Pearlite Spheroidisation and Microstructure Refinement Through Heavy Warm Deformation of Hot Rolled 55VNb Microalloyed Steel

The microstructure evolution of 55VNb microalloyed steel during warm deformation via single pass uniaxial compression was researched, and the effect of deformation conditions on dynamic spheroidisation of cementite lamellae and ferrite conditioning for a range of deformation temperatures (600 °C to...

Full description

Saved in:
Bibliographic Details
Published inMetallurgical and materials transactions. A, Physical metallurgy and materials science Vol. 53; no. 7; pp. 2586 - 2599
Main Authors Montaña, Y., Idoyaga, Z., Gutiérrez, I., Iza-Mendia, A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1073-5623
1543-1940
DOI10.1007/s11661-022-06688-0

Cover

Abstract The microstructure evolution of 55VNb microalloyed steel during warm deformation via single pass uniaxial compression was researched, and the effect of deformation conditions on dynamic spheroidisation of cementite lamellae and ferrite conditioning for a range of deformation temperatures (600 °C to 700 °C) and strain rates (1 to 10 s −1 ) analysed. Cementite lamellae appear to subdivide irrespective of deformation temperature with the ferrite phase penetrating the pattern formed by the cementite crystallites, in turn confirming that the dissolution of this phase during deformation is an important mechanism leading to the break-up of plates and subsequent globulisation. EBSD measurements allowed orientation gradients leading to the final subdivision of the cementite to be determined. Ferrite softening during heavy warm deformation is attributed to dynamic recovery and continuous dynamic recrystallisation, although the evolution of this phase depends, to a great extent, on the region subject to study, as confirmed by local EBSD studies. Misorientation profiles obtained in different regions of ferrite and pearlite enabled the different stages of the microstructural evolution to be monitored for each phase, this being developed via a variety of mechanisms under the same deformation conditions. Finally, the increase in low angle boundary density correlates with the Zenner–Hollomon parameter, and a linear relation between the density of low angle boundaries and steady-state stress estimated for pearlite and ferrite was found, indicating that new boundaries would have been formed dynamically during deformation. High angle boundary density also increases with deformation, although this is almost irrespective of the temperature and strain rate applied.
AbstractList The microstructure evolution of 55VNb microalloyed steel during warm deformation via single pass uniaxial compression was researched, and the effect of deformation conditions on dynamic spheroidisation of cementite lamellae and ferrite conditioning for a range of deformation temperatures (600 °C to 700 °C) and strain rates (1 to 10 s −1 ) analysed. Cementite lamellae appear to subdivide irrespective of deformation temperature with the ferrite phase penetrating the pattern formed by the cementite crystallites, in turn confirming that the dissolution of this phase during deformation is an important mechanism leading to the break-up of plates and subsequent globulisation. EBSD measurements allowed orientation gradients leading to the final subdivision of the cementite to be determined. Ferrite softening during heavy warm deformation is attributed to dynamic recovery and continuous dynamic recrystallisation, although the evolution of this phase depends, to a great extent, on the region subject to study, as confirmed by local EBSD studies. Misorientation profiles obtained in different regions of ferrite and pearlite enabled the different stages of the microstructural evolution to be monitored for each phase, this being developed via a variety of mechanisms under the same deformation conditions. Finally, the increase in low angle boundary density correlates with the Zenner–Hollomon parameter, and a linear relation between the density of low angle boundaries and steady-state stress estimated for pearlite and ferrite was found, indicating that new boundaries would have been formed dynamically during deformation. High angle boundary density also increases with deformation, although this is almost irrespective of the temperature and strain rate applied.
The microstructure evolution of 55VNb microalloyed steel during warm deformation via single pass uniaxial compression was researched, and the effect of deformation conditions on dynamic spheroidisation of cementite lamellae and ferrite conditioning for a range of deformation temperatures (600 °C to 700 °C) and strain rates (1 to 10 s−1) analysed. Cementite lamellae appear to subdivide irrespective of deformation temperature with the ferrite phase penetrating the pattern formed by the cementite crystallites, in turn confirming that the dissolution of this phase during deformation is an important mechanism leading to the break-up of plates and subsequent globulisation. EBSD measurements allowed orientation gradients leading to the final subdivision of the cementite to be determined. Ferrite softening during heavy warm deformation is attributed to dynamic recovery and continuous dynamic recrystallisation, although the evolution of this phase depends, to a great extent, on the region subject to study, as confirmed by local EBSD studies. Misorientation profiles obtained in different regions of ferrite and pearlite enabled the different stages of the microstructural evolution to be monitored for each phase, this being developed via a variety of mechanisms under the same deformation conditions. Finally, the increase in low angle boundary density correlates with the Zenner–Hollomon parameter, and a linear relation between the density of low angle boundaries and steady-state stress estimated for pearlite and ferrite was found, indicating that new boundaries would have been formed dynamically during deformation. High angle boundary density also increases with deformation, although this is almost irrespective of the temperature and strain rate applied.
Author Idoyaga, Z.
Montaña, Y.
Gutiérrez, I.
Iza-Mendia, A.
Author_xml – sequence: 1
  givenname: Y.
  surname: Montaña
  fullname: Montaña, Y.
  organization: Ceit, Universidad de Navarra, Tecnun
– sequence: 2
  givenname: Z.
  surname: Idoyaga
  fullname: Idoyaga, Z.
  organization: SIDENOR I+D S.A
– sequence: 3
  givenname: I.
  surname: Gutiérrez
  fullname: Gutiérrez, I.
  organization: Ceit, Universidad de Navarra, Tecnun
– sequence: 4
  givenname: A.
  surname: Iza-Mendia
  fullname: Iza-Mendia, A.
  email: aiza@ceit.es
  organization: Ceit, Universidad de Navarra, Tecnun
BookMark eNp9kEtr3DAQgEVIoUnaP9CTIGe3I8mS7GNI2mwhfZCkyVHI8iir4LU2klxY6I-vNy4UcshphmG-eXzH5HCMIxLygcFHBqA_ZcaUYhVwXoFSTVPBATlishYVa2s4nHPQopKKi7fkOOdHAGCtUEfkz0-0aQgF6c12jSmGPmRbQhypHXv6LbgUc0mTK1NCeo0-jLjBsdDbdYrTw5qu0P7e0XubNvQCfUybBY6ermKh13EYsKdS3n3vlmF2GOJuLt0UxOEdeePtkPH9v3hCfn35fHu-qq5-XH49P7uqnFCiVLrVvGtRtpa36KWvtXdKcY3SadErDd7XjPeda2xvlfDQMd4xx9G1wHpg4oScLnO3KT5NmIt5jFMa55WGK82bmkkJcxdfuvY_54TebFPY2LQzDMzeslksm9myebZs9lDzAnKhPDsoyYbhdVQsaJ73jA-Y_l_1CvUXdjuVGg
CitedBy_id crossref_primary_10_1016_j_jmatprotec_2023_117950
crossref_primary_10_1016_j_tafmec_2024_104353
crossref_primary_10_1007_s43452_024_01073_7
crossref_primary_10_1016_j_jmrt_2023_12_169
crossref_primary_10_3390_ma17061392
Cites_doi 10.1016/j.matdes.2017.11.019
10.1016/j.jmatprotec.2017.01.012
10.1016/j.actamat.2015.12.037
10.1007/s12613-014-0861-5
10.4028/www.scientific.net/AMR.409.666
10.1007/s11661-015-3207-7
10.2355/isijinternational.48.1126
10.1016/j.msea.2009.11.036
10.1016/j.jallcom.2014.11.170
10.1179/026708402225007195
10.1007/s11665-017-2609-7
10.1179/095066069790138056
10.1016/j.msea.2013.04.077
10.1016/j.commatsci.2010.07.016
10.1002/srin.200705857
10.1016/0001-6160(56)90140-7
10.1007/s11661-013-2066-3
10.1016/j.actamat.2004.01.024
10.1016/S1006-706X(12)60140-X
10.1016/j.jmatprotec.2017.02.020
10.1007/s11661-008-9531-4
10.1016/j.actamat.2005.05.039
10.1016/0001-6160(82)90055-4
10.1007/s11661-006-0107-x
10.1016/j.actamat.2004.10.051
10.1016/j.msea.2017.06.011
10.4028/www.scientific.net/AMR.409.829
10.4028/www.scientific.net/MSF.426-432.859
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
4T-
4U-
7SR
7XB
88I
8AF
8AO
8BQ
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
JG9
KB.
L6V
M2O
M2P
M7S
MBDVC
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0X
DOI 10.1007/s11661-022-06688-0
DatabaseName Springer Nature Open Access Journals
CrossRef
ProQuest Central (Corporate)
Docstoc
University Readers
Engineered Materials Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Materials Research Database
University Readers
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
Materials Science Collection
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Docstoc
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Open Access Journals from Springer Nature
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1543-1940
EndPage 2599
ExternalDocumentID 10_1007_s11661_022_06688_0
GrantInformation_xml – fundername: Universidad de Navarra
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
123
199
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5VS
67Z
6NX
6TJ
78A
88I
8AF
8AO
8FE
8FG
8FW
8G5
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GUQSH
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KC.
KDC
KOV
L6V
LLZTM
M2O
M2P
M2Q
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PDBOC
PF0
PQQKQ
PRG
PROAC
PT4
PT5
PTHSS
PZZ
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RWL
RZK
S0X
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TSG
TSK
TSV
TUC
TUS
U2A
UG4
ULE
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
4T-
4U-
7SR
7XB
8BQ
8FD
8FK
ABRTQ
JG9
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-7972b9e59a29ef5f47fc6627e5c73d670ff412dbc8ada63f0b12b1c2ec901d013
IEDL.DBID 8FG
ISSN 1073-5623
IngestDate Fri Jul 25 19:03:55 EDT 2025
Tue Jul 01 02:52:38 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
Fri Feb 21 02:45:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-7972b9e59a29ef5f47fc6627e5c73d670ff412dbc8ada63f0b12b1c2ec901d013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s11661-022-06688-0
PQID 2672841550
PQPubID 49316
PageCount 14
ParticipantIDs proquest_journals_2672841550
crossref_primary_10_1007_s11661_022_06688_0
crossref_citationtrail_10_1007_s11661_022_06688_0
springer_journals_10_1007_s11661_022_06688_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220700
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 7
  year: 2022
  text: 20220700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Metallurgical and materials transactions. A, Physical metallurgy and materials science
PublicationTitleAbbrev Metall Mater Trans A
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BasabeVVJonasJJGhoshCAdv. Mater. Res.201140982983410.4028/www.scientific.net/AMR.409.829
BennettCJLeenSBWilliamsEJShipwayPHHydeTHComput. Mater. Sci.20105012513710.1016/j.commatsci.2010.07.016
ZhaoM-CHanamuraTYinFQiuHNagaiKMetall. Mater. Trans. A200839A169117011:CAS:528:DC%2BD1cXmtVWqsr4%3D10.1007/s11661-008-9531-4
ArruabarrenaJLópezBRodriguez-IbabeJMMetall. Mater. Trans. A201647A41242310.1007/s11661-015-3207-7
SongRPongeDRaabeDKasparRActa Mater.2005538458581:CAS:528:DC%2BD2cXhtVyksL%2FI10.1016/j.actamat.2004.10.051
DongHSunXHuiWZhangSShiJWangMISIJ Int.200848112611321:CAS:528:DC%2BD1cXhtVegt7rN10.2355/isijinternational.48.1126
RastegariHRakhshkhorshidMSomaniMCPorterDAJ. Mater. Eng. Perform.201726217021781:CAS:528:DC%2BC2sXkvFehsro%3D10.1007/s11665-017-2609-7
PrasadCBhuyanPKaithwasCSahaRMandalSMater. Des.20181393243351:CAS:528:DC%2BC2sXhvVygsrfE10.1016/j.matdes.2017.11.019
HandaKKimuraYYasumotoYKamiokaTMishimaYMater. Sci. Eng. A20105271926193210.1016/j.msea.2009.11.036
WuTWangMGaoYLiXZhaoYZouQJ. Iron Steel Res. Int.201219606610.1016/S1006-706X(12)60140-X
TakahashiTPongeDRaabeDSteel Res. Int.20077838441:CAS:528:DC%2BD2sXjtFOmtb0%3D10.1002/srin.200705857
WangXLiHChandrashekharaKRummelSALekakhSVan AkenDCO’MalleyRJJ. Mater. Process. Technol.20172434654731:CAS:528:DC%2BC2sXhslaktLY%3D10.1016/j.jmatprotec.2017.01.012
StorojevaLPongeDKasparRRaabeDActa Mater.200452220922201:CAS:528:DC%2BD2cXjtFClsLg%3D10.1016/j.actamat.2004.01.024
UrangaPGutiérrezILópezBMater. Sci. Eng. A20135781741801:CAS:528:DC%2BC3sXptFKltrw%3D10.1016/j.msea.2013.04.077
FrankFPuttickKActa Metall.195642062101:CAS:528:DyaG28Xlt1ejsw%3D%3D10.1016/0001-6160(56)90140-7
ZhaoM-CHanamuraTQiuHYangKMetall. Mater. Trans. A200637A165716641:CAS:528:DC%2BD28Xks1Sjt7w%3D10.1007/s11661-006-0107-x
ChattopadhyaySSellarsCMActa Metall.1982301571701:CAS:528:DyaL38XovFenuw%3D%3D10.1016/0001-6160(82)90055-4
FuYYuHTaoPInt. J. Miner. Metall. Mater.20142126351:CAS:528:DC%2BC2cXivFChtLo%3D10.1007/s12613-014-0861-5
RastegariHKermanpurANajafizadehAPorterDSomaniMJ. Alloys Compd.20156261361441:CAS:528:DC%2BC2cXitV2itrjP10.1016/j.jallcom.2014.11.170
Martinez-PerezMLBorladoCRMompeanFJGarcia-HernandezMGil-SevillanoJRuiz-HerviasJAtienzaJMElicesMPengRLDaymondMRActa Mater.200553441544251:CAS:528:DC%2BD2MXot1Wqsbs%3D10.1016/j.actamat.2005.05.039
EvansRWScharningPJMater. Sci. Technol.200218138913981:CAS:528:DC%2BD3sXhtF2qsQ%3D%3D10.1179/026708402225007195
JonasJJSellarsCMTegartWJMMMetall. Rev.19691412410.1179/095066069790138056
CarusoMVerboomenHGodetSAdv. Mater. Res.201140966667110.4028/www.scientific.net/AMR.409.666
UmemotoMTodakaYTsuchiyaKMater. Sci. Forum2003426–43285986410.4028/www.scientific.net/MSF.426-432.859
WangDJinJWangXJ. Mater. Process. Technol.201724580901:CAS:528:DC%2BC2sXksVCiu7o%3D10.1016/j.jmatprotec.2017.02.020
JiaNNGuoKHeYMWangYHPengJGWangTSMater. Sci. Eng. A20177001751821:CAS:528:DC%2BC2sXpvFCgsrc%3D10.1016/j.msea.2017.06.011
ArruabarrenaJLópezBRodriguez-IbabeJMMetall. Mater. Trans. A201445A1470148410.1007/s11661-013-2066-3
KappMWHohenwarterAWursterSYangBPippanRActa Mater.20161062392481:CAS:528:DC%2BC28Xht1Gjsbs%3D10.1016/j.actamat.2015.12.037
F Frank (6688_CR19) 1956; 4
JJ Jonas (6688_CR28) 1969; 14
M Caruso (6688_CR4) 2011; 409
H Dong (6688_CR5) 2008; 48
CJ Bennett (6688_CR24) 2010; 50
D Wang (6688_CR26) 2017; 245
T Takahashi (6688_CR25) 2007; 78
L Storojeva (6688_CR13) 2004; 52
T Wu (6688_CR18) 2012; 19
H Rastegari (6688_CR8) 2015; 626
R Song (6688_CR16) 2005; 53
X Wang (6688_CR22) 2017; 243
P Uranga (6688_CR23) 2013; 578
C Prasad (6688_CR9) 2018; 139
H Rastegari (6688_CR27) 2017; 26
NN Jia (6688_CR3) 2017; 700
M-C Zhao (6688_CR12) 2008; 39A
ML Martinez-Perez (6688_CR14) 2005; 53
VV Basabe (6688_CR1) 2011; 409
RW Evans (6688_CR20) 2002; 18
M Umemoto (6688_CR15) 2003; 426–432
J Arruabarrena (6688_CR6) 2016; 47A
MW Kapp (6688_CR21) 2016; 106
Y Fu (6688_CR2) 2014; 21
J Arruabarrena (6688_CR7) 2014; 45A
M-C Zhao (6688_CR11) 2006; 37A
K Handa (6688_CR10) 2010; 527
S Chattopadhyay (6688_CR17) 1982; 30
References_xml – reference: ZhaoM-CHanamuraTQiuHYangKMetall. Mater. Trans. A200637A165716641:CAS:528:DC%2BD28Xks1Sjt7w%3D10.1007/s11661-006-0107-x
– reference: WangDJinJWangXJ. Mater. Process. Technol.201724580901:CAS:528:DC%2BC2sXksVCiu7o%3D10.1016/j.jmatprotec.2017.02.020
– reference: ChattopadhyaySSellarsCMActa Metall.1982301571701:CAS:528:DyaL38XovFenuw%3D%3D10.1016/0001-6160(82)90055-4
– reference: ArruabarrenaJLópezBRodriguez-IbabeJMMetall. Mater. Trans. A201445A1470148410.1007/s11661-013-2066-3
– reference: RastegariHRakhshkhorshidMSomaniMCPorterDAJ. Mater. Eng. Perform.201726217021781:CAS:528:DC%2BC2sXkvFehsro%3D10.1007/s11665-017-2609-7
– reference: DongHSunXHuiWZhangSShiJWangMISIJ Int.200848112611321:CAS:528:DC%2BD1cXhtVegt7rN10.2355/isijinternational.48.1126
– reference: FrankFPuttickKActa Metall.195642062101:CAS:528:DyaG28Xlt1ejsw%3D%3D10.1016/0001-6160(56)90140-7
– reference: FuYYuHTaoPInt. J. Miner. Metall. Mater.20142126351:CAS:528:DC%2BC2cXivFChtLo%3D10.1007/s12613-014-0861-5
– reference: TakahashiTPongeDRaabeDSteel Res. Int.20077838441:CAS:528:DC%2BD2sXjtFOmtb0%3D10.1002/srin.200705857
– reference: StorojevaLPongeDKasparRRaabeDActa Mater.200452220922201:CAS:528:DC%2BD2cXjtFClsLg%3D10.1016/j.actamat.2004.01.024
– reference: ZhaoM-CHanamuraTYinFQiuHNagaiKMetall. Mater. Trans. A200839A169117011:CAS:528:DC%2BD1cXmtVWqsr4%3D10.1007/s11661-008-9531-4
– reference: JiaNNGuoKHeYMWangYHPengJGWangTSMater. Sci. Eng. A20177001751821:CAS:528:DC%2BC2sXpvFCgsrc%3D10.1016/j.msea.2017.06.011
– reference: PrasadCBhuyanPKaithwasCSahaRMandalSMater. Des.20181393243351:CAS:528:DC%2BC2sXhvVygsrfE10.1016/j.matdes.2017.11.019
– reference: KappMWHohenwarterAWursterSYangBPippanRActa Mater.20161062392481:CAS:528:DC%2BC28Xht1Gjsbs%3D10.1016/j.actamat.2015.12.037
– reference: WuTWangMGaoYLiXZhaoYZouQJ. Iron Steel Res. Int.201219606610.1016/S1006-706X(12)60140-X
– reference: ArruabarrenaJLópezBRodriguez-IbabeJMMetall. Mater. Trans. A201647A41242310.1007/s11661-015-3207-7
– reference: Martinez-PerezMLBorladoCRMompeanFJGarcia-HernandezMGil-SevillanoJRuiz-HerviasJAtienzaJMElicesMPengRLDaymondMRActa Mater.200553441544251:CAS:528:DC%2BD2MXot1Wqsbs%3D10.1016/j.actamat.2005.05.039
– reference: WangXLiHChandrashekharaKRummelSALekakhSVan AkenDCO’MalleyRJJ. Mater. Process. Technol.20172434654731:CAS:528:DC%2BC2sXhslaktLY%3D10.1016/j.jmatprotec.2017.01.012
– reference: SongRPongeDRaabeDKasparRActa Mater.2005538458581:CAS:528:DC%2BD2cXhtVyksL%2FI10.1016/j.actamat.2004.10.051
– reference: JonasJJSellarsCMTegartWJMMMetall. Rev.19691412410.1179/095066069790138056
– reference: EvansRWScharningPJMater. Sci. Technol.200218138913981:CAS:528:DC%2BD3sXhtF2qsQ%3D%3D10.1179/026708402225007195
– reference: RastegariHKermanpurANajafizadehAPorterDSomaniMJ. Alloys Compd.20156261361441:CAS:528:DC%2BC2cXitV2itrjP10.1016/j.jallcom.2014.11.170
– reference: BennettCJLeenSBWilliamsEJShipwayPHHydeTHComput. Mater. Sci.20105012513710.1016/j.commatsci.2010.07.016
– reference: UrangaPGutiérrezILópezBMater. Sci. Eng. A20135781741801:CAS:528:DC%2BC3sXptFKltrw%3D10.1016/j.msea.2013.04.077
– reference: UmemotoMTodakaYTsuchiyaKMater. Sci. Forum2003426–43285986410.4028/www.scientific.net/MSF.426-432.859
– reference: CarusoMVerboomenHGodetSAdv. Mater. Res.201140966667110.4028/www.scientific.net/AMR.409.666
– reference: HandaKKimuraYYasumotoYKamiokaTMishimaYMater. Sci. Eng. A20105271926193210.1016/j.msea.2009.11.036
– reference: BasabeVVJonasJJGhoshCAdv. Mater. Res.201140982983410.4028/www.scientific.net/AMR.409.829
– volume: 139
  start-page: 324
  year: 2018
  ident: 6688_CR9
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.019
– volume: 243
  start-page: 465
  year: 2017
  ident: 6688_CR22
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.01.012
– volume: 106
  start-page: 239
  year: 2016
  ident: 6688_CR21
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.12.037
– volume: 21
  start-page: 26
  year: 2014
  ident: 6688_CR2
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-014-0861-5
– volume: 409
  start-page: 666
  year: 2011
  ident: 6688_CR4
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.409.666
– volume: 47A
  start-page: 412
  year: 2016
  ident: 6688_CR6
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-015-3207-7
– volume: 48
  start-page: 1126
  year: 2008
  ident: 6688_CR5
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.48.1126
– volume: 527
  start-page: 1926
  year: 2010
  ident: 6688_CR10
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2009.11.036
– volume: 626
  start-page: 136
  year: 2015
  ident: 6688_CR8
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.11.170
– volume: 18
  start-page: 1389
  year: 2002
  ident: 6688_CR20
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708402225007195
– volume: 26
  start-page: 2170
  year: 2017
  ident: 6688_CR27
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-017-2609-7
– volume: 14
  start-page: 1
  year: 1969
  ident: 6688_CR28
  publication-title: Metall. Rev.
  doi: 10.1179/095066069790138056
– volume: 578
  start-page: 174
  year: 2013
  ident: 6688_CR23
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.04.077
– volume: 50
  start-page: 125
  year: 2010
  ident: 6688_CR24
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.07.016
– volume: 78
  start-page: 38
  year: 2007
  ident: 6688_CR25
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.200705857
– volume: 4
  start-page: 206
  year: 1956
  ident: 6688_CR19
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(56)90140-7
– volume: 45A
  start-page: 1470
  year: 2014
  ident: 6688_CR7
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-013-2066-3
– volume: 52
  start-page: 2209
  year: 2004
  ident: 6688_CR13
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.01.024
– volume: 19
  start-page: 60
  year: 2012
  ident: 6688_CR18
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(12)60140-X
– volume: 245
  start-page: 80
  year: 2017
  ident: 6688_CR26
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.02.020
– volume: 39A
  start-page: 1691
  year: 2008
  ident: 6688_CR12
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-008-9531-4
– volume: 53
  start-page: 4415
  year: 2005
  ident: 6688_CR14
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.05.039
– volume: 30
  start-page: 157
  year: 1982
  ident: 6688_CR17
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(82)90055-4
– volume: 37A
  start-page: 1657
  year: 2006
  ident: 6688_CR11
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-006-0107-x
– volume: 53
  start-page: 845
  year: 2005
  ident: 6688_CR16
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.10.051
– volume: 700
  start-page: 175
  year: 2017
  ident: 6688_CR3
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.06.011
– volume: 409
  start-page: 829
  year: 2011
  ident: 6688_CR1
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.409.829
– volume: 426–432
  start-page: 859
  year: 2003
  ident: 6688_CR15
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.426-432.859
SSID ssj0001936
Score 2.3515365
Snippet The microstructure evolution of 55VNb microalloyed steel during warm deformation via single pass uniaxial compression was researched, and the effect of...
The microstructure evolution of 55VNb microalloyed steel during warm deformation via single pass uniaxial compression was researched, and the effect of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2586
SubjectTerms Boundaries
Cementite
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Deformation
Deformation effects
Density
Evolution
Ferrite
High strength low alloy steels
Materials Science
Metallic Materials
Microalloying
Microstructure
Misalignment
Nanotechnology
Original Research Article
Pearlite
Spheroidizing
Strain rate
Structural Materials
Surfaces and Interfaces
Thin Films
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWWDgjSgU5IENXDVObMcjgkIFgoG2UKbITwlRGlQCUhE_HjuPFhAgsSa2lfgu951zd98BsB9qTqIwpshiJVAUY4G4tRRRBy-RJDpiebeGyyva6UfnAzIoi8Keq2z3KiSZW-pZsVvgsAT57HMHk06-7qA-T4KYxzUwf3R2d9GeWmDnlNAi1zBEHt_LYpmfV_kKSDMv81tgNMeb02XQr560SDN5aL5ksqnevpE4_vdVVsBS6YDCo0JjVsGcGa2BxU-0hOvg3dnJsa9Nhl1POpDe6zLnB4qRhpc-ha-gnX0ZG3htrJvp_zHCXtHzB3aMeJ3AWzF-hCdmWh0JUws7aQY9DbjRkJCbK1ks5mP_E3epmxkz3AD903bvuIPKLg1IhTTMEOMMS24IF5gbS2zErPKs8oYoFmrKWtZGAdZSxUILGtqWDLAMFDbKuSLaeaCboDZKR2YLQMoJC33glVPrI9XCGQjDuFKBUCSWpA6CSlSJKinMfSeNYTIjX_Y7m7idTfKdTVp1cDCd81QQePw5ulFpQFJ-zM8JpsyBuD_L1cFhJdDZ7d9X2_7f8B2wgHOd8MnADVBzkjS7zuXJ5F6p4R-ISvWK
  priority: 102
  providerName: Springer Nature
Title Pearlite Spheroidisation and Microstructure Refinement Through Heavy Warm Deformation of Hot Rolled 55VNb Microalloyed Steel
URI https://link.springer.com/article/10.1007/s11661-022-06688-0
https://www.proquest.com/docview/2672841550
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoXNoDKrRVw0s-cKNWs961vT6hEBIiEFEFpKWnldcPCQmyEAISUn88M7tOApXgsit51z54xjOfPDPfELKbOi2yNJcscGtYlnPDdAiSSXAvWSlcpupuDadDORhlx5fiMl643ce0yplNrA21qyzekf_kUoElRUC9f3vHsGsURldjC40PZCUBT4N6nveP5pYYwIlscg5Thn4-Fs00pXMJeCaGuezgdEFb2q8d0wJt_hcgrf1O_zNZjYCRdhoJr5ElP14nn17QCH4h_8CuTbCWmJ4jSUB15WKODjVjR08x5a6hiX2YeHrmA8zEO0F60fTooQNvHp_oHzO5oYd-Xs1Iq0AH1ZQibbd3VIjfw7JZDGP1TzB0PvX--isZ9XsX3QGLXRWYTWU6ZUorXmovtOHaBxEyFSyywHthVeqkaoeQJdyVNjfOyDS0y4SXieXeAnRwgBi_keVxNfbfCZVaqBQDpVoGjCwbONBeaWsTY0VeihZJZlta2Eg5jp0vrosFWTKKoQAxFLUYinaL7M3n3DaEG-_-vTWTVBEP332xUJUW-TGT3uLz26ttvL_aJvnIa4XBZN0tsgyS89sASablTq13O2Slc_T3pAfvg97w1xmMdmUXniPeeQb1NeCA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE-RUsAHOIFF1ru24wNCQFttaROhNoXetl4_JKSSbdMAisRv4jcys48EkOit1931HDzjmVnPN98APEu9kVk6VDwKZ3k2FJabGBVXGF6yUvpM19MaRmOVH2UfjuXxGvzqemEIVtn5xNpR-8rRHfkroTR6Ukqo35ydc5oaRdXVboRGYxZ7YfEDf9kuXu9uoX6fC7GzPXmf83aqAHepSudcGy1KE6SxwoQoY6ajIxb0IJ1OvdKDGLNE-NINrbcqjYMyEWXiRHAYOj1mTCj3Gqxn1NHag_V32-OPB0vfj-mQalCOKafMom3TaZr1EoyFnNDzGObRPgd_h8JVfvtPSbaOdDu34VaborK3jU3dgbUwvQs3_yAuvAc_0ZPOqHuZHRItQfXFt6ggZqeejQjk1xDTfpsFdhAirqRbSDZppgKxPNjvC_bZzr6yrbDsn2RVZHk1Z0QUHjyT8tO4bIQROmCBjw7nIZzeh6Mr2fEH0JtW0_AQmDJSp1SaNSpSLduiCwnaOJdYJ4el7EPSbWnhWpJzmrVxWqzomUkNBaqhqNVQDPrwYrnmrKH4uPTrzU5TRXvcL4qVcfbhZae91ev_S9u4XNpTuJ5PRvvF_u547xHcELXxEFR4E3qoxfAYE6J5-aS1QgYnV234vwFfkhp4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIiF6QDxFoIAPcAKrWXttxwdUIUJIKY0QbaG3xeuHVKlkSxqoIvHL-HXM7CMBJHrrdXc9B8-3M7Prb74BeCqDVbkcaJ6EdzwfCMdtSpprTC95qUJu6mkNexM9PszfHamjNfjV9cIQrbKLiXWgDpWnf-RbQhuMpFRQb6WWFvFhONo-_cZpghSdtHbjNBqI7MbFOX6-nb3cGaKvnwkxenPweszbCQPcSy3n3FgjShuVdcLGpFJukidF9Ki8kUGbfkp5JkLpBy44LVO_zESZeRE9ptGA1RPavQJXjURD1KU-ervMAlgY6YbvKDnVGG3DTtO2l2FW5MSjx4SPSO3_nRRXle4_h7N1zhvdhBttscpeNei6BWtxehs2_pAwvAM_MabOqI-Z7ZNAQXUcWn4Qc9PA9oju10jUfp9F9jEmXEn_I9lBMx-IjaP7sWCf3ewrG8ZlJyWrEhtXc0aS4TEwpT5NysYY8QQWeGl_HuPJXTi8lP2-B-vTahrvA9NWGUmHtFYnOtV2GEyisd5nzqtBqXqQdVta-FbunKZunBQroWZyQ4FuKGo3FP0ePF-uOW3EPi58erPzVNG--GfFCqY9eNF5b3X7_9YeXGztCVxDuBfvdya7D-G6qLFDnOFNWEcnxkdYGc3LxzUEGXy5bMz_Bp6LHUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pearlite+Spheroidisation+and+Microstructure+Refinement+Through+Heavy+Warm+Deformation+of+Hot+Rolled+55VNb+Microalloyed+Steel&rft.jtitle=Metallurgical+and+materials+transactions.+A%2C+Physical+metallurgy+and+materials+science&rft.au=Monta%C3%B1a%2C+Y&rft.au=Idoyaga%2C+Z&rft.au=Guti%C3%A9rrez%2C+I&rft.au=Iza-Mendia%2C+A&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1073-5623&rft.eissn=1543-1940&rft.volume=53&rft.issue=7&rft.spage=2586&rft.epage=2599&rft_id=info:doi/10.1007%2Fs11661-022-06688-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-5623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-5623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-5623&client=summon