Evaluation of the support vector regression (SVR) and the random forest (RF) models accuracy for streamflow prediction under a data-scarce basin in Morocco

Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating M...

Full description

Saved in:
Bibliographic Details
Published inDiscover applied sciences Vol. 6; no. 6; p. 306
Main Authors Bargam, Bouchra, Boudhar, Abdelghani, Kinnard, Christophe, Bouamri, Hafsa, Nifa, Karima, Chehbouni, Abdelghani
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 03.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN3004-9261
2523-3963
3004-9261
2523-3971
DOI10.1007/s42452-024-05994-z

Cover

Loading…
Abstract Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating Machine Learning techniques, namely support vector regression (SVR) and Random Forest (RF) against the multiple linear regression (MLR) for daily streamflow forecasting in the mountainous sub-basin of Rheraya between 2003 and 2016. The results show that SVR performed best, followed by RF and MLR. In measurable terms and regarding mean performance, SVR exhibited the higher Nash–Sutcliffe efficiency score (NSE = 0.59) and a lower root mean squared error (RMSE = 1.18  m 3 s - 1 ) compared to RF (NSE = 0.53, RMSE = 1.18  m 3 s - 1 ) and MLR (NSE = 0.54, RMSE = 1.01  m 3 s - 1 ). Furthermore,the available time series was too short to properly capture the full range of streamflow variability, which reduced the prediction performance outside of the calibration conditions. These findings suggest that ML algorithms, particularly SVR, can provide accurate streamflow estimation useful for water resources management when trained on a representative period. The results highlight the capacity of Machine Learning algorithms, specifically SVR, to augment streamflow prediction for enhanced water resource management in arid regions.
AbstractList Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating Machine Learning techniques, namely support vector regression (SVR) and Random Forest (RF) against the multiple linear regression (MLR) for daily streamflow forecasting in the mountainous sub-basin of Rheraya between 2003 and 2016. The results show that SVR performed best, followed by RF and MLR. In measurable terms and regarding mean performance, SVR exhibited the higher Nash–Sutcliffe efficiency score (NSE = 0.59) and a lower root mean squared error (RMSE = 1.18 m3s-1) compared to RF (NSE = 0.53, RMSE = 1.18 m3s-1) and MLR (NSE = 0.54, RMSE = 1.01 m3s-1). Furthermore,the available time series was too short to properly capture the full range of streamflow variability, which reduced the prediction performance outside of the calibration conditions. These findings suggest that ML algorithms, particularly SVR, can provide accurate streamflow estimation useful for water resources management when trained on a representative period. The results highlight the capacity of Machine Learning algorithms, specifically SVR, to augment streamflow prediction for enhanced water resource management in arid regions.
Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating Machine Learning techniques, namely support vector regression (SVR) and Random Forest (RF) against the multiple linear regression (MLR) for daily streamflow forecasting in the mountainous sub-basin of Rheraya between 2003 and 2016. The results show that SVR performed best, followed by RF and MLR. In measurable terms and regarding mean performance, SVR exhibited the higher Nash–Sutcliffe efficiency score (NSE = 0.59) and a lower root mean squared error (RMSE = 1.18  $$\text {m}^3\,\text {s}^{-1}$$ m 3 s - 1 ) compared to RF (NSE = 0.53, RMSE = 1.18  $$\text {m}^3\,\text {s}^{-1}$$ m 3 s - 1 ) and MLR (NSE = 0.54, RMSE = 1.01  $$\text {m}^3\,\text {s}^{-1}$$ m 3 s - 1 ). Furthermore,the available time series was too short to properly capture the full range of streamflow variability, which reduced the prediction performance outside of the calibration conditions. These findings suggest that ML algorithms, particularly SVR, can provide accurate streamflow estimation useful for water resources management when trained on a representative period. The results highlight the capacity of Machine Learning algorithms, specifically SVR, to augment streamflow prediction for enhanced water resource management in arid regions.
Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in Morocco, where water resources are facing a severe drought and the demand is continuously increasing. The present analysis focuses on evaluating Machine Learning techniques, namely support vector regression (SVR) and Random Forest (RF) against the multiple linear regression (MLR) for daily streamflow forecasting in the mountainous sub-basin of Rheraya between 2003 and 2016. The results show that SVR performed best, followed by RF and MLR. In measurable terms and regarding mean performance, SVR exhibited the higher Nash–Sutcliffe efficiency score (NSE = 0.59) and a lower root mean squared error (RMSE = 1.18  m 3 s - 1 ) compared to RF (NSE = 0.53, RMSE = 1.18  m 3 s - 1 ) and MLR (NSE = 0.54, RMSE = 1.01  m 3 s - 1 ). Furthermore,the available time series was too short to properly capture the full range of streamflow variability, which reduced the prediction performance outside of the calibration conditions. These findings suggest that ML algorithms, particularly SVR, can provide accurate streamflow estimation useful for water resources management when trained on a representative period. The results highlight the capacity of Machine Learning algorithms, specifically SVR, to augment streamflow prediction for enhanced water resource management in arid regions.
ArticleNumber 306
Author Boudhar, Abdelghani
Kinnard, Christophe
Nifa, Karima
Chehbouni, Abdelghani
Bouamri, Hafsa
Bargam, Bouchra
Author_xml – sequence: 1
  givenname: Bouchra
  surname: Bargam
  fullname: Bargam, Bouchra
  email: bouchra.bargam@gmail.com
  organization: Center for Remote Sensing Applications, Mohammed VI Polytechnique University
– sequence: 2
  givenname: Abdelghani
  surname: Boudhar
  fullname: Boudhar, Abdelghani
  organization: Center for Remote Sensing Applications, Mohammed VI Polytechnique University, Data4Earth Laboratory, Sultan Moulay Slimane University
– sequence: 3
  givenname: Christophe
  surname: Kinnard
  fullname: Kinnard, Christophe
  organization: Département des Sciences de l’Environnement, Centre de Recherche sur les Interactions Bassins Versants - Écosystèmes Aquatiques (RIVE), Université du Québec à Trois-Rivières
– sequence: 4
  givenname: Hafsa
  surname: Bouamri
  fullname: Bouamri, Hafsa
  organization: International Water Research Institute (IWRI), Mohammed VI Polytechnique University
– sequence: 5
  givenname: Karima
  surname: Nifa
  fullname: Nifa, Karima
  organization: Data4Earth Laboratory, Sultan Moulay Slimane University
– sequence: 6
  givenname: Abdelghani
  surname: Chehbouni
  fullname: Chehbouni, Abdelghani
  organization: Center for Remote Sensing Applications, Mohammed VI Polytechnique University
BookMark eNp9kctKJDEUhsOgMN5ewFXATbuomdyqUllKo6PgMOBtG1KpREuqK-VJyqH7VXxZ090DIy6EQA45_3f-JP8-2hnC4BA6puQHJUT-jIKJkhWEiYKUSoli9Q3tcUJEoVhFdz7U39FRjM-EEM6JlKXaQ2_nr6afTOrCgIPH6cnhOI1jgIRfnU0BMLhHcDGuBbPbh5tTbIZ2o4NchAX2IbcTnt1cnOJFaF0fsbF2AmOX6x6OCZxZ-D78xSO4trMbr2loHWCDW5NMEa0B63BjYjfgvH4HCNaGQ7TrTR_d0b_9AN1fnN_NL4vrP7-u5mfXheUVT4VULaltbQVzNWWiLb1tiC3bumHe1YR6L5qSU9MoLploZD6rqFSNcpTWpqr5ATrZzh0hvEz5Mfo5TDBkS81JxRVXksusYluVhRAjOK9H6BYGlpoSvc5Bb3PQOQe9yUGvMlR_gmyXNr-dwHT91yjfojH7DI8O_t_qC-odremhLQ
CitedBy_id crossref_primary_10_1016_j_ipha_2024_11_002
crossref_primary_10_1007_s11269_024_04029_x
crossref_primary_10_1007_s11269_024_04067_5
crossref_primary_10_1016_j_ejrh_2025_102249
crossref_primary_10_1016_j_trgeo_2025_101537
Cites_doi 10.1007/s12040-022-01815-2
10.1016/j.jhydrol.2015.10.038
10.1016/j.agee.2012.04.021
10.1016/j.scs.2020.102562
10.1016/j.jhydrol.2018.07.004
10.3354/cr01409
10.5194/adgeo-45-201-2018
10.1016/j.mcm.2004.10.012
10.1007/s41748-020-00169-3
10.1080/02626667.2018.1469756
10.1029/2006WR005653
10.3389/feart.2021.640250
10.1016/j.jhydrol.2021.127255
10.1080/15230430.2022.2046897
10.3390/w14223636
10.1016/j.jhydrol.2013.11.054
10.1016/j.jhydrol.2021.126046
10.1186/s12859-016-1228-x
10.1016/j.jhydrol.2020.125275
10.1007/s13762-014-0613-0
10.1016/j.jhydrol.2021.126055
10.1080/01621459.1975.10479865
10.1080/01431161.2015.1093198
10.1016/j.compeleceng.2013.11.024
10.1038/ngeo2096
10.1016/j.jhydrol.2020.125321
10.1016/j.jhydrol.2014.01.062
10.1007/978-981-16-8550-7
10.1016/j.ejrh.2022.101101
10.5194/essd-9-765-2017
10.3390/atmos7060084
10.1080/02626667.2018.1520391
10.3390/w11010093
10.1007/s00500-022-07029-4
10.1051/lhb/2018032
10.1016/j.rse.2015.01.002
10.1016/j.ins.2021.02.011
10.1002/hyp.7136
10.1109/JSTARS.2020.3026724
10.3390/w14111828
10.1016/j.jhydrol.2003.12.033
10.1016/j.jhydrol.2021.126530
10.1016/j.jhydrol.2005.06.001
10.1007/s11269-022-03339-2
10.1016/j.jhydrol.2018.11.015
10.1007/s00704-016-1873-z
10.1016/j.jhydrol.2010.01.021
10.1016/j.scs.2022.104277
10.1016/j.jhydrol.2019.124422
10.1109/64.163674
10.1007/s11269-017-1660-3
10.1007/s12517-019-4300-9
10.1029/2001wr000795
10.55493/5003.v13i1.4719
10.1002/hyp.6775
10.1016/j.compstruct.2022.115184
10.1016/j.eswa.2011.04.114
10.1016/j.neucom.2012.07.017
10.1016/j.jhydrol.2022.128431
10.1016/j.jhydrol.2019.124293
10.1016/j.catena.2019.104216
10.1016/j.pce.2010.07.021
10.1061/(asce)0887-3801(2001)15:3(208)
10.1016/j.jhydrol.2023.129480
10.1080/01431161.2013.788261
10.1111/j.2517-6161.1974.tb00994.x
10.1623/hysj.54.6.1094
10.1016/j.jhydrol.2004.03.027
10.18488/13.v12i2.3584
10.3390/w11040709
10.1016/j.jhydrol.2011.02.021
10.1080/02626667.2015.1055271
10.1016/j.jhydrol.2016.09.035
10.1080/02626667.2017.1283042
10.3390/w15020262
10.13140/2.1.4847.4569
10.1007/s11431-009-0354-3
10.1016/j.procs.2017.03.081
10.1007/978-3-031-04855-5
10.1016/j.egypro.2015.07.832
10.1061/41173(414)122
10.13031/2013.23153
10.2307/1267500
10.1007/978-3-030-62008-0_35
10.1016/j.jhydrol.2014.03.057
10.1007/978-3-030-21166-0_9
10.1007/s12517-021-06493-w/Published
10.1080/02626667.2012.714468
10.1007/978-981-99-3577-2
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1007/s42452-024-05994-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
2523-3971
ExternalDocumentID 10_1007_s42452_024_05994_z
GeographicLocations Morocco
Atlas Mountains
GeographicLocations_xml – name: Morocco
– name: Atlas Mountains
GrantInformation_xml – fundername: MorSnowproject, CRSA, Mohammed VI Polytechnic University (UM6P) and the research program (GEANTech), Morocco
GroupedDBID AAJSJ
ABEEZ
ADMLS
ALMA_UNASSIGNED_HOLDINGS
BGNMA
C6C
GROUPED_DOAJ
M4Y
NU0
RSV
SOJ
AASML
AAYXX
CITATION
M~E
0R~
3V.
7XB
88I
8FE
8FG
8FK
AAHNG
AAKKN
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACSTC
ACULB
ADKNI
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BHPHI
BKSAR
C24
CCPQU
D1I
DWQXO
EBLON
EBS
FNLPD
GNUQQ
GNWQR
HCIFZ
J-C
KB.
KOV
L6V
M2P
M7S
NQJWS
OK1
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
ID FETCH-LOGICAL-c363t-79d08c8c42e8124d5fcb0c5d8b2fe801ff4b531ab93724b7e806179b9e118a683
IEDL.DBID C6C
ISSN 3004-9261
2523-3963
IngestDate Wed Aug 13 10:41:44 EDT 2025
Tue Jul 01 01:11:54 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Fri Feb 21 02:42:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Streamflow prediction
Machine learning techniques
Support vector regression (SVR)
Temporal variability of streamflow
Semi-arid regions
Water resources
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-79d08c8c42e8124d5fcb0c5d8b2fe801ff4b531ab93724b7e806179b9e118a683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s42452-024-05994-z
PQID 3063939737
PQPubID 5758472
ParticipantIDs proquest_journals_3063939737
crossref_primary_10_1007_s42452_024_05994_z
crossref_citationtrail_10_1007_s42452_024_05994_z
springer_journals_10_1007_s42452_024_05994_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-03
PublicationDateYYYYMMDD 2024-06-03
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-03
  day: 03
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Ghorbanpour, Hessels, Moghim, Afshar (CR54) 2021; 596
CR38
Huang, Boutros (CR59) 2016; 17
Guan, Li, Chapman, Deng, Ji, Yang (CR60) 2013; 34
Geisser (CR66) 1975; 70
Bell, Hughes, Fletcher, Cornelissen, Rhoujjati, Hanich, Braithwaite (CR42) 2022; 54
Rezaie-Balf, Nowbandegani, Samadi, Fallah, Alaghmand (CR83) 2019
Sahoo, Ghose (CR75) 2022; 26
Zhenghao, Zhang, Singh (CR80) 2018; 63
Boudhar, Hanich, Boulet, Berjamy, Chehbouni (CR3) 2009
CR47
Mutlu, Chaubey, Hexmoor, Bajwa (CR29) 2008; 22
Morote, Olcina, Hernández (CR100) 2019
CR40
Chen, Yu, Tang (CR48) 2010; 385
Bouamri, Boudhar, Gascoin, Kinnard (CR45) 2018; 63
Zamrane, Turki, Laignel, Mahé, Laftouhi (CR14) 2016
Hsu, Gupta, Gao, Sorooshian, Imam (CR27) 2002; 38
Jarlan, Khabba, Er-Raki, Page, Hanich, Fakir, Merlin, Mangiarotti, Gascoin, Ezzahar, Kharrou, Berjamy, Saaïdi, Boudhar, Benkaddour, Laftouhi, Abaoui, Tavernier, Boulet, Simonneaux, Driouech, Adnani, Fazziki, Amenzou, Raibi, Mandour, Ibouh, Dantec, Habets, Tramblay, Mougenot, Leblanc, Faïz, Drapeau, Coudert, Hagolle, Filali, Belaqziz, Marchane, Szczypta, Toumi, Diarra, Aouade, Hajhouji, Nassah, Bigeard, Chirouze, Boukhari, Abourida, Richard, Fanise, Kasbani, Chakir, Zribi, Marah, Naimi, Mokssit, Kerr, Escadafal (CR43) 2015; 36
Naghibi, Ahmadi, Daneshi (CR58) 2017; 31
Mehr, Gandomi (CR41) 2021; 561
Sadio, Faye (CR11) 2023; 12
Fniguire, Laftouhi, Saidi, Zamrane, Himer, Khalil (CR5) 2017; 130
Niu, Feng (CR22) 2021; 64
Akbarian, Saghafian, Golian (CR89) 2023; 620
Granata, Nunno, Marinis (CR88) 2022; 613
CR57
Oborie, Rowland (CR39) 2023; 13
Liu, Liu, Feng (CR56) 2022; 284
Riad, Mania, Bouchaou, Najjar (CR93) 2004; 40
Chandrashekar, Sahin (CR63) 2014; 40
Sheykhmousa, Mahdianpari, Ghanbari, Mohammadimanesh, Ghamisi, Homayouni (CR61) 2020; 13
Marchane, Jarlan, Hanich, Boudhar, Gascoin, Tavernier, Filali, Page, Hagolle, Berjamy (CR4) 2015; 160
Vapnik (CR32) 1995; 7
Zemzami, Benaabidate (CR19) 2016; 61
Riggs, Hall, Román (CR46) 2017; 9
Kumar, Ramsankaran, Brocca, Muñoz-Arriola (CR55) 2021
Stone (CR65) 1974; 36
Chaponnière, Boulet, Chehbouni, Aresmouk (CR9) 2008; 22
Papacharalampous, Tyralis (CR71) 2018; 45
Li, Wang, Lai, Zhang (CR72) 2019; 183
Nachappa, Piralilou, Gholamnia, Ghorbanzadeh, Rahmati, Blaschke (CR53) 2020; 590
CR69
Schilling, Freier, Hertig, Scheffran (CR97) 2012; 156
Guo, Zhou, Qin, Zou, Li (CR85) 2011; 38
Yaseen, El-shafie, Jaafar, Afan, Sayl (CR25) 2015; 530
CR64
Fang, Zhou, Jia, Gu, Xu (CR79) 2023; 88
Bouamri, Kinnard, Boudhar, Gascoin, Hanich, Chehbouni (CR44) 2021; 9
Noori, Karbassi, Moghaddamnia, Han, Zokaei-Ashtiani, Farokhnia, Gousheh (CR35) 2011; 401
Sahour, Gholami, Vazifedan (CR62) 2020; 591
Zhao, Pang, Xu, Xu (CR49) 2020; 581
Ouatiki, Boudhar, Ouhinou, Arioua, Hssaisoune, Bouamri, Benabdelouahab (CR96) 2019
Nifa, Boudhar, Ouatiki, Elyoussfi, Bargam, Chehbouni (CR24) 2023
CR77
CR73
Sudheer, Anand, Panigrahi, Mathur (CR36) 2013; 101
Marchane, Tramblay, Hanich, Ruelland, Jarlan (CR8) 2017; 62
CR70
Hanich, Chehbouni, Gascoin, Boudhar, Jarlan, Tramblay, Boulet, Marchane, Baba, Kinnard, Simonneaux, Fakir, Bouchaou, Leblanc, Page, Bouamri, Er-Raki, Khabba (CR68) 2022; 42
CR6
Yu, Wang, Wu, Chen, Wang, Qin (CR52) 2020; 582
Zhou, Cui, Lin, Sheng, Chen, Guo, Xu (CR17) 2022; 604
Asefa, Kemblowski, McKee, Khalil (CR34) 2006; 318
CR86
CR84
Driouech, ElRhaz, Moufouma-Okia, Arjdal, Balhane (CR7) 2020; 4
Liu, Zhang, Zhang, Xiong, Liu, Chen, Yin (CR50) 2021; 600
Dibike, Velickov, Solomatine, Abbott (CR33) 2001; 15
Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-Shafie (CR74) 2016; 542
Tofiq, Latif, Ahmed, Kumar, El-Shafie (CR82) 2022; 36
Chiang, Chang, Chang (CR26) 2004; 290
Hajhouji, Simonneaux, Gascoin, Fakir, Richard, Chehbouni, Boudhar (CR13) 2018; 6368
Sahoo, Samantaray, Ghose (CR76) 2022
Sun, Zhang, Peng, Zhang, Zhou, Zhang (CR81) 2022; 14
CR18
CR16
CR15
CR12
Muhammad, Yuan, Kisi, Yuan (CR21) 2017; 29
CR99
CR10
CR98
Moradkhani, Hsu, Gupta, Sorooshian (CR28) 2004; 295
CR94
Marchane, Jarlan, Boudhar, Tramblay, Hanich (CR95) 2016; 69
CR92
CR91
CR90
Huang, Chang, Huang, Chen (CR87) 2014; 511
Mehr, Kahya, Sahin, Nazemosadat (CR31) 2015; 12
Dettinger (CR2) 2014; 7
Tongal, Booij (CR67) 2018; 564
He, Wen, Liu, Du (CR37) 2014; 509
Viviroli, Dürr, Messerli, Meybeck, Weingartner (CR1) 2007
Chakravarthy, Flores-Fuentes, Bhateja, Biswal (CR23) 2022; 1
CR20
Kagoda, Ndiritu, Ntuli, Mwaka (CR30) 2010; 35
Mehraein, Mohanavelu, Naganna, Kulls, Kisi (CR78) 2022
Meng, Huang, Huang, Fang, Wu, Wang (CR51) 2019; 568
H Bouamri (5994_CR45) 2018; 63
L Hanich (5994_CR68) 2022; 42
H Bouamri (5994_CR44) 2021; 9
A Marchane (5994_CR95) 2016; 69
5994_CR6
5994_CR40
ZM Yaseen (5994_CR74) 2016; 542
J Guo (5994_CR85) 2011; 38
5994_CR47
K Nifa (5994_CR24) 2023
A Boudhar (5994_CR3) 2009
Z Zamrane (5994_CR14) 2016
G Chandrashekar (5994_CR63) 2014; 40
5994_CR38
F Granata (5994_CR88) 2022; 613
J Schilling (5994_CR97) 2012; 156
W Niu (5994_CR22) 2021; 64
F Morote (5994_CR100) 2019
Y Zhou (5994_CR17) 2022; 604
H Sahour (5994_CR62) 2020; 591
A Marchane (5994_CR8) 2017; 62
BA Bell (5994_CR42) 2022; 54
5994_CR64
S Riad (5994_CR93) 2004; 40
E Mutlu (5994_CR29) 2008; 22
YB Dibike (5994_CR33) 2001; 15
D Viviroli (5994_CR1) 2007
X Liu (5994_CR56) 2022; 284
5994_CR69
CAAS Sadio (5994_CR11) 2023; 12
KL Hsu (5994_CR27) 2002; 38
ZM Yaseen (5994_CR25) 2015; 530
D Liu (5994_CR50) 2021; 600
X Yu (5994_CR52) 2020; 582
L Jarlan (5994_CR43) 2015; 36
Y Hajhouji (5994_CR13) 2018; 6368
H Moradkhani (5994_CR28) 2004; 295
M Sheykhmousa (5994_CR61) 2020; 13
PA Kagoda (5994_CR30) 2010; 35
5994_CR57
YM Tofiq (5994_CR82) 2022; 36
N Sun (5994_CR81) 2022; 14
H Ouatiki (5994_CR96) 2019
A Marchane (5994_CR4) 2015; 160
M Stone (5994_CR65) 1974; 36
G Zhao (5994_CR49) 2020; 581
A Kumar (5994_CR55) 2021
5994_CR86
5994_CR84
E Oborie (5994_CR39) 2023; 13
YM Chiang (5994_CR26) 2004; 290
F Driouech (5994_CR7) 2020; 4
R Noori (5994_CR35) 2011; 401
H Tongal (5994_CR67) 2018; 564
A Sahoo (5994_CR76) 2022
R Muhammad (5994_CR21) 2017; 29
5994_CR77
M Dettinger (5994_CR2) 2014; 7
5994_CR73
TG Nachappa (5994_CR53) 2020; 590
M Akbarian (5994_CR89) 2023; 620
5994_CR70
C Sudheer (5994_CR36) 2013; 101
M Mehraein (5994_CR78) 2022
GA Riggs (5994_CR46) 2017; 9
GA Papacharalampous (5994_CR71) 2018; 45
F Fniguire (5994_CR5) 2017; 130
A Chaponnière (5994_CR9) 2008; 22
Z He (5994_CR37) 2014; 509
A Sahoo (5994_CR75) 2022; 26
5994_CR20
AD Mehr (5994_CR31) 2015; 12
ST Chen (5994_CR48) 2010; 385
AD Mehr (5994_CR41) 2021; 561
VVSSS Chakravarthy (5994_CR23) 2022; 1
BFF Huang (5994_CR59) 2016; 17
M Rezaie-Balf (5994_CR83) 2019
S Huang (5994_CR87) 2014; 511
5994_CR91
5994_CR90
Z Zhenghao (5994_CR80) 2018; 63
5994_CR99
5994_CR10
5994_CR98
T Asefa (5994_CR34) 2006; 318
E Meng (5994_CR51) 2019; 568
5994_CR94
SA Naghibi (5994_CR58) 2017; 31
5994_CR92
5994_CR18
H Guan (5994_CR60) 2013; 34
S Geisser (5994_CR66) 1975; 70
5994_CR16
5994_CR15
M Zemzami (5994_CR19) 2016; 61
J Li (5994_CR72) 2019; 183
V Vapnik (5994_CR32) 1995; 7
5994_CR12
AK Ghorbanpour (5994_CR54) 2021; 596
W Fang (5994_CR79) 2023; 88
References_xml – year: 2022
  ident: CR76
  article-title: Multilayer perceptron and support vector machine trained with grey wolf optimiser for predicting floods in Barak River, India
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-022-01815-2
– volume: 530
  start-page: 829
  year: 2015
  end-page: 844
  ident: CR25
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J Hydrol Reg
  doi: 10.1016/j.jhydrol.2015.10.038
– ident: CR16
– volume: 156
  start-page: 12
  year: 2012
  end-page: 26
  ident: CR97
  article-title: Agriculture, ecosystems and environment climate change, vulnerability and adaptation in North Africa with focus on morocco
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2012.04.021
– ident: CR77
– volume: 64
  year: 2021
  ident: CR22
  article-title: Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102562
– volume: 564
  start-page: 266
  year: 2018
  end-page: 282
  ident: CR67
  article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.07.004
– volume: 69
  start-page: 229
  year: 2016
  end-page: 238
  ident: CR95
  article-title: Linkages between snow cover, temperature and rainfall and the north Atlantic oscillation over morocco
  publication-title: Clim Res
  doi: 10.3354/cr01409
– volume: 45
  start-page: 201
  year: 2018
  end-page: 208
  ident: CR71
  article-title: Evaluation of random forests and prophet for daily streamflow forecasting
  publication-title: Adv Geosci
  doi: 10.5194/adgeo-45-201-2018
– volume: 40
  start-page: 839
  year: 2004
  end-page: 846
  ident: CR93
  article-title: Rainfall-runoff model using an artificial neural network approach
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2004.10.012
– volume: 4
  start-page: 477
  year: 2020
  end-page: 492
  ident: CR7
  article-title: Assessing future changes of climate extreme events in the CORDEX-MENA region using regional climate model ALADIN-climate
  publication-title: Earth Syst Environ
  doi: 10.1007/s41748-020-00169-3
– volume: 63
  start-page: 1091
  year: 2018
  end-page: 1111
  ident: CR80
  article-title: Univariate streamflow forecasting using commonly used data-driven models: literature review and case study
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2018.1469756
– ident: CR92
– year: 2007
  ident: CR1
  article-title: Mountains of the world, water towers for humanity: typology, mapping, and global significance
  publication-title: Water Resour Res
  doi: 10.1029/2006WR005653
– volume: 9
  start-page: 1
  year: 2021
  end-page: 19
  ident: CR44
  article-title: Modis does not capture the spatial heterogeneity of snow cover induced by solar radiation
  publication-title: Front Earth Sci
  doi: 10.3389/feart.2021.640250
– volume: 604
  year: 2022
  ident: CR17
  article-title: Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.127255
– volume: 54
  start-page: 78
  year: 2022
  end-page: 95
  ident: CR42
  article-title: Climate of the Marrakech high atlas, Morocco: temperature lapse rates and precipitation gradient from piedmont to summits
  publication-title: Arct Antarct Alp Res
  doi: 10.1080/15230430.2022.2046897
– ident: CR57
– year: 2022
  ident: CR78
  article-title: Monthly streamflow prediction by metaheuristic regression approaches considering satellite precipitation data
  publication-title: Water.
  doi: 10.3390/w14223636
– volume: 509
  start-page: 379
  year: 2014
  end-page: 386
  ident: CR37
  article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.11.054
– volume: 29
  start-page: 286
  year: 2017
  end-page: 294
  ident: CR21
  article-title: Streamflow forecasting using artificial neural network and support vector machine models
  publication-title: Am Sci Res J Eng Technol Sci
– year: 2021
  ident: CR55
  article-title: A simple machine learning approach to model real-time streamflow using satellite inputs: demonstration in a data scarce catchment
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126046
– volume: 17
  start-page: 1
  year: 2016
  end-page: 13
  ident: CR59
  article-title: The parameter sensitivity of random forests
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-1228-x
– volume: 590
  year: 2020
  ident: CR53
  article-title: Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using dempster Shafer theory
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125275
– ident: CR18
– volume: 12
  start-page: 2191
  year: 2015
  end-page: 2200
  ident: CR31
  article-title: Successive-station monthly streamflow prediction using different artificial neural network algorithms
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-014-0613-0
– ident: CR91
– ident: CR47
– volume: 596
  year: 2021
  ident: CR54
  article-title: Comparison and assessment of spatial downscaling methods for enhancing the accuracy of satellite-based precipitation over lake Urmia basin
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126055
– volume: 70
  start-page: 320
  year: 1975
  end-page: 328
  ident: CR66
  article-title: The predictive sample reuse method with applications
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1975.10479865
– volume: 36
  start-page: 4879
  year: 2015
  end-page: 4917
  ident: CR43
  article-title: Remote sensing of water resources in semi-arid Mediterranean areas: the joint international laboratory trema
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2015.1093198
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: CR63
  article-title: A survey on feature selection methods
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 7
  start-page: 166
  year: 2014
  end-page: 167
  ident: CR2
  article-title: Impacts in the third dimension
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2096
– volume: 591
  year: 2020
  ident: CR62
  article-title: A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125321
– volume: 511
  start-page: 764
  year: 2014
  end-page: 775
  ident: CR87
  article-title: Monthly streamflow prediction using modified EMD-based support vector machine
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.01.062
– ident: CR10
– volume: 1
  start-page: 443
  year: 2022
  ident: CR23
  article-title: Advances in micro-electronics
  publication-title: Embedded Syst IoT
  doi: 10.1007/978-981-16-8550-7
– volume: 42
  year: 2022
  ident: CR68
  article-title: Snow hydrology in the Moroccan atlas mountains
  publication-title: J Hydrol Reg Stud
  doi: 10.1016/j.ejrh.2022.101101
– volume: 9
  start-page: 765
  year: 2017
  end-page: 777
  ident: CR46
  article-title: Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-9-765-2017
– ident: CR6
– ident: CR86
– year: 2016
  ident: CR14
  article-title: Characterization of the interannual variability of precipitation and streamflow in Tensift and Ksob basins (Morocco) and links with the NAO
  publication-title: Atmosphere
  doi: 10.3390/atmos7060084
– volume: 63
  start-page: 1844
  year: 2018
  end-page: 1862
  ident: CR45
  article-title: Performance of temperature and radiation index models for point-scale snow water equivalent (SWE) simulations in the Moroccan high atlas mountains
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2018.1520391
– year: 2019
  ident: CR100
  article-title: The use of non-conventional water resources as a means of adaptation to drought and climate change in semi-arid regions: South-eastern Spain
  publication-title: Water
  doi: 10.3390/w11010093
– ident: CR69
– ident: CR94
– volume: 26
  start-page: 5919
  year: 2022
  end-page: 5936
  ident: CR75
  article-title: Imputation of missing precipitation data using KNN, SOM, RF, and FNN
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-07029-4
– volume: 6368
  start-page: 49
  year: 2018
  end-page: 62
  ident: CR13
  article-title: Rainfall-runoff modeling and hydrological regime analysis of a semi-arid snow-influenced catchment case of the Rheraya river (high atlas, Morocco)
  publication-title: Houille Blanche
  doi: 10.1051/lhb/2018032
– ident: CR38
– volume: 160
  start-page: 72
  year: 2015
  end-page: 86
  ident: CR4
  article-title: Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan atlas mountain range
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2015.01.002
– volume: 561
  start-page: 181
  year: 2021
  end-page: 195
  ident: CR41
  article-title: MSGP-LASSO: an improved multi-stage genetic programming model for streamflow prediction
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.02.011
– volume: 22
  start-page: 5097
  year: 2008
  end-page: 5106
  ident: CR29
  article-title: Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7136
– volume: 13
  start-page: 6308
  year: 2020
  end-page: 6325
  ident: CR61
  article-title: Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review
  publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2020.3026724
– ident: CR70
– volume: 14
  start-page: 1828
  year: 2022
  ident: CR81
  article-title: Multi-variables-driven model based on random forest and gaussian process regression for monthly streamflow forecasting
  publication-title: Water
  doi: 10.3390/w14111828
– volume: 290
  start-page: 297
  year: 2004
  end-page: 311
  ident: CR26
  article-title: Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2003.12.033
– volume: 600
  year: 2021
  ident: CR50
  article-title: Rainfall estimation using measurement report data from time-division long term evolution networks
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126530
– volume: 318
  start-page: 7
  year: 2006
  end-page: 16
  ident: CR34
  article-title: Multi-time scale stream flow predictions: the support vector machines approach
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.06.001
– ident: CR12
– volume: 36
  start-page: 5999
  year: 2022
  end-page: 6016
  ident: CR82
  article-title: Optimized model inputs selections for enhancing river streamflow forecasting accuracy using different artificial intelligence techniques
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03339-2
– volume: 568
  start-page: 462
  year: 2019
  end-page: 478
  ident: CR51
  article-title: A robust method for non-stationary streamflow prediction based on improved EMD-SVM model
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.11.015
– volume: 130
  start-page: 321
  year: 2017
  end-page: 330
  ident: CR5
  article-title: Spatial and temporal analysis of the drought vulnerability and risks over eight decades in a semi-arid region (Tensift Basin: Morocco)
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-016-1873-z
– volume: 385
  start-page: 13
  year: 2010
  end-page: 22
  ident: CR48
  article-title: Statistical downscaling of daily precipitation using support vector machines and multivariate analysis
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.01.021
– volume: 88
  year: 2023
  ident: CR79
  article-title: Study on the evolution law of performance of mid- to long-term streamflow forecasting based on data-driven models
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2022.104277
– ident: CR84
– volume: 581
  year: 2020
  ident: CR49
  article-title: A hybrid machine learning framework for real-time water level prediction in high sediment load reaches
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124422
– volume: 7
  start-page: 63
  year: 1995
  end-page: 72
  ident: CR32
  article-title: Support-vector networks
  publication-title: IEEE Expert-Intell Syst Their Appl
  doi: 10.1109/64.163674
– volume: 31
  start-page: 2761
  year: 2017
  end-page: 2775
  ident: CR58
  article-title: Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1660-3
– year: 2019
  ident: CR96
  article-title: Trend analysis of rainfall and drought over the Oum Er-Rbia river basin in morocco during 1970–2010
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4300-9
– volume: 38
  start-page: 38
  year: 2002
  end-page: 13817
  ident: CR27
  article-title: Self-organizing linear output map (solo): an artificial neural network suitable for hydrologic modeling and analysis
  publication-title: Water Resour Res
  doi: 10.1029/2001wr000795
– volume: 13
  start-page: 1
  year: 2023
  end-page: 15
  ident: CR39
  article-title: Flood influence using GIS and remote sensing based morphometric parameters: a case study in Niger delta region
  publication-title: J Asian Sci Res
  doi: 10.55493/5003.v13i1.4719
– volume: 22
  start-page: 1908
  year: 2008
  end-page: 1921
  ident: CR9
  article-title: Understanding hydrological processes with scarce data in a mountain environment
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6775
– ident: CR15
– volume: 284
  year: 2022
  ident: CR56
  article-title: Long-term performance prediction framework based on XGBoost decision tree for pultruded FRP composites exposed to water, humidity and alkaline solution
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.115184
– ident: CR64
– ident: CR99
– volume: 38
  start-page: 13073
  year: 2011
  end-page: 13081
  ident: CR85
  article-title: Monthly streamflow forecasting based on improved support vector machine model
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.114
– volume: 101
  start-page: 18
  year: 2013
  end-page: 23
  ident: CR36
  article-title: Streamflow forecasting by SVM with quantum behaved particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.017
– volume: 613
  year: 2022
  ident: CR88
  article-title: Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamflow forecasting: A comparative study
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128431
– volume: 582
  year: 2020
  ident: CR52
  article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124293
– volume: 183
  year: 2019
  ident: CR72
  article-title: Tree-ring-width based streamflow reconstruction based on the random forest algorithm for the source region of the Yangtze River, China
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104216
– volume: 35
  start-page: 571
  year: 2010
  end-page: 581
  ident: CR30
  article-title: Application of radial basis function neural networks to short-term streamflow forecasting
  publication-title: Phys Chem Earth
  doi: 10.1016/j.pce.2010.07.021
– volume: 15
  start-page: 208
  year: 2001
  end-page: 216
  ident: CR33
  article-title: Model induction with support vector machines: introduction and applications
  publication-title: J Comput Civ Eng
  doi: 10.1061/(asce)0887-3801(2001)15:3(208)
– volume: 620
  year: 2023
  ident: CR89
  article-title: Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2023.129480
– volume: 34
  start-page: 5166
  year: 2013
  end-page: 5186
  ident: CR60
  article-title: Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2013.788261
– ident: CR40
– ident: CR98
– volume: 36
  start-page: 111
  year: 1974
  end-page: 133
  ident: CR65
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– year: 2009
  ident: CR3
  article-title: Evaluation of the snowmelt runoff model in the Moroccan high atlas mountains using two snow-cover estimates evaluation of the snowmelt runoff model in the Moroccan high atlas mountains using two snow-cover estimates
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.54.6.1094
– volume: 295
  start-page: 246
  year: 2004
  end-page: 262
  ident: CR28
  article-title: Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.03.027
– volume: 12
  start-page: 31
  year: 2023
  end-page: 45
  ident: CR11
  article-title: Evaluation of extreme flow characteristics in the Casamance watershed upstream of Kolda using the IHA/RVA method
  publication-title: Int J Sustain Energy Environ Res
  doi: 10.18488/13.v12i2.3584
– ident: CR73
– year: 2019
  ident: CR83
  article-title: An ensemble decomposition-based artificial intelligence approach for daily streamflow prediction
  publication-title: Water
  doi: 10.3390/w11040709
– ident: CR90
– volume: 401
  start-page: 177
  year: 2011
  end-page: 189
  ident: CR35
  article-title: Assessment of input variables determination on the SVM model performance using PCA, gamma test, and forward selection techniques for monthly stream flow prediction
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.02.021
– volume: 61
  start-page: 1801
  year: 2016
  end-page: 1812
  ident: CR19
  article-title: Improvement of artificial neural networks to predict daily streamflow in a semi-arid area
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2015.1055271
– volume: 542
  start-page: 603
  year: 2016
  end-page: 614
  ident: CR74
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.09.035
– volume: 62
  start-page: 979
  year: 2017
  end-page: 995
  ident: CR8
  article-title: Climate change impacts on surface water resources in the Rheraya catchment (high atlas, morocco)
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2017.1283042
– year: 2023
  ident: CR24
  article-title: Deep learning approach with LSTM for daily streamflow prediction in a semi-arid area: a case study of Oum Er-Rbia river basin, Morocco
  publication-title: Water
  doi: 10.3390/w15020262
– ident: CR20
– volume: 36
  start-page: 4879
  year: 2015
  ident: 5994_CR43
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2015.1093198
– ident: 5994_CR12
  doi: 10.13140/2.1.4847.4569
– year: 2019
  ident: 5994_CR100
  publication-title: Water
  doi: 10.3390/w11010093
– volume: 596
  year: 2021
  ident: 5994_CR54
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126055
– volume: 35
  start-page: 571
  year: 2010
  ident: 5994_CR30
  publication-title: Phys Chem Earth
  doi: 10.1016/j.pce.2010.07.021
– volume: 7
  start-page: 63
  year: 1995
  ident: 5994_CR32
  publication-title: IEEE Expert-Intell Syst Their Appl
  doi: 10.1109/64.163674
– volume: 604
  year: 2022
  ident: 5994_CR17
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.127255
– year: 2007
  ident: 5994_CR1
  publication-title: Water Resour Res
  doi: 10.1029/2006WR005653
– volume: 568
  start-page: 462
  year: 2019
  ident: 5994_CR51
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.11.015
– volume: 9
  start-page: 765
  year: 2017
  ident: 5994_CR46
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-9-765-2017
– volume: 22
  start-page: 5097
  year: 2008
  ident: 5994_CR29
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7136
– volume: 620
  year: 2023
  ident: 5994_CR89
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2023.129480
– ident: 5994_CR98
– ident: 5994_CR99
  doi: 10.1007/s11431-009-0354-3
– volume: 36
  start-page: 5999
  year: 2022
  ident: 5994_CR82
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03339-2
– volume: 38
  start-page: 13073
  year: 2011
  ident: 5994_CR85
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.114
– ident: 5994_CR90
– volume: 12
  start-page: 31
  year: 2023
  ident: 5994_CR11
  publication-title: Int J Sustain Energy Environ Res
  doi: 10.18488/13.v12i2.3584
– year: 2019
  ident: 5994_CR83
  publication-title: Water
  doi: 10.3390/w11040709
– ident: 5994_CR20
  doi: 10.1016/j.procs.2017.03.081
– volume: 385
  start-page: 13
  year: 2010
  ident: 5994_CR48
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.01.021
– volume: 600
  year: 2021
  ident: 5994_CR50
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126530
– ident: 5994_CR70
– volume: 31
  start-page: 2761
  year: 2017
  ident: 5994_CR58
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1660-3
– volume: 160
  start-page: 72
  year: 2015
  ident: 5994_CR4
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2015.01.002
– ident: 5994_CR16
  doi: 10.1007/978-3-031-04855-5
– year: 2022
  ident: 5994_CR76
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-022-01815-2
– ident: 5994_CR73
  doi: 10.1016/j.egypro.2015.07.832
– volume: 29
  start-page: 286
  year: 2017
  ident: 5994_CR21
  publication-title: Am Sci Res J Eng Technol Sci
– volume: 1
  start-page: 443
  year: 2022
  ident: 5994_CR23
  publication-title: Embedded Syst IoT
  doi: 10.1007/978-981-16-8550-7
– volume: 70
  start-page: 320
  year: 1975
  ident: 5994_CR66
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1975.10479865
– year: 2019
  ident: 5994_CR96
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4300-9
– volume: 591
  year: 2020
  ident: 5994_CR62
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125321
– ident: 5994_CR84
  doi: 10.1061/41173(414)122
– volume: 14
  start-page: 1828
  year: 2022
  ident: 5994_CR81
  publication-title: Water
  doi: 10.3390/w14111828
– ident: 5994_CR18
– ident: 5994_CR92
– volume: 63
  start-page: 1844
  year: 2018
  ident: 5994_CR45
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2018.1520391
– volume: 17
  start-page: 1
  year: 2016
  ident: 5994_CR59
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-1228-x
– volume: 130
  start-page: 321
  year: 2017
  ident: 5994_CR5
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-016-1873-z
– year: 2016
  ident: 5994_CR14
  publication-title: Atmosphere
  doi: 10.3390/atmos7060084
– volume: 183
  year: 2019
  ident: 5994_CR72
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104216
– volume: 542
  start-page: 603
  year: 2016
  ident: 5994_CR74
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.09.035
– ident: 5994_CR10
– volume: 36
  start-page: 111
  year: 1974
  ident: 5994_CR65
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 290
  start-page: 297
  year: 2004
  ident: 5994_CR26
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2003.12.033
– ident: 5994_CR69
  doi: 10.13031/2013.23153
– volume: 62
  start-page: 979
  year: 2017
  ident: 5994_CR8
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2017.1283042
– ident: 5994_CR64
  doi: 10.2307/1267500
– volume: 54
  start-page: 78
  year: 2022
  ident: 5994_CR42
  publication-title: Arct Antarct Alp Res
  doi: 10.1080/15230430.2022.2046897
– volume: 530
  start-page: 829
  year: 2015
  ident: 5994_CR25
  publication-title: J Hydrol Reg
  doi: 10.1016/j.jhydrol.2015.10.038
– volume: 4
  start-page: 477
  year: 2020
  ident: 5994_CR7
  publication-title: Earth Syst Environ
  doi: 10.1007/s41748-020-00169-3
– volume: 156
  start-page: 12
  year: 2012
  ident: 5994_CR97
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2012.04.021
– volume: 590
  year: 2020
  ident: 5994_CR53
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125275
– year: 2009
  ident: 5994_CR3
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.54.6.1094
– volume: 38
  start-page: 38
  year: 2002
  ident: 5994_CR27
  publication-title: Water Resour Res
  doi: 10.1029/2001wr000795
– ident: 5994_CR57
  doi: 10.1007/978-3-030-62008-0_35
– ident: 5994_CR38
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 564
  start-page: 266
  year: 2018
  ident: 5994_CR67
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.07.004
– volume: 9
  start-page: 1
  year: 2021
  ident: 5994_CR44
  publication-title: Front Earth Sci
  doi: 10.3389/feart.2021.640250
– ident: 5994_CR94
– ident: 5994_CR15
  doi: 10.1007/978-3-030-21166-0_9
– volume: 64
  year: 2021
  ident: 5994_CR22
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102562
– volume: 63
  start-page: 1091
  year: 2018
  ident: 5994_CR80
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2018.1469756
– volume: 318
  start-page: 7
  year: 2006
  ident: 5994_CR34
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.06.001
– volume: 12
  start-page: 2191
  year: 2015
  ident: 5994_CR31
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-014-0613-0
– ident: 5994_CR6
  doi: 10.1007/s12517-021-06493-w/Published
– volume: 13
  start-page: 6308
  year: 2020
  ident: 5994_CR61
  publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2020.3026724
– ident: 5994_CR47
– ident: 5994_CR86
  doi: 10.1080/02626667.2012.714468
– volume: 581
  year: 2020
  ident: 5994_CR49
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124422
– volume: 7
  start-page: 166
  year: 2014
  ident: 5994_CR2
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2096
– ident: 5994_CR91
– ident: 5994_CR40
– volume: 45
  start-page: 201
  year: 2018
  ident: 5994_CR71
  publication-title: Adv Geosci
  doi: 10.5194/adgeo-45-201-2018
– volume: 69
  start-page: 229
  year: 2016
  ident: 5994_CR95
  publication-title: Clim Res
  doi: 10.3354/cr01409
– ident: 5994_CR77
  doi: 10.1007/978-981-99-3577-2
– volume: 26
  start-page: 5919
  year: 2022
  ident: 5994_CR75
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-07029-4
– volume: 295
  start-page: 246
  year: 2004
  ident: 5994_CR28
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.03.027
– year: 2022
  ident: 5994_CR78
  publication-title: Water.
  doi: 10.3390/w14223636
– volume: 22
  start-page: 1908
  year: 2008
  ident: 5994_CR9
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6775
– volume: 509
  start-page: 379
  year: 2014
  ident: 5994_CR37
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.11.054
– volume: 613
  year: 2022
  ident: 5994_CR88
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128431
– year: 2021
  ident: 5994_CR55
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126046
– volume: 61
  start-page: 1801
  year: 2016
  ident: 5994_CR19
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2015.1055271
– volume: 101
  start-page: 18
  year: 2013
  ident: 5994_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.017
– volume: 284
  year: 2022
  ident: 5994_CR56
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.115184
– volume: 13
  start-page: 1
  year: 2023
  ident: 5994_CR39
  publication-title: J Asian Sci Res
  doi: 10.55493/5003.v13i1.4719
– volume: 42
  year: 2022
  ident: 5994_CR68
  publication-title: J Hydrol Reg Stud
  doi: 10.1016/j.ejrh.2022.101101
– year: 2023
  ident: 5994_CR24
  publication-title: Water
  doi: 10.3390/w15020262
– volume: 40
  start-page: 16
  year: 2014
  ident: 5994_CR63
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 40
  start-page: 839
  year: 2004
  ident: 5994_CR93
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2004.10.012
– volume: 511
  start-page: 764
  year: 2014
  ident: 5994_CR87
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.01.062
– volume: 15
  start-page: 208
  year: 2001
  ident: 5994_CR33
  publication-title: J Comput Civ Eng
  doi: 10.1061/(asce)0887-3801(2001)15:3(208)
– volume: 582
  year: 2020
  ident: 5994_CR52
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124293
– volume: 6368
  start-page: 49
  year: 2018
  ident: 5994_CR13
  publication-title: Houille Blanche
  doi: 10.1051/lhb/2018032
– volume: 561
  start-page: 181
  year: 2021
  ident: 5994_CR41
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.02.011
– volume: 401
  start-page: 177
  year: 2011
  ident: 5994_CR35
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.02.021
– volume: 88
  year: 2023
  ident: 5994_CR79
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2022.104277
– volume: 34
  start-page: 5166
  year: 2013
  ident: 5994_CR60
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2013.788261
SSID ssj0003307759
ssj0002793483
ssib051670015
Score 2.3323107
Snippet Streamflow prediction is a key variable for water resources management. It becomes more important in semi-arid regions such as the Tensift river basin in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 306
SubjectTerms Algorithms
Applied and Technical Physics
Arid zones
Artificial intelligence
Basins
Chemistry/Food Science
Drought
Earth Sciences
Engineering
Environment
Geographic information systems
Hydrology
Learning algorithms
Machine learning
Materials Science
Mountains
Neural networks
Precipitation
Predictions
Regression
Resource management
River basins
Root-mean-square errors
Runoff
Semi arid areas
Semiarid zones
Stream discharge
Stream flow
Streamflow forecasting
Support vector machines
Water resources
Water resources management
Watersheds
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XOCAWmjFAkVz4AACiyRONvEJVYgtQoIDL3GLbMdBVEuyTXapyl_pn2XG6-y2lYqUQxQ7D2XG_r7xeGYY27MyyIyRMVdKooGSRBmeWRx4iHZBGRucAika-fKqf34XXzwkD37BrfXbKrs50U3URW1ojfxYEJYieIr0ZPSDU9Uo8q76EhqLbDlEpCENzwbfOn1KQopB8XD33TnZpIhdZs4I7S8uUPl8HI2LpiMnYMQRtDglLYn5699YNSeg__hMHRQNPrA1zyHh61ToH9mCrdbZ6h-ZBTfY77NZFm-oS0CWB-1kRFwbXtw6PTT2cboFtoL9m_vrA1BV4foheBX1MyCZxa-A_evBAbhyOS0oYyaNMr-oDSjIRD2Xw_onjBry9rh3UUhaAwpo4ylvDQVSAgLlUwV4XNaIlqb-xO4GZ7en59zXYeBG9MWYp7JAgWYoN0t0oEhKowOTFJmOSosIV5axxqGsNFKdKNYpXkNeJLW0aL2ofiY-s6WqruwmgyI0aaCEDFUi41RHGdLFUikdyEKjIRb1WNj98dz4JOVUK2OYz9IrOynlKKXcSSl_7bHD2T2jaYqOd3vvdILM_XBt87ly9dhRJ9x58_-ftvX-07bZSuT0qc8DscOWxs3EfkESM9a7TlPfAI8G7CM
  priority: 102
  providerName: ProQuest
Title Evaluation of the support vector regression (SVR) and the random forest (RF) models accuracy for streamflow prediction under a data-scarce basin in Morocco
URI https://link.springer.com/article/10.1007/s42452-024-05994-z
https://www.proquest.com/docview/3063939737
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD6C9gUepnETHVCdBx5AwyLN3Y9b1Q4hFaECE2-R7TgIqU2qpGUaD_sj-7M7dtPCqjEJKYqi2Lkon53vOz4-xwDHmjuxUtxnQnAyUAI3piNNHY_Yzsl8Rb9AE408uAov7vzL--C-TpNjYmFW_PfnlfHMuYyYhJlMIj57Xodm0PFCM32rG3aX4ylkl0dRwOu4mH9f-jf3vAjKFR-opZb-R_hQa0L8MgdxC9Z0vg2brzIF7sDv3jIrNxYZkmrDajYx2hmf7Lg7lvphPqU1x5Ob78NTFHlq6xEZpcUYSZzSW-DJsH-KdvmbCoVSs1Kon6YMTdCIGGej4gdOSuO9sc8yIWYlCjQTSVmlTGAkEvE95kjboCD2U8Uu3PV7t90LVq-rwJQXelMW8ZQAigkHbeg9DTIlHRWksXQzTYyVZb6krikkSRfXlxGdI53DJddkjYgw9vagkRe53gdMOypyhMc7IuB-JN2Y5F8mhHR4KsmwclvQWXzxRNVJx83aF6NkmS7ZopQQSolFKXluweflNZN5yo3_1j5cAJnU3a9KPCO8SGl5UQvOFuC-FL99t0_vq34AG65tXyFzvENoTMuZPiKRMpVtWI_739rQ_Nq7uh62bVttW4Of9oNfvT_RieS8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK9YKDAHkFqBRdZ2NvEBIQRdtrTbQ2lRb6ntOAjUJkuyS9W-Cu_AMzLjTXYBid4q5RDFjmNlJvPNZP4Ye-Z1lDqnFTdGo4ESixTPPH54iHZRoRyKQMpGHu8ORgfq42F8uMJ-dbkwFFbZycQgqPPK0T_yV5KwFMFTJm8m3zl1jSLvatdCY84W2_7sFE225vXWe6TvcyGGm_vvRrztKsCdHMgpT3SO20txF57ALY8LZyMX56kVhUd5XRTKImMai8AtlE3wGqK8ttqjLm4GqcR1r7CrSkpNIYTp8EPHv3Gfcl5aeP0WnHpaqlAJVKC9xyUye5u3E7L3yOkoOIIkpyIpip__jY1LhfcfH22AvuEtdrPVWeHtnMlusxVf3mE3_qhkeJf93FxUDYeqANQqoZlNSLeHH8EvALX_Mg-5LWH90-e9DTBlHuYhWObVCaDyjLuA9b3hBoT2PA0Y52a1cWc0BpTUYk6K4-oUJjV5l8KzKAWuBgMU6MobR4mbgMD8tQQ8xhWis6vusYNLodB9tlpWpX_AIO-7JDJS902sVWJFiuppYYyNdG7R8BM91u_eeObaoujUm-M4W5RzDlTKkEpZoFJ23mMvFvdM5iVBLpy91hEya8VDky2ZucdedsRdDv9_tYcXr_aUXRvtj3eyna3d7Ufsugi8NeCRXGOr03rmH6MCNbVPAtcCO7rsz-Q3WBQolg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAcEL9iocAcQGoFVrN2sokPCCHa0FJaoUJRb8F2bARqkyXZpWpfhTfh6ZjxJruARG-VcojixLEy4_lmMn-MPXEqyqxVMddaoYGSiAzPHG48RLvIxxZFIGUj7-6Ntg7it4fJ4RL71efCUFhlLxODoC5rS__I1yVhKYKnTNd9FxbxfiN_Of7OqYMUeVr7dhozFtlxpydovrUvtjeQ1k-FyDc_vt7iXYcBbuVITniqSlxqhityBHRl4q2JbFJmRniHstv72CCTaoMgLmKT4jVEfGWUQ71cjzKJ815il1OZRdQ9Icvf9LycDCn_pYPab8HBp2QcqoIKtP24RMbvcnhCJh85IAVHwORUMCXmZ3_j5EL5_cdfG2Awv8Gud_orvJox3E225Kpb7NofVQ1vs5-b8wriUHtADRPa6Zj0fPgRfATQuC-z8NsKVj982l8DXZXhPgTOsj4GVKRxFbC6n69BaNXTgrZ22mh7SmNACS762B_VJzBuyNMU3kXpcA1ooKBX3lpK4gQE6a8V4LFbI1Lb-g47uBAK3WXLVV25ewzKoU0jLdVQJypOjchQVfVam0iVBo1AMWDD_osXtiuQTn06jop5aedApQKpVAQqFWcD9mz-zHhWHuTcu1d6QhadqGiLBWMP2POeuIvh_892__zZHrMruEGKd9t7Ow_YVRFYa8QjucKWJ83UPURdamIeBaYF9vmid8lvKUQsww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+support+vector+regression+%28SVR%29+and+the+random+forest+%28RF%29+models+accuracy+for+streamflow+prediction+under+a+data-scarce+basin+in+Morocco&rft.jtitle=Discover+applied+sciences&rft.au=Bargam%2C+Bouchra&rft.au=Boudhar%2C+Abdelghani&rft.au=Kinnard%2C+Christophe&rft.au=Bouamri%2C+Hafsa&rft.date=2024-06-03&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=6&rft.issue=6&rft_id=info:doi/10.1007%2Fs42452-024-05994-z&rft.externalDocID=10_1007_s42452_024_05994_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon