SIR Model with Vaccination: Bifurcation Analysis
There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of Susceptible individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equi...
Saved in:
Published in | Qualitative theory of dynamical systems Vol. 22; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of
Susceptible
individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equilibrium is a
codimension two singularity
in the parameter space
(
R
0
,
p
)
, where
R
0
is the
basic reproduction number
and
p
is the proportion of
Susceptible
individuals successfully vaccinated at birth. We exhibit explicitly the
Hopf
,
transcritical
,
Belyakov
,
heteroclinic
and
saddle-node bifurcation
curves unfolding the
singularity
. The two parameters
(
R
0
,
p
)
are written in a useful way to evaluate the proportion of vaccinated individuals necessary to eliminate the disease and to conclude how the vaccination may affect the outcome of the epidemic. We also exhibit the region in the parameter space where the disease persists and we illustrate our main result with numerical simulations, emphasizing the role of the parameters. |
---|---|
AbstractList | There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of Susceptible individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equilibrium is a codimension two singularity in the parameter space (R0,p), where R0 is the basic reproduction number and p is the proportion of Susceptible individuals successfully vaccinated at birth. We exhibit explicitly the Hopf, transcritical, Belyakov, heteroclinic and saddle-node bifurcation curves unfolding the singularity. The two parameters (R0,p) are written in a useful way to evaluate the proportion of vaccinated individuals necessary to eliminate the disease and to conclude how the vaccination may affect the outcome of the epidemic. We also exhibit the region in the parameter space where the disease persists and we illustrate our main result with numerical simulations, emphasizing the role of the parameters. There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of Susceptible individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equilibrium is a codimension two singularity in the parameter space $$(\mathcal {R}_0, p)$$ ( R 0 , p ) , where $$\mathcal {R}_0$$ R 0 is the basic reproduction number and p is the proportion of Susceptible individuals successfully vaccinated at birth. We exhibit explicitly the Hopf , transcritical , Belyakov , heteroclinic and saddle-node bifurcation curves unfolding the singularity . The two parameters $$(\mathcal {R}_0, p)$$ ( R 0 , p ) are written in a useful way to evaluate the proportion of vaccinated individuals necessary to eliminate the disease and to conclude how the vaccination may affect the outcome of the epidemic. We also exhibit the region in the parameter space where the disease persists and we illustrate our main result with numerical simulations, emphasizing the role of the parameters. There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of Susceptible individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equilibrium is a codimension two singularity in the parameter space ( R 0 , p ) , where R 0 is the basic reproduction number and p is the proportion of Susceptible individuals successfully vaccinated at birth. We exhibit explicitly the Hopf , transcritical , Belyakov , heteroclinic and saddle-node bifurcation curves unfolding the singularity . The two parameters ( R 0 , p ) are written in a useful way to evaluate the proportion of vaccinated individuals necessary to eliminate the disease and to conclude how the vaccination may affect the outcome of the epidemic. We also exhibit the region in the parameter space where the disease persists and we illustrate our main result with numerical simulations, emphasizing the role of the parameters. |
ArticleNumber | 105 |
Author | Maurício de Carvalho, João P. S. Rodrigues, Alexandre A. |
Author_xml | – sequence: 1 givenname: João P. S. orcidid: 0000-0001-7709-1631 surname: Maurício de Carvalho fullname: Maurício de Carvalho, João P. S. email: jocarvalho@fc.up.pt organization: Faculty of Sciences, University of Porto, Centre for Mathematics, University of Porto – sequence: 2 givenname: Alexandre A. orcidid: 0000-0001-8182-9889 surname: Rodrigues fullname: Rodrigues, Alexandre A. organization: Faculty of Sciences, University of Porto, Centre for Mathematics, University of Porto, Lisbon School of Economics and Management |
BookMark | eNp9kMtKAzEUhoNUsFZfwNWA6-jJdSbuavFSqAjetiHmoinjTE2mSN_esSMILrrKCef_Dj_fIRo1beMROiFwRgDK80wo4xIDZRigAorpHhoTKSlmQtFRP4tSYMElHKDDnJcAkpaMjhE8zh-Ku9b5uviK3XvxYqyNjeli21wUlzGsk91-imlj6k2O-QjtB1Nnf_z7TtDz9dXT7BYv7m_ms-kCWyZZh8vAhWFcUR-Uq3xgvLLWUUmDAkd9vyCceAU8CCVLX71K44kD6QwxygnLJuh0uLtK7efa504v23XqS2RNK8IVASFVn6qGlE1tzskHbWO3LdwlE2tNQP_40YMf3fvRWz-a9ij9h65S_DBpsxtiA5T7cPPm01-rHdQ38Qd4NQ |
CitedBy_id | crossref_primary_10_1007_s11071_023_09130_1 crossref_primary_10_1016_j_cnsns_2024_108097 crossref_primary_10_1016_j_chaos_2024_115248 crossref_primary_10_1063_5_0221150 crossref_primary_10_3390_math12152425 crossref_primary_10_1007_s10958_024_07064_6 crossref_primary_10_1088_1751_8121_ad75d7 crossref_primary_10_3390_math12071043 |
Cites_doi | 10.1126/science.abb5659 10.1038/nrmicro2668 10.1007/978-1-4612-1140-2 10.1016/j.matcom.2023.01.023 10.1016/S0895-7177(00)00040-6 10.1006/jdeq.2002.4177 10.1007/978-3-642-93048-5_1 10.1007/s11538-020-00713-2 10.1038/nm1209 10.1016/S0895-7177(02)00257-1 10.1016/S0092-8240(98)90005-2 10.3934/mbe.2022541 10.1016/S0898-1221(99)00206-0 10.1016/j.jde.2019.03.005 10.1007/s40435-022-00969-7 10.1155/2011/527610 10.1007/978-1-4939-9828-9 10.1016/j.chaos.2021.111275 10.1137/040604947 10.1186/s13662-018-1675-y 10.1016/j.mbs.2007.02.006 10.1007/978-981-15-0928-5_14 10.1007/s002850050175 10.1007/s10884-020-09858-z 10.1007/s00285-017-1130-9 10.1007/s12591-019-00486-8 10.1007/s00220-003-0902-9 10.1007/s10955-021-02811-4 10.1007/s00285-019-01342-7 10.1016/j.amc.2006.06.074 10.1007/s11071-020-05757-6 10.1016/j.chaos.2017.03.047 10.1016/j.chaos.2006.04.022 10.1016/j.physleta.2022.128498 10.1016/j.camwa.2011.08.061 10.1007/s00285-022-01787-3 10.1137/S0036144500371907 10.1098/rspa.1932.0171 10.1186/s13662-019-2447-z 10.1007/978-0-387-71278-9 10.1007/978-1-4757-3978-7 10.1016/j.cnsns.2022.106482 10.1016/j.jde.2014.05.030 10.1016/j.physd.2022.133268 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s12346-023-00802-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1662-3592 |
ExternalDocumentID | 10_1007_s12346_023_00802_2 |
GrantInformation_xml | – fundername: Universidade do Porto |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 203 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3J0 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A C6C CAG COF CS3 CSCUP DC1 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z J9A JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-7f45a3492ef9d8ef348ccd262f90d2e492141e904f5967e8b6ae1d06da1a9d5c3 |
IEDL.DBID | U2A |
ISSN | 1575-5460 |
IngestDate | Fri Jul 25 11:05:26 EDT 2025 Tue Jul 01 04:04:59 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Fri Feb 21 02:43:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Double-zero singularity 34C23 92B05 SIR model Vaccination Unfoldings Bifurcations 37G10 37D05 37G15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-7f45a3492ef9d8ef348ccd262f90d2e492141e904f5967e8b6ae1d06da1a9d5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7709-1631 0000-0001-8182-9889 |
OpenAccessLink | https://link.springer.com/10.1007/s12346-023-00802-2 |
PQID | 2814910569 |
PQPubID | 2044188 |
ParticipantIDs | proquest_journals_2814910569 crossref_citationtrail_10_1007_s12346_023_00802_2 crossref_primary_10_1007_s12346_023_00802_2 springer_journals_10_1007_s12346_023_00802_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Qualitative theory of dynamical systems |
PublicationTitleAbbrev | Qual. Theory Dyn. Syst |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | KuznetsovYAElements of Applied Bifurcation Theory. Applied Mathematical Sciences2004New YorkSpringer10.1007/978-1-4757-3978-71082.37002 MisraAKMauryaJSajidMModeling the effect of time delay in the increment of number of hospital beds to control an infectious diseaseMath. Biosci. Eng.2022191162811656447583210.3934/mbe.202254107667506 BarrientosPGRodríguezJARuiz-HerreraAChaotic dynamics in the seasonally forced SIR epidemic modelJ. Math. Biol.20177516551668371232510.1007/s00285-017-1130-91387.92081 GhoshJKGhoshUBiswasMHASarkarSQualitative analysis and optimal control strategy of an SIR model with saturated incidence and treatmentDiffer. Equ. Dyn. Syst.2019201911510.1007/s12591-019-00486-807657667 PanQHuangJWangHAn SIRS model with nonmonotone incidence and saturated treatment in a changing environmentJ. Math. Biol.20228523447027110.1007/s00285-022-01787-31498.92242 StoneLShulginBTheoretical examination of the pulse vaccination policy in the SIR epidemic modelMath. Comput. Model.200031207215175675610.1016/S0895-7177(00)00040-61043.92527 RodriguesAAPDissecting a resonance wedge on heteroclinic bifurcationsJ. Stat. Phys.202118425430024610.1007/s10955-021-02811-41479.34079 GuckenheimerJHolmesPJNonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences1983New YorkSpringer10.1007/978-1-4612-1140-20515.34001 AlgabaADomínguez-MorenoMCMerinoMRodríguez-LuisAJDouble-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz systemCommun. Nonlinear Sci. Numer. Simul.2022111441033110.1016/j.cnsns.2022.1064821500.34016 DuarteJJanuárioCMartinsNRogovchenkoSRogovchenkoYChaos analysis and explicit series solutions to the seasonally forced SIR epidemic modelJ. Math. Biol.20197822352258395437910.1007/s00285-019-01342-71415.92174 PlotkinSAVaccines: past, present and futureNat. Med.200511S5S1110.1038/nm1209 SahaPGhoshUComplex dynamics and control analysis of an epidemic model with non-monotone incidence and saturated treatmentInt. J. Dyn. Control202211301323453874810.1007/s40435-022-00969-7 González-OlivaresEGonzález-YañezBLorcaJMRojas-PalmaAFloresJDConsequences of double Allee effect on the number of limit cycles in a predator–prey modelComput. Math. Appl.20116234493463284489610.1016/j.camwa.2011.08.0611236.34067 ZhangJQiaoYBifurcation analysis of an SIR model considering hospital resources and vaccinationMath. Comput. Simul.2023208157185454358910.1016/j.matcom.2023.01.023 Maurício de CarvalhoJPSRodriguesAAPStrange attractors in a dynamical system inspired by a seasonally forced SIR modelPhys. D202243412440461310.1016/j.physd.2022.1332681492.92088 RodriguesAAPUnfolding a Bykov attractor: from an attracting torus to strange attractorsJ. Dyn. Differ. Equ.20223416431677441340010.1007/s10884-020-09858-z1498.34155 RovenskiVModeling of Curves and Surfaces with MATLAB2010New YorkSpringer10.1007/978-0-387-71278-91206.65061 d’OnofrioADuarteJJanuárioCMartinsNA SIR forced model with interplays with the external world and periodic internal contact interplaysPhys. Lett. A2022454128498449941910.1016/j.physleta.2022.12849807625632 Bonyah, E.: Al Basir, F., Ray, S.: Hopf bifurcation in a mathematical model of tuberculosis with delay. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds.) Mathematical Modelling, Optimization, Analytic and Numerical Solutions, in: Industrial and Applied Mathematics, pp. 301–311. Springer, Singapore (2020) YagasakiKMelnikov’s method and codimension-two bifurcations in forced oscillationsJ. Differ. Equ.2002185124193562910.1006/jdeq.2002.41771027.34048 Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. In: Mathematical Models in Medicine. Springer, Berlin, pp 1–15 (1976). https://doi.org/10.1007/978-3-642-93048-5_1 WangQYoungLSStrange attractors in periodically-kicked limit cycles and Hopf bifurcationsCommun. Math. Phys.2003240509529200585510.1007/s00220-003-0902-91078.37027 ZhangXAChenLThe periodic solution of a class of epidemic modelsComput. Math. Appl.1999386171170340810.1016/S0898-1221(99)00206-00939.92031 ShanCZhuHBifurcations and complex dynamics of an SIR model with the impact of the number of hospital bedsJ. Differ. Equ.201425716621688321705210.1016/j.jde.2014.05.0301300.34113 ElazzouziAAlaouiALTiliouaMTridaneAGlobal stability analysis for a generalized delayed SIR model with vaccination and treatmentAdv. Differ. Equ.20192019532404518810.1186/s13662-019-2447-z1487.92041 Maurício de CarvalhoJPSMoreira-PintoBA fractional-order model for CoViD-19 dynamics with reinfection and the importance of quarantineChaos Solitons Fractals2021151429694710.1016/j.chaos.2021.111275 AlexanderMEMoghadasSMBifurcation analysis of an SIRS epidemic model with generalized incidenceSIAM J. Appl. Math.20056517941816217772510.1137/0406049471088.34035 Jones, J.H.: Notes on R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{R}_0$$\end{document}. California: Department of Anthropological Sciences 323, 19 pages (2007) KermackWOMcKendrickAGContributions to the mathematical theory of epidemics. II. The problem of endemicityProc. R. Soc. Lond.1932138558310.1098/rspa.1932.017159.1190.03 LiJTengZWangGZhangLHuCStability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatmentChaos Solitons Fractals2017996371365001210.1016/j.chaos.2017.03.0471373.92129 LuZChiXChenLThe effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmissionMath. Comput. Model.20023610391057194505910.1016/S0895-7177(02)00257-11023.92026 MilnerFAPuglieseAPeriodic solutions: a robust numerical method for an S-I-R model of epidemicsJ. Math. Biol.199939471492173177210.1007/s0028500501750945.92017 LiJTengZBifurcations of an SIRS model with generalized non-monotone incidence rateAdv. Differ. Equ.20182018121381718810.1186/s13662-018-1675-y1446.37088 BrauerFCastillo-ChavezCFengZMathematical Models in Epidemiology. Texts in Applied Mathematics2019New YorkSpringer10.1007/978-1-4939-9828-91433.92001 CobeySModeling infectious disease dynamicsScience202036871371410.1126/science.abb5659 LuMHuangJRuanSYuPBifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rateJ. Differ. Equ.201926718591898394562010.1016/j.jde.2019.03.0051421.92034 RajagopalKHasanzadehNParasteshFHamarashIIJafariSHussainIA fractional-order model for the novel coronavirus (COVID-19) outbreakNonlinear Dyn.202010171171810.1007/s11071-020-05757-6 ParkSWBolkerBMA note on observation processes in epidemic modelsBull. Math. Biol.20208218407275010.1007/s11538-020-00713-21435.92081 van VoornGAKHemerikLBoerMPKooiBWHeteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effectMath. Biosci.2007209451469235955910.1016/j.mbs.2007.02.0061126.92062 HethcoteHWThe mathematics of infectious diseasesSIAM Rev.200042599653181404910.1137/S00361445003719070993.92033 MakindeODAdomian decomposition approach to a SIR epidemic model with constant vaccination strategyAppl. Math. Comput.2007184842848229494910.1016/j.amc.2006.06.0741109.92041 ShulginBStoneLAgurZPulse vaccination strategy in the SIR epidemic modelBull. Math. Biol.1998601123114810.1016/S0092-8240(98)90005-20941.92026 LiJBlakeleyDSmithRJThe failure of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{R} _0$$\end{document}Comput. Math. Methods Med.201120111710.1155/2011/527610 PlotkinSAPlotkinSLThe development of vaccines: how the past led to the futureNat. Rev. Microbiol.2011988989310.1038/nrmicro2668 JinYWangWXiaoSAn SIRS model with a nonlinear incidence rateChaos Solitons Fractals20073414821497233539810.1016/j.chaos.2006.04.0221152.34339 StoneLShulginBAgurZTheoretical examination of the pulse vaccination policy in the SIR epidemic modelMath. Comput. Model.200031207215175675610.1016/S0895-7177(00)00040-61043.92527 SA Plotkin (802_CR14) 2011; 9 JK Ghosh (802_CR17) 2019; 2019 K Yagasaki (802_CR23) 2002; 185 J Zhang (802_CR27) 2023; 208 SA Plotkin (802_CR13) 2005; 11 P Saha (802_CR16) 2022; 11 J Li (802_CR31) 2018; 2018 OD Makinde (802_CR15) 2007; 184 B Shulgin (802_CR18) 1998; 60 YA Kuznetsov (802_CR25) 2004 J Li (802_CR40) 2011; 2011 AAP Rodrigues (802_CR22) 2021; 184 PG Barrientos (802_CR10) 2017; 75 SW Park (802_CR39) 2020; 82 ME Alexander (802_CR29) 2005; 65 GAK van Voorn (802_CR44) 2007; 209 802_CR7 S Cobey (802_CR5) 2020; 368 J Duarte (802_CR24) 2019; 78 HW Hethcote (802_CR2) 2000; 42 XA Zhang (802_CR37) 1999; 38 AK Misra (802_CR32) 2022; 19 A d’Onofrio (802_CR12) 2022; 454 J Li (802_CR34) 2017; 99 802_CR38 JPS Maurício de Carvalho (802_CR9) 2022; 434 A Elazzouzi (802_CR19) 2019; 2019 J Guckenheimer (802_CR42) 1983 L Stone (802_CR20) 2000; 31 F Brauer (802_CR1) 2019 C Shan (802_CR28) 2014; 257 Q Wang (802_CR41) 2003; 240 K Rajagopal (802_CR4) 2020; 101 Y Jin (802_CR26) 2007; 34 Q Pan (802_CR30) 2022; 85 E González-Olivares (802_CR45) 2011; 62 802_CR3 Z Lu (802_CR36) 2002; 36 JPS Maurício de Carvalho (802_CR11) 2021; 151 V Rovenski (802_CR43) 2010 L Stone (802_CR35) 2000; 31 A Algaba (802_CR21) 2022; 111 WO Kermack (802_CR6) 1932; 138 FA Milner (802_CR8) 1999; 39 AAP Rodrigues (802_CR46) 2022; 34 M Lu (802_CR33) 2019; 267 |
References_xml | – reference: StoneLShulginBAgurZTheoretical examination of the pulse vaccination policy in the SIR epidemic modelMath. Comput. Model.200031207215175675610.1016/S0895-7177(00)00040-61043.92527 – reference: KuznetsovYAElements of Applied Bifurcation Theory. Applied Mathematical Sciences2004New YorkSpringer10.1007/978-1-4757-3978-71082.37002 – reference: ShanCZhuHBifurcations and complex dynamics of an SIR model with the impact of the number of hospital bedsJ. Differ. Equ.201425716621688321705210.1016/j.jde.2014.05.0301300.34113 – reference: StoneLShulginBTheoretical examination of the pulse vaccination policy in the SIR epidemic modelMath. Comput. Model.200031207215175675610.1016/S0895-7177(00)00040-61043.92527 – reference: PlotkinSAPlotkinSLThe development of vaccines: how the past led to the futureNat. Rev. Microbiol.2011988989310.1038/nrmicro2668 – reference: DuarteJJanuárioCMartinsNRogovchenkoSRogovchenkoYChaos analysis and explicit series solutions to the seasonally forced SIR epidemic modelJ. Math. Biol.20197822352258395437910.1007/s00285-019-01342-71415.92174 – reference: JinYWangWXiaoSAn SIRS model with a nonlinear incidence rateChaos Solitons Fractals20073414821497233539810.1016/j.chaos.2006.04.0221152.34339 – reference: ElazzouziAAlaouiALTiliouaMTridaneAGlobal stability analysis for a generalized delayed SIR model with vaccination and treatmentAdv. Differ. Equ.20192019532404518810.1186/s13662-019-2447-z1487.92041 – reference: LiJTengZWangGZhangLHuCStability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatmentChaos Solitons Fractals2017996371365001210.1016/j.chaos.2017.03.0471373.92129 – reference: Maurício de CarvalhoJPSMoreira-PintoBA fractional-order model for CoViD-19 dynamics with reinfection and the importance of quarantineChaos Solitons Fractals2021151429694710.1016/j.chaos.2021.111275 – reference: LiJTengZBifurcations of an SIRS model with generalized non-monotone incidence rateAdv. Differ. Equ.20182018121381718810.1186/s13662-018-1675-y1446.37088 – reference: ZhangXAChenLThe periodic solution of a class of epidemic modelsComput. Math. Appl.1999386171170340810.1016/S0898-1221(99)00206-00939.92031 – reference: MilnerFAPuglieseAPeriodic solutions: a robust numerical method for an S-I-R model of epidemicsJ. Math. Biol.199939471492173177210.1007/s0028500501750945.92017 – reference: RodriguesAAPUnfolding a Bykov attractor: from an attracting torus to strange attractorsJ. Dyn. Differ. Equ.20223416431677441340010.1007/s10884-020-09858-z1498.34155 – reference: HethcoteHWThe mathematics of infectious diseasesSIAM Rev.200042599653181404910.1137/S00361445003719070993.92033 – reference: van VoornGAKHemerikLBoerMPKooiBWHeteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effectMath. Biosci.2007209451469235955910.1016/j.mbs.2007.02.0061126.92062 – reference: LiJBlakeleyDSmithRJThe failure of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{R} _0$$\end{document}Comput. Math. Methods Med.201120111710.1155/2011/527610 – reference: AlgabaADomínguez-MorenoMCMerinoMRodríguez-LuisAJDouble-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz systemCommun. Nonlinear Sci. Numer. Simul.2022111441033110.1016/j.cnsns.2022.1064821500.34016 – reference: ParkSWBolkerBMA note on observation processes in epidemic modelsBull. Math. Biol.20208218407275010.1007/s11538-020-00713-21435.92081 – reference: MakindeODAdomian decomposition approach to a SIR epidemic model with constant vaccination strategyAppl. Math. Comput.2007184842848229494910.1016/j.amc.2006.06.0741109.92041 – reference: Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. In: Mathematical Models in Medicine. Springer, Berlin, pp 1–15 (1976). https://doi.org/10.1007/978-3-642-93048-5_1 – reference: d’OnofrioADuarteJJanuárioCMartinsNA SIR forced model with interplays with the external world and periodic internal contact interplaysPhys. Lett. A2022454128498449941910.1016/j.physleta.2022.12849807625632 – reference: AlexanderMEMoghadasSMBifurcation analysis of an SIRS epidemic model with generalized incidenceSIAM J. Appl. Math.20056517941816217772510.1137/0406049471088.34035 – reference: GuckenheimerJHolmesPJNonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences1983New YorkSpringer10.1007/978-1-4612-1140-20515.34001 – reference: Bonyah, E.: Al Basir, F., Ray, S.: Hopf bifurcation in a mathematical model of tuberculosis with delay. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds.) Mathematical Modelling, Optimization, Analytic and Numerical Solutions, in: Industrial and Applied Mathematics, pp. 301–311. Springer, Singapore (2020) – reference: RajagopalKHasanzadehNParasteshFHamarashIIJafariSHussainIA fractional-order model for the novel coronavirus (COVID-19) outbreakNonlinear Dyn.202010171171810.1007/s11071-020-05757-6 – reference: WangQYoungLSStrange attractors in periodically-kicked limit cycles and Hopf bifurcationsCommun. Math. Phys.2003240509529200585510.1007/s00220-003-0902-91078.37027 – reference: ZhangJQiaoYBifurcation analysis of an SIR model considering hospital resources and vaccinationMath. Comput. Simul.2023208157185454358910.1016/j.matcom.2023.01.023 – reference: Maurício de CarvalhoJPSRodriguesAAPStrange attractors in a dynamical system inspired by a seasonally forced SIR modelPhys. D202243412440461310.1016/j.physd.2022.1332681492.92088 – reference: BarrientosPGRodríguezJARuiz-HerreraAChaotic dynamics in the seasonally forced SIR epidemic modelJ. Math. Biol.20177516551668371232510.1007/s00285-017-1130-91387.92081 – reference: RodriguesAAPDissecting a resonance wedge on heteroclinic bifurcationsJ. Stat. Phys.202118425430024610.1007/s10955-021-02811-41479.34079 – reference: Jones, J.H.: Notes on R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{R}_0$$\end{document}. California: Department of Anthropological Sciences 323, 19 pages (2007) – reference: GhoshJKGhoshUBiswasMHASarkarSQualitative analysis and optimal control strategy of an SIR model with saturated incidence and treatmentDiffer. Equ. Dyn. Syst.2019201911510.1007/s12591-019-00486-807657667 – reference: LuMHuangJRuanSYuPBifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rateJ. Differ. Equ.201926718591898394562010.1016/j.jde.2019.03.0051421.92034 – reference: LuZChiXChenLThe effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmissionMath. Comput. Model.20023610391057194505910.1016/S0895-7177(02)00257-11023.92026 – reference: CobeySModeling infectious disease dynamicsScience202036871371410.1126/science.abb5659 – reference: MisraAKMauryaJSajidMModeling the effect of time delay in the increment of number of hospital beds to control an infectious diseaseMath. Biosci. Eng.2022191162811656447583210.3934/mbe.202254107667506 – reference: ShulginBStoneLAgurZPulse vaccination strategy in the SIR epidemic modelBull. Math. Biol.1998601123114810.1016/S0092-8240(98)90005-20941.92026 – reference: PlotkinSAVaccines: past, present and futureNat. Med.200511S5S1110.1038/nm1209 – reference: RovenskiVModeling of Curves and Surfaces with MATLAB2010New YorkSpringer10.1007/978-0-387-71278-91206.65061 – reference: PanQHuangJWangHAn SIRS model with nonmonotone incidence and saturated treatment in a changing environmentJ. Math. Biol.20228523447027110.1007/s00285-022-01787-31498.92242 – reference: González-OlivaresEGonzález-YañezBLorcaJMRojas-PalmaAFloresJDConsequences of double Allee effect on the number of limit cycles in a predator–prey modelComput. Math. Appl.20116234493463284489610.1016/j.camwa.2011.08.0611236.34067 – reference: KermackWOMcKendrickAGContributions to the mathematical theory of epidemics. II. The problem of endemicityProc. R. Soc. Lond.1932138558310.1098/rspa.1932.017159.1190.03 – reference: BrauerFCastillo-ChavezCFengZMathematical Models in Epidemiology. Texts in Applied Mathematics2019New YorkSpringer10.1007/978-1-4939-9828-91433.92001 – reference: SahaPGhoshUComplex dynamics and control analysis of an epidemic model with non-monotone incidence and saturated treatmentInt. J. Dyn. Control202211301323453874810.1007/s40435-022-00969-7 – reference: YagasakiKMelnikov’s method and codimension-two bifurcations in forced oscillationsJ. Differ. Equ.2002185124193562910.1006/jdeq.2002.41771027.34048 – volume: 368 start-page: 713 year: 2020 ident: 802_CR5 publication-title: Science doi: 10.1126/science.abb5659 – volume: 9 start-page: 889 year: 2011 ident: 802_CR14 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2668 – volume-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences year: 1983 ident: 802_CR42 doi: 10.1007/978-1-4612-1140-2 – volume: 208 start-page: 157 year: 2023 ident: 802_CR27 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2023.01.023 – volume: 31 start-page: 207 year: 2000 ident: 802_CR35 publication-title: Math. Comput. Model. doi: 10.1016/S0895-7177(00)00040-6 – volume: 185 start-page: 1 year: 2002 ident: 802_CR23 publication-title: J. Differ. Equ. doi: 10.1006/jdeq.2002.4177 – ident: 802_CR7 doi: 10.1007/978-3-642-93048-5_1 – volume: 82 start-page: 1 year: 2020 ident: 802_CR39 publication-title: Bull. Math. Biol. doi: 10.1007/s11538-020-00713-2 – volume: 11 start-page: S5 year: 2005 ident: 802_CR13 publication-title: Nat. Med. doi: 10.1038/nm1209 – ident: 802_CR38 – volume: 36 start-page: 1039 year: 2002 ident: 802_CR36 publication-title: Math. Comput. Model. doi: 10.1016/S0895-7177(02)00257-1 – volume: 60 start-page: 1123 year: 1998 ident: 802_CR18 publication-title: Bull. Math. Biol. doi: 10.1016/S0092-8240(98)90005-2 – volume: 31 start-page: 207 year: 2000 ident: 802_CR20 publication-title: Math. Comput. Model. doi: 10.1016/S0895-7177(00)00040-6 – volume: 19 start-page: 11628 year: 2022 ident: 802_CR32 publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2022541 – volume: 38 start-page: 61 year: 1999 ident: 802_CR37 publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(99)00206-0 – volume: 267 start-page: 1859 year: 2019 ident: 802_CR33 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2019.03.005 – volume: 11 start-page: 301 year: 2022 ident: 802_CR16 publication-title: Int. J. Dyn. Control doi: 10.1007/s40435-022-00969-7 – volume: 2011 start-page: 17 year: 2011 ident: 802_CR40 publication-title: Comput. Math. Methods Med. doi: 10.1155/2011/527610 – volume-title: Mathematical Models in Epidemiology. Texts in Applied Mathematics year: 2019 ident: 802_CR1 doi: 10.1007/978-1-4939-9828-9 – volume: 151 year: 2021 ident: 802_CR11 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111275 – volume: 65 start-page: 1794 year: 2005 ident: 802_CR29 publication-title: SIAM J. Appl. Math. doi: 10.1137/040604947 – volume: 2018 start-page: 1 year: 2018 ident: 802_CR31 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-018-1675-y – volume: 209 start-page: 451 year: 2007 ident: 802_CR44 publication-title: Math. Biosci. doi: 10.1016/j.mbs.2007.02.006 – ident: 802_CR3 doi: 10.1007/978-981-15-0928-5_14 – volume: 39 start-page: 471 year: 1999 ident: 802_CR8 publication-title: J. Math. Biol. doi: 10.1007/s002850050175 – volume: 34 start-page: 1643 year: 2022 ident: 802_CR46 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-020-09858-z – volume: 75 start-page: 1655 year: 2017 ident: 802_CR10 publication-title: J. Math. Biol. doi: 10.1007/s00285-017-1130-9 – volume: 2019 start-page: 1 year: 2019 ident: 802_CR17 publication-title: Differ. Equ. Dyn. Syst. doi: 10.1007/s12591-019-00486-8 – volume: 240 start-page: 509 year: 2003 ident: 802_CR41 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-003-0902-9 – volume: 184 start-page: 25 year: 2021 ident: 802_CR22 publication-title: J. Stat. Phys. doi: 10.1007/s10955-021-02811-4 – volume: 78 start-page: 2235 year: 2019 ident: 802_CR24 publication-title: J. Math. Biol. doi: 10.1007/s00285-019-01342-7 – volume: 184 start-page: 842 year: 2007 ident: 802_CR15 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.06.074 – volume: 101 start-page: 711 year: 2020 ident: 802_CR4 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05757-6 – volume: 99 start-page: 63 year: 2017 ident: 802_CR34 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2017.03.047 – volume: 34 start-page: 1482 year: 2007 ident: 802_CR26 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.04.022 – volume: 454 start-page: 128498 year: 2022 ident: 802_CR12 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2022.128498 – volume: 62 start-page: 3449 year: 2011 ident: 802_CR45 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.08.061 – volume: 85 start-page: 23 year: 2022 ident: 802_CR30 publication-title: J. Math. Biol. doi: 10.1007/s00285-022-01787-3 – volume: 42 start-page: 599 year: 2000 ident: 802_CR2 publication-title: SIAM Rev. doi: 10.1137/S0036144500371907 – volume: 138 start-page: 55 year: 1932 ident: 802_CR6 publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspa.1932.0171 – volume: 2019 start-page: 532 year: 2019 ident: 802_CR19 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2447-z – volume-title: Modeling of Curves and Surfaces with MATLAB year: 2010 ident: 802_CR43 doi: 10.1007/978-0-387-71278-9 – volume-title: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences year: 2004 ident: 802_CR25 doi: 10.1007/978-1-4757-3978-7 – volume: 111 year: 2022 ident: 802_CR21 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2022.106482 – volume: 257 start-page: 1662 year: 2014 ident: 802_CR28 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2014.05.030 – volume: 434 start-page: 12 year: 2022 ident: 802_CR9 publication-title: Phys. D doi: 10.1016/j.physd.2022.133268 |
SSID | ssj0062732 |
Score | 2.3549998 |
Snippet | There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bifurcations Difference and Functional Equations Dynamical Systems and Ergodic Theory Immunization Mathematical models Mathematics Mathematics and Statistics Parameters Singularities |
Title | SIR Model with Vaccination: Bifurcation Analysis |
URI | https://link.springer.com/article/10.1007/s12346-023-00802-2 https://www.proquest.com/docview/2814910569 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIpCqTKwQaTEr9hspSoUUBmAojJFju1IlaqC-vj_2E7SCARILFnsePhs38t33wGcK0FzYqx3QhSzH42SMMNChQozEmuaiMSHBoaPbDAi92M6LovCFlW2e_Uk6SV1XeyGMHEJszj0BaKhFbxN6nx3e4pHqFvJX2YVsn_jtIZISAmLylKZn9f4qo5qG_Pbs6jXNje7sFOaiUG32Nc92DCzfdgerjlWFwcQPd89Ba6V2TRwwdTgVSo1KWJ7V8H1JF_Ni2hcUPGOHMLopv_SG4Rl_wOHFF6GSU6odOyBJheamxwTrpRGDOUi0sjYgZjERkQkp4IlhmdMmlhHTMtYCk0VPoLG7H1mjiFQnOdSWt-Bm4woLiVzVG_YuiuxshqctSCuYEhVSQ7uelRM05rW2EGXWuhSD12KWnCx_uejoMb4c3a7Qjctr8kiRdw6aNbCY6IFlxXi9fDvq538b_opbCG_6S43rA2N5Xxlzqwxscw60Ozevj30O7DZY72OP0mfhJe-Vw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH5CMAAD4hSFAhnYICKH49hsUFG10HaAFnWzHB9SpaqgHv-f5xytqACJJYsdD1-cd7_vAVwrnlhi0DshiuJDR6mfxVz5KqYk1EnK0zw00O3R1oA8D5NhSZPjemHW8vd3M5SsxJXJxn7eFuqjuN0i6Cm78r0GbVRSl6IazjObaH74CaFB2SDz8xnfldDKslxLhuY6prkPe6Vx6D0UX_MANszkEHa7S2bV2REEb-1Xzw0wG3suhOq9S6VGRUTv3nsc2cW0iMF5FdvIMQyaT_1Gyy-nHjh84rmfWpJIxxloLNfM2JgwpXREI8sDHRlcCEloeEBswmlqWEalCXVAtQwl14mKT2Bz8jExp-ApxqyU6DEwkxHFpKSO4C1GJyVUqLdpDcIKBqFKSnA3mWIsVmTGDjqB0IkcOhHV4Gb5zmdBiPHn7nqFrih_jpmIGLplaNdRXoPbCvHV8u-nnf1v-xVst_rdjui0ey_nsBPlF8BVh9Vhcz5dmAs0J-bZZX6PvgBxGrq4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA6iIHoQnzid2oM3LWuTNG286XRs6oaok91CmgcMRh1b9_-bpO2qooKXXPI4fGnze38_AM4FjTRWxjrBgphBwthPERW-QASHMopp7FwD_QHpDvH9KBp9quJ32e5VSLKoabAsTVnemkrdqgvfIMI2eRb5rljUN4_wmrFUXKC2TdrVW0yMcHbxTqOU-BEmQVk28_MZX0VTrW9-C5E6ydPZBlulyuhdF3e8A1ZUtgs2-0u-1fkeCF56z55tazbxrGPVe-NCjAs_35V3M9aLWeGZ8yoOkn0w7Ny9trt-2QvBooZyP9Y44pZJUGkqE6URToSQkEBNAwmVmQhxqGiAdURJrJKUcBXKgEgeciojgQ7AavaeqUPgiSTRnBs7IlEpFgnnxNK-IWO6hMJIc9IAYQUDEyVRuO1XMWE1xbGFjhnomIOOwQa4WO6ZFjQZf65uVuiy8peZM5gYY81oe4Q2wGWFeD39-2lH_1t-BtafbjvssTd4OAYb0N2_TRlrgtV8tlAnRsfI01P3GX0ArDnC_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIR+Model+with+Vaccination%3A+Bifurcation+Analysis&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=Maur%C3%ADcio+de+Carvalho+Jo%C3%A3o+P+S&rft.au=Rodrigues%2C+Alexandre+A&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=22&rft.issue=3&rft_id=info:doi/10.1007%2Fs12346-023-00802-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon |