Development of epoxy resin-based microfluidic devices using CO2 laser ablation for DNA amplification point-of-care (POC) applications
Microfluidic devices are a rising technology to automatize chemical and biological operations. In this context, laser ablation has significant potential for polymer-based microfluidic platforms’ fast and economical manufacturing. Nevertheless, the manufacturing of epoxy-based microfluidic chips is c...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 120; no. 7-8; pp. 4355 - 4372 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microfluidic devices are a rising technology to automatize chemical and biological operations. In this context, laser ablation has significant potential for polymer-based microfluidic platforms’ fast and economical manufacturing. Nevertheless, the manufacturing of epoxy-based microfluidic chips is considered highly cost full due to the demand for cleanroom facilities that utilize expensive equipment and lengthy processes. Therefore, this study targeted investigating the feasibility of epoxy resins to be fabricated as a lab-on-chip using carbon dioxide laser ablation. The chemical structural properties and thermal stability of the plain epoxy resins were characterized by Fourier transform infrared spectral analysis (FT-IR) and thermogravimetric analysis (TGA). Moreover, a specific migration test was performed to quantify potential migrants by gas chromatography coupled to mass spectrometry (GC–MS) to prove that the cured epoxy resin would not release unreacted monomers to the biological solution test, which caused inhibition of the sensitive biological reactions. By investigating the impact of this process on microchannels’ dimensions and quality, a laser technique using CO
2
laser was used in vector mode to engrave into a transparent epoxy resin chip. The resulting microchannels were characterized using 3D laser microscopy. The outcomes of this study showed considerable potential for laser ablation in machining the epoxy-based chips, whereas the microchannels machined by laser processing at an input power of 1.8 W and scanning speed of 5 mm/s have an aspect ratio of about 1.19 and a reasonable surface roughness (Ra) of ~ 15 µm. Meanwhile, the bulge height was 0.027 µm with no clogging, and HAZ was ~ 18 µm. This study validated the feasibility of quick and cost-effective CO
2
laser microfabrication to develop epoxy resin-based microfluidic chips without the need for cleanroom facilities that require expensive equipment and lengthy process. |
---|---|
AbstractList | Microfluidic devices are a rising technology to automatize chemical and biological operations. In this context, laser ablation has significant potential for polymer-based microfluidic platforms’ fast and economical manufacturing. Nevertheless, the manufacturing of epoxy-based microfluidic chips is considered highly cost full due to the demand for cleanroom facilities that utilize expensive equipment and lengthy processes. Therefore, this study targeted investigating the feasibility of epoxy resins to be fabricated as a lab-on-chip using carbon dioxide laser ablation. The chemical structural properties and thermal stability of the plain epoxy resins were characterized by Fourier transform infrared spectral analysis (FT-IR) and thermogravimetric analysis (TGA). Moreover, a specific migration test was performed to quantify potential migrants by gas chromatography coupled to mass spectrometry (GC–MS) to prove that the cured epoxy resin would not release unreacted monomers to the biological solution test, which caused inhibition of the sensitive biological reactions. By investigating the impact of this process on microchannels’ dimensions and quality, a laser technique using CO2 laser was used in vector mode to engrave into a transparent epoxy resin chip. The resulting microchannels were characterized using 3D laser microscopy. The outcomes of this study showed considerable potential for laser ablation in machining the epoxy-based chips, whereas the microchannels machined by laser processing at an input power of 1.8 W and scanning speed of 5 mm/s have an aspect ratio of about 1.19 and a reasonable surface roughness (Ra) of ~ 15 µm. Meanwhile, the bulge height was 0.027 µm with no clogging, and HAZ was ~ 18 µm. This study validated the feasibility of quick and cost-effective CO2 laser microfabrication to develop epoxy resin-based microfluidic chips without the need for cleanroom facilities that require expensive equipment and lengthy process. Microfluidic devices are a rising technology to automatize chemical and biological operations. In this context, laser ablation has significant potential for polymer-based microfluidic platforms’ fast and economical manufacturing. Nevertheless, the manufacturing of epoxy-based microfluidic chips is considered highly cost full due to the demand for cleanroom facilities that utilize expensive equipment and lengthy processes. Therefore, this study targeted investigating the feasibility of epoxy resins to be fabricated as a lab-on-chip using carbon dioxide laser ablation. The chemical structural properties and thermal stability of the plain epoxy resins were characterized by Fourier transform infrared spectral analysis (FT-IR) and thermogravimetric analysis (TGA). Moreover, a specific migration test was performed to quantify potential migrants by gas chromatography coupled to mass spectrometry (GC–MS) to prove that the cured epoxy resin would not release unreacted monomers to the biological solution test, which caused inhibition of the sensitive biological reactions. By investigating the impact of this process on microchannels’ dimensions and quality, a laser technique using CO 2 laser was used in vector mode to engrave into a transparent epoxy resin chip. The resulting microchannels were characterized using 3D laser microscopy. The outcomes of this study showed considerable potential for laser ablation in machining the epoxy-based chips, whereas the microchannels machined by laser processing at an input power of 1.8 W and scanning speed of 5 mm/s have an aspect ratio of about 1.19 and a reasonable surface roughness (Ra) of ~ 15 µm. Meanwhile, the bulge height was 0.027 µm with no clogging, and HAZ was ~ 18 µm. This study validated the feasibility of quick and cost-effective CO 2 laser microfabrication to develop epoxy resin-based microfluidic chips without the need for cleanroom facilities that require expensive equipment and lengthy process. Abstract Microfluidic devices are a rising technology to automatize chemical and biological operations. In this context, laser ablation has significant potential for polymer-based microfluidic platforms’ fast and economical manufacturing. Nevertheless, the manufacturing of epoxy-based microfluidic chips is considered highly cost full due to the demand for cleanroom facilities that utilize expensive equipment and lengthy processes. Therefore, this study targeted investigating the feasibility of epoxy resins to be fabricated as a lab-on-chip using carbon dioxide laser ablation. The chemical structural properties and thermal stability of the plain epoxy resins were characterized by Fourier transform infrared spectral analysis (FT-IR) and thermogravimetric analysis (TGA). Moreover, a specific migration test was performed to quantify potential migrants by gas chromatography coupled to mass spectrometry (GC–MS) to prove that the cured epoxy resin would not release unreacted monomers to the biological solution test, which caused inhibition of the sensitive biological reactions. By investigating the impact of this process on microchannels’ dimensions and quality, a laser technique using CO 2 laser was used in vector mode to engrave into a transparent epoxy resin chip. The resulting microchannels were characterized using 3D laser microscopy. The outcomes of this study showed considerable potential for laser ablation in machining the epoxy-based chips, whereas the microchannels machined by laser processing at an input power of 1.8 W and scanning speed of 5 mm/s have an aspect ratio of about 1.19 and a reasonable surface roughness (Ra) of ~ 15 µm. Meanwhile, the bulge height was 0.027 µm with no clogging, and HAZ was ~ 18 µm. This study validated the feasibility of quick and cost-effective CO 2 laser microfabrication to develop epoxy resin-based microfluidic chips without the need for cleanroom facilities that require expensive equipment and lengthy process. |
Author | Mansour, Heba El-Bab, Ahmed M. Fath Abdel-Mawgood, Ahmed L. Soliman, Emad A. |
Author_xml | – sequence: 1 givenname: Heba orcidid: 0000-0003-4438-3317 surname: Mansour fullname: Mansour, Heba email: heba.mansour@ejust.edu.eg organization: Biotechnology Department, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Department of Polymeric Materials, Advanced Technology and New Material Research Institute, City of Scientific Research and Technological Applications (SRTA-City) – sequence: 2 givenname: Emad A. surname: Soliman fullname: Soliman, Emad A. organization: Department of Polymeric Materials, Advanced Technology and New Material Research Institute, City of Scientific Research and Technological Applications (SRTA-City) – sequence: 3 givenname: Ahmed M. Fath surname: El-Bab fullname: El-Bab, Ahmed M. Fath organization: Mechatronics and Robotics Department, School of Innovative Design Engineering, Egypt-Japan University of Science and Technology E-JUST – sequence: 4 givenname: Ahmed L. surname: Abdel-Mawgood fullname: Abdel-Mawgood, Ahmed L. organization: Biotechnology Department, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST) |
BookMark | eNp9kMtOxDAMRSMEEsPAD7CKxAYWASdp03aJhqeEGBawjtLWGQV1mpJ0eHwA_02gSOxYWbLPvbbvHtnufY-EHHI45QDFWQTgBTAQgkFZVYK9bZEZz6RkEni-TWYgVMlkocpdshfjc8IVV-WMfF7gK3Z-WGM_Um8pDv79gwaMrme1idjStWuCt93Gta6hLb66BiPdpPmKLpaCdgkK1NSdGZ3vqfWBXtyfU7MeOmddM3UH7_qRecsaE5AePywXJ9QMiZjmcZ_sWNNFPPitc_J0dfm4uGF3y-vbxfkda6SSI0vnq7oqs9bmdd3kCIqLQkhV8LbOq6Y0qqwBa1lUhueYZa0CaRJpEbBquZRzcjT5DsG_bDCO-tlvQp9WaqEUZBVUoBIlJio9HmNAq4fg1iZ8aA76O249xa1T3Ponbv2WRHISxQT3Kwx_1v-ovgC9qoZl |
CitedBy_id | crossref_primary_10_3389_fbioe_2023_1176557 crossref_primary_10_3390_polym15204077 crossref_primary_10_1038_s41598_023_39054_0 crossref_primary_10_1177_09544062241254728 crossref_primary_10_3390_polym15163424 crossref_primary_10_1088_2631_8695_ad248b crossref_primary_10_3390_mi14071340 crossref_primary_10_1016_j_cemconcomp_2023_105179 crossref_primary_10_1039_D3LC00429E crossref_primary_10_1088_1361_6439_ad104b crossref_primary_10_1186_s40643_024_00746_8 |
Cites_doi | 10.3390/s100100684 10.1016/j.enconman.2010.06.012 10.1088/0960-1317/14/2/003 10.1007/s00542-017-3282-3 10.1016/j.jpha.2018.12.001 10.1016/j.jmapro.2017.11.003 10.3390/pharmaceutics10040267 10.1002/pi.5834 10.1590/S0104-14282006000200007 10.1039/c7lc00800g 10.1088/0960-1317/23/4/047001 10.1016/j.phpro.2011.03.071 10.3390/ijms22042011 10.1088/0960-1317/15/10/013 10.1016/j.supflu.2015.08.019 10.1007/s00170-020-06065-4 10.1038/nature05058 10.1088/0960-1317/27/1/015021 10.1063/1.4882776 10.1038/s41598-020-71745-w 10.3144/expresspolymlett.2013.54 10.4028/www.scientific.net/amm.799-800.407 10.1007/978-1-0716-1402-0_4 10.1016/j.supflu.2005.05.005 10.3390/mi7120225 10.1186/s10033-018-0204-y 10.1002/jbm.b.33069 10.1016/j.polymer.2011.05.029 10.1533/9781845699819.7.575 10.5772/36323 10.3390/s21113917 10.3390/mi10120830 10.14288/1.0354561 10.1016/j.jbiotec.2005.12.033 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PQEST PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-022-08992-w |
DatabaseName | Springer Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Engineering Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 4372 |
ExternalDocumentID | 10_1007_s00170_022_08992_w |
GrantInformation_xml | – fundername: Egypt Japan University (E-JUST) – fundername: Ministry of Higher Education funderid: http://dx.doi.org/10.13039/501100002385 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c363t-7686b984df5bbc5e0612723671db59c8a68b0eb379a15e44d603abbcfe0e9d133 |
IEDL.DBID | AGYKE |
ISSN | 0268-3768 |
IngestDate | Thu Oct 10 17:12:14 EDT 2024 Thu Sep 12 19:27:49 EDT 2024 Sat Dec 16 12:08:28 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7-8 |
Keywords | Microchannel dimensions laser ablation Micromachining Epoxy-based chips CO Microchannel quality Microfluidics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-7686b984df5bbc5e0612723671db59c8a68b0eb379a15e44d603abbcfe0e9d133 |
ORCID | 0000-0003-4438-3317 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://link.springer.com/10.1007/s00170-022-08992-w |
PQID | 2660490906 |
PQPubID | 2044010 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2660490906 crossref_primary_10_1007_s00170_022_08992_w springer_journals_10_1007_s00170_022_08992_w |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | HottaH, HyugaM. Hottaand K. Hirao (CR36) 2020; 10 OliaeiB, Yesil-Celiktas (CR24) 2016; 107 CR17 CR16 CR15 CR35 CR33 LiesX, ZhangH. Lyuand H. Qin (CR34) 2019; 68 CR10 Chung, Linand, Huang (CR32) 2005; 15 CR31 KangW, WangH. Liuand X. Gao (CR9) 2010; 51 Whitesides (CR4) 2006; 442 Zhang (CR22) 2014; 8 Prakash, Kumar (CR28) 2018; 31 Zainal, AlamA. Kouzaniand I. Gibson (CR11) 2017; 27 Han, Yoshidaand, Kim (CR14) 2020; 110 Romão (CR19) 2006; 16 Chiesa (CR3) 2018 Toossi, Daneshmandand, Sameoto (CR13) 2013; 23 Pan (CR7) 2018; 18 Niculescu, ChircovA, Grumezescu (CR2) 2021; 22 CR6 CR5 CR8 Cui, Wang (CR1) 2019; 9 CR29 Snakenborg, Klankand, Kutter (CR30) 2004; 14 CR27 CR26 CR25 CR23 Cai (CR12) 2017; 23 CR21 PetersenA, Canisius (CR20) 2011; 1 ZlatkovicM, CakicS. Cakic C. Lacnjevacand Z. Rajic (CR18) 2010; 10 CKYC Chung (8992_CR32) 2005; 15 E Chiesa (8992_CR3) 2018 DK Han (8992_CR14) 2020; 110 AGC Niculescu (8992_CR2) 2021; 22 BMV Romão (8992_CR19) 2006; 16 YCSNB OliaeiB (8992_CR24) 2016; 107 8992_CR17 ECM PetersenA (8992_CR20) 2011; 1 SAY HottaH (8992_CR36) 2020; 10 8992_CR16 R Zhang (8992_CR22) 2014; 8 S Prakash (8992_CR28) 2018; 31 8992_CR15 8992_CR10 8992_CR31 8992_CR35 8992_CR33 FYH KangW (8992_CR9) 2010; 51 MMIMNH Zainal (8992_CR11) 2017; 27 J Cai (8992_CR12) 2017; 23 R-K LiesX (8992_CR34) 2019; 68 LJ Pan (8992_CR7) 2018; 18 AM Toossi (8992_CR13) 2013; 23 NGS ZlatkovicM (8992_CR18) 2010; 10 8992_CR29 8992_CR8 8992_CR27 8992_CR26 8992_CR6 8992_CR5 8992_CR21 GM Whitesides (8992_CR4) 2006; 442 DH Snakenborg (8992_CR30) 2004; 14 8992_CR25 P Cui (8992_CR1) 2019; 9 8992_CR23 |
References_xml | – volume: 10 start-page: 684 issue: 1 year: 2010 end-page: 696 ident: CR18 article-title: Fast fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts publication-title: Sensors doi: 10.3390/s100100684 contributor: fullname: CakicS. Cakic C. Lacnjevacand Z. Rajic – volume: 51 start-page: 2757 issue: 12 year: 2010 end-page: 2761 ident: CR9 article-title: Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.06.012 contributor: fullname: WangH. Liuand X. Gao – volume: 14 start-page: 182 issue: 2 year: 2004 end-page: 189 ident: CR30 article-title: Microstructure fabrication with a CO laser system publication-title: J Micromechanics Microengineering doi: 10.1088/0960-1317/14/2/003 contributor: fullname: Kutter – volume: 23 start-page: 5063 issue: 10 year: 2017 end-page: 5069 ident: CR12 article-title: Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO laser ablation publication-title: Microsyst Technol doi: 10.1007/s00542-017-3282-3 contributor: fullname: Cai – volume: 9 start-page: 238 issue: 4 year: 2019 end-page: 247 ident: CR1 article-title: Application of microfluidic chip technology in pharmaceutical analysis: a review publication-title: J Pharm Anal doi: 10.1016/j.jpha.2018.12.001 contributor: fullname: Wang – volume: 31 start-page: 116 year: 2018 end-page: 123 ident: CR28 article-title: Pulse smearing and profile generation in CO laser micromachining on PMMA via raster scanning publication-title: J Manuf Process doi: 10.1016/j.jmapro.2017.11.003 contributor: fullname: Kumar – year: 2018 ident: CR3 publication-title: The microfluidic technique and the manufacturing of polysaccharide nanoparticles doi: 10.3390/pharmaceutics10040267 contributor: fullname: Chiesa – ident: CR16 – ident: CR10 – volume: 68 start-page: 1391 issue: 8 year: 2019 end-page: 1401 ident: CR34 article-title: Laser ablation of polymers: a review publication-title: Polym Int doi: 10.1002/pi.5834 contributor: fullname: ZhangH. Lyuand H. Qin – ident: CR33 – volume: 16 start-page: 94 issue: 2 year: 2006 end-page: 98 ident: CR19 article-title: Characterization of the curing agents used in epoxy resins with TG/FT-IR technique publication-title: Polimeros doi: 10.1590/S0104-14282006000200007 contributor: fullname: Romão – volume: 18 start-page: 41 issue: 1 year: 2018 end-page: 56 ident: CR7 article-title: Controllable synthesis of nanocrystals in droplet reactors publication-title: Lab Chip doi: 10.1039/c7lc00800g contributor: fullname: Pan – ident: CR35 – ident: CR6 – ident: CR29 – volume: 23 start-page: 47001 issue: 4 year: 2013 ident: CR13 article-title: A low-cost rapid prototyping method for metal electrode fabrication using a CO laser cutter publication-title: J Micromechanics Microengineering doi: 10.1088/0960-1317/23/4/047001 contributor: fullname: Sameoto – ident: CR8 – volume: 1 start-page: 565 year: 2011 end-page: 571 ident: CR20 article-title: Analysis of laser ablation of CFRP by ultra-short laser pulses with short wavelength. . 12, no publication-title: PART doi: 10.1016/j.phpro.2011.03.071 contributor: fullname: Canisius – ident: CR25 – volume: 22 start-page: 1 issue: 4 year: 2021 end-page: 26 ident: CR2 article-title: Fabrication and applications of microfluidic devices: a review publication-title: Int J Mol Sci doi: 10.3390/ijms22042011 contributor: fullname: Grumezescu – ident: CR27 – ident: CR23 – ident: CR21 – ident: CR15 – volume: 15 start-page: 1878 issue: 10 year: 2005 end-page: 1884 ident: CR32 article-title: Bulge formation and improvement of the polymer in CO laser micromachining publication-title: J Micromechanics Microengineering doi: 10.1088/0960-1317/15/10/013 contributor: fullname: Huang – volume: 107 start-page: 114 year: 2016 end-page: 121 ident: CR24 article-title: Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristics publication-title: J Supercrit Fluids doi: 10.1016/j.supflu.2015.08.019 contributor: fullname: Yesil-Celiktas – volume: 110 start-page: 1 year: 2020 end-page: 15 ident: CR14 article-title: Effective and efficient removing method of micromolds in UV-LIGA using CO laser ablation followed by O /CF4 plasma finishing for high-aspect-ratio metallic microstructures publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-06065-4 contributor: fullname: Kim – ident: CR17 – ident: CR31 – volume: 442 start-page: 368 issue: 7101 year: 2006 end-page: 373 ident: CR4 article-title: The origins and the future of microfluidics publication-title: Nature doi: 10.1038/nature05058 contributor: fullname: Whitesides – ident: CR5 – volume: 27 start-page: 15021 issue: 1 year: 2017 ident: CR11 article-title: Fabrication of microfluidic devices: improvement of surface quality of CO laser machined poly(methylmethacrylate) polymer publication-title: J Micromechanics Microengineering doi: 10.1088/0960-1317/27/1/015021 contributor: fullname: AlamA. Kouzaniand I. Gibson – ident: CR26 – volume: 8 start-page: 6 issue: 3 year: 2014 end-page: 10 ident: CR22 article-title: Microfluidic sterilization publication-title: Biomicrofluidics doi: 10.1063/1.4882776 contributor: fullname: Zhang – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 9 ident: CR36 article-title: Improving the thermal conductivity of epoxy composites using a combustion-synthesized aggregated β-Si3N4 filler with randomly oriented grains publication-title: Sci Rep doi: 10.1038/s41598-020-71745-w contributor: fullname: HyugaM. Hottaand K. Hirao – ident: 8992_CR29 doi: 10.3144/expresspolymlett.2013.54 – ident: 8992_CR33 doi: 10.4028/www.scientific.net/amm.799-800.407 – volume: 23 start-page: 5063 issue: 10 year: 2017 ident: 8992_CR12 publication-title: Microsyst Technol doi: 10.1007/s00542-017-3282-3 contributor: fullname: J Cai – volume: 23 start-page: 47001 issue: 4 year: 2013 ident: 8992_CR13 publication-title: J Micromechanics Microengineering doi: 10.1088/0960-1317/23/4/047001 contributor: fullname: AM Toossi – volume: 9 start-page: 238 issue: 4 year: 2019 ident: 8992_CR1 publication-title: J Pharm Anal doi: 10.1016/j.jpha.2018.12.001 contributor: fullname: P Cui – volume: 27 start-page: 15021 issue: 1 year: 2017 ident: 8992_CR11 publication-title: J Micromechanics Microengineering doi: 10.1088/0960-1317/27/1/015021 contributor: fullname: MMIMNH Zainal – ident: 8992_CR6 doi: 10.1007/978-1-0716-1402-0_4 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 8992_CR36 publication-title: Sci Rep doi: 10.1038/s41598-020-71745-w contributor: fullname: SAY HottaH – volume: 68 start-page: 1391 issue: 8 year: 2019 ident: 8992_CR34 publication-title: Polym Int doi: 10.1002/pi.5834 contributor: fullname: R-K LiesX – ident: 8992_CR27 doi: 10.1016/j.supflu.2005.05.005 – volume: 18 start-page: 41 issue: 1 year: 2018 ident: 8992_CR7 publication-title: Lab Chip doi: 10.1039/c7lc00800g contributor: fullname: LJ Pan – volume: 110 start-page: 1 year: 2020 ident: 8992_CR14 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-06065-4 contributor: fullname: DK Han – ident: 8992_CR8 doi: 10.3390/mi7120225 – volume: 51 start-page: 2757 issue: 12 year: 2010 ident: 8992_CR9 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.06.012 contributor: fullname: FYH KangW – ident: 8992_CR15 – ident: 8992_CR10 doi: 10.1186/s10033-018-0204-y – ident: 8992_CR26 doi: 10.1002/jbm.b.33069 – volume: 442 start-page: 368 issue: 7101 year: 2006 ident: 8992_CR4 publication-title: Nature doi: 10.1038/nature05058 contributor: fullname: GM Whitesides – ident: 8992_CR31 doi: 10.1016/j.polymer.2011.05.029 – ident: 8992_CR35 doi: 10.1533/9781845699819.7.575 – volume: 22 start-page: 1 issue: 4 year: 2021 ident: 8992_CR2 publication-title: Int J Mol Sci doi: 10.3390/ijms22042011 contributor: fullname: AGC Niculescu – ident: 8992_CR17 doi: 10.5772/36323 – volume: 31 start-page: 116 year: 2018 ident: 8992_CR28 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2017.11.003 contributor: fullname: S Prakash – volume: 107 start-page: 114 year: 2016 ident: 8992_CR24 publication-title: J Supercrit Fluids doi: 10.1016/j.supflu.2015.08.019 contributor: fullname: YCSNB OliaeiB – ident: 8992_CR21 doi: 10.3390/s21113917 – ident: 8992_CR5 doi: 10.3390/mi10120830 – volume: 16 start-page: 94 issue: 2 year: 2006 ident: 8992_CR19 publication-title: Polimeros doi: 10.1590/S0104-14282006000200007 contributor: fullname: BMV Romão – volume: 8 start-page: 6 issue: 3 year: 2014 ident: 8992_CR22 publication-title: Biomicrofluidics doi: 10.1063/1.4882776 contributor: fullname: R Zhang – volume: 14 start-page: 182 issue: 2 year: 2004 ident: 8992_CR30 publication-title: J Micromechanics Microengineering doi: 10.1088/0960-1317/14/2/003 contributor: fullname: DH Snakenborg – volume: 15 start-page: 1878 issue: 10 year: 2005 ident: 8992_CR32 publication-title: J Micromechanics Microengineering doi: 10.1088/0960-1317/15/10/013 contributor: fullname: CKYC Chung – year: 2018 ident: 8992_CR3 publication-title: The microfluidic technique and the manufacturing of polysaccharide nanoparticles doi: 10.3390/pharmaceutics10040267 contributor: fullname: E Chiesa – volume: 10 start-page: 684 issue: 1 year: 2010 ident: 8992_CR18 publication-title: Sensors doi: 10.3390/s100100684 contributor: fullname: NGS ZlatkovicM – volume: 1 start-page: 565 year: 2011 ident: 8992_CR20 publication-title: PART doi: 10.1016/j.phpro.2011.03.071 contributor: fullname: ECM PetersenA – ident: 8992_CR16 doi: 10.14288/1.0354561 – ident: 8992_CR23 – ident: 8992_CR25 doi: 10.1016/j.jbiotec.2005.12.033 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.4530387 |
Snippet | Microfluidic devices are a rising technology to automatize chemical and biological operations. In this context, laser ablation has significant potential for... Abstract Microfluidic devices are a rising technology to automatize chemical and biological operations. In this context, laser ablation has significant... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 4355 |
SubjectTerms | Ablation Aspect ratio CAE) and Design Carbon dioxide Carbon dioxide lasers Cleanrooms Computer-Aided Engineering (CAD Engineering Engraving Epoxy resins Feasibility studies Fourier transforms Gas chromatography Heat affected zone Industrial and Production Engineering Infrared analysis Laser ablation Laser microscopy Laser processing Lasers Machining Manufacturing Mass spectrometry Mechanical Engineering Media Management Microchannels Microfluidic devices Original Article Spectrum analysis Surface roughness Thermal stability Thermogravimetric analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELXKcoFDRQuIpbSaQw-gYpEPx3FOFd2CUKUuCBWJW2THNlqpTRZYRPsD-N-d8TrstlJ7SQ6JfPCMZ97MPM8w9t456aUSFq2f8Vw0ZcpNkWtulCsNuiiE9JSH_DqWZ1fiy3VxHRNu95FW2dvEYKht11CO_AgdCRWpqkR-nN5ymhpF1dU4QmOFrWYYKSQDtvrpZHxx2WtUWpU0FfNZ47KKRtEvNDoXRT6vc8W6g0zD5TkMTBQdPRWv2YTLdqHVDCf2O5XKMv74pytb4NO_SqrBU51usJcRYsLxXCdesReufc3WlxoPbrKnJa4QdB4Qhf_8BRh5T1pOfs3CDyLq-e8PEztpwLpgT4BI8jcwOs8AMbe7A23mTDpA5Aufx8egiZ_uYxoQpt2knfHOc6KXwf7F-egAlgvmW-zq9OTb6IzHgQy8yWU-47gh0lQoWV8Y0xSO4FFJLeBSa4qqUVoqk2B0XlY6LZwQVia5xj-9S1xlMRreZoO2a90Og0pqaiyDr0YIfCqf5KWyKtcIyUSjh-xDv7f1dN53o37usBwkUaMk6iCJ-nHI9vrtr-MZvK8XGjNkh71IFp__vdru_1d7w9ayoAWUitljg9ndg3uLyGRm3kX1-w1kctt2 priority: 102 providerName: ProQuest |
Title | Development of epoxy resin-based microfluidic devices using CO2 laser ablation for DNA amplification point-of-care (POC) applications |
URI | https://link.springer.com/article/10.1007/s00170-022-08992-w https://www.proquest.com/docview/2660490906 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gIH3oiFspoDBxC4ysNxnONu2G0FYluhrlROkZ3Y1QrIViWrAnf-N2Mn2V1eh17sQ6xEmRl7Pnu-GQM8N0ZYIXlFq5-2jJdpyHQSK6alSTW5KIL07hzy_Uwczfnbs-Rsk8ftye59RNIv1OtcN1_phTnyuYtURexqB_a6xNO90eHHd5PejMIsdVdhrs0sytz98xszjnkSt8GtLtggQp8xR7sR6eab7HJr_v3V3_3XBpT-EUf17ml6B077JJ-WlfLpYNXog_LH3zUfr_Pnd-F2B1dx1NrXPbhh6vtwa6uI4QP4ucU7wqVFQvTfviPt4hc1cz6ywi-O9Gc_rxbVosTK-LUJHeH-HPPjCAm_m0tUumXlIaFofDMboXJcd9sdKeLFclE3bGmZo6rhi5Pj_CVuB98fwnw6Oc2PWHe5AytjETeM5Cx0RlZiE63LxDiolbpycmGlk6yUSkgd0E4_zVSYGM4rEcSKRloTmKyinfUj2K2XtXkMmAnlitRQV3JOrbRBnMpKxorgHS_VAF71Kisu2hoexbpasxduQcItvHCLqwHs91otuvn8tSAY40KkWSAG8LrX0ubx_9_25HrDn8LNyCvaHfPsw25zuTLPCPU0egg7cno4JFufjsezYWfz1I8ns5MP9DQXObXzaPQLvi_5mw |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41132,41535,42162,42201,42604,43612,43817,51588,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgHIBDxae6tMAcemgFFsnacZwTqhaWpbRbDq3UW2THNloJkqXdqvAD-N_MeJ3uggSX5JDIB8945nnmzQxju96roLR0aP1s4LIpc24LYbjVvrToohDSUxzyeKomZ_LwvDhPAbfLRKvsbWI01K5rKEb-Bh0JJamqTL2df-c0NYqyq2mExm12Rwr01VQpPv7Q61NelTQT80bfhhUNol_ps5CFWGa5UtZB5bF0Dq8lmg6eTkU2sdQuNprhxH2nRNmQX__pyFbo9K-EavRT4wdsMwFMOFhqxEN2y7eP2P21toOP2a81phB0ARCD__gJeO-etZy8moNvRNMLX69mbtaA89GaAFHkv8DoZAiIuP0FGLvk0QHiXng3PQBD7PSQgoAw72btgneBE7kM9j6fjPZhPV3-hJ2N35-OJjyNY-CNUGLBcUOUrVCuobC2KTyBo5IawOXOFlWjjdI2w7t5WZm88FI6lQmDfwaf-crhXfgp22i71m8xqJShtjL4aqTEpw6ZKLXTwiAgk40ZsFf93tbzZdeN-qa_cpREjZKooyTq6wHb6be_Tifwsl7py4C97kWy-vzv1Z79f7WX7O7k9PioPvo4_bTN7g2jRlBQZodtLC6u_HPEKAv7IiribxVU3QE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BVkL0wDfqQgEfOIDAbbJ2HOe42nYpFLY9UKmcIju20QrIrkpWBe79353Jx-5SwQFxSQ6xEmVmbD973jwDPPdeBaWlw9HPBi6LNOY2EYZb7VOLUxRCetqH_DBRByfy3WlyulbFX7Pdu5RkU9NAKk1ltTt3YXdZ-FbLvnBiolPaasDPr8OGJGWkHmwM33w63O9iKs5SOhdzGXODjA6jX8W0kIloMl1t5kHFdfkcLk00dT7dFtr8-au_T2YrhHolqVrPVePbYLq_bCgqX3YWld0pfl0RgPwfM9yBWy2QZcMm8u7CNV_eg801ecP7cLHGSGKzwBDr__jJcH0_LTnNno59Izpg-LqYumnBnK9HLUZU_M9sdDRgiOz9GTO24esxxNdsbzJkhljwod1sZPPZtKz4LHAisbEXx0ejl2w9Lf8ATsb7H0cHvD32gRdCiYqj0ZXNMH5CYm2ReAJhKQnNxc4mWaGN0jbyVqSZiRMvpVORMNgy-MhnDtfcD6FXzkq_BSxThuRr8FZIiVcdIpFqp4VB4CcL04dXnf_yeaPukS91nGvj5mjcvDZuft6H7c7FedvTv-cIcCh5mkWqD687j60e__1tj_6t-TO4cbw3zt-_nRw-hpuD2ue0F7QNveps4Z8gNKrs0zb6LwEm_QCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+epoxy+resin-based+microfluidic+devices+using+CO2+laser+ablation+for+DNA+amplification+point-of-care+%28POC%29+applications&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Mansour%2C+Heba&rft.au=Soliman%2C+Emad+A.&rft.au=El-Bab%2C+Ahmed+M.+Fath&rft.au=Abdel-Mawgood%2C+Ahmed+L.&rft.date=2022-06-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=120&rft.issue=7-8&rft.spage=4355&rft.epage=4372&rft_id=info:doi/10.1007%2Fs00170-022-08992-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_022_08992_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |