Enhancing Knowledge-Concept Recommendations with Heterogeneous Graph-Contrastive Learning
With the implementation of conceptual labeling on online learning resources, knowledge-concept recommendations have been introduced to pinpoint concepts that learners may wish to delve into more deeply. As the core subject of learning, learners’ preferences in knowledge concepts should be given grea...
Saved in:
Published in | Mathematics (Basel) Vol. 12; no. 15; p. 2324 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the implementation of conceptual labeling on online learning resources, knowledge-concept recommendations have been introduced to pinpoint concepts that learners may wish to delve into more deeply. As the core subject of learning, learners’ preferences in knowledge concepts should be given greater attention. Research indicates that learners’ preferences for knowledge concepts are influenced by the characteristics of their group structure. There is a high degree of homogeneity within a group, and notable distinctions exist between the internal and external configurations of a group. To strengthen the group-structure characteristics of learners’ behaviors, a multi-task strategy for knowledge-concept recommendations is proposed; this strategy is called Knowledge-Concept Recommendations with Heterogeneous Graph-Contrastive Learning. Specifically, due to the difficulty of accessing authentic social networks, learners and their structural neighbors are considered positive contrastive pairs to construct self-supervision signals on the predefined meta-path from heterogeneous information networks as auxiliary tasks, which capture the higher-order neighbors of learners by presenting different perspectives. Then, the Information Noise-Contrastive Estimation loss is regarded as the main training objective to increase the differentiation of learners from different professional backgrounds. Extensive experiments are constructed on MOOCCube, and we find that our proposed method outperforms the other state-of-the-art concept-recommendation methods, achieving 6.66% with HR@5, 8.85% with NDCG@5, and 8.68% with MRR. |
---|---|
AbstractList | With the implementation of conceptual labeling on online learning resources, knowledge-concept recommendations have been introduced to pinpoint concepts that learners may wish to delve into more deeply. As the core subject of learning, learners’ preferences in knowledge concepts should be given greater attention. Research indicates that learners’ preferences for knowledge concepts are influenced by the characteristics of their group structure. There is a high degree of homogeneity within a group, and notable distinctions exist between the internal and external configurations of a group. To strengthen the group-structure characteristics of learners’ behaviors, a multi-task strategy for knowledge-concept recommendations is proposed; this strategy is called Knowledge-Concept Recommendations with Heterogeneous Graph-Contrastive Learning. Specifically, due to the difficulty of accessing authentic social networks, learners and their structural neighbors are considered positive contrastive pairs to construct self-supervision signals on the predefined meta-path from heterogeneous information networks as auxiliary tasks, which capture the higher-order neighbors of learners by presenting different perspectives. Then, the Information Noise-Contrastive Estimation loss is regarded as the main training objective to increase the differentiation of learners from different professional backgrounds. Extensive experiments are constructed on MOOCCube, and we find that our proposed method outperforms the other state-of-the-art concept-recommendation methods, achieving 6.66% with HR@5, 8.85% with NDCG@5, and 8.68% with MRR. |
Audience | Academic |
Author | Wang, Weiwei Li, Yun Zhu, Yi Wei, Liting |
Author_xml | – sequence: 1 givenname: Liting orcidid: 0000-0001-8177-9340 surname: Wei fullname: Wei, Liting – sequence: 2 givenname: Yun surname: Li fullname: Li, Yun – sequence: 3 givenname: Weiwei surname: Wang fullname: Wang, Weiwei – sequence: 4 givenname: Yi surname: Zhu fullname: Zhu, Yi |
BookMark | eNpNkVFrHCEQx5eSQtMkb_kAC33tpo66uj6GI01CDwolfciTuO6453GrV_Ua8u3r9UqJPjjMzP_HOP-PzVmIAZvmGsgNY4p8WUzZAIWeMsrfNeeUUtnJWjh7E39ornLeknoUsIGr8-b5LmxMsD7M7bcQX3Y4zditYrC4L-0PtHFZMEym-Bhy--LLpn3AginOGDAecnufzH5zFJRkcvG_sV2jSaHyLpv3zuwyXv17L5qfX--eVg_d-vv94-p23VkmWOkGMzIlpUJJAHoHMPCew6QsBwXGKumcoAASRs6UAmsEMoKD5ZIKhwNlF83jiTtFs9X75BeTXnU0Xv9NxDRrk4q3O9RuJICDcMJOyKeRGWVRUklBjLIfkVXWpxNrn-KvA-ait_GQQh1fM6Lq0gYujl03p67ZVKgPLtbP23onXLytrjhf87cD4T1wMZAq-HwS2BRzTuj-jwlEH83Tb81jfwCFfI3n |
Cites_doi | 10.1145/3485447.3512104 10.1145/2487575.2487589 10.1145/3397271.3401057 10.1145/3097983.3098036 10.1145/1864708.1864721 10.1007/s12559-022-10015-5 10.1145/3106426.3106478 10.14778/3402707.3402736 10.1145/3539618.3592033 10.18653/v1/2020.acl-main.285 10.1109/TKDE.2018.2831682 10.1007/978-3-030-97546-3_60 10.24963/ijcai.2022/348 10.1145/3572407 10.30574/ijsra.2024.11.1.0282 10.1016/j.ipm.2022.102938 10.1145/3477495.3532009 10.1016/j.asoc.2022.109189 10.1145/3404835.3462862 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/math12152324 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Education |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_fb01e86f6cde4db3a9ce727216b75be3 A804514680 10_3390_math12152324 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK COVID FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c363t-8ab39779e70115f1184541d9c4191ac97ff621171b43991ca6e30e8c4726fe823 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:31:56 EDT 2025 Fri Jul 25 11:51:26 EDT 2025 Tue Jun 10 21:01:28 EDT 2025 Tue Jul 01 01:53:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-8ab39779e70115f1184541d9c4191ac97ff621171b43991ca6e30e8c4726fe823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8177-9340 |
OpenAccessLink | https://doaj.org/article/fb01e86f6cde4db3a9ce727216b75be3 |
PQID | 3090918463 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fb01e86f6cde4db3a9ce727216b75be3 proquest_journals_3090918463 gale_infotracacademiconefile_A804514680 crossref_primary_10_3390_math12152324 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Luna (ref_8) 2022; 14 ref_14 ref_13 Zheng (ref_23) 2024; 18 ref_33 ref_10 ref_32 ref_30 ref_19 ref_18 Xia (ref_2) 2024; 1 ref_16 Jing (ref_17) 2023; 42 Sun (ref_24) 2011; 4 Adeniyi (ref_1) 2024; 11 Tang (ref_6) 2021; 2021 Liu (ref_15) 2021; 35 ref_25 ref_22 ref_21 ref_20 Wang (ref_12) 2022; 59 ref_3 ref_29 ref_28 ref_27 ref_26 ref_9 Lin (ref_11) 2022; 125 He (ref_31) 2018; 30 ref_5 ref_4 ref_7 |
References_xml | – volume: 2021 start-page: 2757 year: 2021 ident: ref_6 article-title: Conceptguide: Supporting online video learning with concept map-based recommendation of learning path publication-title: Proc. Web Conf. – ident: ref_7 – ident: ref_28 – ident: ref_9 – ident: ref_21 doi: 10.1145/3485447.3512104 – ident: ref_30 doi: 10.1145/2487575.2487589 – ident: ref_4 doi: 10.1145/3397271.3401057 – ident: ref_3 – ident: ref_26 – ident: ref_32 doi: 10.1145/3097983.3098036 – ident: ref_27 doi: 10.1145/1864708.1864721 – volume: 1 start-page: 32 year: 2024 ident: ref_2 article-title: Research on the Dynamic Evolution Law of Online Knowledge Sharing Under Trust publication-title: Int. J. Chang. Educ. – volume: 14 start-page: 1474 year: 2022 ident: ref_8 article-title: Course Recommendation based on Sequences: An Evolutionary Search of Emerging Sequential Patterns publication-title: Cogn. Comput. doi: 10.1007/s12559-022-10015-5 – volume: 35 start-page: 857 year: 2021 ident: ref_15 article-title: Self-supervised learning: Generative or contrastive publication-title: IEEE Trans. Knowl. Data Eng. – ident: ref_18 – ident: ref_13 doi: 10.1145/3106426.3106478 – volume: 4 start-page: 992 year: 2011 ident: ref_24 article-title: Pathsim: Meta path-based top-k similarity search in heterogeneous information networks publication-title: Proc. VLDB Endow. doi: 10.14778/3402707.3402736 – ident: ref_33 – ident: ref_29 doi: 10.1145/3539618.3592033 – ident: ref_5 doi: 10.18653/v1/2020.acl-main.285 – ident: ref_10 – volume: 30 start-page: 2354 year: 2018 ident: ref_31 article-title: Nais: Neural attentive item similarity model for recommendation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2831682 – ident: ref_14 doi: 10.1007/978-3-030-97546-3_60 – ident: ref_25 doi: 10.24963/ijcai.2022/348 – volume: 18 start-page: 1 year: 2024 ident: ref_23 article-title: Heterogeneous information crossing on graphs for session-based recommender systems publication-title: ACM Trans. Web doi: 10.1145/3572407 – volume: 11 start-page: 1676 year: 2024 ident: ref_1 article-title: Reviewing online learning effectiveness during the COVID-19 pandemic: A global perspective publication-title: Int. J. Sci. Res. Arch. doi: 10.30574/ijsra.2024.11.1.0282 – volume: 59 start-page: 102938 year: 2022 ident: ref_12 article-title: HGNN: Hyperedge-based graph neural network for MOOC Course Recommendation publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2022.102938 – ident: ref_19 doi: 10.1145/3477495.3532009 – ident: ref_22 – ident: ref_20 – volume: 125 start-page: 109189 year: 2022 ident: ref_11 article-title: Context-aware reinforcement learning for course recommendation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109189 – ident: ref_16 doi: 10.1145/3404835.3462862 – volume: 42 start-page: 1 year: 2023 ident: ref_17 article-title: Contrastive self-supervised learning in recommender systems: A survey publication-title: ACM Trans. Inf. Syst. |
SSID | ssj0000913849 |
Score | 2.2640908 |
Snippet | With the implementation of conceptual labeling on online learning resources, knowledge-concept recommendations have been introduced to pinpoint concepts that... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2324 |
SubjectTerms | Collaboration Computational linguistics Dialectics Distance learning Education Equipment and supplies graph-contrastive learning group-structure feature of learner preferences Homogeneity Knowledge knowledge-concept recommendation Language processing Medical research Methods Natural language interfaces Online education Online instruction Recommender systems Sampling techniques Social networks Sparsity Students Teaching |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWBAPEV5KQOIyWoSu449IYpaKhAIIZBgsmLHbpempSn_n7vGLTDAmodkne277zufvyPkvOBpnrMkod6ylHJlOJVAm2kiAYuAU4YIhRecHx7F4JXfvXXeQsKtCmWVS5-4cNTFxGKOvM1iBaENoiW7mn5Q7BqFp6uhhcY6aYILlrJBmt3e49PzKsuCqpeSq7rinQG_bwMOHKGiAiKJX7FoIdn_l2NeRJv-NtkKMDG6rud1h6y5chc7LIdqjF2y-bDSW632yHuvHKFwRjmM7pdJMnpT30iMkGGOxy50T6oiTL1GAyyDmcDqcUD9o1uUrcYf5rO8QgcYBd3V4T557fdebgY0NE2glgk2pzI3iOmUyxDseeAPvMOTQlkOzCy3KvNeAOnLEoNMJLG5cCx20vIsFd7JlB2QRjkp3SGJTCEEGM-bwhsuhZKAdYQUmY9VwTMZt8jF0nx6WmtjaOAUaGb908wt0kXbrr5BRevFg8lsqMMG0d7EiZPCC1s4XhiWK-vwkDgRJusYx1rkEmdG474DW9g8XB-AoaKClb6WqJTDBQ7rZDl5OmzISn8vn6P_Xx-TjRRwS13jd0Ia89mnOwXcMTdnYXF9AQcu1-Q priority: 102 providerName: ProQuest |
Title | Enhancing Knowledge-Concept Recommendations with Heterogeneous Graph-Contrastive Learning |
URI | https://www.proquest.com/docview/3090918463 https://doaj.org/article/fb01e86f6cde4db3a9ce727216b75be3 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgLDAgPkWhVBlATFHj2HXssa36IVArhKhUJit2bFiaorb8f-6StCoDYmGNEsl6Z9-955yfCbnLeJymjNLQWxaHXBkeSpDNIZXARSApQ4XCA87jiRhN-eOsPdu56gt7wkp74BK4ljcRdVJ4YTPHM8NSZR3-PKTCJG3jCp9PqHk7YqrIwYoyyVXZ6c5A17eA_32gkwIyiB81qLDq_y0hF1VmcEKOK3oYdMphnZI9l5-Ro_HWW3V1Tt76-QeaZOTvwdNmQyzslacPA1ST87mrbkpaBbjNGoyw5WUBM8WBzA-GaFGNH6yX6QqTXVB5rL5fkOmg_9obhdUFCaFlgq1DmRrkb8olSOw8aAXe5jRTloMKS61KvBcg8BJqUHVQmwrHIictT2LhnYzZJanli9xdkcBkQgBg3mTecCmUBIyFFImPVMYTGdXJ_QYy_Vn6YGjQDwit3oW2TrqI5_YddK8uHkBMdRVT_VdM6-QBo6FxjQEWNq2OCsBQ0a1KdyS64nCBw2psAqarxbfSLFIQfyBW7Po_RnNDDmNgMmXXX4PU1ssvdwtMZG2aZF8Ohk1y0O1Pnl-axRT8Bg-j3wA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V5QAcEBQQ2xbwgYqT1ST2OvYBoVK63bLdnlqpnEzs2NtLk7LZquJP8RuZyccCB7j1GieRNR7PvLFn3gC8K2VWFCJNefQi49I4yTWGzTzViEXQKKOHogLn-ZmaXsgvl-PLDfg51MJQWuVgE1tDXdaezsj3RWLQtaG3FB9vvnPqGkW3q0MLjU4tZuHHHYZszYeTz7i-e1k2OTo_nPK-qwD3QokV14Uj0GNCTmgoIsCWY5mWxksMXQpv8hgVRkV56giqp75QQSRBe5lnKgZNRAdo8h9IgX-hyvTJ8fpMhzg2tTRdfj2OJ_uIOq-Iv4Fwy1-er20Q8C830Pq2yVN40oNSdtBp0TPYCNUW9XPucz-24PF8ze7aPIevR9UV0XRUCzYbjuT4YVf_yCievb4Ofa-mhtFBL5tS0k2Nuhrq24YdE0k2fbBaFg2ZW9azvC5ewMW9CPMlbFZ1FV4Bc6VSKLzoyuikVkYjslJa5TExpcx1MoK9QXz2pmPisBjBkJjtn2IewSeS7fod4s9uH9TLhe23o40uSYNWUfkyyNKJwvhAV9KpcvnYBTGC97QylnY5ysIXfbECTpX4suyBJl4eqWhau8Pi2X77N_a3sm7_f_gtPJyez0_t6cnZbAceZYiYuuzCXdhcLW_Da0Q8K_emVTMG3-5br38B12QRGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQG0BEWiLD1ScrOyuHa99qFAfCSmhUYWoVE5m7bXTS3dLNhXir_HrOpP1BjjArdd9SNZ4PPPNeOYbQt6WIisKnqYsOJ4xoa1gCsJmlirAImCUwUNhg_P5TE4uxcer4dUG-dX1wmBZZWcTV4a6rB3myAc80eDawFvyQYhlERen4_e33xlOkMKb1m6cRqsiU__zB4RvzeHZKez1QZaNR19OJixOGGCOS75kqrAIgLTPERkFANtiKNJSOwFhTOF0HoKECClPLcL21BXS88QrJ_JMBq-Q9ADM_2aOUVGPbB6PZhef1xkeZNxUQrfV9pzrZAAY9BrZHBDF_OUHV-MC_uUUVp5uvEWeRohKj1qd2iYbvtrB6c6xEmSHPDlfc702z8jXUXWNpB3VnE67BB07abshKUa3Nzc-Tm5qKKZ96QRLcGrQXF_fNfQDUmbjD8tF0aDxpZHzdf6cXD6IOF-QXlVX_iWhtpQShBdsGaxQUivAWVLJPCS6FLlK-uSgE5-5bXk5DMQzKGbzp5j75Bhlu_4G2bRXD-rF3MTDaYJNUq9kkK70orS80M7jBXUqbT60nvfJO9wZg2ceZOGK2LoAS0X2LHOkkKVHSFzWbrd5JhqDxvxW3Vf_f_2GPAKdNp_OZtPX5HEG8KktNdwlveXizu8B_Fna_ahnlHx7aNW-BxRzFq0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Knowledge-Concept+Recommendations+with+Heterogeneous+Graph-Contrastive+Learning&rft.jtitle=Mathematics+%28Basel%29&rft.au=Wei%2C+Liting&rft.au=Li%2C+Yun&rft.au=Wang%2C+Weiwei&rft.au=Zhu%2C+Yi&rft.date=2024-08-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=15&rft.spage=2324&rft_id=info:doi/10.3390%2Fmath12152324&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math12152324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |