016/j.ins.2021.08.032_b0205) 2019; 38 Zhang (10.1016/j.ins.2021.08.032_b0240) 2007; 40 Sun (10.1016/j.ins.2021.08.032_b0140) 2012; 36 Sun (10.1016/j.ins.2021.08.032_b0165) 2020; 537 Vluymans (10.1016/j.ins.2021.08.032_b0185) 2018; 433-434 Wang (10.1016/j.ins.2021.08.032_b0190) 2018; 31 Huang (10.1016/j.ins.2021.08.032_b0075) 2016; 28 10.1016/j.ins.2021.08.032_b0220 Chen (10.1016/j.ins.2021.08.032_b0025) 2020; 8 10.1016/j.ins.2021.08.032_b0215 Huang (10.1016/j.ins.2021.08.032_b0085) 2018; 112 Liu (10.1016/j.ins.2021.08.032_b0110) 2018; 84 Jian (10.1016/j.ins.2021.08.032_b0090) 2016 Sun (10.1016/j.ins.2021.08.032_b0175) 2019; 502 Deng (10.1016/j.ins.2021.08.032_b0035) 2020; 8 Hancer (10.1016/j.ins.2021.08.032_b0070) 2018; 140 Yu (10.1016/j.ins.2021.08.032_b0230) 2013 Güneş (10.1016/j.ins.2021.08.032_b0135) 2010; 37 |
References_xml | – volume: 11 start-page: 86 year: 1960 end-page: 92 ident: b0060 article-title: A comparison of alternative tests of significance for the problem of publication-title: Ann. Math. Stat. – volume: 38 start-page: 244 year: 2016 end-page: 256 ident: b0100 article-title: Multi-label feature selection based on neighborhood mutual information publication-title: Appl. Soft Comput. – volume: 502 start-page: 18 year: 2019 end-page: 41 ident: b0175 article-title: Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification publication-title: Inf. Sci. – volume: 38 start-page: 472 year: 2019 end-page: 479 ident: b0205 article-title: An improved Fisher Score feature selection method and its application publication-title: Chinese Journal of Liaoning Technical University – volume: 23 start-page: 1813 year: 2010 end-page: 1821 ident: b0120 article-title: Efficient and robust feature selection via joint ℓ2, 1-norms minimization publication-title: Advances in Neural Information Processing Systems – start-page: 1171 year: 2014 end-page: 1177 ident: b0015 article-title: A convex formulation for semi-supervised multi-label feature selection publication-title: in: Proceedings of the National Conference on Artificial Intelligence – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: b0065 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine Learning – year: 2021 ident: b0160 article-title: Feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy publication-title: IEEE Trans. Fuzzy Syst. – volume: 537 start-page: 401 year: 2020 end-page: 424 ident: b0165 article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems publication-title: Inf. Sci. – volume: 28 start-page: 3309 year: 2016 end-page: 3323 ident: b0075 article-title: Learning label-specific features and class-dependent labels for multi-label classification publication-title: IEEE Trans. Knowl. Data Eng. – volume: 125 start-page: 813 year: 2019 end-page: 820 ident: b0125 article-title: Reverse-nearest neighborhood based oversampling for imbalanced, multi-label datasets publication-title: Pattern Recogn. Lett. – start-page: 1627 year: 2016 end-page: 1633 ident: b0090 article-title: Multi-label informed feature selection, in publication-title: Proceedings of International Joint Conference on Artificial Intelligence – volume: 30 start-page: 2013 year: 2019 end-page: 2027 ident: b0045 article-title: Shared nearest-neighbor quantum game-based attribute reduction with hierarchical coevolutionary spark and its application in consistent segmentation of neonatal cerebral cortical surfaces publication-title: IEEE Transactions on Neural Network and Learning System – volume: 49 start-page: 1245 year: 2019 end-page: 1259 ident: b0180 article-title: Joint neighborhood entropy-based gene selection method with fisher score for tumor classification publication-title: Applied Intelligence – volume: 112 start-page: 346 year: 2018 end-page: 352 ident: b0085 article-title: Manifold-based constraint Laplacian score for multi-label feature selection publication-title: Pattern Recogn. Lett. – start-page: 427 year: 2012 end-page: 432 ident: b0130 article-title: Multi-label collective classification using adaptive neighborhoods, in publication-title: Proceedings of the 11th International Conference on Machine Learning and Applications – volume: 29 start-page: 1395 year: 2021 end-page: 1408 ident: b0050 article-title: Multigranulation super-trust model for attribute reduction publication-title: IEEE Trans. Fuzzy Syst. – volume: 28 start-page: 818 year: 2020 end-page: 830 ident: b0200 article-title: Fuzzy rough attribute reduction for categorical data publication-title: IEEE Trans. Fuzzy Syst. – volume: 89 start-page: 25 year: 2017 end-page: 30 ident: b0095 article-title: Optimization approach for feature selection in multi-label classification publication-title: Pattern Recogn. Lett. – volume: 54 start-page: 1373 year: 2013 end-page: 1387 ident: b0225 article-title: Neighborhood rough sets based multi-label classification for automatic image annotation publication-title: Int. J. Approximate Reasoning – volume: 7 start-page: 175793 year: 2019 end-page: 175815 ident: b0170 article-title: Hybrid multilabel feature selection using BPSO and neighborhood rough sets for multilabel neighborhood decision systems publication-title: IEEE Access – reference: H.T. Xu, L.Y. Xu, Multi-label feature selection algorithm based on label pairwise ranking comparison transformation, in: Proceedings of IEEE International Joint Conference on Neural Networks, 2017, pp. 1210-1217. – volume: 31 start-page: 123 year: 2018 end-page: 131 ident: b0190 article-title: Multi-label feature selection based on information granulation publication-title: Chinese Pattern Recognition and Artificial Intelligence – reference: L. Sun, L.Y. Wang, Y.H. Qian, J.C. Xu, S.G. Zhang, Feature selection using Lebesgue and entropy measures for incomplete neighborhood decision systems, Knowl.-Based Syst. 186 (2019) Art. no. 104942. – volume: 29 start-page: 19 year: 2021 end-page: 33 ident: b0145 article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets publication-title: IEEE Trans. Fuzzy Syst. – volume: 8 start-page: 62011 year: 2020 end-page: 62031 ident: b0080 article-title: Multilabel feature selection using relief and minimum redundancy maximum relevance based on neighborhood rough sets publication-title: IEEE Access – volume: 168 start-page: 92 year: 2015 end-page: 103 ident: b0105 article-title: Multi-label feature selection based on max-dependency and min-redundancy publication-title: Neurocomputing – reference: Q.W. Zhang, Y. Zhong, M.L. Zhang, Feature-induced labeling information enrichment for multi-label learning, in: Proceedings of Association for the Advancement of Artificial Intelligence, 2018, pp. 4446-4453. – start-page: 315 year: 2006 end-page: 324 ident: b0030 article-title: Combining SVMs with various feature selection strategies publication-title: Studies in Fuzziness and Soft Computing Feature Extraction – volume: 8 start-page: 133565 year: 2020 end-page: 133576 ident: b0025 article-title: Multi-label attribute reduction based on variable precision fuzzy neighborhood rough set publication-title: IEEE Access – volume: 49 start-page: 2744 year: 2019 end-page: 2757 ident: b0040 article-title: Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping PSO with nearest-neighbor memeplexes publication-title: IEEE Trans. Cybern. – volume: 9 start-page: 1321 year: 2018 end-page: 1334 ident: b0010 article-title: Multi-label feature selection via feature manifold learning and sparsity regularization publication-title: Int. J. Mach. Learn. Cybern. – reference: L. Sun, L.Y. Wang, W.P. Ding, Y.H. Qian, J.C. Xu, Neighborhood multi-granulation rough sets-based attribute reduction using Lebesgue and entropy measures in incomplete neighborhood decision systems, Knowl.-Based Syst. 192 (2020) Art. no. 105373. – reference: L. Yang, X.Z. Wu, Y. Jiang, Z.H. Zhou, Multi-label learning with deep forest, arXiv (2019) arXiv:1911.06557. – volume: 40 start-page: 2038 year: 2007 end-page: 2048 ident: b0240 article-title: ML-KNN: A lazy learning approach to multi-label learning publication-title: Pattern Recogn. – volume: 433-434 start-page: 96 year: 2018 end-page: 114 ident: b0185 article-title: Multi-label classification using a fuzzy rough neighborhood consensus publication-title: Inf. Sci. – volume: 140 start-page: 103 year: 2018 end-page: 119 ident: b0070 article-title: Differential evolution for filter feature selection based on information theory and feature ranking publication-title: Knowl.-Based Syst. – volume: 512 start-page: 795 year: 2020 end-page: 812 ident: b0020 article-title: A novel approach for learning label correlation with application to feature selection of multi-label data publication-title: Inf. Sci. – volume: 8 start-page: 39678 year: 2020 end-page: 39688 ident: b0035 article-title: Feature selection for multi-label learning based on F-neighborhood rough sets publication-title: IEEE Access – start-page: 86 year: 2013 end-page: 90 ident: b0230 article-title: Neighborhood rough sets based multi-label classification, in publication-title: Proceedings of Joint IFSA World Congress and NAFIPS Annual Meeting – volume: 84 start-page: 273 year: 2018 end-page: 287 ident: b0110 article-title: Online multi-label streaming feature selection based on neighborhood rough set publication-title: Pattern Recogn. – reference: P. Yan, Y. Li, Graph-margin based multi-label feature selection, in: Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2016, pp. 540-555. – volume: 52 start-page: 56 year: 2015 end-page: 65 ident: b0055 article-title: Feature selection for multi-label classification based on neighborhood rough sets publication-title: Chinese Journal of Computer Research and Development – volume: 14 start-page: 1021 year: 2012 end-page: 1030 ident: b0115 article-title: Web image annotation via subspace-sparsity collaborated feature selection publication-title: IEEE Trans. Multimedia – volume: 36 start-page: 206 year: 2012 end-page: 216 ident: b0140 article-title: Feature selection using rough entropy-based uncertainty measures in incomplete decision systems publication-title: Knowl.-Based Syst. – volume: 50 start-page: 4031 year: 2020 end-page: 4042 ident: b0195 article-title: Feature selection based on neighborhood self-information publication-title: IEEE Trans. Cybern. – volume: 37 start-page: 998 year: 2010 end-page: 1004 ident: b0135 article-title: Multi-class f-score feature selection approach to classification of obstructive sleep apnea syndrome publication-title: Expert Syst. Appl. – volume: 5 start-page: 320 year: 2017 end-page: 330 ident: b0005 article-title: Feature selection for multi-label classification using neighborhood preservation publication-title: IEEE/CAA J. Autom. Sin. – volume: 95 start-page: 136 year: 2019 end-page: 150 ident: b0235 article-title: Manifold regularized discriminative feature selection for multi-label learning publication-title: Pattern Recogn. – volume: 30 start-page: 1081 year: 2018 end-page: 1094 ident: b0250 article-title: Multi-label learning with global and local label correlation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 8 start-page: 133565 year: 2020 ident: 10.1016/j.ins.2021.08.032_b0025 article-title: Multi-label attribute reduction based on variable precision fuzzy neighborhood rough set publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010314 – volume: 28 start-page: 818 issue: 5 year: 2020 ident: 10.1016/j.ins.2021.08.032_b0200 article-title: Fuzzy rough attribute reduction for categorical data publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2949765 – volume: 50 start-page: 4031 issue: 9 year: 2020 ident: 10.1016/j.ins.2021.08.032_b0195 article-title: Feature selection based on neighborhood self-information publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2923430 – volume: 54 start-page: 1373 issue: 9 year: 2013 ident: 10.1016/j.ins.2021.08.032_b0225 article-title: Neighborhood rough sets based multi-label classification for automatic image annotation publication-title: Int. J. Approximate Reasoning doi: 10.1016/j.ijar.2013.06.003 – start-page: 315 year: 2006 ident: 10.1016/j.ins.2021.08.032_b0030 article-title: Combining SVMs with various feature selection strategies doi: 10.1007/978-3-540-35488-8_13 – start-page: 427 year: 2012 ident: 10.1016/j.ins.2021.08.032_b0130 article-title: Multi-label collective classification using adaptive neighborhoods, in – volume: 29 start-page: 19 issue: 1 year: 2021 ident: 10.1016/j.ins.2021.08.032_b0145 article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2989098 – volume: 112 start-page: 346 year: 2018 ident: 10.1016/j.ins.2021.08.032_b0085 article-title: Manifold-based constraint Laplacian score for multi-label feature selection publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2018.08.021 – year: 2021 ident: 10.1016/j.ins.2021.08.032_b0160 article-title: Feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy publication-title: IEEE Trans. Fuzzy Syst. – volume: 8 start-page: 39678 year: 2020 ident: 10.1016/j.ins.2021.08.032_b0035 article-title: Feature selection for multi-label learning based on F-neighborhood rough sets publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976162 – volume: 84 start-page: 273 year: 2018 ident: 10.1016/j.ins.2021.08.032_b0110 article-title: Online multi-label streaming feature selection based on neighborhood rough set publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.07.021 – volume: 9 start-page: 1321 issue: 8 year: 2018 ident: 10.1016/j.ins.2021.08.032_b0010 article-title: Multi-label feature selection via feature manifold learning and sparsity regularization publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0647-y – volume: 28 start-page: 3309 issue: 12 year: 2016 ident: 10.1016/j.ins.2021.08.032_b0075 article-title: Learning label-specific features and class-dependent labels for multi-label classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2608339 – start-page: 1627 year: 2016 ident: 10.1016/j.ins.2021.08.032_b0090 article-title: Multi-label informed feature selection, in – ident: 10.1016/j.ins.2021.08.032_b0210 – volume: 5 start-page: 320 issue: 1 year: 2017 ident: 10.1016/j.ins.2021.08.032_b0005 article-title: Feature selection for multi-label classification using neighborhood preservation publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2017.7510781 – volume: 11 start-page: 86 issue: 1 year: 1960 ident: 10.1016/j.ins.2021.08.032_b0060 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – volume: 49 start-page: 2744 issue: 7 year: 2019 ident: 10.1016/j.ins.2021.08.032_b0040 article-title: Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping PSO with nearest-neighbor memeplexes publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2834390 – start-page: 86 year: 2013 ident: 10.1016/j.ins.2021.08.032_b0230 article-title: Neighborhood rough sets based multi-label classification, in – volume: 95 start-page: 136 year: 2019 ident: 10.1016/j.ins.2021.08.032_b0235 article-title: Manifold regularized discriminative feature selection for multi-label learning publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.06.003 – volume: 23 start-page: 1813 year: 2010 ident: 10.1016/j.ins.2021.08.032_b0120 article-title: Efficient and robust feature selection via joint ℓ2, 1-norms minimization publication-title: Advances in Neural Information Processing Systems – volume: 168 start-page: 92 issue: 30 year: 2015 ident: 10.1016/j.ins.2021.08.032_b0105 article-title: Multi-label feature selection based on max-dependency and min-redundancy publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.010 – volume: 36 start-page: 206 year: 2012 ident: 10.1016/j.ins.2021.08.032_b0140 article-title: Feature selection using rough entropy-based uncertainty measures in incomplete decision systems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.06.010 – volume: 512 start-page: 795 year: 2020 ident: 10.1016/j.ins.2021.08.032_b0020 article-title: A novel approach for learning label correlation with application to feature selection of multi-label data publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.022 – volume: 433-434 start-page: 96 year: 2018 ident: 10.1016/j.ins.2021.08.032_b0185 article-title: Multi-label classification using a fuzzy rough neighborhood consensus publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.12.034 – volume: 49 start-page: 1245 issue: 4 year: 2019 ident: 10.1016/j.ins.2021.08.032_b0180 article-title: Joint neighborhood entropy-based gene selection method with fisher score for tumor classification publication-title: Applied Intelligence doi: 10.1007/s10489-018-1320-1 – volume: 30 start-page: 2013 issue: 7 year: 2019 ident: 10.1016/j.ins.2021.08.032_b0045 article-title: Shared nearest-neighbor quantum game-based attribute reduction with hierarchical coevolutionary spark and its application in consistent segmentation of neonatal cerebral cortical surfaces publication-title: IEEE Transactions on Neural Network and Learning System doi: 10.1109/TNNLS.2018.2872974 – volume: 30 start-page: 1081 issue: 6 year: 2018 ident: 10.1016/j.ins.2021.08.032_b0250 article-title: Multi-label learning with global and local label correlation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2785795 – volume: 7 start-page: 175793 year: 2019 ident: 10.1016/j.ins.2021.08.032_b0170 article-title: Hybrid multilabel feature selection using BPSO and neighborhood rough sets for multilabel neighborhood decision systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957662 – volume: 31 start-page: 123 issue: 2 year: 2018 ident: 10.1016/j.ins.2021.08.032_b0190 article-title: Multi-label feature selection based on information granulation publication-title: Chinese Pattern Recognition and Artificial Intelligence – volume: 502 start-page: 18 year: 2019 ident: 10.1016/j.ins.2021.08.032_b0175 article-title: Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.05.072 – ident: 10.1016/j.ins.2021.08.032_b0245 doi: 10.1609/aaai.v32i1.11656 – ident: 10.1016/j.ins.2021.08.032_b0220 – volume: 38 start-page: 244 year: 2016 ident: 10.1016/j.ins.2021.08.032_b0100 article-title: Multi-label feature selection based on neighborhood mutual information publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.009 – volume: 38 start-page: 472 issue: 5 year: 2019 ident: 10.1016/j.ins.2021.08.032_b0205 article-title: An improved Fisher Score feature selection method and its application publication-title: Chinese Journal of Liaoning Technical University – volume: 89 start-page: 25 year: 2017 ident: 10.1016/j.ins.2021.08.032_b0095 article-title: Optimization approach for feature selection in multi-label classification publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.02.004 – ident: 10.1016/j.ins.2021.08.032_b0150 doi: 10.1016/j.knosys.2019.105373 – ident: 10.1016/j.ins.2021.08.032_b0215 doi: 10.1007/978-3-319-46128-1_34 – volume: 40 start-page: 2038 issue: 7 year: 2007 ident: 10.1016/j.ins.2021.08.032_b0240 article-title: ML-KNN: A lazy learning approach to multi-label learning publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2006.12.019 – volume: 125 start-page: 813 year: 2019 ident: 10.1016/j.ins.2021.08.032_b0125 article-title: Reverse-nearest neighborhood based oversampling for imbalanced, multi-label datasets publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2019.08.009 – volume: 8 start-page: 62011 year: 2020 ident: 10.1016/j.ins.2021.08.032_b0080 article-title: Multilabel feature selection using relief and minimum redundancy maximum relevance based on neighborhood rough sets publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982536 – volume: 52 start-page: 56 issue: 1 year: 2015 ident: 10.1016/j.ins.2021.08.032_b0055 article-title: Feature selection for multi-label classification based on neighborhood rough sets publication-title: Chinese Journal of Computer Research and Development – volume: 14 start-page: 1021 issue: 4 year: 2012 ident: 10.1016/j.ins.2021.08.032_b0115 article-title: Web image annotation via subspace-sparsity collaborated feature selection publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2012.2187179 – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.ins.2021.08.032_b0065 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine Learning doi: 10.1023/A:1012487302797 – ident: 10.1016/j.ins.2021.08.032_b0155 doi: 10.1016/j.knosys.2019.104942 – volume: 537 start-page: 401 year: 2020 ident: 10.1016/j.ins.2021.08.032_b0165 article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.05.102 – volume: 29 start-page: 1395 issue: 6 year: 2021 ident: 10.1016/j.ins.2021.08.032_b0050 article-title: Multigranulation super-trust model for attribute reduction publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2975152 – start-page: 1171 year: 2014 ident: 10.1016/j.ins.2021.08.032_b0015 article-title: A convex formulation for semi-supervised multi-label feature selection – volume: 140 start-page: 103 year: 2018 ident: 10.1016/j.ins.2021.08.032_b0070 article-title: Differential evolution for filter feature selection based on information theory and feature ranking publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.10.028 – volume: 37 start-page: 998 issue: 2 year: 2010 ident: 10.1016/j.ins.2021.08.032_b0135 article-title: Multi-class f-score feature selection approach to classification of obstructive sleep apnea syndrome publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.05.075 |
SSID | ssj0004766 |
Score | 2.651792 |
Snippet | In recent years, feature selection for multilabel classification has attracted attention in machine learning and data mining. However, some feature selection... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 887 |
SubjectTerms | Feature selection Fisher Score Multilabel classification Neighborhood rough sets |
Title | Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification |
URI | https://dx.doi.org/10.1016/j.ins.2021.08.032 |
Volume | 578 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAoIAo0MoDYkAKTf2KM1YVqIDoRKVukeO4KKgKVR8rv527xIEiAQNjHF8S-c6-s_Pdd4Rc6sz2wXGBBnA2CQgJgthkOtCpjlOVGqtizHd-GqvRRDxM5bRBhnUuDMIq_dpfrenlau1ben40e4s8xxxfVkbEDPlpOJtiBruI0Mpv3r9gHtCiKphHGGDv-s9mifHKC2TsZhWLJ2c_-6Ytf3N3QPZ9oEgH1bcckoYrWmRviz6wRTo-6YBeUZ9VhKNM_XQ9IjnGd5ulo6uy2A3eQ5j7C63qndMVUlhSU2S0hBWCPbg5LfCsFAwD6Y5pWcMHxNcrCs_f7mYx6kaYUfnOYzK5u30ejgJfWiGwXPF1ACqKUhvKkGWwp1HWyUjATtFkCC5U8UxK0xdRrNOYx8aFimUznfEZcyAu-hDjnJBm8Va4U0JhxkurdKhSbYTVkdFaOgMbTyNdGDveJmE9qIn1vONY_mKe1ACz1wT0kKAeEiyJyVmbXH-KLCrSjb86i1pTyTfLScAp_C529j-xc7KLV1U24gVprpcb14GwZJ12S7vrkp3B_eNo_AGZYeI5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOCAaINzkgDkjVurRJ0yOaQIM9Tpu0W5WmGRqayrSN_4_dpjAk4MC1qdvKduIvjf0Z4EZlpo2BCy1AsylESODFOlOeSlWcylQbGVO982Aou-PweSImNehUtTCUVunW_nJNL1Zrd6XltNlazGZU48sLRMyJnybgky1oEDuVqEPj_qnXHX6VR0blkSXtlEigOtws0rxmOZF285LIM-A_h6eNkPO4D3sOK7L78nMOoGbzJuxuMAg24dLVHbBb5gqLSNHMzdhDmBHEe19atir63dAYZbq_sLLlOVsRiyXTecaKzEJ0CTtnOf0uRd8gxmNWtPFB8fWK4fM3bzMEvCnTqHjnEYwfH0adrue6K3gmkMHaQytFqfGFzzPc1khjRYTqQ0NRfqGMp0LodhjFKo2DWFtf8myqsmDKLYqHbYQ5x1DP33J7AgwnvTBS-TJVOjQq0koJq3HvqYX1Yxucgl8pNTGOepw6YMyTKsfsNUE7JGSHhLpiBvwU7j5FFiXvxl83h5Wlkm_Ok2Bc-F3s7H9i17DdHQ36Sf9p2DuHHRopixMvoL5evttLRCnr9Mp54QdhH-Tq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+Fisher+score+and+multilabel+neighborhood+rough+sets+for+multilabel+classification&rft.jtitle=Information+sciences&rft.au=Sun%2C+Lin&rft.au=Wang%2C+Tianxiang&rft.au=Ding%2C+Weiping&rft.au=Xu%2C+Jiucheng&rft.date=2021-11-01&rft.issn=0020-0255&rft.volume=578&rft.spage=887&rft.epage=912&rft_id=info:doi/10.1016%2Fj.ins.2021.08.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_08_032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |