Identification of Affective States Based on Automatic Analysis of Texts of Comments in Social Networks

The paper considers the problem of classifying 3553 English-language comments from the social network Reddit based on various approaches to the vectorization of comment texts, including bag of words, TF–IDF, bigrams analysis based on pointwise mutual information (PMI) and sentiments, and the deep mo...

Full description

Saved in:
Bibliographic Details
Published inAutomation and remote control Vol. 83; no. 12; pp. 1877 - 1885
Main Author Dyulicheva, Yu. Yu
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper considers the problem of classifying 3553 English-language comments from the social network Reddit based on various approaches to the vectorization of comment texts, including bag of words, TF–IDF, bigrams analysis based on pointwise mutual information (PMI) and sentiments, and the deep model BERT of the language representation. The use of a hybrid approach based on text vectorization using BERT and bigrams analysis have made it possible to improve the quality of comments classification up to 91%. Based on a cluster analysis of 1857 English-language comments describing anxiety, clusters were identified using BERT+k-means. The study proposes a hybrid approach based on the use of the LDA topic modeling method, the VADER sentiments analysis method, pointwise mutual information, and parts of speech analysis and permitting one to select bigrams and trigrams to describe clusters of comments. To visualize the extracted patterns in the form of trigrams, a knowledge graph was constructed that describes the subject area, and a comparison of the words of the selected target trigrams with the words of a custom dictionary describing various affective disorders has made it possible to determine the types of psychosocial stressors associated with affective disorders.
AbstractList The paper considers the problem of classifying 3553 English-language comments from the social network Reddit based on various approaches to the vectorization of comment texts, including bag of words, TF–IDF, bigrams analysis based on pointwise mutual information (PMI) and sentiments, and the deep model BERT of the language representation. The use of a hybrid approach based on text vectorization using BERT and bigrams analysis have made it possible to improve the quality of comments classification up to 91%. Based on a cluster analysis of 1857 English-language comments describing anxiety, clusters were identified using BERT+k-means. The study proposes a hybrid approach based on the use of the LDA topic modeling method, the VADER sentiments analysis method, pointwise mutual information, and parts of speech analysis and permitting one to select bigrams and trigrams to describe clusters of comments. To visualize the extracted patterns in the form of trigrams, a knowledge graph was constructed that describes the subject area, and a comparison of the words of the selected target trigrams with the words of a custom dictionary describing various affective disorders has made it possible to determine the types of psychosocial stressors associated with affective disorders.
Author Dyulicheva, Yu. Yu
Author_xml – sequence: 1
  givenname: Yu. Yu
  surname: Dyulicheva
  fullname: Dyulicheva, Yu. Yu
  email: dyulichevayuyu@cfuv.ru
  organization: Vernadsky Crimean Federal University
BookMark eNp9kE1LAzEQhoNUsFb_gKeA59VJ0v06rsWPQtFDe1-y2Ymk7m5qkqr99-62gqDQ0wzM8wwz7zkZdbZDQq4Y3DAmprdLAIgZS3POgXEAHp-QMUsgiwQIPiLjYR4NwBk5934NwBhwMSZ6XmMXjDZKBmM7ajUttEYVzAfSZZABPb2THmvaD4ttsG3PKVp0stl54wd-hV9h38xs2_bLPDUdXVplZEOfMXxa9-YvyKmWjcfLnzohq4f71ewpWrw8zmfFIlIiESFK4ypj0ymIXOuM81rwKgdVMaF5DRViroDFSZaAYqhzYBIR6gQVxsAAKzEh14e1G2fft-hDubZb19_qS55maSLyNIaeyg6UctZ7h7pUJuzfD06apmRQDqGW_0PtVf5H3TjTSrc7LomD5Hu4e0X3e9UR6xuDBInC
CitedBy_id crossref_primary_10_3390_math11194121
Cites_doi 10.21123/bsj.2020.17.4.1328
10.1145/3184558.3191627
10.18637/jss.v061.i06
10.1016/j.procs.2017.08.290
10.26555/jifo.v15i1.a20111
10.17323/1814-9545-2021-4-243-265
10.18653/v1/D19-6213
10.2196/preprints.26769
10.48550/arXiv.1810.04805
10.1177/0261927X09351676
10.1108/00220410410560573
10.1007/978-3-030-30796-7_10
10.1016/j.bspc.2020.102355
10.1155/2021/5531327
10.3115/v1/W14-3207
10.15622/ia.2021.3.1
10.36713/epra8524
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2022
Copyright Springer Nature B.V. 2022
Copyright_xml – notice: Pleiades Publishing, Ltd. 2022
– notice: Copyright Springer Nature B.V. 2022
DBID AAYXX
CITATION
DOI 10.1134/S00051179220120025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1608-3032
EndPage 1885
ExternalDocumentID 10_1134_S00051179220120025
GroupedDBID -Y2
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
23N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5GY
5VS
67Z
6NX
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABEFU
ABFSG
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFNX
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MK~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
ZMTXR
ZY4
~8M
~A9
AAYXX
CITATION
ID FETCH-LOGICAL-c363t-75b8144039ff822d32b90cb13f2d0bee9c0156860c1ef901aee0d6ece5010eb3
IEDL.DBID U2A
ISSN 0005-1179
IngestDate Fri Jul 25 10:57:51 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Tue Aug 05 12:02:44 EDT 2025
Mon Jul 21 06:06:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords sentiment analysis
mental health
LDA
BERT
BoW
VADER
knowledge graph
bigram
TF–IDF
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-75b8144039ff822d32b90cb13f2d0bee9c0156860c1ef901aee0d6ece5010eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1134/S00051179220120025.pdf
PQID 2787639750
PQPubID 2043520
PageCount 9
ParticipantIDs proquest_journals_2787639750
crossref_citationtrail_10_1134_S00051179220120025
crossref_primary_10_1134_S00051179220120025
springer_journals_10_1134_S00051179220120025
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Automation and remote control
PublicationTitleAbbrev Autom Remote Control
PublicationYear 2022
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References 2358_CR4
2358_CR5
2358_CR13
2358_CR16
2358_CR3
2358_CR15
2358_CR8
2358_CR10
2358_CR21
2358_CR9
2358_CR20
2358_CR12
2358_CR7
Y.R. Tausczik (2358_CR19) 2010; 29
2358_CR1
S.I. Moyeen (2358_CR11) 2021; 6
C. Hutto (2358_CR17) 2014; 8
M. Charrad (2358_CR18) 2014; 61
L. Gillam (2358_CR6) 2005; 11
K.S. Jones (2358_CR14) 2004; 60
S.T. Rabani (2358_CR2) 2020; 17
References_xml – volume: 17
  start-page: 1328
  issue: 4
  year: 2020
  ident: 2358_CR2
  publication-title: Baghdad Sci. J.
  doi: 10.21123/bsj.2020.17.4.1328
– ident: 2358_CR9
  doi: 10.1145/3184558.3191627
– volume: 61
  start-page: 1
  issue: 6
  year: 2014
  ident: 2358_CR18
  publication-title: J. Stat. Software
  doi: 10.18637/jss.v061.i06
– ident: 2358_CR1
  doi: 10.1016/j.procs.2017.08.290
– ident: 2358_CR8
  doi: 10.26555/jifo.v15i1.a20111
– ident: 2358_CR16
  doi: 10.17323/1814-9545-2021-4-243-265
– ident: 2358_CR13
  doi: 10.18653/v1/D19-6213
– ident: 2358_CR5
– ident: 2358_CR7
  doi: 10.2196/preprints.26769
– ident: 2358_CR15
  doi: 10.48550/arXiv.1810.04805
– volume: 8
  start-page: 216
  issue: 1
  year: 2014
  ident: 2358_CR17
  publication-title: Eight Int. AAAI Conf. Weblogs Soc. Media
– volume: 29
  start-page: 24
  issue: 1
  year: 2010
  ident: 2358_CR19
  publication-title: J. Lang. Soc. Psychol.
  doi: 10.1177/0261927X09351676
– volume: 60
  start-page: 493
  issue: 5
  year: 2004
  ident: 2358_CR14
  publication-title: J. Doc.
  doi: 10.1108/00220410410560573
– volume: 11
  start-page: 55
  issue: 1
  year: 2005
  ident: 2358_CR6
  publication-title: Terminology
– ident: 2358_CR21
  doi: 10.1007/978-3-030-30796-7_10
– ident: 2358_CR4
  doi: 10.1016/j.bspc.2020.102355
– ident: 2358_CR20
  doi: 10.1155/2021/5531327
– ident: 2358_CR10
– ident: 2358_CR3
  doi: 10.3115/v1/W14-3207
– ident: 2358_CR12
  doi: 10.15622/ia.2021.3.1
– volume: 6
  start-page: 220
  issue: 9
  year: 2021
  ident: 2358_CR11
  publication-title: EPRA Int. J. Res. Dev. (IJRD)
  doi: 10.36713/epra8524
SSID ssj0011023
Score 2.2777195
Snippet The paper considers the problem of classifying 3553 English-language comments from the social network Reddit based on various approaches to the vectorization...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1877
SubjectTerms Affect (Psychology)
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classification
Cluster analysis
Computer-Aided Engineering (CAD
Control
Disorders
English language
Knowledge representation
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Robotics
Social networks
Systems Theory
Texts
Thematic Issue
Words (language)
Title Identification of Affective States Based on Automatic Analysis of Texts of Comments in Social Networks
URI https://link.springer.com/article/10.1134/S00051179220120025
https://www.proquest.com/docview/2787639750
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLaAXeCAeIrBmHLgBpW6pOnj2MHGBNpOmzRO1dokEhLqEO3-P3babrwlTm0VJ4fEceza3xeAK6M05ee0E6hAOZ4U3MHIFjee5Bg8hApViALF8cQfzbyHuZzXoLCiqXZvUpLWUlf3jniE6UUFQv3hnACfeFZvQ0tS7I5aPOPxOndAZASV0ysdkm-gMj-O8fk42viYX9Ki9rQZHsB-7SayuFrXQ9jS-RHsfSAPxK_xmnG1OAZTIW5N_QuOLQ2LbakGWjNWeZSsjyeWYtgYr8ql7cgaThKSn6Kdti8EGqH6Cvacswq-yyZVtXhxAtPhYHo7cuo7FJxM-KJ0ApmGlL8VkTHoCyjB08jN0p4wXLmp1lFGWOrQd7OeNugbLLR2la8zLTFQw0D7FHbyZa7PgHEijpdSG6Ejzw9VuMiIsAkthHJlahZt6DUzmWQ1vzhdc_GS2DhDeMn32W_D9brPa8Wu8ad0p1mgpN5pRcID4tSL0PFpw02zaJvm30c7_5_4BexyQj7YSpYO7JRvK32J_kiZdqEV9-_6Q3rePz0OulYd3wG5xtPj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RSFAh7YIFJqx3mMAYEKtJ1SqVvUxLaEhFJE0v_PnZO0vCW2RLE9-HH3Xe6-zwCXRmnKz2knUIFyPCm4g5EtHjzJMXgIFW4hChRHY38w8R6nctqQwsq22r1NSVpLXd874hGnFzcQ7h_OifCJvnodNhAMhFTINeHxMndAYgQ16JUOtW-pMj-O8dkdrTDml7So9Tb3u7DTwEQW1-u6B2u62IftD-KB-DZaKq6WB2Bqxq1pfsGxuWGxLdVAa8ZqRMlu0GMphh_jRTW3HVmrSULtE7TT9oFII1RfwZ4LVtN32biuFi8PIbm_S24HTnOHgpMLX1ROILOQ8rciMgaxgBI8i9w86wvDlZtpHeXEpQ59N-9rg9hgprWrfJ1riYEaBtpH0CnmhT4Gxkk4XkpthI48P1ThLCfBJrQQypWZmXWh385kmjf64nTNxUtq4wzhpd9nvwtXyz6vtbrGn6177QKlzUkrUx6Qpl6EwKcL1-2irT7_PtrJ_5pfwOYgGQ3T4cP46RS2OLEgbFVLDzrV20KfITapsnO7Fd8Ble_T0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAcEKsoFPCBG0SkdpzlGJaqLK04tBK3qIltCQmlFU3_n5k4acsqcUuUsQ_2eJbMvGeAc6M01ee0E6hAOZ4U3MHMFg-e5Jg8hApViBLFXt_vDr2HF_myhOIvu93rkqTFNBBLU15cTZSp7iDxCN-LyoS6xDmBP9Fvr8IamuM26fWQx_M6AhET2ABYOiRfw2Z-nOOza1rEm19KpKXn6WzDVhUystju8Q6s6HwXNpeIBPGtN2dfne6BsehbU_2OY2PD4rJtAy0bs9Elu0bvpRh-jGfFuBzIan4Skh-gzS4fCEBCvRbsNWcWysv6tnN8ug-Dzt3gputU9yk4mfBF4QQyDamWKyJjMC5QgqeRm6VtYbhyU62jjHDVoe9mbW0wThhp7SpfZ1pi0oZJ9wE08nGuD4FxIpGXUhuhI88PVTjKiLwJrYVyZWpGTWjXK5lkFdc4XXnxlpQ5h_CS76vfhIv5mIll2vhTulVvUFKdumnCA-LXizAIasJlvWmLz7_PdvQ_8TNYf77tJE_3_cdj2OAEiCgbXFrQKN5n-gTDlCI9LTXxA0NP2Aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Affective+States+Based+on+Automatic+Analysis+of+Texts+of+Comments+in+Social+Networks&rft.jtitle=Automation+and+remote+control&rft.au=Dyulicheva%2C+Yu.+Yu&rft.date=2022-12-01&rft.issn=0005-1179&rft.eissn=1608-3032&rft.volume=83&rft.issue=12&rft.spage=1877&rft.epage=1885&rft_id=info:doi/10.1134%2FS00051179220120025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S00051179220120025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1179&client=summon