Explainable image classification with evidence counterfactual
The complexity of state-of-the-art modeling techniques for image classification impedes the ability to explain model predictions in an interpretable way. A counterfactual explanation highlights the parts of an image which, when removed, would change the predicted class. Both legal scholars and data...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 25; no. 2; pp. 315 - 335 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.05.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The complexity of state-of-the-art modeling techniques for image classification impedes the ability to explain model predictions in an interpretable way. A counterfactual explanation highlights the parts of an image which, when removed, would change the predicted class. Both legal scholars and data scientists are increasingly turning to counterfactual explanations as these provide a high degree of human interpretability, reveal what minimal information needs to be changed in order to come to a different prediction and do not require the prediction model to be disclosed. Our literature review shows that existing counterfactual methods for image classification have strong requirements regarding access to the training data and the model internals, which often are unrealistic. Therefore, SEDC is introduced as a model-agnostic instance-level explanation method for image classification that does not need access to the training data. As image classification tasks are typically multiclass problems, an additional contribution is the introduction of the SEDC-T method that allows specifying a target counterfactual class. These methods are experimentally tested on ImageNet data, and with concrete examples, we illustrate how the resulting explanations can give insights in model decisions. Moreover, SEDC is benchmarked against existing model-agnostic explanation methods, demonstrating stability of results, computational efficiency and the counterfactual nature of the explanations. |
---|---|
AbstractList | The complexity of state-of-the-art modeling techniques for image classification impedes the ability to explain model predictions in an interpretable way. A counterfactual explanation highlights the parts of an image which, when removed, would change the predicted class. Both legal scholars and data scientists are increasingly turning to counterfactual explanations as these provide a high degree of human interpretability, reveal what minimal information needs to be changed in order to come to a different prediction and do not require the prediction model to be disclosed. Our literature review shows that existing counterfactual methods for image classification have strong requirements regarding access to the training data and the model internals, which often are unrealistic. Therefore, SEDC is introduced as a model-agnostic instance-level explanation method for image classification that does not need access to the training data. As image classification tasks are typically multiclass problems, an additional contribution is the introduction of the SEDC-T method that allows specifying a target counterfactual class. These methods are experimentally tested on ImageNet data, and with concrete examples, we illustrate how the resulting explanations can give insights in model decisions. Moreover, SEDC is benchmarked against existing model-agnostic explanation methods, demonstrating stability of results, computational efficiency and the counterfactual nature of the explanations. |
Author | Goethals, Sofie Vermeire, Tom Brughmans, Dieter de Oliveira, Raphael Mazzine Barbossa Martens, David |
Author_xml | – sequence: 1 givenname: Tom surname: Vermeire fullname: Vermeire, Tom organization: University of Antwerp – sequence: 2 givenname: Dieter surname: Brughmans fullname: Brughmans, Dieter email: Dieter.Brughmans@uantwerpen.be organization: University of Antwerp – sequence: 3 givenname: Sofie surname: Goethals fullname: Goethals, Sofie organization: University of Antwerp – sequence: 4 givenname: Raphael Mazzine Barbossa surname: de Oliveira fullname: de Oliveira, Raphael Mazzine Barbossa organization: University of Antwerp – sequence: 5 givenname: David surname: Martens fullname: Martens, David organization: University of Antwerp |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnlfzuckePEipHyB4UfAWskm2pqzZmmTV_ntjVxQ89DIzMPPMO_POwMT33gJwiuA5gpBfxBwpLSFGJUSQsXJ7AKaIElJyxp4nvzVFR2AW4xpCQggWU3C5_Nx0ynnVdLZwr2plC92pGF3rtEqu98WHSy-FfXfGep2b_eCTDa3SaVDdMThsVRftyU-eg6fr5ePitrx_uLlbXN2XmlQklVxXAjHIMKkbWAlDhca5MobxtlGY1m2NETUUEcGbhmuFCaq5QVhjo7RVZA7Oxr2b0L8NNia57ofgs6TEFasEgbgmeQqPUzr0MQbbyk3IL4WtRFB-2yRHm2S2Se5sktsMiX-Qdmn3eQrKdftRMqIx6_iVDX9X7aG-AEpwfvA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3397871 crossref_primary_10_1007_s10618_022_00831_6 crossref_primary_10_1109_TAI_2023_3337053 crossref_primary_10_1109_ACCESS_2023_3346061 crossref_primary_10_1016_j_ejor_2024_01_002 crossref_primary_10_1016_j_knosys_2025_113092 crossref_primary_10_1145_3631136 crossref_primary_10_1007_s11633_022_1407_3 crossref_primary_10_7717_peerj_cs_1629 crossref_primary_10_1109_ACCESS_2024_3425910 crossref_primary_10_1109_TCBB_2022_3190266 crossref_primary_10_1007_s10664_024_10505_0 crossref_primary_10_4018_IJMDEM_332882 crossref_primary_10_3390_diagnostics14141567 crossref_primary_10_1007_s10994_024_06530_1 crossref_primary_10_48175_IJARSCT_17257 crossref_primary_10_1016_j_dss_2025_114402 crossref_primary_10_1109_ACCESS_2023_3274851 crossref_primary_10_1145_3677119 crossref_primary_10_1007_s10618_023_00930_y crossref_primary_10_1007_s10618_023_00933_9 crossref_primary_10_1016_j_jii_2025_100827 crossref_primary_10_1007_s10707_023_00507_3 crossref_primary_10_1007_s10639_023_12111_x crossref_primary_10_1038_s41598_024_79684_6 crossref_primary_10_1007_s10994_023_06502_x crossref_primary_10_3390_jcm12030937 |
Cites_doi | 10.3390/app11167274 10.1017/S1358246100005130 10.1109/5.726791 10.25300/MISQ/2014/38.1.04 10.1016/j.inffus.2019.12.012 10.1109/TPAMI.2012.120 10.1089/big.2017.0074 10.1023/B:VISI.0000022288.19776.77 10.1038/nature21056 10.1109/ACCESS.2018.2870052 10.1038/nature14539 10.1038/s41467-019-08987-4 10.1371/journal.pone.0130140 10.1109/TEVC.2019.2890858 10.1109/78.80892 10.1109/CVPR.2018.00474 10.1145/3351095.3372830 10.1109/RE.2018.00-21 10.1145/2939672.2939778 10.24963/ijcai.2019/876 10.3127/ajis.v22i0.1538 10.1007/978-3-319-99740-7_21 10.2139/ssrn.3064761 10.1016/j.artint.2018.07.007 10.1109/CVPR.2001.990497 10.1109/ICCV.2017.74 10.1609/aaai.v34i03.5643 10.1007/978-3-319-10590-1_53 10.1007/978-3-030-28954-6_1 10.1007/978-3-540-88693-8_52 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10044-021-01055-y |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 335 |
ExternalDocumentID | 10_1007_s10044_021_01055_y |
GrantInformation_xml | – fundername: AXA Research Fund funderid: http://dx.doi.org/10.13039/501100001961 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-7c681505239b068d48c29b0dd57fba249f9214d41387bb7ca23197d12c2dacea3 |
IEDL.DBID | C6C |
ISSN | 1433-7541 |
IngestDate | Mon Jul 14 10:45:33 EDT 2025 Tue Jul 01 01:15:17 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Fri Feb 21 02:45:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Explainable artificial intelligence Counterfactual explanation Search algorithms Image classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-7c681505239b068d48c29b0dd57fba249f9214d41387bb7ca23197d12c2dacea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s10044-021-01055-y |
PQID | 2656830293 |
PQPubID | 2043691 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2656830293 crossref_primary_10_1007_s10044_021_01055_y crossref_citationtrail_10_1007_s10044_021_01055_y springer_journals_10_1007_s10044_021_01055_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Chen, Fraiberger, Moakler, Provost (CR12) 2017; 5 CR39 CR38 CR36 LeCun, Bengio, Hinton (CR33) 2015; 521 CR34 CR30 Adadi, Berrada (CR2) 2018; 6 Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (CR1) 2012; 34 CR4 CR3 CR8 CR7 CR9 CR49 CR48 CR46 CR45 CR44 CR43 CR42 CR41 CR40 Wachter, Mittelstadt, Russell (CR51) 2017; 31 Felzenszwalb, Huttenlocher (CR18) 2004; 59 Haddad, Akansu (CR25) 1991; 39 Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller (CR31) 2019; 10 CR19 LeCun, Bottou, Bengio, Haffner (CR32) 1998; 86 CR16 CR15 Martens, Provost (CR37) 2014; 38 CR13 Bach, Binder, Montavon, Klauschen, Müller, Samek (CR6) 2015; 10 CR11 CR10 CR53 CR52 CR50 Lipton (CR35) 1990; 27 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (CR17) 2017; 542 CR29 CR28 CR27 CR26 CR24 CR23 CR22 CR21 CR20 de Oliveira, Martens (CR14) 2021 Su, Vargas, Sakurai (CR47) 2019; 23 Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, García, Gil-López, Molina, Benjamins (CR5) 2020; 58 Y LeCun (1055_CR32) 1998; 86 D Chen (1055_CR12) 2017; 5 J Su (1055_CR47) 2019; 23 1055_CR30 1055_CR39 1055_CR38 1055_CR36 1055_CR34 1055_CR7 1055_CR8 1055_CR9 AB Arrieta (1055_CR5) 2020; 58 1055_CR3 1055_CR44 1055_CR4 1055_CR43 1055_CR42 1055_CR41 1055_CR40 A Adadi (1055_CR2) 2018; 6 1055_CR49 1055_CR48 S Wachter (1055_CR51) 2017; 31 S Lapuschkin (1055_CR31) 2019; 10 1055_CR46 1055_CR45 Y LeCun (1055_CR33) 2015; 521 PF Felzenszwalb (1055_CR18) 2004; 59 1055_CR11 1055_CR10 1055_CR53 1055_CR52 1055_CR50 D Martens (1055_CR37) 2014; 38 1055_CR19 1055_CR16 1055_CR15 1055_CR13 R Achanta (1055_CR1) 2012; 34 RMB de Oliveira (1055_CR14) 2021 S Bach (1055_CR6) 2015; 10 RA Haddad (1055_CR25) 1991; 39 1055_CR22 1055_CR21 1055_CR20 A Esteva (1055_CR17) 2017; 542 P Lipton (1055_CR35) 1990; 27 1055_CR29 1055_CR28 1055_CR27 1055_CR26 1055_CR24 1055_CR23 |
References_xml | – ident: CR45 – ident: CR22 – year: 2021 ident: CR14 article-title: A framework and benchmarking study for counterfactual generating methods on tabular data publication-title: Appl Sci doi: 10.3390/app11167274 – ident: CR49 – volume: 27 start-page: 247 year: 1990 end-page: 266 ident: CR35 article-title: Contrastive explanation publication-title: R Inst Philos Suppl doi: 10.1017/S1358246100005130 – ident: CR4 – ident: CR39 – ident: CR16 – ident: CR29 – ident: CR8 – ident: CR42 – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 ident: CR32 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 38 start-page: 73 issue: 1 year: 2014 end-page: 99 ident: CR37 article-title: Explaining data-driven document classifications publication-title: MIS Q doi: 10.25300/MISQ/2014/38.1.04 – volume: 58 start-page: 82 year: 2020 end-page: 115 ident: CR5 article-title: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.12.012 – ident: CR21 – ident: CR46 – volume: 34 start-page: 2274 issue: 11 year: 2012 end-page: 2282 ident: CR1 article-title: Slic superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.120 – ident: CR19 – ident: CR15 – ident: CR50 – volume: 5 start-page: 197 issue: 3 year: 2017 end-page: 212 ident: CR12 article-title: Enhancing transparency and control when drawing data-driven inferences about individuals publication-title: Big Data doi: 10.1089/big.2017.0074 – ident: CR11 – ident: CR9 – ident: CR36 – volume: 59 start-page: 167 issue: 2 year: 2004 end-page: 181 ident: CR18 article-title: Efficient graph-based image segmentation publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000022288.19776.77 – volume: 542 start-page: 115 issue: 7639 year: 2017 end-page: 118 ident: CR17 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: CR2 article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: CR26 – ident: CR43 – ident: CR53 – ident: CR30 – ident: CR10 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR33 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 31 start-page: 841 year: 2017 ident: CR51 article-title: Counterfactual explanations without opening the black box: automated decisions and the GPDR publication-title: Harv. JL & Tech – ident: CR40 – ident: CR27 – ident: CR23 – volume: 10 start-page: 1096 issue: 1 year: 2019 ident: CR31 article-title: Unmasking clever Hans predictors and assessing what machines really learn publication-title: Nat Commun doi: 10.1038/s41467-019-08987-4 – ident: CR44 – ident: CR48 – volume: 10 start-page: e0130140 issue: 7 year: 2015 ident: CR6 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PLoS ONE doi: 10.1371/journal.pone.0130140 – ident: CR3 – ident: CR38 – ident: CR52 – volume: 23 start-page: 828 issue: 5 year: 2019 end-page: 841 ident: CR47 article-title: One pixel attack for fooling deep neural networks publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2890858 – ident: CR13 – ident: CR34 – volume: 39 start-page: 723 issue: 3 year: 1991 end-page: 727 ident: CR25 article-title: A class of fast Gaussian binomial filters for speech and image processing publication-title: IEEE Trans Signal Process doi: 10.1109/78.80892 – ident: CR7 – ident: CR28 – ident: CR41 – ident: CR24 – ident: CR20 – volume: 58 start-page: 82 year: 2020 ident: 1055_CR5 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.12.012 – ident: 1055_CR9 – volume: 27 start-page: 247 year: 1990 ident: 1055_CR35 publication-title: R Inst Philos Suppl doi: 10.1017/S1358246100005130 – ident: 1055_CR43 doi: 10.1109/CVPR.2018.00474 – ident: 1055_CR7 doi: 10.1145/3351095.3372830 – ident: 1055_CR13 doi: 10.1109/RE.2018.00-21 – ident: 1055_CR41 doi: 10.1145/2939672.2939778 – ident: 1055_CR36 – ident: 1055_CR10 doi: 10.24963/ijcai.2019/876 – ident: 1055_CR23 – volume: 23 start-page: 828 issue: 5 year: 2019 ident: 1055_CR47 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2890858 – ident: 1055_CR27 – ident: 1055_CR29 – ident: 1055_CR46 – ident: 1055_CR20 doi: 10.3127/ajis.v22i0.1538 – ident: 1055_CR21 doi: 10.1007/978-3-319-99740-7_21 – volume: 10 start-page: e0130140 issue: 7 year: 2015 ident: 1055_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0130140 – ident: 1055_CR16 doi: 10.2139/ssrn.3064761 – year: 2021 ident: 1055_CR14 publication-title: Appl Sci doi: 10.3390/app11167274 – volume: 39 start-page: 723 issue: 3 year: 1991 ident: 1055_CR25 publication-title: IEEE Trans Signal Process doi: 10.1109/78.80892 – ident: 1055_CR38 doi: 10.1016/j.artint.2018.07.007 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 1055_CR1 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.120 – ident: 1055_CR19 – ident: 1055_CR8 doi: 10.1109/CVPR.2001.990497 – volume: 38 start-page: 73 issue: 1 year: 2014 ident: 1055_CR37 publication-title: MIS Q doi: 10.25300/MISQ/2014/38.1.04 – volume: 6 start-page: 52138 year: 2018 ident: 1055_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: 1055_CR44 doi: 10.1109/ICCV.2017.74 – ident: 1055_CR22 – ident: 1055_CR26 – ident: 1055_CR3 doi: 10.1609/aaai.v34i03.5643 – ident: 1055_CR30 – volume: 10 start-page: 1096 issue: 1 year: 2019 ident: 1055_CR31 publication-title: Nat Commun doi: 10.1038/s41467-019-08987-4 – ident: 1055_CR52 doi: 10.1007/978-3-319-10590-1_53 – volume: 31 start-page: 841 year: 2017 ident: 1055_CR51 publication-title: Harv. JL & Tech – volume: 5 start-page: 197 issue: 3 year: 2017 ident: 1055_CR12 publication-title: Big Data doi: 10.1089/big.2017.0074 – ident: 1055_CR11 – ident: 1055_CR34 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 1055_CR17 publication-title: Nature doi: 10.1038/nature21056 – volume: 59 start-page: 167 issue: 2 year: 2004 ident: 1055_CR18 publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000022288.19776.77 – ident: 1055_CR53 – ident: 1055_CR15 – ident: 1055_CR40 – ident: 1055_CR4 – ident: 1055_CR48 – ident: 1055_CR42 doi: 10.1007/978-3-030-28954-6_1 – ident: 1055_CR39 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 1055_CR32 publication-title: Proc IEEE doi: 10.1109/5.726791 – ident: 1055_CR50 doi: 10.1007/978-3-540-88693-8_52 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 1055_CR33 publication-title: Nature doi: 10.1038/nature14539 – ident: 1055_CR24 – ident: 1055_CR49 – ident: 1055_CR28 – ident: 1055_CR45 |
SSID | ssj0033328 |
Score | 2.5429692 |
Snippet | The complexity of state-of-the-art modeling techniques for image classification impedes the ability to explain model predictions in an interpretable way. A... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 315 |
SubjectTerms | Classification Computer Science Image classification Literature reviews Pattern Recognition Prediction models Theoretical Advances Training |
Title | Explainable image classification with evidence counterfactual |
URI | https://link.springer.com/article/10.1007/s10044-021-01055-y https://www.proquest.com/docview/2656830293 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20vXjxW6zWkoM3DTQfu9k9ltJaFD1ZqKclm2RB0Cq2PfTfm0mzFosKXpYlyeYw2WReknnzAC6VEVWV5AnVmU2prJimmlWc5sa350JlLEGi8P1DOhrL20kyiWlykAuzcX-PFLeulBQDCYKWI11uQzNhQqFMQz_t16uuECLoqHr3L6hKJIsEmZ_7-O6E1shy4zI0-JjhPuxGcEh6q9E8gC03PYS9CBRJnIYzX1RrMdRlRxCC6SITijy_-lWCGATGGAkUjE_wxJW4KCJKgkaE-0Bew0K_HMN4OHjsj2iURqBGpGJOlUm9FfFINy-7aWZlZrh_szZRVan9lqrKOZPWe6hMlaUy2sO4XFnGDbfaOC1OoDF9m7pTIM7vMGRS5SJzHk05UVpEMbLsMq2R2NsCVtuqMDFvOMpXvBTrjMdo38Lbtwj2LZYtuPr65n2VNePP1u16CIo4g2YF90ATc5PlogXX9bCsq3_v7ex_zc9hhyOjIcQwtqEx_1i4C48z5mUHmr2bp7tBJ_xo_jnmvU-Amsnd |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhEJ5oPejFt7FadQ_elKQ8dtk9NsamattTm_RGWGATk1pNH4f-e4GCVaMm3jYscJjh8QHzzQdwzRWtqrRIkcx1hliFJZK4IqhQtj6hPMepIwr3-llnyB5H6SiQwmYx2j0-SfqV-hPZrckYciEFXtURLTdhy4KB3I3lIWnF9ZdS6hVVLRCgiKcMB6rMz3183Y7WGPPbs6jfbdr7sBtgYtJa-fUANszkEPYCZEzChJzZoqjKEMuOwIfVBU5U8vxi14tEOYjsYoK8GxJ395qYICeaeLUIM3UMh4UcH8OwfT-466AgkoAUzegccZVZe7rL3aJsZrlmuSL2S-uUV6W0h6uqIJhpu1flvCy5khbQFVxjooiWykh6ArXJ68ScQmLsWYOlVUFzY3GVoaV2eIaVTSylo_jWAUdbCRUyiDshi7FY5z529hXWvsLbVyzrcPPR5m2VP-PP2o3oAhHm0kwQCzldlrKC1uE2umX9-_fezv5X_Qq2O4NeV3Qf-k_nsEMcz8FHNjagNp8uzIVFH_Py0g-2d30Sznc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_Cmweaxm92jVEt9FQ8WegvZPECotbTbQ_-9SZq1VVTwtmSzOcxskm-S-eYD4Jwram2SJ0hmOkXMYokktgTlyvUnlGc48UThp27a6bH7ftJfYvGHbPfqSnLOafBVmobl1UjbqyXiW5Mx5NMLgsIjmq2CNRepYB9-tdJWtRZTSoO6qgMFFPGE4Uib-XmMr1vTAm9-uyINO097G2xGyAiv5z7eAStmuAu2InyEcXJOXFOl0FC17YGQYhf5UfD1za0dUHm47PODgkugP4eFJkqLwqAcYcae7TCVg33Qa9--tDooCiYgRVNaIq5SZ1t_0JsXzTTTLFPEPWmdcFtIF2jZnGCm3b6V8aLgSjpwl3ONiSJaKiPpAagN34fmEEDj4g6W2JxmxmEsQwvtsQ0rmlhKT_etA1zZSqhYTdyLWgzEog6yt69w9hXBvmJWBxef34zmtTT-7N2oXCDivJoI4uCnr1iW0zq4rNyyeP37aEf_634G1p9v2uLxrvtwDDaIpzyEJMcGqJXjqTlxQKQsTsO_9gGcddKd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+image+classification+with+evidence+counterfactual&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Vermeire%2C+Tom&rft.au=Brughmans%2C+Dieter&rft.au=Goethals%2C+Sofie&rft.au=de+Oliveira%2C+Raphael+Mazzine+Barbossa&rft.date=2022-05-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=25&rft.issue=2&rft.spage=315&rft.epage=335&rft_id=info:doi/10.1007%2Fs10044-021-01055-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_021_01055_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |