Evaluation of the support vector regression (SVR) and the random forest (RF) models accuracy for streamflow prediction under a data-scarce basin in Morocco
Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating M...
Saved in:
Published in | Discover applied sciences Vol. 6; no. 6; p. 306 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
03.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 3004-9261 2523-3963 3004-9261 2523-3971 |
DOI | 10.1007/s42452-024-05994-z |
Cover
Loading…
Abstract | Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating Machine Learning techniques, namely support vector regression (SVR) and Random Forest (RF) against the multiple linear regression (MLR) for daily streamflow forecasting in the mountainous sub-basin of Rheraya between 2003 and 2016. The results show that SVR performed best, followed by RF and MLR. In measurable terms and regarding mean performance, SVR exhibited the higher Nash–Sutcliffe efficiency score (NSE = 0.59) and a lower root mean squared error (RMSE = 1.18
m
3
s
-
1
) compared to RF (NSE = 0.53, RMSE = 1.18
m
3
s
-
1
) and MLR (NSE = 0.54, RMSE = 1.01
m
3
s
-
1
). Furthermore,the available time series was too short to properly capture the full range of streamflow variability, which reduced the prediction performance outside of the calibration conditions. These findings suggest that ML algorithms, particularly SVR, can provide accurate streamflow estimation useful for water resources management when trained on a representative period. The results highlight the capacity of Machine Learning algorithms, specifically SVR, to augment streamflow prediction for enhanced water resource management in arid regions. |
---|---|
AbstractList | Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating Machine Learning techniques, namely support vector regression (SVR) and Random Forest (RF) against the multiple linear regression (MLR) for daily streamflow forecasting in the mountainous sub-basin of Rheraya between 2003 and 2016. The results show that SVR performed best, followed by RF and MLR. In measurable terms and regarding mean performance, SVR exhibited the higher Nash–Sutcliffe efficiency score (NSE = 0.59) and a lower root mean squared error (RMSE = 1.18 m3s-1) compared to RF (NSE = 0.53, RMSE = 1.18 m3s-1) and MLR (NSE = 0.54, RMSE = 1.01 m3s-1). Furthermore,the available time series was too short to properly capture the full range of streamflow variability, which reduced the prediction performance outside of the calibration conditions. These findings suggest that ML algorithms, particularly SVR, can provide accurate streamflow estimation useful for water resources management when trained on a representative period. The results highlight the capacity of Machine Learning algorithms, specifically SVR, to augment streamflow prediction for enhanced water resource management in arid regions. Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating Machine Learning techniques, namely support vector regression (SVR) and Random Forest (RF) against the multiple linear regression (MLR) for daily streamflow forecasting in the mountainous sub-basin of Rheraya between 2003 and 2016. The results show that SVR performed best, followed by RF and MLR. In measurable terms and regarding mean performance, SVR exhibited the higher Nash–Sutcliffe efficiency score (NSE = 0.59) and a lower root mean squared error (RMSE = 1.18 $$\text {m}^3\,\text {s}^{-1}$$ m 3 s - 1 ) compared to RF (NSE = 0.53, RMSE = 1.18 $$\text {m}^3\,\text {s}^{-1}$$ m 3 s - 1 ) and MLR (NSE = 0.54, RMSE = 1.01 $$\text {m}^3\,\text {s}^{-1}$$ m 3 s - 1 ). Furthermore,the available time series was too short to properly capture the full range of streamflow variability, which reduced the prediction performance outside of the calibration conditions. These findings suggest that ML algorithms, particularly SVR, can provide accurate streamflow estimation useful for water resources management when trained on a representative period. The results highlight the capacity of Machine Learning algorithms, specifically SVR, to augment streamflow prediction for enhanced water resource management in arid regions. Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating Machine Learning techniques, namely support vector regression (SVR) and Random Forest (RF) against the multiple linear regression (MLR) for daily streamflow forecasting in the mountainous sub-basin of Rheraya between 2003 and 2016. The results show that SVR performed best, followed by RF and MLR. In measurable terms and regarding mean performance, SVR exhibited the higher Nash–Sutcliffe efficiency score (NSE = 0.59) and a lower root mean squared error (RMSE = 1.18 m 3 s - 1 ) compared to RF (NSE = 0.53, RMSE = 1.18 m 3 s - 1 ) and MLR (NSE = 0.54, RMSE = 1.01 m 3 s - 1 ). Furthermore,the available time series was too short to properly capture the full range of streamflow variability, which reduced the prediction performance outside of the calibration conditions. These findings suggest that ML algorithms, particularly SVR, can provide accurate streamflow estimation useful for water resources management when trained on a representative period. The results highlight the capacity of Machine Learning algorithms, specifically SVR, to augment streamflow prediction for enhanced water resource management in arid regions. |
ArticleNumber | 306 |
Author | Boudhar, Abdelghani Kinnard, Christophe Nifa, Karima Chehbouni, Abdelghani Bouamri, Hafsa Bargam, Bouchra |
Author_xml | – sequence: 1 givenname: Bouchra surname: Bargam fullname: Bargam, Bouchra email: bouchra.bargam@gmail.com organization: Center for Remote Sensing Applications, Mohammed VI Polytechnique University – sequence: 2 givenname: Abdelghani surname: Boudhar fullname: Boudhar, Abdelghani organization: Center for Remote Sensing Applications, Mohammed VI Polytechnique University, Data4Earth Laboratory, Sultan Moulay Slimane University – sequence: 3 givenname: Christophe surname: Kinnard fullname: Kinnard, Christophe organization: Département des Sciences de l’Environnement, Centre de Recherche sur les Interactions Bassins Versants - Écosystèmes Aquatiques (RIVE), Université du Québec à Trois-Rivières – sequence: 4 givenname: Hafsa surname: Bouamri fullname: Bouamri, Hafsa organization: International Water Research Institute (IWRI), Mohammed VI Polytechnique University – sequence: 5 givenname: Karima surname: Nifa fullname: Nifa, Karima organization: Data4Earth Laboratory, Sultan Moulay Slimane University – sequence: 6 givenname: Abdelghani surname: Chehbouni fullname: Chehbouni, Abdelghani organization: Center for Remote Sensing Applications, Mohammed VI Polytechnique University |
BookMark | eNp9kctKJDEUhsOgMN5ewFXATbuomdyqUllKo6PgMOBtG1KpREuqK-VJyqH7VXxZ090DIy6EQA45_3f-JP8-2hnC4BA6puQHJUT-jIKJkhWEiYKUSoli9Q3tcUJEoVhFdz7U39FRjM-EEM6JlKXaQ2_nr6afTOrCgIPH6cnhOI1jgIRfnU0BMLhHcDGuBbPbh5tTbIZ2o4NchAX2IbcTnt1cnOJFaF0fsbF2AmOX6x6OCZxZ-D78xSO4trMbr2loHWCDW5NMEa0B63BjYjfgvH4HCNaGQ7TrTR_d0b_9AN1fnN_NL4vrP7-u5mfXheUVT4VULaltbQVzNWWiLb1tiC3bumHe1YR6L5qSU9MoLploZD6rqFSNcpTWpqr5ATrZzh0hvEz5Mfo5TDBkS81JxRVXksusYluVhRAjOK9H6BYGlpoSvc5Bb3PQOQe9yUGvMlR_gmyXNr-dwHT91yjfojH7DI8O_t_qC-odremhLQ |
CitedBy_id | crossref_primary_10_1016_j_ipha_2024_11_002 crossref_primary_10_1007_s11269_024_04029_x crossref_primary_10_1007_s11269_024_04067_5 crossref_primary_10_1016_j_ejrh_2025_102249 crossref_primary_10_1016_j_trgeo_2025_101537 |
Cites_doi | 10.1007/s12040-022-01815-2 10.1016/j.jhydrol.2015.10.038 10.1016/j.agee.2012.04.021 10.1016/j.scs.2020.102562 10.1016/j.jhydrol.2018.07.004 10.3354/cr01409 10.5194/adgeo-45-201-2018 10.1016/j.mcm.2004.10.012 10.1007/s41748-020-00169-3 10.1080/02626667.2018.1469756 10.1029/2006WR005653 10.3389/feart.2021.640250 10.1016/j.jhydrol.2021.127255 10.1080/15230430.2022.2046897 10.3390/w14223636 10.1016/j.jhydrol.2013.11.054 10.1016/j.jhydrol.2021.126046 10.1186/s12859-016-1228-x 10.1016/j.jhydrol.2020.125275 10.1007/s13762-014-0613-0 10.1016/j.jhydrol.2021.126055 10.1080/01621459.1975.10479865 10.1080/01431161.2015.1093198 10.1016/j.compeleceng.2013.11.024 10.1038/ngeo2096 10.1016/j.jhydrol.2020.125321 10.1016/j.jhydrol.2014.01.062 10.1007/978-981-16-8550-7 10.1016/j.ejrh.2022.101101 10.5194/essd-9-765-2017 10.3390/atmos7060084 10.1080/02626667.2018.1520391 10.3390/w11010093 10.1007/s00500-022-07029-4 10.1051/lhb/2018032 10.1016/j.rse.2015.01.002 10.1016/j.ins.2021.02.011 10.1002/hyp.7136 10.1109/JSTARS.2020.3026724 10.3390/w14111828 10.1016/j.jhydrol.2003.12.033 10.1016/j.jhydrol.2021.126530 10.1016/j.jhydrol.2005.06.001 10.1007/s11269-022-03339-2 10.1016/j.jhydrol.2018.11.015 10.1007/s00704-016-1873-z 10.1016/j.jhydrol.2010.01.021 10.1016/j.scs.2022.104277 10.1016/j.jhydrol.2019.124422 10.1109/64.163674 10.1007/s11269-017-1660-3 10.1007/s12517-019-4300-9 10.1029/2001wr000795 10.55493/5003.v13i1.4719 10.1002/hyp.6775 10.1016/j.compstruct.2022.115184 10.1016/j.eswa.2011.04.114 10.1016/j.neucom.2012.07.017 10.1016/j.jhydrol.2022.128431 10.1016/j.jhydrol.2019.124293 10.1016/j.catena.2019.104216 10.1016/j.pce.2010.07.021 10.1061/(asce)0887-3801(2001)15:3(208) 10.1016/j.jhydrol.2023.129480 10.1080/01431161.2013.788261 10.1111/j.2517-6161.1974.tb00994.x 10.1623/hysj.54.6.1094 10.1016/j.jhydrol.2004.03.027 10.18488/13.v12i2.3584 10.3390/w11040709 10.1016/j.jhydrol.2011.02.021 10.1080/02626667.2015.1055271 10.1016/j.jhydrol.2016.09.035 10.1080/02626667.2017.1283042 10.3390/w15020262 10.13140/2.1.4847.4569 10.1007/s11431-009-0354-3 10.1016/j.procs.2017.03.081 10.1007/978-3-031-04855-5 10.1016/j.egypro.2015.07.832 10.1061/41173(414)122 10.13031/2013.23153 10.2307/1267500 10.1007/978-3-030-62008-0_35 10.1016/j.jhydrol.2014.03.057 10.1007/978-3-030-21166-0_9 10.1007/s12517-021-06493-w/Published 10.1080/02626667.2012.714468 10.1007/978-981-99-3577-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
DOI | 10.1007/s42452-024-05994-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 3004-9261 2523-3971 |
ExternalDocumentID | 10_1007_s42452_024_05994_z |
GeographicLocations | Morocco Atlas Mountains |
GeographicLocations_xml | – name: Morocco – name: Atlas Mountains |
GrantInformation_xml | – fundername: MorSnowproject, CRSA, Mohammed VI Polytechnic University (UM6P) and the research program (GEANTech), Morocco |
GroupedDBID | AAJSJ ABEEZ ADMLS ALMA_UNASSIGNED_HOLDINGS BGNMA C6C GROUPED_DOAJ M4Y NU0 RSV SOJ AASML AAYXX CITATION M~E 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU D1I DWQXO EBLON EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR |
ID | FETCH-LOGICAL-c363t-79d08c8c42e8124d5fcb0c5d8b2fe801ff4b531ab93724b7e806179b9e118a683 |
IEDL.DBID | C6C |
ISSN | 3004-9261 2523-3963 |
IngestDate | Wed Aug 13 10:41:44 EDT 2025 Tue Jul 01 01:11:54 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Fri Feb 21 02:42:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Streamflow prediction Machine learning techniques Support vector regression (SVR) Temporal variability of streamflow Semi-arid regions Water resources |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-79d08c8c42e8124d5fcb0c5d8b2fe801ff4b531ab93724b7e806179b9e118a683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s42452-024-05994-z |
PQID | 3063939737 |
PQPubID | 5758472 |
ParticipantIDs | proquest_journals_3063939737 crossref_primary_10_1007_s42452_024_05994_z crossref_citationtrail_10_1007_s42452_024_05994_z springer_journals_10_1007_s42452_024_05994_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-03 |
PublicationDateYYYYMMDD | 2024-06-03 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | Discover applied sciences |
PublicationTitleAbbrev | Discov Appl Sci |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Ghorbanpour, Hessels, Moghim, Afshar (CR54) 2021; 596 CR38 Huang, Boutros (CR59) 2016; 17 Guan, Li, Chapman, Deng, Ji, Yang (CR60) 2013; 34 Geisser (CR66) 1975; 70 Bell, Hughes, Fletcher, Cornelissen, Rhoujjati, Hanich, Braithwaite (CR42) 2022; 54 Rezaie-Balf, Nowbandegani, Samadi, Fallah, Alaghmand (CR83) 2019 Sahoo, Ghose (CR75) 2022; 26 Zhenghao, Zhang, Singh (CR80) 2018; 63 Boudhar, Hanich, Boulet, Berjamy, Chehbouni (CR3) 2009 CR47 Mutlu, Chaubey, Hexmoor, Bajwa (CR29) 2008; 22 Morote, Olcina, Hernández (CR100) 2019 CR40 Chen, Yu, Tang (CR48) 2010; 385 Bouamri, Boudhar, Gascoin, Kinnard (CR45) 2018; 63 Zamrane, Turki, Laignel, Mahé, Laftouhi (CR14) 2016 Hsu, Gupta, Gao, Sorooshian, Imam (CR27) 2002; 38 Jarlan, Khabba, Er-Raki, Page, Hanich, Fakir, Merlin, Mangiarotti, Gascoin, Ezzahar, Kharrou, Berjamy, Saaïdi, Boudhar, Benkaddour, Laftouhi, Abaoui, Tavernier, Boulet, Simonneaux, Driouech, Adnani, Fazziki, Amenzou, Raibi, Mandour, Ibouh, Dantec, Habets, Tramblay, Mougenot, Leblanc, Faïz, Drapeau, Coudert, Hagolle, Filali, Belaqziz, Marchane, Szczypta, Toumi, Diarra, Aouade, Hajhouji, Nassah, Bigeard, Chirouze, Boukhari, Abourida, Richard, Fanise, Kasbani, Chakir, Zribi, Marah, Naimi, Mokssit, Kerr, Escadafal (CR43) 2015; 36 Naghibi, Ahmadi, Daneshi (CR58) 2017; 31 Mehr, Gandomi (CR41) 2021; 561 Sadio, Faye (CR11) 2023; 12 Fniguire, Laftouhi, Saidi, Zamrane, Himer, Khalil (CR5) 2017; 130 Niu, Feng (CR22) 2021; 64 Akbarian, Saghafian, Golian (CR89) 2023; 620 Granata, Nunno, Marinis (CR88) 2022; 613 CR57 Oborie, Rowland (CR39) 2023; 13 Liu, Liu, Feng (CR56) 2022; 284 Riad, Mania, Bouchaou, Najjar (CR93) 2004; 40 Chandrashekar, Sahin (CR63) 2014; 40 Sheykhmousa, Mahdianpari, Ghanbari, Mohammadimanesh, Ghamisi, Homayouni (CR61) 2020; 13 Marchane, Jarlan, Hanich, Boudhar, Gascoin, Tavernier, Filali, Page, Hagolle, Berjamy (CR4) 2015; 160 Vapnik (CR32) 1995; 7 Zemzami, Benaabidate (CR19) 2016; 61 Riggs, Hall, Román (CR46) 2017; 9 Kumar, Ramsankaran, Brocca, Muñoz-Arriola (CR55) 2021 Stone (CR65) 1974; 36 Chaponnière, Boulet, Chehbouni, Aresmouk (CR9) 2008; 22 Papacharalampous, Tyralis (CR71) 2018; 45 Li, Wang, Lai, Zhang (CR72) 2019; 183 Nachappa, Piralilou, Gholamnia, Ghorbanzadeh, Rahmati, Blaschke (CR53) 2020; 590 CR69 Schilling, Freier, Hertig, Scheffran (CR97) 2012; 156 Guo, Zhou, Qin, Zou, Li (CR85) 2011; 38 Yaseen, El-shafie, Jaafar, Afan, Sayl (CR25) 2015; 530 CR64 Fang, Zhou, Jia, Gu, Xu (CR79) 2023; 88 Bouamri, Kinnard, Boudhar, Gascoin, Hanich, Chehbouni (CR44) 2021; 9 Noori, Karbassi, Moghaddamnia, Han, Zokaei-Ashtiani, Farokhnia, Gousheh (CR35) 2011; 401 Sahour, Gholami, Vazifedan (CR62) 2020; 591 Zhao, Pang, Xu, Xu (CR49) 2020; 581 Ouatiki, Boudhar, Ouhinou, Arioua, Hssaisoune, Bouamri, Benabdelouahab (CR96) 2019 Nifa, Boudhar, Ouatiki, Elyoussfi, Bargam, Chehbouni (CR24) 2023 CR77 CR73 Sudheer, Anand, Panigrahi, Mathur (CR36) 2013; 101 Marchane, Tramblay, Hanich, Ruelland, Jarlan (CR8) 2017; 62 CR70 Hanich, Chehbouni, Gascoin, Boudhar, Jarlan, Tramblay, Boulet, Marchane, Baba, Kinnard, Simonneaux, Fakir, Bouchaou, Leblanc, Page, Bouamri, Er-Raki, Khabba (CR68) 2022; 42 CR6 Yu, Wang, Wu, Chen, Wang, Qin (CR52) 2020; 582 Zhou, Cui, Lin, Sheng, Chen, Guo, Xu (CR17) 2022; 604 Asefa, Kemblowski, McKee, Khalil (CR34) 2006; 318 CR86 CR84 Driouech, ElRhaz, Moufouma-Okia, Arjdal, Balhane (CR7) 2020; 4 Liu, Zhang, Zhang, Xiong, Liu, Chen, Yin (CR50) 2021; 600 Dibike, Velickov, Solomatine, Abbott (CR33) 2001; 15 Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-Shafie (CR74) 2016; 542 Tofiq, Latif, Ahmed, Kumar, El-Shafie (CR82) 2022; 36 Chiang, Chang, Chang (CR26) 2004; 290 Hajhouji, Simonneaux, Gascoin, Fakir, Richard, Chehbouni, Boudhar (CR13) 2018; 6368 Sahoo, Samantaray, Ghose (CR76) 2022 Sun, Zhang, Peng, Zhang, Zhou, Zhang (CR81) 2022; 14 CR18 CR16 CR15 CR12 Muhammad, Yuan, Kisi, Yuan (CR21) 2017; 29 CR99 CR10 CR98 Moradkhani, Hsu, Gupta, Sorooshian (CR28) 2004; 295 CR94 Marchane, Jarlan, Boudhar, Tramblay, Hanich (CR95) 2016; 69 CR92 CR91 CR90 Huang, Chang, Huang, Chen (CR87) 2014; 511 Mehr, Kahya, Sahin, Nazemosadat (CR31) 2015; 12 Dettinger (CR2) 2014; 7 Tongal, Booij (CR67) 2018; 564 He, Wen, Liu, Du (CR37) 2014; 509 Viviroli, Dürr, Messerli, Meybeck, Weingartner (CR1) 2007 Chakravarthy, Flores-Fuentes, Bhateja, Biswal (CR23) 2022; 1 CR20 Kagoda, Ndiritu, Ntuli, Mwaka (CR30) 2010; 35 Mehraein, Mohanavelu, Naganna, Kulls, Kisi (CR78) 2022 Meng, Huang, Huang, Fang, Wu, Wang (CR51) 2019; 568 H Bouamri (5994_CR45) 2018; 63 L Hanich (5994_CR68) 2022; 42 H Bouamri (5994_CR44) 2021; 9 A Marchane (5994_CR95) 2016; 69 5994_CR6 5994_CR40 ZM Yaseen (5994_CR74) 2016; 542 J Guo (5994_CR85) 2011; 38 5994_CR47 K Nifa (5994_CR24) 2023 A Boudhar (5994_CR3) 2009 Z Zamrane (5994_CR14) 2016 G Chandrashekar (5994_CR63) 2014; 40 5994_CR38 F Granata (5994_CR88) 2022; 613 J Schilling (5994_CR97) 2012; 156 W Niu (5994_CR22) 2021; 64 F Morote (5994_CR100) 2019 Y Zhou (5994_CR17) 2022; 604 H Sahour (5994_CR62) 2020; 591 A Marchane (5994_CR8) 2017; 62 BA Bell (5994_CR42) 2022; 54 5994_CR64 S Riad (5994_CR93) 2004; 40 E Mutlu (5994_CR29) 2008; 22 YB Dibike (5994_CR33) 2001; 15 D Viviroli (5994_CR1) 2007 X Liu (5994_CR56) 2022; 284 5994_CR69 CAAS Sadio (5994_CR11) 2023; 12 KL Hsu (5994_CR27) 2002; 38 ZM Yaseen (5994_CR25) 2015; 530 D Liu (5994_CR50) 2021; 600 X Yu (5994_CR52) 2020; 582 L Jarlan (5994_CR43) 2015; 36 Y Hajhouji (5994_CR13) 2018; 6368 H Moradkhani (5994_CR28) 2004; 295 M Sheykhmousa (5994_CR61) 2020; 13 PA Kagoda (5994_CR30) 2010; 35 5994_CR57 YM Tofiq (5994_CR82) 2022; 36 N Sun (5994_CR81) 2022; 14 H Ouatiki (5994_CR96) 2019 A Marchane (5994_CR4) 2015; 160 M Stone (5994_CR65) 1974; 36 G Zhao (5994_CR49) 2020; 581 A Kumar (5994_CR55) 2021 5994_CR86 5994_CR84 E Oborie (5994_CR39) 2023; 13 YM Chiang (5994_CR26) 2004; 290 F Driouech (5994_CR7) 2020; 4 R Noori (5994_CR35) 2011; 401 H Tongal (5994_CR67) 2018; 564 A Sahoo (5994_CR76) 2022 R Muhammad (5994_CR21) 2017; 29 5994_CR77 M Dettinger (5994_CR2) 2014; 7 5994_CR73 TG Nachappa (5994_CR53) 2020; 590 M Akbarian (5994_CR89) 2023; 620 5994_CR70 C Sudheer (5994_CR36) 2013; 101 M Mehraein (5994_CR78) 2022 GA Riggs (5994_CR46) 2017; 9 GA Papacharalampous (5994_CR71) 2018; 45 F Fniguire (5994_CR5) 2017; 130 A Chaponnière (5994_CR9) 2008; 22 Z He (5994_CR37) 2014; 509 A Sahoo (5994_CR75) 2022; 26 5994_CR20 AD Mehr (5994_CR31) 2015; 12 ST Chen (5994_CR48) 2010; 385 AD Mehr (5994_CR41) 2021; 561 VVSSS Chakravarthy (5994_CR23) 2022; 1 BFF Huang (5994_CR59) 2016; 17 M Rezaie-Balf (5994_CR83) 2019 S Huang (5994_CR87) 2014; 511 5994_CR91 5994_CR90 Z Zhenghao (5994_CR80) 2018; 63 5994_CR99 5994_CR10 5994_CR98 T Asefa (5994_CR34) 2006; 318 E Meng (5994_CR51) 2019; 568 5994_CR94 SA Naghibi (5994_CR58) 2017; 31 5994_CR92 5994_CR18 H Guan (5994_CR60) 2013; 34 S Geisser (5994_CR66) 1975; 70 5994_CR16 5994_CR15 M Zemzami (5994_CR19) 2016; 61 J Li (5994_CR72) 2019; 183 V Vapnik (5994_CR32) 1995; 7 5994_CR12 AK Ghorbanpour (5994_CR54) 2021; 596 W Fang (5994_CR79) 2023; 88 |
References_xml | – year: 2022 ident: CR76 article-title: Multilayer perceptron and support vector machine trained with grey wolf optimiser for predicting floods in Barak River, India publication-title: J Earth Syst Sci doi: 10.1007/s12040-022-01815-2 – volume: 530 start-page: 829 year: 2015 end-page: 844 ident: CR25 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J Hydrol Reg doi: 10.1016/j.jhydrol.2015.10.038 – ident: CR16 – volume: 156 start-page: 12 year: 2012 end-page: 26 ident: CR97 article-title: Agriculture, ecosystems and environment climate change, vulnerability and adaptation in North Africa with focus on morocco publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2012.04.021 – ident: CR77 – volume: 64 year: 2021 ident: CR22 article-title: Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102562 – volume: 564 start-page: 266 year: 2018 end-page: 282 ident: CR67 article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.07.004 – volume: 69 start-page: 229 year: 2016 end-page: 238 ident: CR95 article-title: Linkages between snow cover, temperature and rainfall and the north Atlantic oscillation over morocco publication-title: Clim Res doi: 10.3354/cr01409 – volume: 45 start-page: 201 year: 2018 end-page: 208 ident: CR71 article-title: Evaluation of random forests and prophet for daily streamflow forecasting publication-title: Adv Geosci doi: 10.5194/adgeo-45-201-2018 – volume: 40 start-page: 839 year: 2004 end-page: 846 ident: CR93 article-title: Rainfall-runoff model using an artificial neural network approach publication-title: Math Comput Model doi: 10.1016/j.mcm.2004.10.012 – volume: 4 start-page: 477 year: 2020 end-page: 492 ident: CR7 article-title: Assessing future changes of climate extreme events in the CORDEX-MENA region using regional climate model ALADIN-climate publication-title: Earth Syst Environ doi: 10.1007/s41748-020-00169-3 – volume: 63 start-page: 1091 year: 2018 end-page: 1111 ident: CR80 article-title: Univariate streamflow forecasting using commonly used data-driven models: literature review and case study publication-title: Hydrol Sci J doi: 10.1080/02626667.2018.1469756 – ident: CR92 – year: 2007 ident: CR1 article-title: Mountains of the world, water towers for humanity: typology, mapping, and global significance publication-title: Water Resour Res doi: 10.1029/2006WR005653 – volume: 9 start-page: 1 year: 2021 end-page: 19 ident: CR44 article-title: Modis does not capture the spatial heterogeneity of snow cover induced by solar radiation publication-title: Front Earth Sci doi: 10.3389/feart.2021.640250 – volume: 604 year: 2022 ident: CR17 article-title: Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127255 – volume: 54 start-page: 78 year: 2022 end-page: 95 ident: CR42 article-title: Climate of the Marrakech high atlas, Morocco: temperature lapse rates and precipitation gradient from piedmont to summits publication-title: Arct Antarct Alp Res doi: 10.1080/15230430.2022.2046897 – ident: CR57 – year: 2022 ident: CR78 article-title: Monthly streamflow prediction by metaheuristic regression approaches considering satellite precipitation data publication-title: Water. doi: 10.3390/w14223636 – volume: 509 start-page: 379 year: 2014 end-page: 386 ident: CR37 article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.11.054 – volume: 29 start-page: 286 year: 2017 end-page: 294 ident: CR21 article-title: Streamflow forecasting using artificial neural network and support vector machine models publication-title: Am Sci Res J Eng Technol Sci – year: 2021 ident: CR55 article-title: A simple machine learning approach to model real-time streamflow using satellite inputs: demonstration in a data scarce catchment publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126046 – volume: 17 start-page: 1 year: 2016 end-page: 13 ident: CR59 article-title: The parameter sensitivity of random forests publication-title: BMC Bioinform doi: 10.1186/s12859-016-1228-x – volume: 590 year: 2020 ident: CR53 article-title: Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using dempster Shafer theory publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125275 – ident: CR18 – volume: 12 start-page: 2191 year: 2015 end-page: 2200 ident: CR31 article-title: Successive-station monthly streamflow prediction using different artificial neural network algorithms publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-014-0613-0 – ident: CR91 – ident: CR47 – volume: 596 year: 2021 ident: CR54 article-title: Comparison and assessment of spatial downscaling methods for enhancing the accuracy of satellite-based precipitation over lake Urmia basin publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126055 – volume: 70 start-page: 320 year: 1975 end-page: 328 ident: CR66 article-title: The predictive sample reuse method with applications publication-title: J Am Stat Assoc doi: 10.1080/01621459.1975.10479865 – volume: 36 start-page: 4879 year: 2015 end-page: 4917 ident: CR43 article-title: Remote sensing of water resources in semi-arid Mediterranean areas: the joint international laboratory trema publication-title: Int J Remote Sens doi: 10.1080/01431161.2015.1093198 – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: CR63 article-title: A survey on feature selection methods publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.024 – volume: 7 start-page: 166 year: 2014 end-page: 167 ident: CR2 article-title: Impacts in the third dimension publication-title: Nat Geosci doi: 10.1038/ngeo2096 – volume: 591 year: 2020 ident: CR62 article-title: A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125321 – volume: 511 start-page: 764 year: 2014 end-page: 775 ident: CR87 article-title: Monthly streamflow prediction using modified EMD-based support vector machine publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.01.062 – ident: CR10 – volume: 1 start-page: 443 year: 2022 ident: CR23 article-title: Advances in micro-electronics publication-title: Embedded Syst IoT doi: 10.1007/978-981-16-8550-7 – volume: 42 year: 2022 ident: CR68 article-title: Snow hydrology in the Moroccan atlas mountains publication-title: J Hydrol Reg Stud doi: 10.1016/j.ejrh.2022.101101 – volume: 9 start-page: 765 year: 2017 end-page: 777 ident: CR46 article-title: Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records publication-title: Earth Syst Sci Data doi: 10.5194/essd-9-765-2017 – ident: CR6 – ident: CR86 – year: 2016 ident: CR14 article-title: Characterization of the interannual variability of precipitation and streamflow in Tensift and Ksob basins (Morocco) and links with the NAO publication-title: Atmosphere doi: 10.3390/atmos7060084 – volume: 63 start-page: 1844 year: 2018 end-page: 1862 ident: CR45 article-title: Performance of temperature and radiation index models for point-scale snow water equivalent (SWE) simulations in the Moroccan high atlas mountains publication-title: Hydrol Sci J doi: 10.1080/02626667.2018.1520391 – year: 2019 ident: CR100 article-title: The use of non-conventional water resources as a means of adaptation to drought and climate change in semi-arid regions: South-eastern Spain publication-title: Water doi: 10.3390/w11010093 – ident: CR69 – ident: CR94 – volume: 26 start-page: 5919 year: 2022 end-page: 5936 ident: CR75 article-title: Imputation of missing precipitation data using KNN, SOM, RF, and FNN publication-title: Soft Comput doi: 10.1007/s00500-022-07029-4 – volume: 6368 start-page: 49 year: 2018 end-page: 62 ident: CR13 article-title: Rainfall-runoff modeling and hydrological regime analysis of a semi-arid snow-influenced catchment case of the Rheraya river (high atlas, Morocco) publication-title: Houille Blanche doi: 10.1051/lhb/2018032 – ident: CR38 – volume: 160 start-page: 72 year: 2015 end-page: 86 ident: CR4 article-title: Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan atlas mountain range publication-title: Remote Sens Environ doi: 10.1016/j.rse.2015.01.002 – volume: 561 start-page: 181 year: 2021 end-page: 195 ident: CR41 article-title: MSGP-LASSO: an improved multi-stage genetic programming model for streamflow prediction publication-title: Inf Sci doi: 10.1016/j.ins.2021.02.011 – volume: 22 start-page: 5097 year: 2008 end-page: 5106 ident: CR29 article-title: Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed publication-title: Hydrol Process doi: 10.1002/hyp.7136 – volume: 13 start-page: 6308 year: 2020 end-page: 6325 ident: CR61 article-title: Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2020.3026724 – ident: CR70 – volume: 14 start-page: 1828 year: 2022 ident: CR81 article-title: Multi-variables-driven model based on random forest and gaussian process regression for monthly streamflow forecasting publication-title: Water doi: 10.3390/w14111828 – volume: 290 start-page: 297 year: 2004 end-page: 311 ident: CR26 article-title: Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2003.12.033 – volume: 600 year: 2021 ident: CR50 article-title: Rainfall estimation using measurement report data from time-division long term evolution networks publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126530 – volume: 318 start-page: 7 year: 2006 end-page: 16 ident: CR34 article-title: Multi-time scale stream flow predictions: the support vector machines approach publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.06.001 – ident: CR12 – volume: 36 start-page: 5999 year: 2022 end-page: 6016 ident: CR82 article-title: Optimized model inputs selections for enhancing river streamflow forecasting accuracy using different artificial intelligence techniques publication-title: Water Resour Manag doi: 10.1007/s11269-022-03339-2 – volume: 568 start-page: 462 year: 2019 end-page: 478 ident: CR51 article-title: A robust method for non-stationary streamflow prediction based on improved EMD-SVM model publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.11.015 – volume: 130 start-page: 321 year: 2017 end-page: 330 ident: CR5 article-title: Spatial and temporal analysis of the drought vulnerability and risks over eight decades in a semi-arid region (Tensift Basin: Morocco) publication-title: Theor Appl Climatol doi: 10.1007/s00704-016-1873-z – volume: 385 start-page: 13 year: 2010 end-page: 22 ident: CR48 article-title: Statistical downscaling of daily precipitation using support vector machines and multivariate analysis publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.01.021 – volume: 88 year: 2023 ident: CR79 article-title: Study on the evolution law of performance of mid- to long-term streamflow forecasting based on data-driven models publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2022.104277 – ident: CR84 – volume: 581 year: 2020 ident: CR49 article-title: A hybrid machine learning framework for real-time water level prediction in high sediment load reaches publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124422 – volume: 7 start-page: 63 year: 1995 end-page: 72 ident: CR32 article-title: Support-vector networks publication-title: IEEE Expert-Intell Syst Their Appl doi: 10.1109/64.163674 – volume: 31 start-page: 2761 year: 2017 end-page: 2775 ident: CR58 article-title: Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping publication-title: Water Resour Manag doi: 10.1007/s11269-017-1660-3 – year: 2019 ident: CR96 article-title: Trend analysis of rainfall and drought over the Oum Er-Rbia river basin in morocco during 1970–2010 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4300-9 – volume: 38 start-page: 38 year: 2002 end-page: 13817 ident: CR27 article-title: Self-organizing linear output map (solo): an artificial neural network suitable for hydrologic modeling and analysis publication-title: Water Resour Res doi: 10.1029/2001wr000795 – volume: 13 start-page: 1 year: 2023 end-page: 15 ident: CR39 article-title: Flood influence using GIS and remote sensing based morphometric parameters: a case study in Niger delta region publication-title: J Asian Sci Res doi: 10.55493/5003.v13i1.4719 – volume: 22 start-page: 1908 year: 2008 end-page: 1921 ident: CR9 article-title: Understanding hydrological processes with scarce data in a mountain environment publication-title: Hydrol Process doi: 10.1002/hyp.6775 – ident: CR15 – volume: 284 year: 2022 ident: CR56 article-title: Long-term performance prediction framework based on XGBoost decision tree for pultruded FRP composites exposed to water, humidity and alkaline solution publication-title: Compos Struct doi: 10.1016/j.compstruct.2022.115184 – ident: CR64 – ident: CR99 – volume: 38 start-page: 13073 year: 2011 end-page: 13081 ident: CR85 article-title: Monthly streamflow forecasting based on improved support vector machine model publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.114 – volume: 101 start-page: 18 year: 2013 end-page: 23 ident: CR36 article-title: Streamflow forecasting by SVM with quantum behaved particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.017 – volume: 613 year: 2022 ident: CR88 article-title: Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamflow forecasting: A comparative study publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.128431 – volume: 582 year: 2020 ident: CR52 article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124293 – volume: 183 year: 2019 ident: CR72 article-title: Tree-ring-width based streamflow reconstruction based on the random forest algorithm for the source region of the Yangtze River, China publication-title: CATENA doi: 10.1016/j.catena.2019.104216 – volume: 35 start-page: 571 year: 2010 end-page: 581 ident: CR30 article-title: Application of radial basis function neural networks to short-term streamflow forecasting publication-title: Phys Chem Earth doi: 10.1016/j.pce.2010.07.021 – volume: 15 start-page: 208 year: 2001 end-page: 216 ident: CR33 article-title: Model induction with support vector machines: introduction and applications publication-title: J Comput Civ Eng doi: 10.1061/(asce)0887-3801(2001)15:3(208) – volume: 620 year: 2023 ident: CR89 article-title: Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran publication-title: J Hydrol doi: 10.1016/j.jhydrol.2023.129480 – volume: 34 start-page: 5166 year: 2013 end-page: 5186 ident: CR60 article-title: Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests publication-title: Int J Remote Sens doi: 10.1080/01431161.2013.788261 – ident: CR40 – ident: CR98 – volume: 36 start-page: 111 year: 1974 end-page: 133 ident: CR65 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1974.tb00994.x – year: 2009 ident: CR3 article-title: Evaluation of the snowmelt runoff model in the Moroccan high atlas mountains using two snow-cover estimates evaluation of the snowmelt runoff model in the Moroccan high atlas mountains using two snow-cover estimates publication-title: Hydrol Sci J doi: 10.1623/hysj.54.6.1094 – volume: 295 start-page: 246 year: 2004 end-page: 262 ident: CR28 article-title: Improved streamflow forecasting using self-organizing radial basis function artificial neural networks publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.03.027 – volume: 12 start-page: 31 year: 2023 end-page: 45 ident: CR11 article-title: Evaluation of extreme flow characteristics in the Casamance watershed upstream of Kolda using the IHA/RVA method publication-title: Int J Sustain Energy Environ Res doi: 10.18488/13.v12i2.3584 – ident: CR73 – year: 2019 ident: CR83 article-title: An ensemble decomposition-based artificial intelligence approach for daily streamflow prediction publication-title: Water doi: 10.3390/w11040709 – ident: CR90 – volume: 401 start-page: 177 year: 2011 end-page: 189 ident: CR35 article-title: Assessment of input variables determination on the SVM model performance using PCA, gamma test, and forward selection techniques for monthly stream flow prediction publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.02.021 – volume: 61 start-page: 1801 year: 2016 end-page: 1812 ident: CR19 article-title: Improvement of artificial neural networks to predict daily streamflow in a semi-arid area publication-title: Hydrol Sci J doi: 10.1080/02626667.2015.1055271 – volume: 542 start-page: 603 year: 2016 end-page: 614 ident: CR74 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.09.035 – volume: 62 start-page: 979 year: 2017 end-page: 995 ident: CR8 article-title: Climate change impacts on surface water resources in the Rheraya catchment (high atlas, morocco) publication-title: Hydrol Sci J doi: 10.1080/02626667.2017.1283042 – year: 2023 ident: CR24 article-title: Deep learning approach with LSTM for daily streamflow prediction in a semi-arid area: a case study of Oum Er-Rbia river basin, Morocco publication-title: Water doi: 10.3390/w15020262 – ident: CR20 – volume: 36 start-page: 4879 year: 2015 ident: 5994_CR43 publication-title: Int J Remote Sens doi: 10.1080/01431161.2015.1093198 – ident: 5994_CR12 doi: 10.13140/2.1.4847.4569 – year: 2019 ident: 5994_CR100 publication-title: Water doi: 10.3390/w11010093 – volume: 596 year: 2021 ident: 5994_CR54 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126055 – volume: 35 start-page: 571 year: 2010 ident: 5994_CR30 publication-title: Phys Chem Earth doi: 10.1016/j.pce.2010.07.021 – volume: 7 start-page: 63 year: 1995 ident: 5994_CR32 publication-title: IEEE Expert-Intell Syst Their Appl doi: 10.1109/64.163674 – volume: 604 year: 2022 ident: 5994_CR17 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127255 – year: 2007 ident: 5994_CR1 publication-title: Water Resour Res doi: 10.1029/2006WR005653 – volume: 568 start-page: 462 year: 2019 ident: 5994_CR51 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.11.015 – volume: 9 start-page: 765 year: 2017 ident: 5994_CR46 publication-title: Earth Syst Sci Data doi: 10.5194/essd-9-765-2017 – volume: 22 start-page: 5097 year: 2008 ident: 5994_CR29 publication-title: Hydrol Process doi: 10.1002/hyp.7136 – volume: 620 year: 2023 ident: 5994_CR89 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2023.129480 – ident: 5994_CR98 – ident: 5994_CR99 doi: 10.1007/s11431-009-0354-3 – volume: 36 start-page: 5999 year: 2022 ident: 5994_CR82 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03339-2 – volume: 38 start-page: 13073 year: 2011 ident: 5994_CR85 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.114 – ident: 5994_CR90 – volume: 12 start-page: 31 year: 2023 ident: 5994_CR11 publication-title: Int J Sustain Energy Environ Res doi: 10.18488/13.v12i2.3584 – year: 2019 ident: 5994_CR83 publication-title: Water doi: 10.3390/w11040709 – ident: 5994_CR20 doi: 10.1016/j.procs.2017.03.081 – volume: 385 start-page: 13 year: 2010 ident: 5994_CR48 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.01.021 – volume: 600 year: 2021 ident: 5994_CR50 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126530 – ident: 5994_CR70 – volume: 31 start-page: 2761 year: 2017 ident: 5994_CR58 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1660-3 – volume: 160 start-page: 72 year: 2015 ident: 5994_CR4 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2015.01.002 – ident: 5994_CR16 doi: 10.1007/978-3-031-04855-5 – year: 2022 ident: 5994_CR76 publication-title: J Earth Syst Sci doi: 10.1007/s12040-022-01815-2 – ident: 5994_CR73 doi: 10.1016/j.egypro.2015.07.832 – volume: 29 start-page: 286 year: 2017 ident: 5994_CR21 publication-title: Am Sci Res J Eng Technol Sci – volume: 1 start-page: 443 year: 2022 ident: 5994_CR23 publication-title: Embedded Syst IoT doi: 10.1007/978-981-16-8550-7 – volume: 70 start-page: 320 year: 1975 ident: 5994_CR66 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1975.10479865 – year: 2019 ident: 5994_CR96 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4300-9 – volume: 591 year: 2020 ident: 5994_CR62 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125321 – ident: 5994_CR84 doi: 10.1061/41173(414)122 – volume: 14 start-page: 1828 year: 2022 ident: 5994_CR81 publication-title: Water doi: 10.3390/w14111828 – ident: 5994_CR18 – ident: 5994_CR92 – volume: 63 start-page: 1844 year: 2018 ident: 5994_CR45 publication-title: Hydrol Sci J doi: 10.1080/02626667.2018.1520391 – volume: 17 start-page: 1 year: 2016 ident: 5994_CR59 publication-title: BMC Bioinform doi: 10.1186/s12859-016-1228-x – volume: 130 start-page: 321 year: 2017 ident: 5994_CR5 publication-title: Theor Appl Climatol doi: 10.1007/s00704-016-1873-z – year: 2016 ident: 5994_CR14 publication-title: Atmosphere doi: 10.3390/atmos7060084 – volume: 183 year: 2019 ident: 5994_CR72 publication-title: CATENA doi: 10.1016/j.catena.2019.104216 – volume: 542 start-page: 603 year: 2016 ident: 5994_CR74 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.09.035 – ident: 5994_CR10 – volume: 36 start-page: 111 year: 1974 ident: 5994_CR65 publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 290 start-page: 297 year: 2004 ident: 5994_CR26 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2003.12.033 – ident: 5994_CR69 doi: 10.13031/2013.23153 – volume: 62 start-page: 979 year: 2017 ident: 5994_CR8 publication-title: Hydrol Sci J doi: 10.1080/02626667.2017.1283042 – ident: 5994_CR64 doi: 10.2307/1267500 – volume: 54 start-page: 78 year: 2022 ident: 5994_CR42 publication-title: Arct Antarct Alp Res doi: 10.1080/15230430.2022.2046897 – volume: 530 start-page: 829 year: 2015 ident: 5994_CR25 publication-title: J Hydrol Reg doi: 10.1016/j.jhydrol.2015.10.038 – volume: 4 start-page: 477 year: 2020 ident: 5994_CR7 publication-title: Earth Syst Environ doi: 10.1007/s41748-020-00169-3 – volume: 156 start-page: 12 year: 2012 ident: 5994_CR97 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2012.04.021 – volume: 590 year: 2020 ident: 5994_CR53 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125275 – year: 2009 ident: 5994_CR3 publication-title: Hydrol Sci J doi: 10.1623/hysj.54.6.1094 – volume: 38 start-page: 38 year: 2002 ident: 5994_CR27 publication-title: Water Resour Res doi: 10.1029/2001wr000795 – ident: 5994_CR57 doi: 10.1007/978-3-030-62008-0_35 – ident: 5994_CR38 doi: 10.1016/j.jhydrol.2014.03.057 – volume: 564 start-page: 266 year: 2018 ident: 5994_CR67 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.07.004 – volume: 9 start-page: 1 year: 2021 ident: 5994_CR44 publication-title: Front Earth Sci doi: 10.3389/feart.2021.640250 – ident: 5994_CR94 – ident: 5994_CR15 doi: 10.1007/978-3-030-21166-0_9 – volume: 64 year: 2021 ident: 5994_CR22 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102562 – volume: 63 start-page: 1091 year: 2018 ident: 5994_CR80 publication-title: Hydrol Sci J doi: 10.1080/02626667.2018.1469756 – volume: 318 start-page: 7 year: 2006 ident: 5994_CR34 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.06.001 – volume: 12 start-page: 2191 year: 2015 ident: 5994_CR31 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-014-0613-0 – ident: 5994_CR6 doi: 10.1007/s12517-021-06493-w/Published – volume: 13 start-page: 6308 year: 2020 ident: 5994_CR61 publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2020.3026724 – ident: 5994_CR47 – ident: 5994_CR86 doi: 10.1080/02626667.2012.714468 – volume: 581 year: 2020 ident: 5994_CR49 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124422 – volume: 7 start-page: 166 year: 2014 ident: 5994_CR2 publication-title: Nat Geosci doi: 10.1038/ngeo2096 – ident: 5994_CR91 – ident: 5994_CR40 – volume: 45 start-page: 201 year: 2018 ident: 5994_CR71 publication-title: Adv Geosci doi: 10.5194/adgeo-45-201-2018 – volume: 69 start-page: 229 year: 2016 ident: 5994_CR95 publication-title: Clim Res doi: 10.3354/cr01409 – ident: 5994_CR77 doi: 10.1007/978-981-99-3577-2 – volume: 26 start-page: 5919 year: 2022 ident: 5994_CR75 publication-title: Soft Comput doi: 10.1007/s00500-022-07029-4 – volume: 295 start-page: 246 year: 2004 ident: 5994_CR28 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.03.027 – year: 2022 ident: 5994_CR78 publication-title: Water. doi: 10.3390/w14223636 – volume: 22 start-page: 1908 year: 2008 ident: 5994_CR9 publication-title: Hydrol Process doi: 10.1002/hyp.6775 – volume: 509 start-page: 379 year: 2014 ident: 5994_CR37 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.11.054 – volume: 613 year: 2022 ident: 5994_CR88 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.128431 – year: 2021 ident: 5994_CR55 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126046 – volume: 61 start-page: 1801 year: 2016 ident: 5994_CR19 publication-title: Hydrol Sci J doi: 10.1080/02626667.2015.1055271 – volume: 101 start-page: 18 year: 2013 ident: 5994_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.017 – volume: 284 year: 2022 ident: 5994_CR56 publication-title: Compos Struct doi: 10.1016/j.compstruct.2022.115184 – volume: 13 start-page: 1 year: 2023 ident: 5994_CR39 publication-title: J Asian Sci Res doi: 10.55493/5003.v13i1.4719 – volume: 42 year: 2022 ident: 5994_CR68 publication-title: J Hydrol Reg Stud doi: 10.1016/j.ejrh.2022.101101 – year: 2023 ident: 5994_CR24 publication-title: Water doi: 10.3390/w15020262 – volume: 40 start-page: 16 year: 2014 ident: 5994_CR63 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.024 – volume: 40 start-page: 839 year: 2004 ident: 5994_CR93 publication-title: Math Comput Model doi: 10.1016/j.mcm.2004.10.012 – volume: 511 start-page: 764 year: 2014 ident: 5994_CR87 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.01.062 – volume: 15 start-page: 208 year: 2001 ident: 5994_CR33 publication-title: J Comput Civ Eng doi: 10.1061/(asce)0887-3801(2001)15:3(208) – volume: 582 year: 2020 ident: 5994_CR52 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124293 – volume: 6368 start-page: 49 year: 2018 ident: 5994_CR13 publication-title: Houille Blanche doi: 10.1051/lhb/2018032 – volume: 561 start-page: 181 year: 2021 ident: 5994_CR41 publication-title: Inf Sci doi: 10.1016/j.ins.2021.02.011 – volume: 401 start-page: 177 year: 2011 ident: 5994_CR35 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.02.021 – volume: 88 year: 2023 ident: 5994_CR79 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2022.104277 – volume: 34 start-page: 5166 year: 2013 ident: 5994_CR60 publication-title: Int J Remote Sens doi: 10.1080/01431161.2013.788261 |
SSID | ssj0003307759 ssj0002793483 ssib051670015 |
Score | 2.3323107 |
Snippet | Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 306 |
SubjectTerms | Algorithms Applied and Technical Physics Arid zones Artificial intelligence Basins Chemistry/Food Science Drought Earth Sciences Engineering Environment Geographic information systems Hydrology Learning algorithms Machine learning Materials Science Mountains Neural networks Precipitation Predictions Regression Resource management River basins Root-mean-square errors Runoff Semi arid areas Semiarid zones Stream discharge Stream flow Streamflow forecasting Support vector machines Water resources Water resources management Watersheds Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XOCAWmjFAkVz4AACiyRONvEJVYgtQoIDL3GLbMdBVEuyTXapyl_pn2XG6-y2lYqUQxQ7D2XG_r7xeGYY27MyyIyRMVdKooGSRBmeWRx4iHZBGRucAika-fKqf34XXzwkD37BrfXbKrs50U3URW1ojfxYEJYieIr0ZPSDU9Uo8q76EhqLbDlEpCENzwbfOn1KQopB8XD33TnZpIhdZs4I7S8uUPl8HI2LpiMnYMQRtDglLYn5699YNSeg__hMHRQNPrA1zyHh61ToH9mCrdbZ6h-ZBTfY77NZFm-oS0CWB-1kRFwbXtw6PTT2cboFtoL9m_vrA1BV4foheBX1MyCZxa-A_evBAbhyOS0oYyaNMr-oDSjIRD2Xw_onjBry9rh3UUhaAwpo4ylvDQVSAgLlUwV4XNaIlqb-xO4GZ7en59zXYeBG9MWYp7JAgWYoN0t0oEhKowOTFJmOSosIV5axxqGsNFKdKNYpXkNeJLW0aL2ofiY-s6WqruwmgyI0aaCEDFUi41RHGdLFUikdyEKjIRb1WNj98dz4JOVUK2OYz9IrOynlKKXcSSl_7bHD2T2jaYqOd3vvdILM_XBt87ly9dhRJ9x58_-ftvX-07bZSuT0qc8DscOWxs3EfkESM9a7TlPfAI8G7CM priority: 102 providerName: ProQuest |
Title | Evaluation of the support vector regression (SVR) and the random forest (RF) models accuracy for streamflow prediction under a data-scarce basin in Morocco |
URI | https://link.springer.com/article/10.1007/s42452-024-05994-z https://www.proquest.com/docview/3063939737 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD6C9gUepnETHVCdBx5AwyLN3Y9b1Q4hFaECE2-R7TgIqU2qpGUaD_sj-7M7dtPCqjEJKYqi2Lkon53vOz4-xwDHmjuxUtxnQnAyUAI3piNNHY_Yzsl8Rb9AE408uAov7vzL--C-TpNjYmFW_PfnlfHMuYyYhJlMIj57Xodm0PFCM32rG3aX4ylkl0dRwOu4mH9f-jf3vAjKFR-opZb-R_hQa0L8MgdxC9Z0vg2brzIF7sDv3jIrNxYZkmrDajYx2hmf7Lg7lvphPqU1x5Ob78NTFHlq6xEZpcUYSZzSW-DJsH-KdvmbCoVSs1Kon6YMTdCIGGej4gdOSuO9sc8yIWYlCjQTSVmlTGAkEvE95kjboCD2U8Uu3PV7t90LVq-rwJQXelMW8ZQAigkHbeg9DTIlHRWksXQzTYyVZb6krikkSRfXlxGdI53DJddkjYgw9vagkRe53gdMOypyhMc7IuB-JN2Y5F8mhHR4KsmwclvQWXzxRNVJx83aF6NkmS7ZopQQSolFKXluweflNZN5yo3_1j5cAJnU3a9KPCO8SGl5UQvOFuC-FL99t0_vq34AG65tXyFzvENoTMuZPiKRMpVtWI_739rQ_Nq7uh62bVttW4Of9oNfvT_RieS8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK9YKDAHkFqBRdZ2NvEBIQRdtrTbQ2lRb6ntOAjUJkuyS9W-Cu_AMzLjTXYBid4q5RDFjmNlJvPNZP4Ye-Z1lDqnFTdGo4ESixTPPH54iHZRoRyKQMpGHu8ORgfq42F8uMJ-dbkwFFbZycQgqPPK0T_yV5KwFMFTJm8m3zl1jSLvatdCY84W2_7sFE225vXWe6TvcyGGm_vvRrztKsCdHMgpT3SO20txF57ALY8LZyMX56kVhUd5XRTKImMai8AtlE3wGqK8ttqjLm4GqcR1r7CrSkpNIYTp8EPHv3Gfcl5aeP0WnHpaqlAJVKC9xyUye5u3E7L3yOkoOIIkpyIpip__jY1LhfcfH22AvuEtdrPVWeHtnMlusxVf3mE3_qhkeJf93FxUDYeqANQqoZlNSLeHH8EvALX_Mg-5LWH90-e9DTBlHuYhWObVCaDyjLuA9b3hBoT2PA0Y52a1cWc0BpTUYk6K4-oUJjV5l8KzKAWuBgMU6MobR4mbgMD8tQQ8xhWis6vusYNLodB9tlpWpX_AIO-7JDJS902sVWJFiuppYYyNdG7R8BM91u_eeObaoujUm-M4W5RzDlTKkEpZoFJ23mMvFvdM5iVBLpy91hEya8VDky2ZucdedsRdDv9_tYcXr_aUXRvtj3eyna3d7Ufsugi8NeCRXGOr03rmH6MCNbVPAtcCO7rsz-Q3WBQolg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAcEL9iocAcQGoFVrN2sokPCCHa0FJaoUJRb8F2bARqkyXZpWpfhTfh6ZjxJruARG-VcojixLEy4_lmMn-MPXEqyqxVMddaoYGSiAzPHG48RLvIxxZFIGUj7-6Ntg7it4fJ4RL71efCUFhlLxODoC5rS__I1yVhKYKnTNd9FxbxfiN_Of7OqYMUeVr7dhozFtlxpydovrUvtjeQ1k-FyDc_vt7iXYcBbuVITniqSlxqhityBHRl4q2JbFJmRniHstv72CCTaoMgLmKT4jVEfGWUQ71cjzKJ815il1OZRdQ9Icvf9LycDCn_pYPab8HBp2QcqoIKtP24RMbvcnhCJh85IAVHwORUMCXmZ3_j5EL5_cdfG2Awv8Gud_orvJox3E225Kpb7NofVQ1vs5-b8wriUHtADRPa6Zj0fPgRfATQuC-z8NsKVj982l8DXZXhPgTOsj4GVKRxFbC6n69BaNXTgrZ22mh7SmNACS762B_VJzBuyNMU3kXpcA1ooKBX3lpK4gQE6a8V4LFbI1Lb-g47uBAK3WXLVV25ewzKoU0jLdVQJypOjchQVfVam0iVBo1AMWDD_osXtiuQTn06jop5aedApQKpVAQqFWcD9mz-zHhWHuTcu1d6QhadqGiLBWMP2POeuIvh_892__zZHrMruEGKd9t7Ow_YVRFYa8QjucKWJ83UPURdamIeBaYF9vmid8lvKUQsww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+support+vector+regression+%28SVR%29+and+the+random+forest+%28RF%29+models+accuracy+for+streamflow+prediction+under+a+data-scarce+basin+in+Morocco&rft.jtitle=Discover+applied+sciences&rft.au=Bargam%2C+Bouchra&rft.au=Boudhar%2C+Abdelghani&rft.au=Kinnard%2C+Christophe&rft.au=Bouamri%2C+Hafsa&rft.date=2024-06-03&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=6&rft.issue=6&rft_id=info:doi/10.1007%2Fs42452-024-05994-z&rft.externalDocID=10_1007_s42452_024_05994_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |