Nonlocal based FISTA network for noninvasive cardiac transmembrane potential imaging

Objective . The primary aim of our study is to advance our understanding and diagnosis of cardiac diseases. We focus on the reconstruction of myocardial transmembrane potential (TMP) from body surface potential mapping. Approach . We introduce a novel methodology for the reconstruction of the dynami...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 69; no. 7; pp. 75018 - 75032
Main Authors Ran, Ao, Cheng, Linsheng, Xie, Shuting, Liu, Muqing, Pu, Cailing, Hu, Hongjie, Liu, Huafeng
Format Journal Article
LanguageEnglish
Published England IOP Publishing 07.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective . The primary aim of our study is to advance our understanding and diagnosis of cardiac diseases. We focus on the reconstruction of myocardial transmembrane potential (TMP) from body surface potential mapping. Approach . We introduce a novel methodology for the reconstruction of the dynamic distribution of TMP. This is achieved through the integration of convolutional neural networks with conventional optimization algorithms. Specifically, we utilize the subject-specific transfer matrix to describe the dynamic changes in TMP distribution and ECG observations at the body surface. To estimate the TMP distribution, we employ LNFISTA-Net, a learnable non-local regularized iterative shrinkage-thresholding network. The coupled estimation processes are iteratively repeated until convergence. Main results . Our experiments demonstrate the capabilities and benefits of this strategy. The results highlight the effectiveness of our approach in accurately estimating the TMP distribution, thereby providing a reliable method for the diagnosis of cardiac diseases. Significance . Our approach demonstrates promising results, highlighting its potential utility for a range of applications in the medical field. By providing a more accurate and dynamic reconstruction of TMP, our methodology could significantly improve the diagnosis and treatment of cardiac diseases, thereby contributing to advancements in healthcare.
AbstractList . The primary aim of our study is to advance our understanding and diagnosis of cardiac diseases. We focus on the reconstruction of myocardial transmembrane potential (TMP) from body surface potential mapping. . We introduce a novel methodology for the reconstruction of the dynamic distribution of TMP. This is achieved through the integration of convolutional neural networks with conventional optimization algorithms. Specifically, we utilize the subject-specific transfer matrix to describe the dynamic changes in TMP distribution and ECG observations at the body surface. To estimate the TMP distribution, we employ LNFISTA-Net, a learnable non-local regularized iterative shrinkage-thresholding network. The coupled estimation processes are iteratively repeated until convergence. . Our experiments demonstrate the capabilities and benefits of this strategy. The results highlight the effectiveness of our approach in accurately estimating the TMP distribution, thereby providing a reliable method for the diagnosis of cardiac diseases. . Our approach demonstrates promising results, highlighting its potential utility for a range of applications in the medical field. By providing a more accurate and dynamic reconstruction of TMP, our methodology could significantly improve the diagnosis and treatment of cardiac diseases, thereby contributing to advancements in healthcare.
Objective. The primary aim of our study is to advance our understanding and diagnosis of cardiac diseases. We focus on the reconstruction of myocardial transmembrane potential (TMP) from body surface potential mapping.Approach. We introduce a novel methodology for the reconstruction of the dynamic distribution of TMP. This is achieved through the integration of convolutional neural networks with conventional optimization algorithms. Specifically, we utilize the subject-specific transfer matrix to describe the dynamic changes in TMP distribution and ECG observations at the body surface. To estimate the TMP distribution, we employ LNFISTA-Net, a learnable non-local regularized iterative shrinkage-thresholding network. The coupled estimation processes are iteratively repeated until convergence.Main results. Our experiments demonstrate the capabilities and benefits of this strategy. The results highlight the effectiveness of our approach in accurately estimating the TMP distribution, thereby providing a reliable method for the diagnosis of cardiac diseases.Significance. Our approach demonstrates promising results, highlighting its potential utility for a range of applications in the medical field. By providing a more accurate and dynamic reconstruction of TMP, our methodology could significantly improve the diagnosis and treatment of cardiac diseases, thereby contributing to advancements in healthcare.Objective. The primary aim of our study is to advance our understanding and diagnosis of cardiac diseases. We focus on the reconstruction of myocardial transmembrane potential (TMP) from body surface potential mapping.Approach. We introduce a novel methodology for the reconstruction of the dynamic distribution of TMP. This is achieved through the integration of convolutional neural networks with conventional optimization algorithms. Specifically, we utilize the subject-specific transfer matrix to describe the dynamic changes in TMP distribution and ECG observations at the body surface. To estimate the TMP distribution, we employ LNFISTA-Net, a learnable non-local regularized iterative shrinkage-thresholding network. The coupled estimation processes are iteratively repeated until convergence.Main results. Our experiments demonstrate the capabilities and benefits of this strategy. The results highlight the effectiveness of our approach in accurately estimating the TMP distribution, thereby providing a reliable method for the diagnosis of cardiac diseases.Significance. Our approach demonstrates promising results, highlighting its potential utility for a range of applications in the medical field. By providing a more accurate and dynamic reconstruction of TMP, our methodology could significantly improve the diagnosis and treatment of cardiac diseases, thereby contributing to advancements in healthcare.
Objective . The primary aim of our study is to advance our understanding and diagnosis of cardiac diseases. We focus on the reconstruction of myocardial transmembrane potential (TMP) from body surface potential mapping. Approach . We introduce a novel methodology for the reconstruction of the dynamic distribution of TMP. This is achieved through the integration of convolutional neural networks with conventional optimization algorithms. Specifically, we utilize the subject-specific transfer matrix to describe the dynamic changes in TMP distribution and ECG observations at the body surface. To estimate the TMP distribution, we employ LNFISTA-Net, a learnable non-local regularized iterative shrinkage-thresholding network. The coupled estimation processes are iteratively repeated until convergence. Main results . Our experiments demonstrate the capabilities and benefits of this strategy. The results highlight the effectiveness of our approach in accurately estimating the TMP distribution, thereby providing a reliable method for the diagnosis of cardiac diseases. Significance . Our approach demonstrates promising results, highlighting its potential utility for a range of applications in the medical field. By providing a more accurate and dynamic reconstruction of TMP, our methodology could significantly improve the diagnosis and treatment of cardiac diseases, thereby contributing to advancements in healthcare.
Author Hu, Hongjie
Xie, Shuting
Liu, Huafeng
Liu, Muqing
Cheng, Linsheng
Ran, Ao
Pu, Cailing
Author_xml – sequence: 1
  givenname: Ao
  orcidid: 0000-0002-0182-3741
  surname: Ran
  fullname: Ran, Ao
  organization: Zhejiang University State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, People’s Republic of China
– sequence: 2
  givenname: Linsheng
  surname: Cheng
  fullname: Cheng, Linsheng
  organization: Zhejiang University State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, People’s Republic of China
– sequence: 3
  givenname: Shuting
  surname: Xie
  fullname: Xie, Shuting
  organization: Zhejiang University State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, People’s Republic of China
– sequence: 4
  givenname: Muqing
  surname: Liu
  fullname: Liu, Muqing
  organization: Zhejiang University State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, People’s Republic of China
– sequence: 5
  givenname: Cailing
  surname: Pu
  fullname: Pu, Cailing
  organization: Zhejiang University School of Medicine Department of Radiology, Sir Run Run Shaw Hospital, People’s Republic of China
– sequence: 6
  givenname: Hongjie
  surname: Hu
  fullname: Hu, Hongjie
  organization: Zhejiang University School of Medicine Department of Radiology, Sir Run Run Shaw Hospital, People’s Republic of China
– sequence: 7
  givenname: Huafeng
  surname: Liu
  fullname: Liu, Huafeng
  organization: Zhejiang University State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38417179$$D View this record in MEDLINE/PubMed
BookMark eNp1kD1PwzAQhi0EglLYmVA2GAj11YljjwjxJSEYKLPl2BcUSOxgp0X8e1wVmGB6pdNzr8_PPtl23iEhR0DPgQoxA8Yh5yWnM23nyO0WmfyOtsmEUga5hLLcI_sxvlIKIObFLtljooAKKjkhiwfvOm90l9U6os2u754WF5nD8cOHt6zxIUtPtm6lY7vCzOhgW22yMWgXe-zrlJgNfkQ3tqmj7fVL614OyE6ju4iH3zklz9dXi8vb_P7x5u7y4j43jLMxF9waA5VA4JbWheTI0kSWghoG3HDapATJCtCiFkZXElECWhBibqsG2ZScbnqH4N-XGEfVt9Fg16Wr_DKquWSs4KWkLKHH3-iy7tGqIaRbw6f6MZEAugFM8DEGbH4RoGotW63NqrVZtZGdVk42K60f1KtfBpc-q4a-VlyqStGqpCDUYJtEnv1B_lv8BbpajT8
CODEN PHMBA7
Cites_doi 10.1109/TPAMI.2018.2883941
10.1016/j.patrec.2020.07.007
10.1109/CIC.2000.898565
10.1109/TMI.2015.2429134
10.1109/TMI.2022.3218170
10.1109/TBME.2019.2894286
10.1016/j.hrthm.2005.08.019
10.1137/090773908
10.1109/TMI.2014.2324900
10.1016/j.jelectrocard.2015.08.008
10.1109/TMI.2013.2295220
10.1109/TBME.2017.2758369
10.1137/080716542
10.1049/htl.2019.0065
10.1109/TMI.2019.2906600
10.1196/annals.1380.029
10.1088/0031-9155/56/19/009
10.1161/CIRCRESAHA.112.279315
10.1109/TMI.2018.2865356
10.1109/TBME.2004.828038
10.1145/321150.321157
10.1136/hrt.2003.014662
10.1109/10.759063
10.1109/TBME.2003.820394
10.1109/TMI.2012.2202914
10.1054/jelc.2001.28896
10.1111/j.1540-8159.1996.tb04205.x
10.1109/10.650360
10.1016/j.media.2020.101670
10.1109/TBME.2021.3110767
10.1038/nm1011
10.3389/fphys.2018.01305
10.1109/TBME.2009.2024531
10.1109/TBME.2003.817637
10.1161/01.CIR.87.1.135
10.1007/s11517-009-0503-7
10.1093/europace/euaa391
10.1016/S0169-2607(97)00060-6
ContentType Journal Article
Copyright 2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
2024 Institute of Physics and Engineering in Medicine.
Copyright_xml – notice: 2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
– notice: 2024 Institute of Physics and Engineering in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1361-6560/ad2e6d
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID 38417179
10_1088_1361_6560_ad2e6d
pmbad2e6d
Genre Journal Article
GrantInformation_xml – fundername: Scientific Research Fund of Zhejiang University
  grantid: No:XY2023033
– fundername: Talent Program of Zhejiang Province
  grantid: 2021R51004
– fundername: National Natural Science Foundation of China
  grantid: U1809204
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c363t-86dcc178e16d0b496e36dc9580c316c60fc3119341a8b8ca79ee91ed1882d7fe3
IEDL.DBID IOP
ISSN 0031-9155
1361-6560
IngestDate Fri Jul 11 08:36:30 EDT 2025
Thu Aug 28 04:41:03 EDT 2025
Wed Aug 27 16:27:34 EDT 2025
Tue Aug 20 22:16:36 EDT 2024
Wed Aug 27 01:32:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords subject-specific transfer matrix
nonlocal
neural network
transmembrane potential
Language English
License This article is available under the terms of the IOP-Standard License.
2024 Institute of Physics and Engineering in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-86dcc178e16d0b496e36dc9580c316c60fc3119341a8b8ca79ee91ed1882d7fe3
Notes PMB-116401.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0182-3741
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6560/ad2e6d/pdf
PMID 38417179
PQID 2933465903
PQPubID 23479
PageCount 15
ParticipantIDs crossref_primary_10_1088_1361_6560_ad2e6d
iop_journals_10_1088_1361_6560_ad2e6d
proquest_miscellaneous_2933465903
pubmed_primary_38417179
PublicationCentury 2000
PublicationDate 2024-04-07
PublicationDateYYYYMMDD 2024-04-07
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Intini (pmbad2e6dbib24) 2005; 2
Aggarwal (pmbad2e6dbib1) 2017; 38
Mu (pmbad2e6dbib34) 2020; 138
Fang (pmbad2e6dbib14) 2019a; 66
Yu (pmbad2e6dbib55) 2015; 34
Cheng (pmbad2e6dbib7) 2021
Bacoyannis (pmbad2e6dbib4) 2021; 23
Onak (pmbad2e6dbib36) 2021; 69
Liu (pmbad2e6dbib30) 2012; 31
Jiang (pmbad2e6dbib25) 2020
Xu (pmbad2e6dbib51) 2014; 33
Oosterom (pmbad2e6dbib37) 2001; 34
Xie (pmbad2e6dbib50) 2019; 6
Yang (pmbad2e6dbib52) 2017
Zhang (pmbad2e6dbib56) 2017
Wang (pmbad2e6dbib48) 2018
He (pmbad2e6dbib23) 2016
Messnarz (pmbad2e6dbib33) 2004b; 51
Ghimire (pmbad2e6dbib19) 2019; 38
Dhamala (pmbad2e6dbib9) 2020; 62
Buades (pmbad2e6dbib6) 2010; 52
Fang (pmbad2e6dbib15) 2019b; 66
Xie (pmbad2e6dbib49) 2021
Fischer (pmbad2e6dbib16) 1998; 55
Mairal (pmbad2e6dbib31) 2009
Rosenqvist (pmbad2e6dbib40) 2010; 19
Erik (pmbad2e6dbib13) 2017; 19
Latimer (pmbad2e6dbib29) 1999; 46
Greensite (pmbad2e6dbib20) 1996
Jiang (pmbad2e6dbib27) 2022b; 42
Rudy (pmbad2e6dbib41) 2013; 112
Messnarz (pmbad2e6dbib32) 2004a; 51
Dubuc (pmbad2e6dbib11) 1993; 87
Ghimire (pmbad2e6dbib18) 2018
Ramanathan (pmbad2e6dbib38) 2004; 10
Twomey (pmbad2e6dbib44) 1963; 10
Aras (pmbad2e6dbib2) 2015; 48
Greensite (pmbad2e6dbib21) 1998; 45
Rodriguez (pmbad2e6dbib39) 2006; 1080
Farina (pmbad2e6dbib17) 2009; 47
Wang (pmbad2e6dbib47) 2009; 57
Dhamala (pmbad2e6dbib10) 2019
Jiang (pmbad2e6dbib26) 2022a
Aydn (pmbad2e6dbib3) 2009
Cluitmans (pmbad2e6dbib8) 2018; 9
Ting (pmbad2e6dbib43) 2018; 38
Wang (pmbad2e6dbib46) 2011; 56
Beck (pmbad2e6dbib5) 2009; 2
van Oosterom (pmbad2e6dbib45) 2004; 90
Yang (pmbad2e6dbib53) 2020; 42
Erem (pmbad2e6dbib12) 2014; 33
Mu (pmbad2e6dbib35) 2021
Yu (pmbad2e6dbib54) 2017; 65
He (pmbad2e6dbib22) 2003; 50
Kara (pmbad2e6dbib28) 2019; 10
Throne (pmbad2e6dbib42) 2000; 27
References_xml – volume: 42
  start-page: 521
  year: 2020
  ident: pmbad2e6dbib53
  article-title: ADMM-csnet: a deep learning approach for image compressive sensing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2883941
– year: 1996
  ident: pmbad2e6dbib20
  article-title: Two mechanisms for electrocardiographic deconvolution
– volume: 138
  start-page: 106
  year: 2020
  ident: pmbad2e6dbib34
  article-title: Noninvasive electrocardiographic imaging with low-rank and non-local total variation regularization
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.07.007
– volume: 27
  start-page: 493
  year: 2000
  ident: pmbad2e6dbib42
  article-title: A comparison of spatial regularization with zero and first ordertikhonov regularization for the inverse problem of electrocardiography
  doi: 10.1109/CIC.2000.898565
– start-page: 508
  year: 2018
  ident: pmbad2e6dbib18
  article-title: Generative modeling and inverse imaging of cardiac transmembrane potential
– volume: 34
  start-page: 2309
  year: 2015
  ident: pmbad2e6dbib55
  article-title: Temporal sparse promoting three dimensional imaging of cardiac activation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2429134
– start-page: 770
  year: 2016
  ident: pmbad2e6dbib23
  article-title: Deep residual learning for image recognition
– volume: 42
  start-page: 403
  year: 2022b
  ident: pmbad2e6dbib27
  article-title: Improving generalization by learning geometry-dependent and physics-based reconstruction of image sequences
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3218170
– volume: 10
  start-page: 422779
  year: 2019
  ident: pmbad2e6dbib28
  article-title: Ecg imaging to detect the site of ventricular ischemia using torso electrodes: a computational study
  publication-title: Frontiers in Physiology
– volume: 66
  start-page: 2651
  year: 2019a
  ident: pmbad2e6dbib14
  article-title: Noninvasive imaging of epicardial and endocardial potentials with low rank and sparsity constraints
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2894286
– volume: 2
  start-page: 1250
  year: 2005
  ident: pmbad2e6dbib24
  article-title: Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2005.08.019
– year: 2017
  ident: pmbad2e6dbib52
  article-title: ADMM-net: a deep learning approach for compressive sensing MRI
– volume: 52
  start-page: 113
  year: 2010
  ident: pmbad2e6dbib6
  article-title: Image denoising methods. a new nonlocal principle
  publication-title: SIAM Rev.
  doi: 10.1137/090773908
– volume: 33
  start-page: 1860
  year: 2014
  ident: pmbad2e6dbib51
  article-title: Noninvasive transmural electrophysiological imaging based on minimization of total-variation functional
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2324900
– volume: 48
  start-page: 975
  year: 2015
  ident: pmbad2e6dbib2
  article-title: Experimental data and geometric analysis repositoryedgar
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2015.08.008
– volume: 33
  start-page: 726
  year: 2014
  ident: pmbad2e6dbib12
  article-title: Using transmural regularization and dynamic modeling for noninvasive cardiac potential imaging of endocardial pacing with imprecise thoracic geometry
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2295220
– volume: 65
  start-page: 1495
  year: 2017
  ident: pmbad2e6dbib54
  article-title: Three-dimensional noninvasive imaging of ventricular arrhythmias in patients with premature ventricular contractions
  publication-title: IEEE Trans Biomed Eng.
  doi: 10.1109/TBME.2017.2758369
– volume: 2
  start-page: 183
  year: 2009
  ident: pmbad2e6dbib5
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: Siam. J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 6
  start-page: 181
  year: 2019
  ident: pmbad2e6dbib50
  article-title: Non-invasive reconstruction of dynamic myocardial transmembrane potential with graph based total variation constraints
  publication-title: Healthcare Technol. Lett.
  doi: 10.1049/htl.2019.0065
– volume: 38
  start-page: 2582
  year: 2019
  ident: pmbad2e6dbib19
  article-title: Noninvasive reconstruction of transmural transmembrane potential with simultaneous estimation of prior model error
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2906600
– volume: 1080
  start-page: 395
  year: 2006
  ident: pmbad2e6dbib39
  article-title: Modeling cardiac ischemia
  publication-title: Ann. New York Acad. Sci.
  doi: 10.1196/annals.1380.029
– start-page: 7794
  year: 2018
  ident: pmbad2e6dbib48
  article-title: Non-local neural networks
– volume: 56
  start-page: 6291
  year: 2011
  ident: pmbad2e6dbib46
  article-title: Application of l1-norm regularization to epicardial potential reconstruction based on gradient projection
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/19/009
– volume: 112
  start-page: 863
  year: 2013
  ident: pmbad2e6dbib41
  article-title: Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.112.279315
– volume: 38
  start-page: 394
  year: 2017
  ident: pmbad2e6dbib1
  article-title: Modl: model based deep learning architecture for inverse problems
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2865356
– start-page: 46
  year: 2022a
  ident: pmbad2e6dbib26
  article-title: Few-shot generation of personalized neural surrogates for cardiac simulation via bayesian meta-learning
– volume: 51
  start-page: 1609
  year: 2004a
  ident: pmbad2e6dbib32
  article-title: A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.828038
– volume: 10
  start-page: 97
  year: 1963
  ident: pmbad2e6dbib44
  article-title: On the numerical solution of fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature
  publication-title: J. ACM
  doi: 10.1145/321150.321157
– volume: 90
  start-page: 165
  year: 2004
  ident: pmbad2e6dbib45
  article-title: ECGSIM: an interactive tool for studying the genesis of QRST waveforms
  publication-title: Heart Off. J.e Br. Cardiac Soc.
  doi: 10.1136/hrt.2003.014662
– volume: 66
  start-page: 2651
  year: 2019b
  ident: pmbad2e6dbib15
  article-title: Noninvasive imaging of epicardial and endocardial potentials with low rank and sparsity constraints
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2894286
– volume: 46
  start-page: 612
  year: 1999
  ident: pmbad2e6dbib29
  article-title: Effect of a bath on the epicardial transmembrane potential during internal defibrillation shocks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.759063
– volume: 38
  start-page: 525
  year: 2018
  ident: pmbad2e6dbib43
  article-title: Noninvasive activation imaging of ventricular arrhythmias by spatial gradient sparse in frequency domain application to mapping reentrant ventricular tachycardia
  publication-title: IEEE Trans. Med. Imaging
– start-page: 183
  year: 2021
  ident: pmbad2e6dbib49
  article-title: Lnista-net: Learning nonlocal regularized iterative shrinkage-thresholding network for noninvasive cardiac transmembrane potential imaging
– volume: 51
  start-page: 273
  year: 2004b
  ident: pmbad2e6dbib33
  article-title: A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.820394
– volume: 31
  start-page: 1777
  year: 2012
  ident: pmbad2e6dbib30
  article-title: Noninvasive mapping of transmural potentials during activation in swine hearts from body surface electrocardiograms
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2202914
– year: 2009
  ident: pmbad2e6dbib3
– start-page: 487
  year: 2020
  ident: pmbad2e6dbib25
  article-title: Learning geometry-dependent and physics-based inverse image reconstruction
– volume: 34
  start-page: 217
  year: 2001
  ident: pmbad2e6dbib37
  article-title: Genesis of the t wave as based on an equivalent surface source model
  publication-title: J. Electrocardiol.
  doi: 10.1054/jelc.2001.28896
– volume: 19
  start-page: 1279
  year: 2010
  ident: pmbad2e6dbib40
  article-title: The effect of ventricular activation sequence on cardiac performance during pacing
  publication-title: Pacing Clin. Electrophysiol.
  doi: 10.1111/j.1540-8159.1996.tb04205.x
– volume: 45
  start-page: 98
  year: 1998
  ident: pmbad2e6dbib21
  article-title: An improved method for estimating epicardial potentials from the body surface
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.650360
– start-page: 3149
  year: 2021
  ident: pmbad2e6dbib7
  article-title: Noninvasive cardiac transmembrane potential imaging via global features based fista network
– volume: 19
  year: 2017
  ident: pmbad2e6dbib13
  article-title: Noninvasive epicardial and endocardial mapping of premature ventricular contractions
  publication-title: EP Europace
– volume: 62
  start-page: 101670
  year: 2020
  ident: pmbad2e6dbib9
  article-title: Embedding high-dimensional bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101670
– volume: 69
  start-page: 963
  year: 2021
  ident: pmbad2e6dbib36
  article-title: A novel data-adaptive regression framework based on multivariate adaptive regression splines for electrocardiographic imaging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3110767
– volume: 10
  start-page: 422
  year: 2004
  ident: pmbad2e6dbib38
  article-title: Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia
  publication-title: Nat. Med.
  doi: 10.1038/nm1011
– volume: 9
  start-page: 398615
  year: 2018
  ident: pmbad2e6dbib8
  article-title: Validation and opportunities of electrocardiographic imaging: from technical achievements to clinical applications
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01305
– start-page: 547
  year: 2021
  ident: pmbad2e6dbib35
  article-title: Cardiac transmembrane potential imaging with gcn based iterative soft threshold network
– volume: 57
  start-page: 296
  year: 2009
  ident: pmbad2e6dbib47
  article-title: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2024531
– start-page: 2272
  year: 2009
  ident: pmbad2e6dbib31
  article-title: Non-local sparse models for image restoration
– start-page: 458
  year: 2019
  ident: pmbad2e6dbib10
  article-title: Bayesian optimization on large graphs via a graph convolutional generative model: application in cardiac model personalization
– volume: 50
  start-page: 1190
  year: 2003
  ident: pmbad2e6dbib22
  article-title: Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.817637
– volume: 87
  start-page: 135
  year: 1993
  ident: pmbad2e6dbib11
  article-title: Pace mapping using body surface potential maps to guide catheter ablation of accessory pathways in patients with wolff-parkinson-white syndrome
  publication-title: Circulation
  doi: 10.1161/01.CIR.87.1.135
– volume: 47
  start-page: 1229
  year: 2009
  ident: pmbad2e6dbib17
  article-title: Acceleration of fem-based transfer matrix computation for forward and inverse problems of electrocardiography
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-009-0503-7
– start-page: 1828
  year: 2017
  ident: pmbad2e6dbib56
– volume: 23
  start-page: i55
  year: 2021
  ident: pmbad2e6dbib4
  article-title: Deep learning formulation of electrocardiographic imaging integrating image and signal information with data-driven regularization
  publication-title: EP Europace
  doi: 10.1093/europace/euaa391
– volume: 55
  start-page: 99
  year: 1998
  ident: pmbad2e6dbib16
  article-title: Analytical validation of the bemapplication of the bem to the electrocardiographic forward and inverse problem
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/S0169-2607(97)00060-6
SSID ssj0011824
Score 2.436777
Snippet Objective . The primary aim of our study is to advance our understanding and diagnosis of cardiac diseases. We focus on the reconstruction of myocardial...
. The primary aim of our study is to advance our understanding and diagnosis of cardiac diseases. We focus on the reconstruction of myocardial transmembrane...
Objective. The primary aim of our study is to advance our understanding and diagnosis of cardiac diseases. We focus on the reconstruction of myocardial...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 75018
SubjectTerms Algorithms
Diagnostic Imaging
Heart - diagnostic imaging
Heart Diseases - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Membrane Potentials
Myocardium
neural network
nonlocal
subject-specific transfer matrix
transmembrane potential
Title Nonlocal based FISTA network for noninvasive cardiac transmembrane potential imaging
URI https://iopscience.iop.org/article/10.1088/1361-6560/ad2e6d
https://www.ncbi.nlm.nih.gov/pubmed/38417179
https://www.proquest.com/docview/2933465903
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_uThRf_Dg_bv0igj740L2mSacJPh3icifcKbgH9yCENEnhkO2W266gf72TprtwoiI-tZRpO51OOr90fpkBeMWVratC1FkoypBJK3lmkQZeWTelQ-0LtHG98-kZHp_LDxflxQ683a6FWXbjp39Ku6lQcDLhSIhTh1wgz2LNmEPri4B-F24IhRjbF5x8_LRNIRBwlmNe8ndnXYtDu3SvP0PMIdTM7sKXjZKJYfJ1uu7rqfvxS_3G_3yKe3BnhKDsKIneh53Q7sPN1JTy-z7cOh3T7XRw4Ie61QOYny3bIeyxGPY8m518nh-xNnHIGQFf1sb_ut9sZMMzN7idY30MhIuwoBl5G1i37CM1ia5xuRh6Iz2E89n7-bvjbGzIkDmBos8Ueud4pQJHn9dSYxB0RJcqd4Kjw7yhLSFCya2qlbOVDkHz4DnBeF81QTyCPdImHAArvK-FzSu0AqWrCgJ-VjqX29BIEtUTeLN5PaZLdTfMkC9XykTTmWg6k0w3gddkZTMOvtVf5Ng1uW5RG9SmMhE2cWU630zg5cYJDI2zmDwhAy3XK0OwSEgsdS4m8Dh5x1YxoSSnabF-8o-KPIXbBWGjgQBUPYO9_modnhO26esXgw__BMv98w4
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xISZeBgwG5dNI8MBD2jh2HPtxAqoVWJlEJ-3NOLYjIdQ0oukk-Os52-mkIUBIPCWyLsnlfJf7OXe-A3hBpamrgtWZL0qfccNpZgQaXlk3pRXKFcKE_c4nc3F8xt-dl-dDn9O4F2bVDZ_-MZ6mQsFJhENCnJxQJmgWasZMjCu8cJPONTtwvWSCheL5s4-nl2EEBM98iE3-7sorvmgHn_dnmBndzfQWfN4ymrJMvo43fT22P36p4fgfb3Ib9gcoSo4S-R245tsDuJGaU34_gL2TIeyOgzFP1K7vwmK-aqP7I8H9OTKdfVockTblkhMEwKQN_3cvTMiKJzaqnyV9cIhLv8SVeetJt-pDihLe48sy9ki6B2fTt4vXx9nQmCGzKOQ-k8JZSyvpqXB5zZXwDEdUKXPLqLAib_CIyJBTI2tpTaW8V9Q7inDeVY1nh7CL3PgHQArnambyShgmuK0KBICGW5sb33AkVSN4tZ0i3aX6GzrGzaXUQXw6iE8n8Y3gJUpaD0a4_gsduULXLWstlK50gE9UapyFETzfKoJGewtBFBTQarPWCI8YF6XK2QjuJw25ZIxJTnF5rB7-IyPPYO_0zVR_mM3fP4KbBcKlmBNUPYbd_tvGP0G409dPo0r_BDqx-HI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+based+FISTA+network+for+noninvasive+cardiac+transmembrane+potential+imaging&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Ran%2C+Ao&rft.au=Cheng%2C+Linsheng&rft.au=Xie%2C+Shuting&rft.au=Liu%2C+Muqing&rft.date=2024-04-07&rft.issn=1361-6560&rft.eissn=1361-6560&rft.volume=69&rft.issue=7&rft_id=info:doi/10.1088%2F1361-6560%2Fad2e6d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon