Nanoimprint assisted inkjet printing to fabricate sub-micron channel organic field effect transistors

[Display omitted] ► The IJP resolution was enhanced to 750nm with NIL pre-patterning. ► Short channel effect of OFETs was investigated and suppressed. ► IJP Ag electrodes were applied to replace the expensive vacuum evaporation. ► Improve of the contact via gold nanoparticles in the ink. Solution pr...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronic engineering Vol. 110; pp. 292 - 297
Main Authors Teng, Lichao, Plötner, Matthias, Türke, Alexander, Adolphi, Barbara, Finn, Andreas, Kirchner, Robert, Fischer, Wolf-Joachim
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► The IJP resolution was enhanced to 750nm with NIL pre-patterning. ► Short channel effect of OFETs was investigated and suppressed. ► IJP Ag electrodes were applied to replace the expensive vacuum evaporation. ► Improve of the contact via gold nanoparticles in the ink. Solution processed poly(3-hexylthiophene) organic field effect transistors with channel lengths down to 750nm were fabricated by nanoimprint assisted inkjet printing. The nanoimprint lithography was used to define sub-micron channels into a resist because of its high resolution. A silver-containing ink was inkjet-printed onto a pre-patterned resist layer to form a metallic film, which acts as source and drain electrodes after lift-off. This process replaces the expensive vacuum evaporation of gold electrodes. The transistor short channel effect was suppressed successfully by constant field downscaling. However, samples with inkjet-printed silver electrodes have limited current density. They also have lower effective charge mobility due to higher charge injection barrier, as well as the rough metal surface. Gold nanoparticles were added into the silver ink to modify its work function and therefore reduce the contact resistance between electrodes and polymer. This emphasizes the importance of the metal-semiconductor contact especially for short channel organic transistors.
AbstractList [Display omitted] ► The IJP resolution was enhanced to 750nm with NIL pre-patterning. ► Short channel effect of OFETs was investigated and suppressed. ► IJP Ag electrodes were applied to replace the expensive vacuum evaporation. ► Improve of the contact via gold nanoparticles in the ink. Solution processed poly(3-hexylthiophene) organic field effect transistors with channel lengths down to 750nm were fabricated by nanoimprint assisted inkjet printing. The nanoimprint lithography was used to define sub-micron channels into a resist because of its high resolution. A silver-containing ink was inkjet-printed onto a pre-patterned resist layer to form a metallic film, which acts as source and drain electrodes after lift-off. This process replaces the expensive vacuum evaporation of gold electrodes. The transistor short channel effect was suppressed successfully by constant field downscaling. However, samples with inkjet-printed silver electrodes have limited current density. They also have lower effective charge mobility due to higher charge injection barrier, as well as the rough metal surface. Gold nanoparticles were added into the silver ink to modify its work function and therefore reduce the contact resistance between electrodes and polymer. This emphasizes the importance of the metal-semiconductor contact especially for short channel organic transistors.
Solution processed poly(3-hexylthiophene) organic field effect transistors with channel lengths down to 750 nm were fabricated by nanoimprint assisted inkjet printing. The nanoimprint lithography was used to define sub-micron channels into a resist because of its high resolution. A silver-containing ink was inkjet-printed onto a pre-patterned resist layer to form a metallic film, which acts as source and drain electrodes after lift-off. This process replaces the expensive vacuum evaporation of gold electrodes. The transistor short channel effect was suppressed successfully by constant field downscaling. However, samples with inkjet-printed silver electrodes have limited current density. They also have lower effective charge mobility due to higher charge injection barrier, as well as the rough metal surface. Gold nanoparticles were added into the silver ink to modify its work function and therefore reduce the contact resistance between electrodes and polymer. This emphasizes the importance of the metal-semiconductor contact especially for short channel organic transistors.
Solution processed poly(3-hexylthiophene) organic field effect transistors with channel lengths down to 750 nm were fabricated by nanoimprint assisted inkjet printing. The nanoimprint lithography was used to define sub-micron channels into a resist because of its high resolution. A silver-containing ink was ink-jet-printed onto a pre-patterned resist layer to form a metallic film, which acts as source and drain electrodes after lift-off. This process replaces the expensive vacuum evaporation of gold electrodes. The transistor short channel effect was suppressed successfully by constant field downscaling. However, samples with inkjet-printed silver electrodes have limited current density. They also have lower effective charge mobility due to higher charge injection barrier, as well as the rough metal surface. Gold nanoparticles were added into the silver ink to modify its work function and therefore reduce the contact resistance between electrodes and polymer. This emphasizes the importance of the metal-semiconductor contact especially for short channel organic transistors.
Author Adolphi, Barbara
Teng, Lichao
Türke, Alexander
Fischer, Wolf-Joachim
Plötner, Matthias
Kirchner, Robert
Finn, Andreas
Author_xml – sequence: 1
  givenname: Lichao
  surname: Teng
  fullname: Teng, Lichao
  email: lichao.teng@mailbox.tu-dresden.de
  organization: Institute of Semiconductors and Microsystems, Technische Universität Dresden, Germany
– sequence: 2
  givenname: Matthias
  surname: Plötner
  fullname: Plötner, Matthias
  organization: Institute of Semiconductors and Microsystems, Technische Universität Dresden, Germany
– sequence: 3
  givenname: Alexander
  surname: Türke
  fullname: Türke, Alexander
  organization: Institute of Semiconductors and Microsystems, Technische Universität Dresden, Germany
– sequence: 4
  givenname: Barbara
  surname: Adolphi
  fullname: Adolphi, Barbara
  organization: Institute of Semiconductors and Microsystems, Technische Universität Dresden, Germany
– sequence: 5
  givenname: Andreas
  surname: Finn
  fullname: Finn, Andreas
  organization: Institute of Semiconductors and Microsystems, Technische Universität Dresden, Germany
– sequence: 6
  givenname: Robert
  surname: Kirchner
  fullname: Kirchner, Robert
  organization: Institute of Semiconductors and Microsystems, Technische Universität Dresden, Germany
– sequence: 7
  givenname: Wolf-Joachim
  surname: Fischer
  fullname: Fischer, Wolf-Joachim
  organization: Institute of Semiconductors and Microsystems, Technische Universität Dresden, Germany
BookMark eNqFkE1LAzEQhoMoWD9-gLccvWzNx2aT4knELxC96DlksxNN3U1qkgr-e9PWs8LAMMPzDsxzhPZDDIDQGSVzSmh3sZxPAHNGKJ8TVkvuoRlVkjdCdGofzSojmwWn8hAd5bwkdW6JmiF4MiH6aZV8KNjk7HOBAfvwsYSCt1sf3nCJ2Jk-eWsK4Lzum8nbFAO27yYEGHFMbyZ4i52HccDgHNiCSzJhcy-mfIIOnBkznP72Y_R6e_Nyfd88Pt89XF89NpZ3vDRKDb3onVK9klYIZjunuBiE6wdKObeSdZwrRtUgrCUWqJSLLcNMB6Zn_Bid7-6uUvxcQy568tnCOJoAcZ11lUBFy3nV9C_adq0QC8LaitIdWn_OOYHTVcxk0remRG_s66Wu9vXGviaslqyZy10G6rtfHpLO1kOwMPhU5egh-j_SP_iJkCc
CitedBy_id crossref_primary_10_1002_adma_202204804
crossref_primary_10_1002_aelm_201500272
crossref_primary_10_1021_acsami_5b06301
crossref_primary_10_1016_j_orgel_2023_106819
crossref_primary_10_1088_0022_3727_48_45_455501
crossref_primary_10_1002_adsr_202200073
crossref_primary_10_1016_j_orgel_2015_03_047
crossref_primary_10_1007_s10404_016_1836_9
crossref_primary_10_3390_nano13101591
crossref_primary_10_1002_adfm_201904576
crossref_primary_10_1016_j_mee_2014_02_023
crossref_primary_10_1039_C4CP02413C
crossref_primary_10_1016_j_mne_2019_02_004
crossref_primary_10_1016_j_mtnano_2022_100201
crossref_primary_10_1039_C8TC05485A
crossref_primary_10_1007_s11664_017_5903_0
Cites_doi 10.1063/1.126219
10.1063/1.3077190
10.1063/1.1526457
10.1063/1.1691190
10.1143/JJAP.50.06GK13
10.1063/1.1613369
10.1016/j.orgel.2005.11.002
10.1016/j.orgel.2011.09.017
10.1116/1.3662094
10.1063/1.1968437
10.1016/j.mee.2012.04.004
10.1063/1.2182016
10.1016/j.orgel.2009.12.012
10.1063/1.2785118
10.1063/1.1525068
10.1002/9783527627387
10.1007/s00706-009-0149-z
10.1103/PhysRevB.77.165311
10.1557/PROC-771-L12.3/H11.3
10.1016/j.orgel.2010.04.013
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/j.mee.2013.02.027
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5568
EndPage 297
ExternalDocumentID 10_1016_j_mee_2013_02_027
S0167931713001287
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMV
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSV
SSZ
T5K
UHS
WUQ
XFK
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c363t-88db5bf88b87c552c6f835d5fbd1133c726338218d5cc0ce1779c6f832a6eab23
IEDL.DBID .~1
ISSN 0167-9317
IngestDate Thu Oct 24 23:33:09 EDT 2024
Fri Oct 25 00:56:02 EDT 2024
Thu Sep 26 16:10:14 EDT 2024
Fri Feb 23 02:24:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Organic transistor
Short channel effect
Inkjet printing
Contact barrier
Nanoparticle ink
Nanoimprint
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-88db5bf88b87c552c6f835d5fbd1133c726338218d5cc0ce1779c6f832a6eab23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1464559024
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1671543301
proquest_miscellaneous_1464559024
crossref_primary_10_1016_j_mee_2013_02_027
elsevier_sciencedirect_doi_10_1016_j_mee_2013_02_027
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Microelectronic engineering
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Myny, Steudel, Smout, Vicca, Furthner, van der Putten, Tripathi, Gelinck, Genoe, Dehaene, Heremans (b0145) 2010; 11
Sze (b0015) 1981
He, Richter, Bartha, Howitz (b0150) 2011; 29
Taylor, Gomes, Underhill, Edge, Clemension (b0045) 1991; 24
Pierret (b0140) 1996
Tiwari, Knauer, Dindar, Kippelen (b0060) 2012; 13
Wöll (b0135) 2009
Bürgi, Richards, Friend, Sirringhaus (b0165) 2003; 94
Auner, Palfinger, Gold, Kraxner, Hasse, Haber, Sezen, Grogger, Jakopic, Krenn, Lsising, Stadlober (b0095) 2010; 11
Knipp, Street, Völkel, Ho (b0110) 2003; 93
Austin, Chou (b0070) 2002; 81
Teng, Kirchner, Plötner, Türke, Jahn, He, Hagemann, Fischer (b0055) 2012; 97
Di, Yu, Liu, Xu, Song, Wang, Sun, Zhu, Liu, Liu, Wu (b0080) 2006; 88
Rivera, Munoz (b0120) 2009; 94
Kirchner, Teng, Lu, Adolphi, Fischer (b0155) 2011; 50
Klauk (b0130) 2006
Street (b0115) 2008; 77
Salleo, Endicott, Street (b0105) 2005; 86
Manca, Goris, Kesters, Lutsen, Martens, Haenen, Nesladek, Sanna, Vanderzande, Haen, DeSchepper (b0160) 2003; 771
Hoshino, Yoshida, Uemura, Kodzasa, Takada, Kamata, Yase (b0050) 2004; 95
Haddock, Zhang, Zheng, Zhang, Marder, Kippelen (b0075) 2006; 7
Collet, Tharaud, Chapoton, Vuillaume (b0090) 2000; 76
Egginger, Bauer, Schwödiauer, Neugebauer, Sariciftci (b0100) 2009; 140
Schmechel, von Seggern (b0170) 2005
Tsukagoshi, Fujimori, Minari, Miyadera, Hamano, Aoyagi (b0085) 2007; 91
Myny (10.1016/j.mee.2013.02.027_b0145) 2010; 11
Manca (10.1016/j.mee.2013.02.027_b0160) 2003; 771
Hoshino (10.1016/j.mee.2013.02.027_b0050) 2004; 95
Klauk (10.1016/j.mee.2013.02.027_b0130) 2006
Collet (10.1016/j.mee.2013.02.027_b0090) 2000; 76
Knipp (10.1016/j.mee.2013.02.027_b0110) 2003; 93
Taylor (10.1016/j.mee.2013.02.027_b0045) 1991; 24
Di (10.1016/j.mee.2013.02.027_b0080) 2006; 88
Sze (10.1016/j.mee.2013.02.027_b0015) 1981
He (10.1016/j.mee.2013.02.027_b0150) 2011; 29
Pierret (10.1016/j.mee.2013.02.027_b0140) 1996
Austin (10.1016/j.mee.2013.02.027_b0070) 2002; 81
Rivera (10.1016/j.mee.2013.02.027_b0120) 2009; 94
Teng (10.1016/j.mee.2013.02.027_b0055) 2012; 97
Tiwari (10.1016/j.mee.2013.02.027_b0060) 2012; 13
Schmechel (10.1016/j.mee.2013.02.027_b0170) 2005
Street (10.1016/j.mee.2013.02.027_b0115) 2008; 77
Salleo (10.1016/j.mee.2013.02.027_b0105) 2005; 86
Egginger (10.1016/j.mee.2013.02.027_b0100) 2009; 140
Kirchner (10.1016/j.mee.2013.02.027_b0155) 2011; 50
Auner (10.1016/j.mee.2013.02.027_b0095) 2010; 11
Wöll (10.1016/j.mee.2013.02.027_b0135) 2009
Haddock (10.1016/j.mee.2013.02.027_b0075) 2006; 7
Bürgi (10.1016/j.mee.2013.02.027_b0165) 2003; 94
Tsukagoshi (10.1016/j.mee.2013.02.027_b0085) 2007; 91
References_xml – year: 2006
  ident: b0130
  article-title: Organic Electronics
  contributor:
    fullname: Klauk
– year: 2009
  ident: b0135
  article-title: Physical and Chemical Aspects of Organic Electronics
  contributor:
    fullname: Wöll
– volume: 140
  start-page: 735
  year: 2009
  end-page: 750
  ident: b0100
  publication-title: Monatsh Chem.
  contributor:
    fullname: Sariciftci
– volume: 24
  start-page: 2032
  year: 1991
  ident: b0045
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Clemension
– volume: 11
  start-page: 1176
  year: 2010
  end-page: 1179
  ident: b0145
  publication-title: Org. Electron.
  contributor:
    fullname: Heremans
– volume: 81
  start-page: 2
  year: 2002
  ident: b0070
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Chou
– volume: 77
  start-page: 165311
  year: 2008
  ident: b0115
  publication-title: Phys. Rev. B
  contributor:
    fullname: Street
– volume: 771
  start-page: L12.3.1
  year: 2003
  ident: b0160
  publication-title: Mat. Res. Soc. Symp. Proc.
  contributor:
    fullname: DeSchepper
– volume: 97
  start-page: 38
  year: 2012
  end-page: 42
  ident: b0055
  publication-title: Microelectron. Eng.
  contributor:
    fullname: Fischer
– volume: 13
  start-page: 18
  year: 2012
  end-page: 22
  ident: b0060
  publication-title: Org. Electron.
  contributor:
    fullname: Kippelen
– volume: 88
  start-page: 121907
  year: 2006
  ident: b0080
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Wu
– volume: 93
  start-page: 347
  year: 2003
  ident: b0110
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Ho
– volume: 11
  start-page: 552
  year: 2010
  end-page: 557
  ident: b0095
  publication-title: Org. Electron.
  contributor:
    fullname: Stadlober
– year: 2005
  ident: b0170
  publication-title: Physics of Organic Semi-conductors
  contributor:
    fullname: von Seggern
– volume: 86
  start-page: 263505
  year: 2005
  ident: b0105
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Street
– volume: 95
  start-page: 5088
  year: 2004
  ident: b0050
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Yase
– volume: 7
  start-page: 45
  year: 2006
  end-page: 54
  ident: b0075
  publication-title: Org. Electron.
  contributor:
    fullname: Kippelen
– volume: 76
  start-page: 3
  year: 2000
  ident: b0090
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Vuillaume
– volume: 91
  start-page: 113508
  year: 2007
  ident: b0085
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Aoyagi
– volume: 94
  start-page: 053501
  year: 2009
  ident: b0120
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Munoz
– volume: 94
  year: 2003
  ident: b0165
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Sirringhaus
– volume: 29
  start-page: 06FC16
  year: 2011
  ident: b0150
  publication-title: J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.
  contributor:
    fullname: Howitz
– volume: 50
  start-page: 06GK13
  year: 2011
  ident: b0155
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Fischer
– year: 1996
  ident: b0140
  article-title: Semiconductor Device Fundamentals
  contributor:
    fullname: Pierret
– year: 1981
  ident: b0015
  article-title: Physics of Semiconductor Devices
  contributor:
    fullname: Sze
– year: 2005
  ident: 10.1016/j.mee.2013.02.027_b0170
  contributor:
    fullname: Schmechel
– year: 1996
  ident: 10.1016/j.mee.2013.02.027_b0140
  contributor:
    fullname: Pierret
– volume: 76
  start-page: 3
  issue: 14
  year: 2000
  ident: 10.1016/j.mee.2013.02.027_b0090
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126219
  contributor:
    fullname: Collet
– volume: 94
  start-page: 053501
  year: 2009
  ident: 10.1016/j.mee.2013.02.027_b0120
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3077190
  contributor:
    fullname: Rivera
– volume: 24
  start-page: 2032
  year: 1991
  ident: 10.1016/j.mee.2013.02.027_b0045
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Taylor
– volume: 81
  start-page: 2
  issue: 23
  year: 2002
  ident: 10.1016/j.mee.2013.02.027_b0070
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1526457
  contributor:
    fullname: Austin
– volume: 95
  start-page: 5088
  year: 2004
  ident: 10.1016/j.mee.2013.02.027_b0050
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1691190
  contributor:
    fullname: Hoshino
– volume: 50
  start-page: 06GK13
  year: 2011
  ident: 10.1016/j.mee.2013.02.027_b0155
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.50.06GK13
  contributor:
    fullname: Kirchner
– volume: 94
  issue: 9
  year: 2003
  ident: 10.1016/j.mee.2013.02.027_b0165
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1613369
  contributor:
    fullname: Bürgi
– volume: 7
  start-page: 45
  year: 2006
  ident: 10.1016/j.mee.2013.02.027_b0075
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2005.11.002
  contributor:
    fullname: Haddock
– volume: 13
  start-page: 18
  year: 2012
  ident: 10.1016/j.mee.2013.02.027_b0060
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2011.09.017
  contributor:
    fullname: Tiwari
– year: 2006
  ident: 10.1016/j.mee.2013.02.027_b0130
  contributor:
    fullname: Klauk
– volume: 29
  start-page: 06FC16
  year: 2011
  ident: 10.1016/j.mee.2013.02.027_b0150
  publication-title: J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.
  doi: 10.1116/1.3662094
  contributor:
    fullname: He
– volume: 86
  start-page: 263505
  year: 2005
  ident: 10.1016/j.mee.2013.02.027_b0105
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1968437
  contributor:
    fullname: Salleo
– volume: 97
  start-page: 38
  year: 2012
  ident: 10.1016/j.mee.2013.02.027_b0055
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2012.04.004
  contributor:
    fullname: Teng
– volume: 88
  start-page: 121907
  year: 2006
  ident: 10.1016/j.mee.2013.02.027_b0080
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2182016
  contributor:
    fullname: Di
– volume: 11
  start-page: 552
  year: 2010
  ident: 10.1016/j.mee.2013.02.027_b0095
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2009.12.012
  contributor:
    fullname: Auner
– volume: 91
  start-page: 113508
  year: 2007
  ident: 10.1016/j.mee.2013.02.027_b0085
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2785118
  contributor:
    fullname: Tsukagoshi
– volume: 93
  start-page: 347
  year: 2003
  ident: 10.1016/j.mee.2013.02.027_b0110
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1525068
  contributor:
    fullname: Knipp
– year: 2009
  ident: 10.1016/j.mee.2013.02.027_b0135
  doi: 10.1002/9783527627387
  contributor:
    fullname: Wöll
– volume: 140
  start-page: 735
  year: 2009
  ident: 10.1016/j.mee.2013.02.027_b0100
  publication-title: Monatsh Chem.
  doi: 10.1007/s00706-009-0149-z
  contributor:
    fullname: Egginger
– volume: 77
  start-page: 165311
  year: 2008
  ident: 10.1016/j.mee.2013.02.027_b0115
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.165311
  contributor:
    fullname: Street
– year: 1981
  ident: 10.1016/j.mee.2013.02.027_b0015
  contributor:
    fullname: Sze
– volume: 771
  start-page: L12.3.1
  year: 2003
  ident: 10.1016/j.mee.2013.02.027_b0160
  publication-title: Mat. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-771-L12.3/H11.3
  contributor:
    fullname: Manca
– volume: 11
  start-page: 1176
  year: 2010
  ident: 10.1016/j.mee.2013.02.027_b0145
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2010.04.013
  contributor:
    fullname: Myny
SSID ssj0016408
Score 2.1773245
Snippet [Display omitted] ► The IJP resolution was enhanced to 750nm with NIL pre-patterning. ► Short channel effect of OFETs was investigated and suppressed. ► IJP Ag...
Solution processed poly(3-hexylthiophene) organic field effect transistors with channel lengths down to 750 nm were fabricated by nanoimprint assisted inkjet...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 292
SubjectTerms Channels
Contact barrier
Electrodes
Field effect transistors
Inkjet printing
Nanocomposites
Nanoimprint
Nanomaterials
Nanoparticle ink
Nanostructure
Organic transistor
Resists
Semiconductor devices
Short channel effect
Silver
Transistors
Title Nanoimprint assisted inkjet printing to fabricate sub-micron channel organic field effect transistors
URI https://dx.doi.org/10.1016/j.mee.2013.02.027
https://search.proquest.com/docview/1464559024
https://search.proquest.com/docview/1671543301
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvQgPvFNBE9C3W2bR3uURVkVvaiwt9IkU1hx28XtXv3tzqStqMgehF5apqTMpN_MJF9mGDtXACEonQfa2kEgjCyCtAARpLkIMXy1hcxpHfLhUY1exN1YjlfYsDsLQ7TKFvsbTPdo3T7pt9rszyaT_hMR6FN0f7QhgyhLJ8oFuj-c05cfXzQPzAZ8Vzpf35uku51Nz_GaAlXKDGNftpMay_ztm36htHc9N5tso40Z-VXzWVtsBcpttv6tkuAOA0TJajKlVbqaYzxMxnMc88xXqLl_imK8rniRG98YCPh8YYIp0fFKTqd_S3jjTYsnyz2tjTdUD16TN_PFROa77OXm-nk4CtoOCoGNVVwHSeKMNEWSmERbKSOrCoy4nCyMCzE5tTpSmKKil3cSTWUh1Dr1MlGuIDdRvMd6ZVXCPuOJTkBG0rkEAwI1cDk4h2OIwuiIuDQH7KLTXTZrCmVkHYPsNUNFZ6TobBDhpQ-Y6LSb_bB2hkC-7LWzzhIZ_gW0tZGXUC3mlMAISZVoxBIZpTFejBHRDv83_BFbo7uGynfMevX7Ak4wJKnNqZ9zp2z16vZ-9PgJrGjhsA
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HIAD4ineBIkTUtn6SNId0QQar13YJG5Rk7jSJtYh1l357dhpiwAhDkg9pa5a2an9OfliM3YuAUKQKguUte0gMSIPOjkkQSdLQoSvNhcZrUM-9mVvmNw9i-cF1m3OwhCtsvb9lU_33roeadXabL2ORq0nItB3MPzRhgx6WbXIlhPCxzipL98_eR6YDvi2dL7AN4k3W5ue5DUBKpUZxr5uJ3WW-T04_XDTPvbcbLD1GjTyq-q7NtkCFFts7UspwW0G6Canowkt05UcATFZz3FMNMdQcj-KYryc8jwzvjMQ8NncBBPi4xWcjv8W8MKrHk-We14br7gevKRw5quJzHbY8OZ60O0FdQuFwMYyLoM0dUaYPE1NqqwQkZU5Qi4ncuNCzE6tiiTmqBjmnUBbWQiV6niZKJOQmSjeZUvFtIA9xlOVgoiEcykiAtl2GTiH70hyoyIi0-yzi0Z3-rWqlKEbCtlYo6I1KVq3I7zUPksa7epv5tboyf967KyxhMbfgPY2sgKm8xllMGR8RBx_yEiFgDFGl3bwv9efspXe4PFBP9z27w_ZKt2peH1HbKl8m8Mx4pPSnPj59wEHz-NJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoimprint+assisted+inkjet+printing+to+fabricate+sub-micron+channel+organic+field+effect+transistors&rft.jtitle=Microelectronic+engineering&rft.au=Teng%2C+Lichao&rft.au=Pl%C3%B6tner%2C+Matthias&rft.au=T%C3%BCrke%2C+Alexander&rft.au=Adolphi%2C+Barbara&rft.date=2013-10-01&rft.pub=Elsevier+B.V&rft.issn=0167-9317&rft.eissn=1873-5568&rft.volume=110&rft.spage=292&rft.epage=297&rft_id=info:doi/10.1016%2Fj.mee.2013.02.027&rft.externalDocID=S0167931713001287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9317&client=summon