Enhancing Knowledge-Concept Recommendations with Heterogeneous Graph-Contrastive Learning

With the implementation of conceptual labeling on online learning resources, knowledge-concept recommendations have been introduced to pinpoint concepts that learners may wish to delve into more deeply. As the core subject of learning, learners’ preferences in knowledge concepts should be given grea...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 12; no. 15; p. 2324
Main Authors Wei, Liting, Li, Yun, Wang, Weiwei, Zhu, Yi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the implementation of conceptual labeling on online learning resources, knowledge-concept recommendations have been introduced to pinpoint concepts that learners may wish to delve into more deeply. As the core subject of learning, learners’ preferences in knowledge concepts should be given greater attention. Research indicates that learners’ preferences for knowledge concepts are influenced by the characteristics of their group structure. There is a high degree of homogeneity within a group, and notable distinctions exist between the internal and external configurations of a group. To strengthen the group-structure characteristics of learners’ behaviors, a multi-task strategy for knowledge-concept recommendations is proposed; this strategy is called Knowledge-Concept Recommendations with Heterogeneous Graph-Contrastive Learning. Specifically, due to the difficulty of accessing authentic social networks, learners and their structural neighbors are considered positive contrastive pairs to construct self-supervision signals on the predefined meta-path from heterogeneous information networks as auxiliary tasks, which capture the higher-order neighbors of learners by presenting different perspectives. Then, the Information Noise-Contrastive Estimation loss is regarded as the main training objective to increase the differentiation of learners from different professional backgrounds. Extensive experiments are constructed on MOOCCube, and we find that our proposed method outperforms the other state-of-the-art concept-recommendation methods, achieving 6.66% with HR@5, 8.85% with NDCG@5, and 8.68% with MRR.
AbstractList With the implementation of conceptual labeling on online learning resources, knowledge-concept recommendations have been introduced to pinpoint concepts that learners may wish to delve into more deeply. As the core subject of learning, learners’ preferences in knowledge concepts should be given greater attention. Research indicates that learners’ preferences for knowledge concepts are influenced by the characteristics of their group structure. There is a high degree of homogeneity within a group, and notable distinctions exist between the internal and external configurations of a group. To strengthen the group-structure characteristics of learners’ behaviors, a multi-task strategy for knowledge-concept recommendations is proposed; this strategy is called Knowledge-Concept Recommendations with Heterogeneous Graph-Contrastive Learning. Specifically, due to the difficulty of accessing authentic social networks, learners and their structural neighbors are considered positive contrastive pairs to construct self-supervision signals on the predefined meta-path from heterogeneous information networks as auxiliary tasks, which capture the higher-order neighbors of learners by presenting different perspectives. Then, the Information Noise-Contrastive Estimation loss is regarded as the main training objective to increase the differentiation of learners from different professional backgrounds. Extensive experiments are constructed on MOOCCube, and we find that our proposed method outperforms the other state-of-the-art concept-recommendation methods, achieving 6.66% with HR@5, 8.85% with NDCG@5, and 8.68% with MRR.
Audience Academic
Author Wang, Weiwei
Li, Yun
Zhu, Yi
Wei, Liting
Author_xml – sequence: 1
  givenname: Liting
  orcidid: 0000-0001-8177-9340
  surname: Wei
  fullname: Wei, Liting
– sequence: 2
  givenname: Yun
  surname: Li
  fullname: Li, Yun
– sequence: 3
  givenname: Weiwei
  surname: Wang
  fullname: Wang, Weiwei
– sequence: 4
  givenname: Yi
  surname: Zhu
  fullname: Zhu, Yi
BookMark eNpNkVFrHCEQx5eSQtMkb_kAC33tpo66uj6GI01CDwolfciTuO6453GrV_Ua8u3r9UqJPjjMzP_HOP-PzVmIAZvmGsgNY4p8WUzZAIWeMsrfNeeUUtnJWjh7E39ornLeknoUsIGr8-b5LmxMsD7M7bcQX3Y4zditYrC4L-0PtHFZMEym-Bhy--LLpn3AginOGDAecnufzH5zFJRkcvG_sV2jSaHyLpv3zuwyXv17L5qfX--eVg_d-vv94-p23VkmWOkGMzIlpUJJAHoHMPCew6QsBwXGKumcoAASRs6UAmsEMoKD5ZIKhwNlF83jiTtFs9X75BeTXnU0Xv9NxDRrk4q3O9RuJICDcMJOyKeRGWVRUklBjLIfkVXWpxNrn-KvA-ait_GQQh1fM6Lq0gYujl03p67ZVKgPLtbP23onXLytrjhf87cD4T1wMZAq-HwS2BRzTuj-jwlEH83Tb81jfwCFfI3n
Cites_doi 10.1145/3485447.3512104
10.1145/2487575.2487589
10.1145/3397271.3401057
10.1145/3097983.3098036
10.1145/1864708.1864721
10.1007/s12559-022-10015-5
10.1145/3106426.3106478
10.14778/3402707.3402736
10.1145/3539618.3592033
10.18653/v1/2020.acl-main.285
10.1109/TKDE.2018.2831682
10.1007/978-3-030-97546-3_60
10.24963/ijcai.2022/348
10.1145/3572407
10.30574/ijsra.2024.11.1.0282
10.1016/j.ipm.2022.102938
10.1145/3477495.3532009
10.1016/j.asoc.2022.109189
10.1145/3404835.3462862
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/math12152324
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Education
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_fb01e86f6cde4db3a9ce727216b75be3
A804514680
10_3390_math12152324
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c363t-8ab39779e70115f1184541d9c4191ac97ff621171b43991ca6e30e8c4726fe823
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:31:56 EDT 2025
Fri Jul 25 11:51:26 EDT 2025
Tue Jun 10 21:01:28 EDT 2025
Tue Jul 01 01:53:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-8ab39779e70115f1184541d9c4191ac97ff621171b43991ca6e30e8c4726fe823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8177-9340
OpenAccessLink https://doaj.org/article/fb01e86f6cde4db3a9ce727216b75be3
PQID 3090918463
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_fb01e86f6cde4db3a9ce727216b75be3
proquest_journals_3090918463
gale_infotracacademiconefile_A804514680
crossref_primary_10_3390_math12152324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Luna (ref_8) 2022; 14
ref_14
ref_13
Zheng (ref_23) 2024; 18
ref_33
ref_10
ref_32
ref_30
ref_19
ref_18
Xia (ref_2) 2024; 1
ref_16
Jing (ref_17) 2023; 42
Sun (ref_24) 2011; 4
Adeniyi (ref_1) 2024; 11
Tang (ref_6) 2021; 2021
Liu (ref_15) 2021; 35
ref_25
ref_22
ref_21
ref_20
Wang (ref_12) 2022; 59
ref_3
ref_29
ref_28
ref_27
ref_26
ref_9
Lin (ref_11) 2022; 125
He (ref_31) 2018; 30
ref_5
ref_4
ref_7
References_xml – volume: 2021
  start-page: 2757
  year: 2021
  ident: ref_6
  article-title: Conceptguide: Supporting online video learning with concept map-based recommendation of learning path
  publication-title: Proc. Web Conf.
– ident: ref_7
– ident: ref_28
– ident: ref_9
– ident: ref_21
  doi: 10.1145/3485447.3512104
– ident: ref_30
  doi: 10.1145/2487575.2487589
– ident: ref_4
  doi: 10.1145/3397271.3401057
– ident: ref_3
– ident: ref_26
– ident: ref_32
  doi: 10.1145/3097983.3098036
– ident: ref_27
  doi: 10.1145/1864708.1864721
– volume: 1
  start-page: 32
  year: 2024
  ident: ref_2
  article-title: Research on the Dynamic Evolution Law of Online Knowledge Sharing Under Trust
  publication-title: Int. J. Chang. Educ.
– volume: 14
  start-page: 1474
  year: 2022
  ident: ref_8
  article-title: Course Recommendation based on Sequences: An Evolutionary Search of Emerging Sequential Patterns
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-022-10015-5
– volume: 35
  start-page: 857
  year: 2021
  ident: ref_15
  article-title: Self-supervised learning: Generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: ref_18
– ident: ref_13
  doi: 10.1145/3106426.3106478
– volume: 4
  start-page: 992
  year: 2011
  ident: ref_24
  article-title: Pathsim: Meta path-based top-k similarity search in heterogeneous information networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3402707.3402736
– ident: ref_33
– ident: ref_29
  doi: 10.1145/3539618.3592033
– ident: ref_5
  doi: 10.18653/v1/2020.acl-main.285
– ident: ref_10
– volume: 30
  start-page: 2354
  year: 2018
  ident: ref_31
  article-title: Nais: Neural attentive item similarity model for recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2831682
– ident: ref_14
  doi: 10.1007/978-3-030-97546-3_60
– ident: ref_25
  doi: 10.24963/ijcai.2022/348
– volume: 18
  start-page: 1
  year: 2024
  ident: ref_23
  article-title: Heterogeneous information crossing on graphs for session-based recommender systems
  publication-title: ACM Trans. Web
  doi: 10.1145/3572407
– volume: 11
  start-page: 1676
  year: 2024
  ident: ref_1
  article-title: Reviewing online learning effectiveness during the COVID-19 pandemic: A global perspective
  publication-title: Int. J. Sci. Res. Arch.
  doi: 10.30574/ijsra.2024.11.1.0282
– volume: 59
  start-page: 102938
  year: 2022
  ident: ref_12
  article-title: HGNN: Hyperedge-based graph neural network for MOOC Course Recommendation
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2022.102938
– ident: ref_19
  doi: 10.1145/3477495.3532009
– ident: ref_22
– ident: ref_20
– volume: 125
  start-page: 109189
  year: 2022
  ident: ref_11
  article-title: Context-aware reinforcement learning for course recommendation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109189
– ident: ref_16
  doi: 10.1145/3404835.3462862
– volume: 42
  start-page: 1
  year: 2023
  ident: ref_17
  article-title: Contrastive self-supervised learning in recommender systems: A survey
  publication-title: ACM Trans. Inf. Syst.
SSID ssj0000913849
Score 2.2640908
Snippet With the implementation of conceptual labeling on online learning resources, knowledge-concept recommendations have been introduced to pinpoint concepts that...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2324
SubjectTerms Collaboration
Computational linguistics
Dialectics
Distance learning
Education
Equipment and supplies
graph-contrastive learning
group-structure feature of learner preferences
Homogeneity
Knowledge
knowledge-concept recommendation
Language processing
Medical research
Methods
Natural language interfaces
Online education
Online instruction
Recommender systems
Sampling techniques
Social networks
Sparsity
Students
Teaching
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWBAPEV5KQOIyWoSu449IYpaKhAIIZBgsmLHbpempSn_n7vGLTDAmodkne277zufvyPkvOBpnrMkod6ylHJlOJVAm2kiAYuAU4YIhRecHx7F4JXfvXXeQsKtCmWVS5-4cNTFxGKOvM1iBaENoiW7mn5Q7BqFp6uhhcY6aYILlrJBmt3e49PzKsuCqpeSq7rinQG_bwMOHKGiAiKJX7FoIdn_l2NeRJv-NtkKMDG6rud1h6y5chc7LIdqjF2y-bDSW632yHuvHKFwRjmM7pdJMnpT30iMkGGOxy50T6oiTL1GAyyDmcDqcUD9o1uUrcYf5rO8QgcYBd3V4T557fdebgY0NE2glgk2pzI3iOmUyxDseeAPvMOTQlkOzCy3KvNeAOnLEoNMJLG5cCx20vIsFd7JlB2QRjkp3SGJTCEEGM-bwhsuhZKAdYQUmY9VwTMZt8jF0nx6WmtjaOAUaGb908wt0kXbrr5BRevFg8lsqMMG0d7EiZPCC1s4XhiWK-vwkDgRJusYx1rkEmdG474DW9g8XB-AoaKClb6WqJTDBQ7rZDl5OmzISn8vn6P_Xx-TjRRwS13jd0Ia89mnOwXcMTdnYXF9AQcu1-Q
  priority: 102
  providerName: ProQuest
Title Enhancing Knowledge-Concept Recommendations with Heterogeneous Graph-Contrastive Learning
URI https://www.proquest.com/docview/3090918463
https://doaj.org/article/fb01e86f6cde4db3a9ce727216b75be3
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgLDAgPkWhVBlATFHj2HXssa36IVArhKhUJit2bFiaorb8f-6StCoDYmGNEsl6Z9-955yfCbnLeJymjNLQWxaHXBkeSpDNIZXARSApQ4XCA87jiRhN-eOsPdu56gt7wkp74BK4ljcRdVJ4YTPHM8NSZR3-PKTCJG3jCp9PqHk7YqrIwYoyyVXZ6c5A17eA_32gkwIyiB81qLDq_y0hF1VmcEKOK3oYdMphnZI9l5-Ro_HWW3V1Tt76-QeaZOTvwdNmQyzslacPA1ST87mrbkpaBbjNGoyw5WUBM8WBzA-GaFGNH6yX6QqTXVB5rL5fkOmg_9obhdUFCaFlgq1DmRrkb8olSOw8aAXe5jRTloMKS61KvBcg8BJqUHVQmwrHIictT2LhnYzZJanli9xdkcBkQgBg3mTecCmUBIyFFImPVMYTGdXJ_QYy_Vn6YGjQDwit3oW2TrqI5_YddK8uHkBMdRVT_VdM6-QBo6FxjQEWNq2OCsBQ0a1KdyS64nCBw2psAqarxbfSLFIQfyBW7Po_RnNDDmNgMmXXX4PU1ssvdwtMZG2aZF8Ohk1y0O1Pnl-axRT8Bg-j3wA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V5QAcEBQQ2xbwgYqT1ST2OvYBoVK63bLdnlqpnEzs2NtLk7LZquJP8RuZyccCB7j1GieRNR7PvLFn3gC8K2VWFCJNefQi49I4yTWGzTzViEXQKKOHogLn-ZmaXsgvl-PLDfg51MJQWuVgE1tDXdaezsj3RWLQtaG3FB9vvnPqGkW3q0MLjU4tZuHHHYZszYeTz7i-e1k2OTo_nPK-qwD3QokV14Uj0GNCTmgoIsCWY5mWxksMXQpv8hgVRkV56giqp75QQSRBe5lnKgZNRAdo8h9IgX-hyvTJ8fpMhzg2tTRdfj2OJ_uIOq-Iv4Fwy1-er20Q8C830Pq2yVN40oNSdtBp0TPYCNUW9XPucz-24PF8ze7aPIevR9UV0XRUCzYbjuT4YVf_yCievb4Ofa-mhtFBL5tS0k2Nuhrq24YdE0k2fbBaFg2ZW9azvC5ewMW9CPMlbFZ1FV4Bc6VSKLzoyuikVkYjslJa5TExpcx1MoK9QXz2pmPisBjBkJjtn2IewSeS7fod4s9uH9TLhe23o40uSYNWUfkyyNKJwvhAV9KpcvnYBTGC97QylnY5ysIXfbECTpX4suyBJl4eqWhau8Pi2X77N_a3sm7_f_gtPJyez0_t6cnZbAceZYiYuuzCXdhcLW_Da0Q8K_emVTMG3-5br38B12QRGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQG0BEWiLD1ScrOyuHa99qFAfCSmhUYWoVE5m7bXTS3dLNhXir_HrOpP1BjjArdd9SNZ4PPPNeOYbQt6WIisKnqYsOJ4xoa1gCsJmlirAImCUwUNhg_P5TE4uxcer4dUG-dX1wmBZZWcTV4a6rB3myAc80eDawFvyQYhlERen4_e33xlOkMKb1m6cRqsiU__zB4RvzeHZKez1QZaNR19OJixOGGCOS75kqrAIgLTPERkFANtiKNJSOwFhTOF0HoKECClPLcL21BXS88QrJ_JMBq-Q9ADM_2aOUVGPbB6PZhef1xkeZNxUQrfV9pzrZAAY9BrZHBDF_OUHV-MC_uUUVp5uvEWeRohKj1qd2iYbvtrB6c6xEmSHPDlfc702z8jXUXWNpB3VnE67BB07abshKUa3Nzc-Tm5qKKZ96QRLcGrQXF_fNfQDUmbjD8tF0aDxpZHzdf6cXD6IOF-QXlVX_iWhtpQShBdsGaxQUivAWVLJPCS6FLlK-uSgE5-5bXk5DMQzKGbzp5j75Bhlu_4G2bRXD-rF3MTDaYJNUq9kkK70orS80M7jBXUqbT60nvfJO9wZg2ceZOGK2LoAS0X2LHOkkKVHSFzWbrd5JhqDxvxW3Vf_f_2GPAKdNp_OZtPX5HEG8KktNdwlveXizu8B_Fna_ahnlHx7aNW-BxRzFq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Knowledge-Concept+Recommendations+with+Heterogeneous+Graph-Contrastive+Learning&rft.jtitle=Mathematics+%28Basel%29&rft.au=Wei%2C+Liting&rft.au=Li%2C+Yun&rft.au=Wang%2C+Weiwei&rft.au=Zhu%2C+Yi&rft.date=2024-08-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=15&rft.spage=2324&rft_id=info:doi/10.3390%2Fmath12152324&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math12152324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon