Explainable image classification with evidence counterfactual

The complexity of state-of-the-art modeling techniques for image classification impedes the ability to explain model predictions in an interpretable way. A counterfactual explanation highlights the parts of an image which, when removed, would change the predicted class. Both legal scholars and data...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 25; no. 2; pp. 315 - 335
Main Authors Vermeire, Tom, Brughmans, Dieter, Goethals, Sofie, de Oliveira, Raphael Mazzine Barbossa, Martens, David
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The complexity of state-of-the-art modeling techniques for image classification impedes the ability to explain model predictions in an interpretable way. A counterfactual explanation highlights the parts of an image which, when removed, would change the predicted class. Both legal scholars and data scientists are increasingly turning to counterfactual explanations as these provide a high degree of human interpretability, reveal what minimal information needs to be changed in order to come to a different prediction and do not require the prediction model to be disclosed. Our literature review shows that existing counterfactual methods for image classification have strong requirements regarding access to the training data and the model internals, which often are unrealistic. Therefore, SEDC is introduced as a model-agnostic instance-level explanation method for image classification that does not need access to the training data. As image classification tasks are typically multiclass problems, an additional contribution is the introduction of the SEDC-T method that allows specifying a target counterfactual class. These methods are experimentally tested on ImageNet data, and with concrete examples, we illustrate how the resulting explanations can give insights in model decisions. Moreover, SEDC is benchmarked against existing model-agnostic explanation methods, demonstrating stability of results, computational efficiency and the counterfactual nature of the explanations.
AbstractList The complexity of state-of-the-art modeling techniques for image classification impedes the ability to explain model predictions in an interpretable way. A counterfactual explanation highlights the parts of an image which, when removed, would change the predicted class. Both legal scholars and data scientists are increasingly turning to counterfactual explanations as these provide a high degree of human interpretability, reveal what minimal information needs to be changed in order to come to a different prediction and do not require the prediction model to be disclosed. Our literature review shows that existing counterfactual methods for image classification have strong requirements regarding access to the training data and the model internals, which often are unrealistic. Therefore, SEDC is introduced as a model-agnostic instance-level explanation method for image classification that does not need access to the training data. As image classification tasks are typically multiclass problems, an additional contribution is the introduction of the SEDC-T method that allows specifying a target counterfactual class. These methods are experimentally tested on ImageNet data, and with concrete examples, we illustrate how the resulting explanations can give insights in model decisions. Moreover, SEDC is benchmarked against existing model-agnostic explanation methods, demonstrating stability of results, computational efficiency and the counterfactual nature of the explanations.
Author Goethals, Sofie
Vermeire, Tom
Brughmans, Dieter
de Oliveira, Raphael Mazzine Barbossa
Martens, David
Author_xml – sequence: 1
  givenname: Tom
  surname: Vermeire
  fullname: Vermeire, Tom
  organization: University of Antwerp
– sequence: 2
  givenname: Dieter
  surname: Brughmans
  fullname: Brughmans, Dieter
  email: Dieter.Brughmans@uantwerpen.be
  organization: University of Antwerp
– sequence: 3
  givenname: Sofie
  surname: Goethals
  fullname: Goethals, Sofie
  organization: University of Antwerp
– sequence: 4
  givenname: Raphael Mazzine Barbossa
  surname: de Oliveira
  fullname: de Oliveira, Raphael Mazzine Barbossa
  organization: University of Antwerp
– sequence: 5
  givenname: David
  surname: Martens
  fullname: Martens, David
  organization: University of Antwerp
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnlfzuckePEipHyB4UfAWskm2pqzZmmTV_ntjVxQ89DIzMPPMO_POwMT33gJwiuA5gpBfxBwpLSFGJUSQsXJ7AKaIElJyxp4nvzVFR2AW4xpCQggWU3C5_Nx0ynnVdLZwr2plC92pGF3rtEqu98WHSy-FfXfGep2b_eCTDa3SaVDdMThsVRftyU-eg6fr5ePitrx_uLlbXN2XmlQklVxXAjHIMKkbWAlDhca5MobxtlGY1m2NETUUEcGbhmuFCaq5QVhjo7RVZA7Oxr2b0L8NNia57ofgs6TEFasEgbgmeQqPUzr0MQbbyk3IL4WtRFB-2yRHm2S2Se5sktsMiX-Qdmn3eQrKdftRMqIx6_iVDX9X7aG-AEpwfvA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3397871
crossref_primary_10_1007_s10618_022_00831_6
crossref_primary_10_1109_TAI_2023_3337053
crossref_primary_10_1109_ACCESS_2023_3346061
crossref_primary_10_1016_j_ejor_2024_01_002
crossref_primary_10_1016_j_knosys_2025_113092
crossref_primary_10_1145_3631136
crossref_primary_10_1007_s11633_022_1407_3
crossref_primary_10_7717_peerj_cs_1629
crossref_primary_10_1109_ACCESS_2024_3425910
crossref_primary_10_1109_TCBB_2022_3190266
crossref_primary_10_1007_s10664_024_10505_0
crossref_primary_10_4018_IJMDEM_332882
crossref_primary_10_3390_diagnostics14141567
crossref_primary_10_1007_s10994_024_06530_1
crossref_primary_10_48175_IJARSCT_17257
crossref_primary_10_1016_j_dss_2025_114402
crossref_primary_10_1109_ACCESS_2023_3274851
crossref_primary_10_1145_3677119
crossref_primary_10_1007_s10618_023_00930_y
crossref_primary_10_1007_s10618_023_00933_9
crossref_primary_10_1016_j_jii_2025_100827
crossref_primary_10_1007_s10707_023_00507_3
crossref_primary_10_1007_s10639_023_12111_x
crossref_primary_10_1038_s41598_024_79684_6
crossref_primary_10_1007_s10994_023_06502_x
crossref_primary_10_3390_jcm12030937
Cites_doi 10.3390/app11167274
10.1017/S1358246100005130
10.1109/5.726791
10.25300/MISQ/2014/38.1.04
10.1016/j.inffus.2019.12.012
10.1109/TPAMI.2012.120
10.1089/big.2017.0074
10.1023/B:VISI.0000022288.19776.77
10.1038/nature21056
10.1109/ACCESS.2018.2870052
10.1038/nature14539
10.1038/s41467-019-08987-4
10.1371/journal.pone.0130140
10.1109/TEVC.2019.2890858
10.1109/78.80892
10.1109/CVPR.2018.00474
10.1145/3351095.3372830
10.1109/RE.2018.00-21
10.1145/2939672.2939778
10.24963/ijcai.2019/876
10.3127/ajis.v22i0.1538
10.1007/978-3-319-99740-7_21
10.2139/ssrn.3064761
10.1016/j.artint.2018.07.007
10.1109/CVPR.2001.990497
10.1109/ICCV.2017.74
10.1609/aaai.v34i03.5643
10.1007/978-3-319-10590-1_53
10.1007/978-3-030-28954-6_1
10.1007/978-3-540-88693-8_52
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10044-021-01055-y
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 335
ExternalDocumentID 10_1007_s10044_021_01055_y
GrantInformation_xml – fundername: AXA Research Fund
  funderid: http://dx.doi.org/10.13039/501100001961
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-7c681505239b068d48c29b0dd57fba249f9214d41387bb7ca23197d12c2dacea3
IEDL.DBID C6C
ISSN 1433-7541
IngestDate Mon Jul 14 10:45:33 EDT 2025
Tue Jul 01 01:15:17 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Fri Feb 21 02:45:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Explainable artificial intelligence
Counterfactual explanation
Search algorithms
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-7c681505239b068d48c29b0dd57fba249f9214d41387bb7ca23197d12c2dacea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s10044-021-01055-y
PQID 2656830293
PQPubID 2043691
PageCount 21
ParticipantIDs proquest_journals_2656830293
crossref_primary_10_1007_s10044_021_01055_y
crossref_citationtrail_10_1007_s10044_021_01055_y
springer_journals_10_1007_s10044_021_01055_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Chen, Fraiberger, Moakler, Provost (CR12) 2017; 5
CR39
CR38
CR36
LeCun, Bengio, Hinton (CR33) 2015; 521
CR34
CR30
Adadi, Berrada (CR2) 2018; 6
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (CR1) 2012; 34
CR4
CR3
CR8
CR7
CR9
CR49
CR48
CR46
CR45
CR44
CR43
CR42
CR41
CR40
Wachter, Mittelstadt, Russell (CR51) 2017; 31
Felzenszwalb, Huttenlocher (CR18) 2004; 59
Haddad, Akansu (CR25) 1991; 39
Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller (CR31) 2019; 10
CR19
LeCun, Bottou, Bengio, Haffner (CR32) 1998; 86
CR16
CR15
Martens, Provost (CR37) 2014; 38
CR13
Bach, Binder, Montavon, Klauschen, Müller, Samek (CR6) 2015; 10
CR11
CR10
CR53
CR52
CR50
Lipton (CR35) 1990; 27
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (CR17) 2017; 542
CR29
CR28
CR27
CR26
CR24
CR23
CR22
CR21
CR20
de Oliveira, Martens (CR14) 2021
Su, Vargas, Sakurai (CR47) 2019; 23
Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, García, Gil-López, Molina, Benjamins (CR5) 2020; 58
Y LeCun (1055_CR32) 1998; 86
D Chen (1055_CR12) 2017; 5
J Su (1055_CR47) 2019; 23
1055_CR30
1055_CR39
1055_CR38
1055_CR36
1055_CR34
1055_CR7
1055_CR8
1055_CR9
AB Arrieta (1055_CR5) 2020; 58
1055_CR3
1055_CR44
1055_CR4
1055_CR43
1055_CR42
1055_CR41
1055_CR40
A Adadi (1055_CR2) 2018; 6
1055_CR49
1055_CR48
S Wachter (1055_CR51) 2017; 31
S Lapuschkin (1055_CR31) 2019; 10
1055_CR46
1055_CR45
Y LeCun (1055_CR33) 2015; 521
PF Felzenszwalb (1055_CR18) 2004; 59
1055_CR11
1055_CR10
1055_CR53
1055_CR52
1055_CR50
D Martens (1055_CR37) 2014; 38
1055_CR19
1055_CR16
1055_CR15
1055_CR13
R Achanta (1055_CR1) 2012; 34
RMB de Oliveira (1055_CR14) 2021
S Bach (1055_CR6) 2015; 10
RA Haddad (1055_CR25) 1991; 39
1055_CR22
1055_CR21
1055_CR20
A Esteva (1055_CR17) 2017; 542
P Lipton (1055_CR35) 1990; 27
1055_CR29
1055_CR28
1055_CR27
1055_CR26
1055_CR24
1055_CR23
References_xml – ident: CR45
– ident: CR22
– year: 2021
  ident: CR14
  article-title: A framework and benchmarking study for counterfactual generating methods on tabular data
  publication-title: Appl Sci
  doi: 10.3390/app11167274
– ident: CR49
– volume: 27
  start-page: 247
  year: 1990
  end-page: 266
  ident: CR35
  article-title: Contrastive explanation
  publication-title: R Inst Philos Suppl
  doi: 10.1017/S1358246100005130
– ident: CR4
– ident: CR39
– ident: CR16
– ident: CR29
– ident: CR8
– ident: CR42
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: CR32
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 38
  start-page: 73
  issue: 1
  year: 2014
  end-page: 99
  ident: CR37
  article-title: Explaining data-driven document classifications
  publication-title: MIS Q
  doi: 10.25300/MISQ/2014/38.1.04
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  ident: CR5
  article-title: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.12.012
– ident: CR21
– ident: CR46
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  end-page: 2282
  ident: CR1
  article-title: Slic superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.120
– ident: CR19
– ident: CR15
– ident: CR50
– volume: 5
  start-page: 197
  issue: 3
  year: 2017
  end-page: 212
  ident: CR12
  article-title: Enhancing transparency and control when drawing data-driven inferences about individuals
  publication-title: Big Data
  doi: 10.1089/big.2017.0074
– ident: CR11
– ident: CR9
– ident: CR36
– volume: 59
  start-page: 167
  issue: 2
  year: 2004
  end-page: 181
  ident: CR18
  article-title: Efficient graph-based image segmentation
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000022288.19776.77
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  end-page: 118
  ident: CR17
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 6
  start-page: 52138
  year: 2018
  end-page: 52160
  ident: CR2
  article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– ident: CR26
– ident: CR43
– ident: CR53
– ident: CR30
– ident: CR10
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR33
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 31
  start-page: 841
  year: 2017
  ident: CR51
  article-title: Counterfactual explanations without opening the black box: automated decisions and the GPDR
  publication-title: Harv. JL & Tech
– ident: CR40
– ident: CR27
– ident: CR23
– volume: 10
  start-page: 1096
  issue: 1
  year: 2019
  ident: CR31
  article-title: Unmasking clever Hans predictors and assessing what machines really learn
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08987-4
– ident: CR44
– ident: CR48
– volume: 10
  start-page: e0130140
  issue: 7
  year: 2015
  ident: CR6
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0130140
– ident: CR3
– ident: CR38
– ident: CR52
– volume: 23
  start-page: 828
  issue: 5
  year: 2019
  end-page: 841
  ident: CR47
  article-title: One pixel attack for fooling deep neural networks
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2890858
– ident: CR13
– ident: CR34
– volume: 39
  start-page: 723
  issue: 3
  year: 1991
  end-page: 727
  ident: CR25
  article-title: A class of fast Gaussian binomial filters for speech and image processing
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.80892
– ident: CR7
– ident: CR28
– ident: CR41
– ident: CR24
– ident: CR20
– volume: 58
  start-page: 82
  year: 2020
  ident: 1055_CR5
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.12.012
– ident: 1055_CR9
– volume: 27
  start-page: 247
  year: 1990
  ident: 1055_CR35
  publication-title: R Inst Philos Suppl
  doi: 10.1017/S1358246100005130
– ident: 1055_CR43
  doi: 10.1109/CVPR.2018.00474
– ident: 1055_CR7
  doi: 10.1145/3351095.3372830
– ident: 1055_CR13
  doi: 10.1109/RE.2018.00-21
– ident: 1055_CR41
  doi: 10.1145/2939672.2939778
– ident: 1055_CR36
– ident: 1055_CR10
  doi: 10.24963/ijcai.2019/876
– ident: 1055_CR23
– volume: 23
  start-page: 828
  issue: 5
  year: 2019
  ident: 1055_CR47
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2890858
– ident: 1055_CR27
– ident: 1055_CR29
– ident: 1055_CR46
– ident: 1055_CR20
  doi: 10.3127/ajis.v22i0.1538
– ident: 1055_CR21
  doi: 10.1007/978-3-319-99740-7_21
– volume: 10
  start-page: e0130140
  issue: 7
  year: 2015
  ident: 1055_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0130140
– ident: 1055_CR16
  doi: 10.2139/ssrn.3064761
– year: 2021
  ident: 1055_CR14
  publication-title: Appl Sci
  doi: 10.3390/app11167274
– volume: 39
  start-page: 723
  issue: 3
  year: 1991
  ident: 1055_CR25
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.80892
– ident: 1055_CR38
  doi: 10.1016/j.artint.2018.07.007
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 1055_CR1
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.120
– ident: 1055_CR19
– ident: 1055_CR8
  doi: 10.1109/CVPR.2001.990497
– volume: 38
  start-page: 73
  issue: 1
  year: 2014
  ident: 1055_CR37
  publication-title: MIS Q
  doi: 10.25300/MISQ/2014/38.1.04
– volume: 6
  start-page: 52138
  year: 2018
  ident: 1055_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– ident: 1055_CR44
  doi: 10.1109/ICCV.2017.74
– ident: 1055_CR22
– ident: 1055_CR26
– ident: 1055_CR3
  doi: 10.1609/aaai.v34i03.5643
– ident: 1055_CR30
– volume: 10
  start-page: 1096
  issue: 1
  year: 2019
  ident: 1055_CR31
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08987-4
– ident: 1055_CR52
  doi: 10.1007/978-3-319-10590-1_53
– volume: 31
  start-page: 841
  year: 2017
  ident: 1055_CR51
  publication-title: Harv. JL & Tech
– volume: 5
  start-page: 197
  issue: 3
  year: 2017
  ident: 1055_CR12
  publication-title: Big Data
  doi: 10.1089/big.2017.0074
– ident: 1055_CR11
– ident: 1055_CR34
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 1055_CR17
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 59
  start-page: 167
  issue: 2
  year: 2004
  ident: 1055_CR18
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: 1055_CR53
– ident: 1055_CR15
– ident: 1055_CR40
– ident: 1055_CR4
– ident: 1055_CR48
– ident: 1055_CR42
  doi: 10.1007/978-3-030-28954-6_1
– ident: 1055_CR39
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 1055_CR32
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– ident: 1055_CR50
  doi: 10.1007/978-3-540-88693-8_52
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 1055_CR33
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 1055_CR24
– ident: 1055_CR49
– ident: 1055_CR28
– ident: 1055_CR45
SSID ssj0033328
Score 2.5429692
Snippet The complexity of state-of-the-art modeling techniques for image classification impedes the ability to explain model predictions in an interpretable way. A...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 315
SubjectTerms Classification
Computer Science
Image classification
Literature reviews
Pattern Recognition
Prediction models
Theoretical Advances
Training
Title Explainable image classification with evidence counterfactual
URI https://link.springer.com/article/10.1007/s10044-021-01055-y
https://www.proquest.com/docview/2656830293
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20vXjxW6zWkoM3DTQfu9k9ltJaFD1ZqKclm2RB0Cq2PfTfm0mzFosKXpYlyeYw2WReknnzAC6VEVWV5AnVmU2prJimmlWc5sa350JlLEGi8P1DOhrL20kyiWlykAuzcX-PFLeulBQDCYKWI11uQzNhQqFMQz_t16uuECLoqHr3L6hKJIsEmZ_7-O6E1shy4zI0-JjhPuxGcEh6q9E8gC03PYS9CBRJnIYzX1RrMdRlRxCC6SITijy_-lWCGATGGAkUjE_wxJW4KCJKgkaE-0Bew0K_HMN4OHjsj2iURqBGpGJOlUm9FfFINy-7aWZlZrh_szZRVan9lqrKOZPWe6hMlaUy2sO4XFnGDbfaOC1OoDF9m7pTIM7vMGRS5SJzHk05UVpEMbLsMq2R2NsCVtuqMDFvOMpXvBTrjMdo38Lbtwj2LZYtuPr65n2VNePP1u16CIo4g2YF90ATc5PlogXX9bCsq3_v7ex_zc9hhyOjIcQwtqEx_1i4C48z5mUHmr2bp7tBJ_xo_jnmvU-Amsnd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhEJ5oPejFt7FadQ_elKQ8dtk9NsamattTm_RGWGATk1pNH4f-e4GCVaMm3jYscJjh8QHzzQdwzRWtqrRIkcx1hliFJZK4IqhQtj6hPMepIwr3-llnyB5H6SiQwmYx2j0-SfqV-hPZrckYciEFXtURLTdhy4KB3I3lIWnF9ZdS6hVVLRCgiKcMB6rMz3183Y7WGPPbs6jfbdr7sBtgYtJa-fUANszkEPYCZEzChJzZoqjKEMuOwIfVBU5U8vxi14tEOYjsYoK8GxJ395qYICeaeLUIM3UMh4UcH8OwfT-466AgkoAUzegccZVZe7rL3aJsZrlmuSL2S-uUV6W0h6uqIJhpu1flvCy5khbQFVxjooiWykh6ArXJ68ScQmLsWYOlVUFzY3GVoaV2eIaVTSylo_jWAUdbCRUyiDshi7FY5z529hXWvsLbVyzrcPPR5m2VP-PP2o3oAhHm0kwQCzldlrKC1uE2umX9-_fezv5X_Qq2O4NeV3Qf-k_nsEMcz8FHNjagNp8uzIVFH_Py0g-2d30Sznc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_Cmweaxm92jVEt9FQ8WegvZPECotbTbQ_-9SZq1VVTwtmSzOcxskm-S-eYD4Jwram2SJ0hmOkXMYokktgTlyvUnlGc48UThp27a6bH7ftJfYvGHbPfqSnLOafBVmobl1UjbqyXiW5Mx5NMLgsIjmq2CNRepYB9-tdJWtRZTSoO6qgMFFPGE4Uib-XmMr1vTAm9-uyINO097G2xGyAiv5z7eAStmuAu2InyEcXJOXFOl0FC17YGQYhf5UfD1za0dUHm47PODgkugP4eFJkqLwqAcYcae7TCVg33Qa9--tDooCiYgRVNaIq5SZ1t_0JsXzTTTLFPEPWmdcFtIF2jZnGCm3b6V8aLgSjpwl3ONiSJaKiPpAagN34fmEEDj4g6W2JxmxmEsQwvtsQ0rmlhKT_etA1zZSqhYTdyLWgzEog6yt69w9hXBvmJWBxef34zmtTT-7N2oXCDivJoI4uCnr1iW0zq4rNyyeP37aEf_634G1p9v2uLxrvtwDDaIpzyEJMcGqJXjqTlxQKQsTsO_9gGcddKd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+image+classification+with+evidence+counterfactual&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Vermeire%2C+Tom&rft.au=Brughmans%2C+Dieter&rft.au=Goethals%2C+Sofie&rft.au=de+Oliveira%2C+Raphael+Mazzine+Barbossa&rft.date=2022-05-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=25&rft.issue=2&rft.spage=315&rft.epage=335&rft_id=info:doi/10.1007%2Fs10044-021-01055-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_021_01055_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon