SIR Model with Vaccination: Bifurcation Analysis

There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of Susceptible individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equi...

Full description

Saved in:
Bibliographic Details
Published inQualitative theory of dynamical systems Vol. 22; no. 3
Main Authors Maurício de Carvalho, João P. S., Rodrigues, Alexandre A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of Susceptible individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equilibrium is a codimension two singularity in the parameter space ( R 0 , p ) , where R 0 is the basic reproduction number and p is the proportion of Susceptible individuals successfully vaccinated at birth. We exhibit explicitly the Hopf , transcritical , Belyakov , heteroclinic and saddle-node bifurcation curves unfolding the singularity . The two parameters ( R 0 , p ) are written in a useful way to evaluate the proportion of vaccinated individuals necessary to eliminate the disease and to conclude how the vaccination may affect the outcome of the epidemic. We also exhibit the region in the parameter space where the disease persists and we illustrate our main result with numerical simulations, emphasizing the role of the parameters.
AbstractList There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of Susceptible individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equilibrium is a codimension two singularity in the parameter space (R0,p), where R0 is the basic reproduction number and p is the proportion of Susceptible individuals successfully vaccinated at birth. We exhibit explicitly the Hopf, transcritical, Belyakov, heteroclinic and saddle-node bifurcation curves unfolding the singularity. The two parameters (R0,p) are written in a useful way to evaluate the proportion of vaccinated individuals necessary to eliminate the disease and to conclude how the vaccination may affect the outcome of the epidemic. We also exhibit the region in the parameter space where the disease persists and we illustrate our main result with numerical simulations, emphasizing the role of the parameters.
There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of Susceptible individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equilibrium is a codimension two singularity in the parameter space $$(\mathcal {R}_0, p)$$ ( R 0 , p ) , where $$\mathcal {R}_0$$ R 0 is the basic reproduction number and p is the proportion of Susceptible individuals successfully vaccinated at birth. We exhibit explicitly the Hopf , transcritical , Belyakov , heteroclinic and saddle-node bifurcation curves unfolding the singularity . The two parameters $$(\mathcal {R}_0, p)$$ ( R 0 , p ) are written in a useful way to evaluate the proportion of vaccinated individuals necessary to eliminate the disease and to conclude how the vaccination may affect the outcome of the epidemic. We also exhibit the region in the parameter space where the disease persists and we illustrate our main result with numerical simulations, emphasizing the role of the parameters.
There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where the class of Susceptible individuals grows logistically and has been subject to constant vaccination. We explicitly prove that the endemic equilibrium is a codimension two singularity in the parameter space ( R 0 , p ) , where R 0 is the basic reproduction number and p is the proportion of Susceptible individuals successfully vaccinated at birth. We exhibit explicitly the Hopf , transcritical , Belyakov , heteroclinic and saddle-node bifurcation curves unfolding the singularity . The two parameters ( R 0 , p ) are written in a useful way to evaluate the proportion of vaccinated individuals necessary to eliminate the disease and to conclude how the vaccination may affect the outcome of the epidemic. We also exhibit the region in the parameter space where the disease persists and we illustrate our main result with numerical simulations, emphasizing the role of the parameters.
ArticleNumber 105
Author Maurício de Carvalho, João P. S.
Rodrigues, Alexandre A.
Author_xml – sequence: 1
  givenname: João P. S.
  orcidid: 0000-0001-7709-1631
  surname: Maurício de Carvalho
  fullname: Maurício de Carvalho, João P. S.
  email: jocarvalho@fc.up.pt
  organization: Faculty of Sciences, University of Porto, Centre for Mathematics, University of Porto
– sequence: 2
  givenname: Alexandre A.
  orcidid: 0000-0001-8182-9889
  surname: Rodrigues
  fullname: Rodrigues, Alexandre A.
  organization: Faculty of Sciences, University of Porto, Centre for Mathematics, University of Porto, Lisbon School of Economics and Management
BookMark eNp9kMtKAzEUhoNUsFZfwNWA6-jJdSbuavFSqAjetiHmoinjTE2mSN_esSMILrrKCef_Dj_fIRo1beMROiFwRgDK80wo4xIDZRigAorpHhoTKSlmQtFRP4tSYMElHKDDnJcAkpaMjhE8zh-Ku9b5uviK3XvxYqyNjeli21wUlzGsk91-imlj6k2O-QjtB1Nnf_z7TtDz9dXT7BYv7m_ms-kCWyZZh8vAhWFcUR-Uq3xgvLLWUUmDAkd9vyCceAU8CCVLX71K44kD6QwxygnLJuh0uLtK7efa504v23XqS2RNK8IVASFVn6qGlE1tzskHbWO3LdwlE2tNQP_40YMf3fvRWz-a9ij9h65S_DBpsxtiA5T7cPPm01-rHdQ38Qd4NQ
CitedBy_id crossref_primary_10_1007_s11071_023_09130_1
crossref_primary_10_1016_j_cnsns_2024_108097
crossref_primary_10_1016_j_chaos_2024_115248
crossref_primary_10_1063_5_0221150
crossref_primary_10_3390_math12152425
crossref_primary_10_1007_s10958_024_07064_6
crossref_primary_10_1088_1751_8121_ad75d7
crossref_primary_10_3390_math12071043
Cites_doi 10.1126/science.abb5659
10.1038/nrmicro2668
10.1007/978-1-4612-1140-2
10.1016/j.matcom.2023.01.023
10.1016/S0895-7177(00)00040-6
10.1006/jdeq.2002.4177
10.1007/978-3-642-93048-5_1
10.1007/s11538-020-00713-2
10.1038/nm1209
10.1016/S0895-7177(02)00257-1
10.1016/S0092-8240(98)90005-2
10.3934/mbe.2022541
10.1016/S0898-1221(99)00206-0
10.1016/j.jde.2019.03.005
10.1007/s40435-022-00969-7
10.1155/2011/527610
10.1007/978-1-4939-9828-9
10.1016/j.chaos.2021.111275
10.1137/040604947
10.1186/s13662-018-1675-y
10.1016/j.mbs.2007.02.006
10.1007/978-981-15-0928-5_14
10.1007/s002850050175
10.1007/s10884-020-09858-z
10.1007/s00285-017-1130-9
10.1007/s12591-019-00486-8
10.1007/s00220-003-0902-9
10.1007/s10955-021-02811-4
10.1007/s00285-019-01342-7
10.1016/j.amc.2006.06.074
10.1007/s11071-020-05757-6
10.1016/j.chaos.2017.03.047
10.1016/j.chaos.2006.04.022
10.1016/j.physleta.2022.128498
10.1016/j.camwa.2011.08.061
10.1007/s00285-022-01787-3
10.1137/S0036144500371907
10.1098/rspa.1932.0171
10.1186/s13662-019-2447-z
10.1007/978-0-387-71278-9
10.1007/978-1-4757-3978-7
10.1016/j.cnsns.2022.106482
10.1016/j.jde.2014.05.030
10.1016/j.physd.2022.133268
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s12346-023-00802-2
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1662-3592
ExternalDocumentID 10_1007_s12346_023_00802_2
GrantInformation_xml – fundername: Universidade do Porto
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3J0
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
C6C
CAG
COF
CS3
CSCUP
DC1
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-7f45a3492ef9d8ef348ccd262f90d2e492141e904f5967e8b6ae1d06da1a9d5c3
IEDL.DBID U2A
ISSN 1575-5460
IngestDate Fri Jul 25 11:05:26 EDT 2025
Tue Jul 01 04:04:59 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Fri Feb 21 02:43:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Double-zero singularity
34C23
92B05
SIR model
Vaccination
Unfoldings
Bifurcations
37G10
37D05
37G15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-7f45a3492ef9d8ef348ccd262f90d2e492141e904f5967e8b6ae1d06da1a9d5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7709-1631
0000-0001-8182-9889
OpenAccessLink https://link.springer.com/10.1007/s12346-023-00802-2
PQID 2814910569
PQPubID 2044188
ParticipantIDs proquest_journals_2814910569
crossref_citationtrail_10_1007_s12346_023_00802_2
crossref_primary_10_1007_s12346_023_00802_2
springer_journals_10_1007_s12346_023_00802_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Qualitative theory of dynamical systems
PublicationTitleAbbrev Qual. Theory Dyn. Syst
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References KuznetsovYAElements of Applied Bifurcation Theory. Applied Mathematical Sciences2004New YorkSpringer10.1007/978-1-4757-3978-71082.37002
MisraAKMauryaJSajidMModeling the effect of time delay in the increment of number of hospital beds to control an infectious diseaseMath. Biosci. Eng.2022191162811656447583210.3934/mbe.202254107667506
BarrientosPGRodríguezJARuiz-HerreraAChaotic dynamics in the seasonally forced SIR epidemic modelJ. Math. Biol.20177516551668371232510.1007/s00285-017-1130-91387.92081
GhoshJKGhoshUBiswasMHASarkarSQualitative analysis and optimal control strategy of an SIR model with saturated incidence and treatmentDiffer. Equ. Dyn. Syst.2019201911510.1007/s12591-019-00486-807657667
PanQHuangJWangHAn SIRS model with nonmonotone incidence and saturated treatment in a changing environmentJ. Math. Biol.20228523447027110.1007/s00285-022-01787-31498.92242
StoneLShulginBTheoretical examination of the pulse vaccination policy in the SIR epidemic modelMath. Comput. Model.200031207215175675610.1016/S0895-7177(00)00040-61043.92527
RodriguesAAPDissecting a resonance wedge on heteroclinic bifurcationsJ. Stat. Phys.202118425430024610.1007/s10955-021-02811-41479.34079
GuckenheimerJHolmesPJNonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences1983New YorkSpringer10.1007/978-1-4612-1140-20515.34001
AlgabaADomínguez-MorenoMCMerinoMRodríguez-LuisAJDouble-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz systemCommun. Nonlinear Sci. Numer. Simul.2022111441033110.1016/j.cnsns.2022.1064821500.34016
DuarteJJanuárioCMartinsNRogovchenkoSRogovchenkoYChaos analysis and explicit series solutions to the seasonally forced SIR epidemic modelJ. Math. Biol.20197822352258395437910.1007/s00285-019-01342-71415.92174
PlotkinSAVaccines: past, present and futureNat. Med.200511S5S1110.1038/nm1209
SahaPGhoshUComplex dynamics and control analysis of an epidemic model with non-monotone incidence and saturated treatmentInt. J. Dyn. Control202211301323453874810.1007/s40435-022-00969-7
González-OlivaresEGonzález-YañezBLorcaJMRojas-PalmaAFloresJDConsequences of double Allee effect on the number of limit cycles in a predator–prey modelComput. Math. Appl.20116234493463284489610.1016/j.camwa.2011.08.0611236.34067
ZhangJQiaoYBifurcation analysis of an SIR model considering hospital resources and vaccinationMath. Comput. Simul.2023208157185454358910.1016/j.matcom.2023.01.023
Maurício de CarvalhoJPSRodriguesAAPStrange attractors in a dynamical system inspired by a seasonally forced SIR modelPhys. D202243412440461310.1016/j.physd.2022.1332681492.92088
RodriguesAAPUnfolding a Bykov attractor: from an attracting torus to strange attractorsJ. Dyn. Differ. Equ.20223416431677441340010.1007/s10884-020-09858-z1498.34155
RovenskiVModeling of Curves and Surfaces with MATLAB2010New YorkSpringer10.1007/978-0-387-71278-91206.65061
d’OnofrioADuarteJJanuárioCMartinsNA SIR forced model with interplays with the external world and periodic internal contact interplaysPhys. Lett. A2022454128498449941910.1016/j.physleta.2022.12849807625632
Bonyah, E.: Al Basir, F., Ray, S.: Hopf bifurcation in a mathematical model of tuberculosis with delay. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds.) Mathematical Modelling, Optimization, Analytic and Numerical Solutions, in: Industrial and Applied Mathematics, pp. 301–311. Springer, Singapore (2020)
YagasakiKMelnikov’s method and codimension-two bifurcations in forced oscillationsJ. Differ. Equ.2002185124193562910.1006/jdeq.2002.41771027.34048
Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. In: Mathematical Models in Medicine. Springer, Berlin, pp 1–15 (1976). https://doi.org/10.1007/978-3-642-93048-5_1
WangQYoungLSStrange attractors in periodically-kicked limit cycles and Hopf bifurcationsCommun. Math. Phys.2003240509529200585510.1007/s00220-003-0902-91078.37027
ZhangXAChenLThe periodic solution of a class of epidemic modelsComput. Math. Appl.1999386171170340810.1016/S0898-1221(99)00206-00939.92031
ShanCZhuHBifurcations and complex dynamics of an SIR model with the impact of the number of hospital bedsJ. Differ. Equ.201425716621688321705210.1016/j.jde.2014.05.0301300.34113
ElazzouziAAlaouiALTiliouaMTridaneAGlobal stability analysis for a generalized delayed SIR model with vaccination and treatmentAdv. Differ. Equ.20192019532404518810.1186/s13662-019-2447-z1487.92041
Maurício de CarvalhoJPSMoreira-PintoBA fractional-order model for CoViD-19 dynamics with reinfection and the importance of quarantineChaos Solitons Fractals2021151429694710.1016/j.chaos.2021.111275
AlexanderMEMoghadasSMBifurcation analysis of an SIRS epidemic model with generalized incidenceSIAM J. Appl. Math.20056517941816217772510.1137/0406049471088.34035
Jones, J.H.: Notes on R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{R}_0$$\end{document}. California: Department of Anthropological Sciences 323, 19 pages (2007)
KermackWOMcKendrickAGContributions to the mathematical theory of epidemics. II. The problem of endemicityProc. R. Soc. Lond.1932138558310.1098/rspa.1932.017159.1190.03
LiJTengZWangGZhangLHuCStability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatmentChaos Solitons Fractals2017996371365001210.1016/j.chaos.2017.03.0471373.92129
LuZChiXChenLThe effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmissionMath. Comput. Model.20023610391057194505910.1016/S0895-7177(02)00257-11023.92026
MilnerFAPuglieseAPeriodic solutions: a robust numerical method for an S-I-R model of epidemicsJ. Math. Biol.199939471492173177210.1007/s0028500501750945.92017
LiJTengZBifurcations of an SIRS model with generalized non-monotone incidence rateAdv. Differ. Equ.20182018121381718810.1186/s13662-018-1675-y1446.37088
BrauerFCastillo-ChavezCFengZMathematical Models in Epidemiology. Texts in Applied Mathematics2019New YorkSpringer10.1007/978-1-4939-9828-91433.92001
CobeySModeling infectious disease dynamicsScience202036871371410.1126/science.abb5659
LuMHuangJRuanSYuPBifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rateJ. Differ. Equ.201926718591898394562010.1016/j.jde.2019.03.0051421.92034
RajagopalKHasanzadehNParasteshFHamarashIIJafariSHussainIA fractional-order model for the novel coronavirus (COVID-19) outbreakNonlinear Dyn.202010171171810.1007/s11071-020-05757-6
ParkSWBolkerBMA note on observation processes in epidemic modelsBull. Math. Biol.20208218407275010.1007/s11538-020-00713-21435.92081
van VoornGAKHemerikLBoerMPKooiBWHeteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effectMath. Biosci.2007209451469235955910.1016/j.mbs.2007.02.0061126.92062
HethcoteHWThe mathematics of infectious diseasesSIAM Rev.200042599653181404910.1137/S00361445003719070993.92033
MakindeODAdomian decomposition approach to a SIR epidemic model with constant vaccination strategyAppl. Math. Comput.2007184842848229494910.1016/j.amc.2006.06.0741109.92041
ShulginBStoneLAgurZPulse vaccination strategy in the SIR epidemic modelBull. Math. Biol.1998601123114810.1016/S0092-8240(98)90005-20941.92026
LiJBlakeleyDSmithRJThe failure of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{R} _0$$\end{document}Comput. Math. Methods Med.201120111710.1155/2011/527610
PlotkinSAPlotkinSLThe development of vaccines: how the past led to the futureNat. Rev. Microbiol.2011988989310.1038/nrmicro2668
JinYWangWXiaoSAn SIRS model with a nonlinear incidence rateChaos Solitons Fractals20073414821497233539810.1016/j.chaos.2006.04.0221152.34339
StoneLShulginBAgurZTheoretical examination of the pulse vaccination policy in the SIR epidemic modelMath. Comput. Model.200031207215175675610.1016/S0895-7177(00)00040-61043.92527
SA Plotkin (802_CR14) 2011; 9
JK Ghosh (802_CR17) 2019; 2019
K Yagasaki (802_CR23) 2002; 185
J Zhang (802_CR27) 2023; 208
SA Plotkin (802_CR13) 2005; 11
P Saha (802_CR16) 2022; 11
J Li (802_CR31) 2018; 2018
OD Makinde (802_CR15) 2007; 184
B Shulgin (802_CR18) 1998; 60
YA Kuznetsov (802_CR25) 2004
J Li (802_CR40) 2011; 2011
AAP Rodrigues (802_CR22) 2021; 184
PG Barrientos (802_CR10) 2017; 75
SW Park (802_CR39) 2020; 82
ME Alexander (802_CR29) 2005; 65
GAK van Voorn (802_CR44) 2007; 209
802_CR7
S Cobey (802_CR5) 2020; 368
J Duarte (802_CR24) 2019; 78
HW Hethcote (802_CR2) 2000; 42
XA Zhang (802_CR37) 1999; 38
AK Misra (802_CR32) 2022; 19
A d’Onofrio (802_CR12) 2022; 454
J Li (802_CR34) 2017; 99
802_CR38
JPS Maurício de Carvalho (802_CR9) 2022; 434
A Elazzouzi (802_CR19) 2019; 2019
J Guckenheimer (802_CR42) 1983
L Stone (802_CR20) 2000; 31
F Brauer (802_CR1) 2019
C Shan (802_CR28) 2014; 257
Q Wang (802_CR41) 2003; 240
K Rajagopal (802_CR4) 2020; 101
Y Jin (802_CR26) 2007; 34
Q Pan (802_CR30) 2022; 85
E González-Olivares (802_CR45) 2011; 62
802_CR3
Z Lu (802_CR36) 2002; 36
JPS Maurício de Carvalho (802_CR11) 2021; 151
V Rovenski (802_CR43) 2010
L Stone (802_CR35) 2000; 31
A Algaba (802_CR21) 2022; 111
WO Kermack (802_CR6) 1932; 138
FA Milner (802_CR8) 1999; 39
AAP Rodrigues (802_CR46) 2022; 34
M Lu (802_CR33) 2019; 267
References_xml – reference: StoneLShulginBAgurZTheoretical examination of the pulse vaccination policy in the SIR epidemic modelMath. Comput. Model.200031207215175675610.1016/S0895-7177(00)00040-61043.92527
– reference: KuznetsovYAElements of Applied Bifurcation Theory. Applied Mathematical Sciences2004New YorkSpringer10.1007/978-1-4757-3978-71082.37002
– reference: ShanCZhuHBifurcations and complex dynamics of an SIR model with the impact of the number of hospital bedsJ. Differ. Equ.201425716621688321705210.1016/j.jde.2014.05.0301300.34113
– reference: StoneLShulginBTheoretical examination of the pulse vaccination policy in the SIR epidemic modelMath. Comput. Model.200031207215175675610.1016/S0895-7177(00)00040-61043.92527
– reference: PlotkinSAPlotkinSLThe development of vaccines: how the past led to the futureNat. Rev. Microbiol.2011988989310.1038/nrmicro2668
– reference: DuarteJJanuárioCMartinsNRogovchenkoSRogovchenkoYChaos analysis and explicit series solutions to the seasonally forced SIR epidemic modelJ. Math. Biol.20197822352258395437910.1007/s00285-019-01342-71415.92174
– reference: JinYWangWXiaoSAn SIRS model with a nonlinear incidence rateChaos Solitons Fractals20073414821497233539810.1016/j.chaos.2006.04.0221152.34339
– reference: ElazzouziAAlaouiALTiliouaMTridaneAGlobal stability analysis for a generalized delayed SIR model with vaccination and treatmentAdv. Differ. Equ.20192019532404518810.1186/s13662-019-2447-z1487.92041
– reference: LiJTengZWangGZhangLHuCStability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatmentChaos Solitons Fractals2017996371365001210.1016/j.chaos.2017.03.0471373.92129
– reference: Maurício de CarvalhoJPSMoreira-PintoBA fractional-order model for CoViD-19 dynamics with reinfection and the importance of quarantineChaos Solitons Fractals2021151429694710.1016/j.chaos.2021.111275
– reference: LiJTengZBifurcations of an SIRS model with generalized non-monotone incidence rateAdv. Differ. Equ.20182018121381718810.1186/s13662-018-1675-y1446.37088
– reference: ZhangXAChenLThe periodic solution of a class of epidemic modelsComput. Math. Appl.1999386171170340810.1016/S0898-1221(99)00206-00939.92031
– reference: MilnerFAPuglieseAPeriodic solutions: a robust numerical method for an S-I-R model of epidemicsJ. Math. Biol.199939471492173177210.1007/s0028500501750945.92017
– reference: RodriguesAAPUnfolding a Bykov attractor: from an attracting torus to strange attractorsJ. Dyn. Differ. Equ.20223416431677441340010.1007/s10884-020-09858-z1498.34155
– reference: HethcoteHWThe mathematics of infectious diseasesSIAM Rev.200042599653181404910.1137/S00361445003719070993.92033
– reference: van VoornGAKHemerikLBoerMPKooiBWHeteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effectMath. Biosci.2007209451469235955910.1016/j.mbs.2007.02.0061126.92062
– reference: LiJBlakeleyDSmithRJThe failure of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{R} _0$$\end{document}Comput. Math. Methods Med.201120111710.1155/2011/527610
– reference: AlgabaADomínguez-MorenoMCMerinoMRodríguez-LuisAJDouble-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz systemCommun. Nonlinear Sci. Numer. Simul.2022111441033110.1016/j.cnsns.2022.1064821500.34016
– reference: ParkSWBolkerBMA note on observation processes in epidemic modelsBull. Math. Biol.20208218407275010.1007/s11538-020-00713-21435.92081
– reference: MakindeODAdomian decomposition approach to a SIR epidemic model with constant vaccination strategyAppl. Math. Comput.2007184842848229494910.1016/j.amc.2006.06.0741109.92041
– reference: Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. In: Mathematical Models in Medicine. Springer, Berlin, pp 1–15 (1976). https://doi.org/10.1007/978-3-642-93048-5_1
– reference: d’OnofrioADuarteJJanuárioCMartinsNA SIR forced model with interplays with the external world and periodic internal contact interplaysPhys. Lett. A2022454128498449941910.1016/j.physleta.2022.12849807625632
– reference: AlexanderMEMoghadasSMBifurcation analysis of an SIRS epidemic model with generalized incidenceSIAM J. Appl. Math.20056517941816217772510.1137/0406049471088.34035
– reference: GuckenheimerJHolmesPJNonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences1983New YorkSpringer10.1007/978-1-4612-1140-20515.34001
– reference: Bonyah, E.: Al Basir, F., Ray, S.: Hopf bifurcation in a mathematical model of tuberculosis with delay. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds.) Mathematical Modelling, Optimization, Analytic and Numerical Solutions, in: Industrial and Applied Mathematics, pp. 301–311. Springer, Singapore (2020)
– reference: RajagopalKHasanzadehNParasteshFHamarashIIJafariSHussainIA fractional-order model for the novel coronavirus (COVID-19) outbreakNonlinear Dyn.202010171171810.1007/s11071-020-05757-6
– reference: WangQYoungLSStrange attractors in periodically-kicked limit cycles and Hopf bifurcationsCommun. Math. Phys.2003240509529200585510.1007/s00220-003-0902-91078.37027
– reference: ZhangJQiaoYBifurcation analysis of an SIR model considering hospital resources and vaccinationMath. Comput. Simul.2023208157185454358910.1016/j.matcom.2023.01.023
– reference: Maurício de CarvalhoJPSRodriguesAAPStrange attractors in a dynamical system inspired by a seasonally forced SIR modelPhys. D202243412440461310.1016/j.physd.2022.1332681492.92088
– reference: BarrientosPGRodríguezJARuiz-HerreraAChaotic dynamics in the seasonally forced SIR epidemic modelJ. Math. Biol.20177516551668371232510.1007/s00285-017-1130-91387.92081
– reference: RodriguesAAPDissecting a resonance wedge on heteroclinic bifurcationsJ. Stat. Phys.202118425430024610.1007/s10955-021-02811-41479.34079
– reference: Jones, J.H.: Notes on R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{R}_0$$\end{document}. California: Department of Anthropological Sciences 323, 19 pages (2007)
– reference: GhoshJKGhoshUBiswasMHASarkarSQualitative analysis and optimal control strategy of an SIR model with saturated incidence and treatmentDiffer. Equ. Dyn. Syst.2019201911510.1007/s12591-019-00486-807657667
– reference: LuMHuangJRuanSYuPBifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rateJ. Differ. Equ.201926718591898394562010.1016/j.jde.2019.03.0051421.92034
– reference: LuZChiXChenLThe effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmissionMath. Comput. Model.20023610391057194505910.1016/S0895-7177(02)00257-11023.92026
– reference: CobeySModeling infectious disease dynamicsScience202036871371410.1126/science.abb5659
– reference: MisraAKMauryaJSajidMModeling the effect of time delay in the increment of number of hospital beds to control an infectious diseaseMath. Biosci. Eng.2022191162811656447583210.3934/mbe.202254107667506
– reference: ShulginBStoneLAgurZPulse vaccination strategy in the SIR epidemic modelBull. Math. Biol.1998601123114810.1016/S0092-8240(98)90005-20941.92026
– reference: PlotkinSAVaccines: past, present and futureNat. Med.200511S5S1110.1038/nm1209
– reference: RovenskiVModeling of Curves and Surfaces with MATLAB2010New YorkSpringer10.1007/978-0-387-71278-91206.65061
– reference: PanQHuangJWangHAn SIRS model with nonmonotone incidence and saturated treatment in a changing environmentJ. Math. Biol.20228523447027110.1007/s00285-022-01787-31498.92242
– reference: González-OlivaresEGonzález-YañezBLorcaJMRojas-PalmaAFloresJDConsequences of double Allee effect on the number of limit cycles in a predator–prey modelComput. Math. Appl.20116234493463284489610.1016/j.camwa.2011.08.0611236.34067
– reference: KermackWOMcKendrickAGContributions to the mathematical theory of epidemics. II. The problem of endemicityProc. R. Soc. Lond.1932138558310.1098/rspa.1932.017159.1190.03
– reference: BrauerFCastillo-ChavezCFengZMathematical Models in Epidemiology. Texts in Applied Mathematics2019New YorkSpringer10.1007/978-1-4939-9828-91433.92001
– reference: SahaPGhoshUComplex dynamics and control analysis of an epidemic model with non-monotone incidence and saturated treatmentInt. J. Dyn. Control202211301323453874810.1007/s40435-022-00969-7
– reference: YagasakiKMelnikov’s method and codimension-two bifurcations in forced oscillationsJ. Differ. Equ.2002185124193562910.1006/jdeq.2002.41771027.34048
– volume: 368
  start-page: 713
  year: 2020
  ident: 802_CR5
  publication-title: Science
  doi: 10.1126/science.abb5659
– volume: 9
  start-page: 889
  year: 2011
  ident: 802_CR14
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2668
– volume-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences
  year: 1983
  ident: 802_CR42
  doi: 10.1007/978-1-4612-1140-2
– volume: 208
  start-page: 157
  year: 2023
  ident: 802_CR27
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2023.01.023
– volume: 31
  start-page: 207
  year: 2000
  ident: 802_CR35
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(00)00040-6
– volume: 185
  start-page: 1
  year: 2002
  ident: 802_CR23
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.2002.4177
– ident: 802_CR7
  doi: 10.1007/978-3-642-93048-5_1
– volume: 82
  start-page: 1
  year: 2020
  ident: 802_CR39
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-020-00713-2
– volume: 11
  start-page: S5
  year: 2005
  ident: 802_CR13
  publication-title: Nat. Med.
  doi: 10.1038/nm1209
– ident: 802_CR38
– volume: 36
  start-page: 1039
  year: 2002
  ident: 802_CR36
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(02)00257-1
– volume: 60
  start-page: 1123
  year: 1998
  ident: 802_CR18
  publication-title: Bull. Math. Biol.
  doi: 10.1016/S0092-8240(98)90005-2
– volume: 31
  start-page: 207
  year: 2000
  ident: 802_CR20
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(00)00040-6
– volume: 19
  start-page: 11628
  year: 2022
  ident: 802_CR32
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022541
– volume: 38
  start-page: 61
  year: 1999
  ident: 802_CR37
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(99)00206-0
– volume: 267
  start-page: 1859
  year: 2019
  ident: 802_CR33
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2019.03.005
– volume: 11
  start-page: 301
  year: 2022
  ident: 802_CR16
  publication-title: Int. J. Dyn. Control
  doi: 10.1007/s40435-022-00969-7
– volume: 2011
  start-page: 17
  year: 2011
  ident: 802_CR40
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2011/527610
– volume-title: Mathematical Models in Epidemiology. Texts in Applied Mathematics
  year: 2019
  ident: 802_CR1
  doi: 10.1007/978-1-4939-9828-9
– volume: 151
  year: 2021
  ident: 802_CR11
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111275
– volume: 65
  start-page: 1794
  year: 2005
  ident: 802_CR29
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/040604947
– volume: 2018
  start-page: 1
  year: 2018
  ident: 802_CR31
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-018-1675-y
– volume: 209
  start-page: 451
  year: 2007
  ident: 802_CR44
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2007.02.006
– ident: 802_CR3
  doi: 10.1007/978-981-15-0928-5_14
– volume: 39
  start-page: 471
  year: 1999
  ident: 802_CR8
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850050175
– volume: 34
  start-page: 1643
  year: 2022
  ident: 802_CR46
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-020-09858-z
– volume: 75
  start-page: 1655
  year: 2017
  ident: 802_CR10
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-017-1130-9
– volume: 2019
  start-page: 1
  year: 2019
  ident: 802_CR17
  publication-title: Differ. Equ. Dyn. Syst.
  doi: 10.1007/s12591-019-00486-8
– volume: 240
  start-page: 509
  year: 2003
  ident: 802_CR41
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-003-0902-9
– volume: 184
  start-page: 25
  year: 2021
  ident: 802_CR22
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-021-02811-4
– volume: 78
  start-page: 2235
  year: 2019
  ident: 802_CR24
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-019-01342-7
– volume: 184
  start-page: 842
  year: 2007
  ident: 802_CR15
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.06.074
– volume: 101
  start-page: 711
  year: 2020
  ident: 802_CR4
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05757-6
– volume: 99
  start-page: 63
  year: 2017
  ident: 802_CR34
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2017.03.047
– volume: 34
  start-page: 1482
  year: 2007
  ident: 802_CR26
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.04.022
– volume: 454
  start-page: 128498
  year: 2022
  ident: 802_CR12
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2022.128498
– volume: 62
  start-page: 3449
  year: 2011
  ident: 802_CR45
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.08.061
– volume: 85
  start-page: 23
  year: 2022
  ident: 802_CR30
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-022-01787-3
– volume: 42
  start-page: 599
  year: 2000
  ident: 802_CR2
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500371907
– volume: 138
  start-page: 55
  year: 1932
  ident: 802_CR6
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspa.1932.0171
– volume: 2019
  start-page: 532
  year: 2019
  ident: 802_CR19
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2447-z
– volume-title: Modeling of Curves and Surfaces with MATLAB
  year: 2010
  ident: 802_CR43
  doi: 10.1007/978-0-387-71278-9
– volume-title: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences
  year: 2004
  ident: 802_CR25
  doi: 10.1007/978-1-4757-3978-7
– volume: 111
  year: 2022
  ident: 802_CR21
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2022.106482
– volume: 257
  start-page: 1662
  year: 2014
  ident: 802_CR28
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2014.05.030
– volume: 434
  start-page: 12
  year: 2022
  ident: 802_CR9
  publication-title: Phys. D
  doi: 10.1016/j.physd.2022.133268
SSID ssj0062732
Score 2.3549998
Snippet There are few adapted SIR models in the literature that combine vaccination and logistic growth. In this article, we study bifurcations of a SIR model where...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bifurcations
Difference and Functional Equations
Dynamical Systems and Ergodic Theory
Immunization
Mathematical models
Mathematics
Mathematics and Statistics
Parameters
Singularities
Title SIR Model with Vaccination: Bifurcation Analysis
URI https://link.springer.com/article/10.1007/s12346-023-00802-2
https://www.proquest.com/docview/2814910569
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIpCqTKwQaTEr9hspSoUUBmAojJFju1IlaqC-vj_2E7SCARILFnsePhs38t33wGcK0FzYqx3QhSzH42SMMNChQozEmuaiMSHBoaPbDAi92M6LovCFlW2e_Uk6SV1XeyGMHEJszj0BaKhFbxN6nx3e4pHqFvJX2YVsn_jtIZISAmLylKZn9f4qo5qG_Pbs6jXNje7sFOaiUG32Nc92DCzfdgerjlWFwcQPd89Ba6V2TRwwdTgVSo1KWJ7V8H1JF_Ni2hcUPGOHMLopv_SG4Rl_wOHFF6GSU6odOyBJheamxwTrpRGDOUi0sjYgZjERkQkp4IlhmdMmlhHTMtYCk0VPoLG7H1mjiFQnOdSWt-Bm4woLiVzVG_YuiuxshqctSCuYEhVSQ7uelRM05rW2EGXWuhSD12KWnCx_uejoMb4c3a7Qjctr8kiRdw6aNbCY6IFlxXi9fDvq538b_opbCG_6S43rA2N5Xxlzqwxscw60Ozevj30O7DZY72OP0mfhJe-Vw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH5CMAAD4hSFAhnYICKH49hsUFG10HaAFnWzHB9SpaqgHv-f5xytqACJJYsdD1-cd7_vAVwrnlhi0DshiuJDR6mfxVz5KqYk1EnK0zw00O3R1oA8D5NhSZPjemHW8vd3M5SsxJXJxn7eFuqjuN0i6Cm78r0GbVRSl6IazjObaH74CaFB2SDz8xnfldDKslxLhuY6prkPe6Vx6D0UX_MANszkEHa7S2bV2REEb-1Xzw0wG3suhOq9S6VGRUTv3nsc2cW0iMF5FdvIMQyaT_1Gyy-nHjh84rmfWpJIxxloLNfM2JgwpXREI8sDHRlcCEloeEBswmlqWEalCXVAtQwl14mKT2Bz8jExp-ApxqyU6DEwkxHFpKSO4C1GJyVUqLdpDcIKBqFKSnA3mWIsVmTGDjqB0IkcOhHV4Gb5zmdBiPHn7nqFrih_jpmIGLplaNdRXoPbCvHV8u-nnf1v-xVst_rdjui0ey_nsBPlF8BVh9Vhcz5dmAs0J-bZZX6PvgBxGrq4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA6iIHoQnzid2oM3LWuTNG286XRs6oaok91CmgcMRh1b9_-bpO2qooKXXPI4fGnze38_AM4FjTRWxjrBgphBwthPERW-QASHMopp7FwD_QHpDvH9KBp9quJ32e5VSLKoabAsTVnemkrdqgvfIMI2eRb5rljUN4_wmrFUXKC2TdrVW0yMcHbxTqOU-BEmQVk28_MZX0VTrW9-C5E6ydPZBlulyuhdF3e8A1ZUtgs2-0u-1fkeCF56z55tazbxrGPVe-NCjAs_35V3M9aLWeGZ8yoOkn0w7Ny9trt-2QvBooZyP9Y44pZJUGkqE6URToSQkEBNAwmVmQhxqGiAdURJrJKUcBXKgEgeciojgQ7AavaeqUPgiSTRnBs7IlEpFgnnxNK-IWO6hMJIc9IAYQUDEyVRuO1XMWE1xbGFjhnomIOOwQa4WO6ZFjQZf65uVuiy8peZM5gYY81oe4Q2wGWFeD39-2lH_1t-BtafbjvssTd4OAYb0N2_TRlrgtV8tlAnRsfI01P3GX0ArDnC_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIR+Model+with+Vaccination%3A+Bifurcation+Analysis&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=Maur%C3%ADcio+de+Carvalho+Jo%C3%A3o+P+S&rft.au=Rodrigues%2C+Alexandre+A&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=22&rft.issue=3&rft_id=info:doi/10.1007%2Fs12346-023-00802-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon