Comparison of flexibility models for the multibody simulation of compliant mechanisms
This paper presents a comparison among different flexibility models of elastic elements to be implemented in multibody simulations of compliant mechanisms. In addition to finite-element analysis and a pseudo-rigid body model, a novel matrix-based approach, called the Displaced Compliance Matrix Meth...
Saved in:
Published in | Multibody system dynamics Vol. 63; no. 3; pp. 453 - 474 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a comparison among different flexibility models of elastic elements to be implemented in multibody simulations of compliant mechanisms. In addition to finite-element analysis and a pseudo-rigid body model, a novel matrix-based approach, called the Displaced Compliance Matrix Method, is proposed as a further flexibility model to take into account geometric nonlinearities. According to the proposed formulation, the representation of the elastic elements is obtained by resorting to the ellipse of elasticity theory, which guarantees the definition of the compliance matrices in diagonal form. The ellipse of elasticity is also implemented to predict the linear response of the compliant mechanism. Multibody simulations are performed on compliant systems with open-loop and closed-loop kinematic chains, subject to different load conditions. Beams with uniform cross-section and initially curved axis are considered as flexible elements. For each flexibility model, accuracies of displacements and rotations, and computational time, are evaluated and compared. The numerical results have been also compared to the data obtained through a set of experimental tests. |
---|---|
AbstractList | This paper presents a comparison among different flexibility models of elastic elements to be implemented in multibody simulations of compliant mechanisms. In addition to finite-element analysis and a pseudo-rigid body model, a novel matrix-based approach, called the Displaced Compliance Matrix Method, is proposed as a further flexibility model to take into account geometric nonlinearities. According to the proposed formulation, the representation of the elastic elements is obtained by resorting to the ellipse of elasticity theory, which guarantees the definition of the compliance matrices in diagonal form. The ellipse of elasticity is also implemented to predict the linear response of the compliant mechanism. Multibody simulations are performed on compliant systems with open-loop and closed-loop kinematic chains, subject to different load conditions. Beams with uniform cross-section and initially curved axis are considered as flexible elements. For each flexibility model, accuracies of displacements and rotations, and computational time, are evaluated and compared. The numerical results have been also compared to the data obtained through a set of experimental tests. |
Author | Sorgonà, Orazio Verotti, Matteo Cirelli, Marco Giannini, Oliviero |
Author_xml | – sequence: 1 givenname: Orazio surname: Sorgonà fullname: Sorgonà, Orazio organization: Dept. of Engineering, Niccoló Cusano University – sequence: 2 givenname: Marco surname: Cirelli fullname: Cirelli, Marco organization: Department of Enterprise Engineering, University of Rome Tor Vergata – sequence: 3 givenname: Oliviero surname: Giannini fullname: Giannini, Oliviero organization: Dept. of Engineering, Niccoló Cusano University – sequence: 4 givenname: Matteo surname: Verotti fullname: Verotti, Matteo email: matteo.verotti@unige.it organization: DIME, University of Genova |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9FMkt3sHqX4BQUvFbyF_Uhsyu5mTVKw_97YFQQPPc0MvM_MO-8CzQY3aISugd4CpfIuAFAhCGWCpBkEEWdoDpnkhEn2Pks9LwTJckEv0CKEHaUMMlHO0dvK9WPlbXADdgabTn_Z2nY2HnDvWt0FbJzHcatxv--irV17wMGmvop2Qpq0oLPVEHGvm2012NCHS3Ruqi7oq9-6RJvHh83qmaxfn15W92vS8JxHIhnXbSPKoq6lkKbkLOOsliChEZk0bVsyAW3OdZEek0xCzkVWcGak4Lqs-RLdTGtH7z73OkS1c3s_pIuKgywZFAzKpComVeNdCF4b1dh4tB99ZTsFVP1kqKYMVTqljhkqkVD2Dx297St_OA3xCQpJPHxo_-fqBPUNa_KFnQ |
CitedBy_id | crossref_primary_10_3390_math12172680 |
Cites_doi | 10.1016/j.mechmachtheory.2021.104343 10.1115/1.4041585 10.1016/j.mechmachtheory.2023.105308 10.1115/1.4040628 10.1016/j.precisioneng.2023.02.002 10.1016/j.euromechsol.2010.04.003 10.1002/9781118516485.ch8 10.1115/1.4031028 10.1007/s12541-015-0228-5 10.1115/1.3046148 10.1016/j.ijsolstr.2016.02.017 10.1016/j.mechmachtheory.2017.06.016 10.1063/1.4813252 10.1109/TRO.2013.2248536 10.1115/1.1455031 10.1115/1.4042366 10.3390/mi13101734 10.1016/j.mechmachtheory.2018.03.014 10.1016/j.precisioneng.2023.01.006 10.1016/j.mechmachtheory.2020.103811 10.1115/1.2757191 10.1016/j.precisioneng.2012.07.010 10.1016/j.cad.2021.103001 10.1016/j.mechmachtheory.2022.104963 10.1115/DETC1992-0213 10.1177/0278364920910487 10.1109/jmems.2004.825308 10.1115/1.4048220 10.1007/s11044-023-09883-y 10.1016/j.mechmachtheory.2020.104067 10.1115/DETC1992-0214 10.1007/978-3-319-31081-7_6 10.1016/j.precisioneng.2011.03.001 10.1115/1.2771577 10.1115/1.4035986 10.3390/mi13122172 10.1115/1.4002513 10.1155/2015/672831 10.1115/1.1590354 10.5194/ms-4-345-2013 10.1016/j.precisioneng.2014.03.008 10.1115/1.4049491 10.1016/j.sna.2021.112899 10.1017/CBO9780511801631 10.1088/1361-6528/aaf26f 10.1007/s12008-016-0299-2 10.3390/mi10100665 10.1115/1.4045679 10.1115/IMECE2000-2390 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. 2025 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s11044-024-10014-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-272X |
EndPage | 474 |
ExternalDocumentID | 10_1007_s11044_024_10014_4 |
GrantInformation_xml | – fundername: Università degli Studi di Genova |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9P PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION |
ID | FETCH-LOGICAL-c363t-723edc498bb747f932532b7171c457fdd9241d63e802472716345832f743e9b3 |
IEDL.DBID | C6C |
ISSN | 1384-5640 |
IngestDate | Fri Jul 25 10:52:15 EDT 2025 Tue Aug 05 11:57:16 EDT 2025 Thu Apr 24 22:59:47 EDT 2025 Thu Mar 20 02:10:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Flexible multibody Flexures Compliance matrix Compliant mechanisms Chain algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-723edc498bb747f932532b7171c457fdd9241d63e802472716345832f743e9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s11044-024-10014-4 |
PQID | 3179218219 |
PQPubID | 2043839 |
PageCount | 22 |
ParticipantIDs | proquest_journals_3179218219 crossref_citationtrail_10_1007_s11044_024_10014_4 crossref_primary_10_1007_s11044_024_10014_4 springer_journals_10_1007_s11044_024_10014_4 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Multibody system dynamics |
PublicationTitleAbbrev | Multibody Syst Dyn |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | T.-M. Li (10014_CR28) 2015; 16 C. Li (10014_CR41) 2023; 81 M. Ling (10014_CR13) 2018; 125 T. Wang (10014_CR14) 2021; 331 B. McCarthy (10014_CR40) 2023; 81 T.M. Wasfy (10014_CR46) 2003; 56 G. Chen (10014_CR26) 2019; 11 S.M. Lyon (10014_CR30) 2000 A. Cammarata (10014_CR49) 2016; 10 B.K. Donaldson (10014_CR48) 2008 G. Balduzzi (10014_CR20) 2016; 90 N.-H. Nguyen (10014_CR22) 2015; 2015 M. Verotti (10014_CR36) 2020; 149 H. Tang (10014_CR42) 2013; 29 M.B. Fuchs (10014_CR23) 2016 T. Morales Bieze (10014_CR5) 2020; 39 A.K. Rai (10014_CR8) 2006; 129 J. Qiu (10014_CR9) 2004; 13 A. Shooshtari (10014_CR19) 2010; 29 A. Cammarata (10014_CR50) 2022; 13 H. Lipkin (10014_CR43) 1992 Q. Li (10014_CR24) 2013; 37 S.-K. Zhu (10014_CR34) 2017; 9 L.L. Howell (10014_CR1) 2001 V.K. Venkiteswaran (10014_CR33) 2018; 140 Y. Tian (10014_CR2) 2011; 35 N. Wang (10014_CR12) 2019; 141 G. Krishnan (10014_CR38) 2011; 3 J.S. Han (10014_CR10) 2006; 129 Y.-Q. Yu (10014_CR35) 2017; 116 M. Ling (10014_CR16) 2020; 72 C. Kimball (10014_CR31) 2002; 124 O. Sorgonà (10014_CR45) 2023; 184 Q. Meng (10014_CR27) 2013; 4 K. Xu (10014_CR6) 2018; 30 A.N. Danun (10014_CR39) 2020; 143 F. Ma (10014_CR25) 2015; 8 C.A. Mattson (10014_CR29) 2013 S. Henning (10014_CR17) 2021; 155 T.L. Thomas (10014_CR4) 2021; 13 P. Bilancia (10014_CR18) 2021; 134 D. Alazard (10014_CR47) 2023; 57 S. Wu (10014_CR15) 2022; 13 K. Wu (10014_CR7) 2021; 162 H.-J. Su (10014_CR32) 2009; 1 H. Lipkin (10014_CR44) 1992 M. Cera (10014_CR37) 2022; 175 G. Hao (10014_CR3) 2019; 10 R.C. Shi (10014_CR21) 2013; 84 H. Ahuett-Garza (10014_CR11) 2014; 38 |
References_xml | – volume: 162 year: 2021 ident: 10014_CR7 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2021.104343 – volume: 11 issue: 1 year: 2019 ident: 10014_CR26 publication-title: J. Mech. Robot. doi: 10.1115/1.4041585 – volume: 184 year: 2023 ident: 10014_CR45 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2023.105308 – volume: 140 issue: 9 year: 2018 ident: 10014_CR33 publication-title: ASME. J. Mech. Des. doi: 10.1115/1.4040628 – volume: 81 start-page: 60 year: 2023 ident: 10014_CR40 publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2023.02.002 – volume: 29 start-page: 826 issue: 5 year: 2010 ident: 10014_CR19 publication-title: Eur. J. Mech. A, Solids doi: 10.1016/j.euromechsol.2010.04.003 – volume-title: Synthesis Through Rigid-Body Replacement year: 2013 ident: 10014_CR29 doi: 10.1002/9781118516485.ch8 – volume: 8 issue: 2 year: 2015 ident: 10014_CR25 publication-title: J. Mech. Robot. doi: 10.1115/1.4031028 – volume: 16 start-page: 1735 year: 2015 ident: 10014_CR28 publication-title: Int. J. Prec. Eng. Manuf. doi: 10.1007/s12541-015-0228-5 – volume: 1 issue: 2 year: 2009 ident: 10014_CR32 publication-title: J. Mech. Robot. doi: 10.1115/1.3046148 – volume: 90 start-page: 236 year: 2016 ident: 10014_CR20 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.02.017 – volume: 116 start-page: 501 year: 2017 ident: 10014_CR35 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2017.06.016 – volume: 84 issue: 7 year: 2013 ident: 10014_CR21 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4813252 – volume: 29 start-page: 650 issue: 3 year: 2013 ident: 10014_CR42 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2013.2248536 – volume: 124 start-page: 223 issue: 2 year: 2002 ident: 10014_CR31 publication-title: J. Mech. Des. doi: 10.1115/1.1455031 – volume: 141 issue: 5 year: 2019 ident: 10014_CR12 publication-title: J. Mech. Des. doi: 10.1115/1.4042366 – volume: 13 issue: 10 year: 2022 ident: 10014_CR15 publication-title: Micromachines doi: 10.3390/mi13101734 – volume: 125 start-page: 169 year: 2018 ident: 10014_CR13 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2018.03.014 – volume: 81 start-page: 207 year: 2023 ident: 10014_CR41 publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2023.01.006 – volume: 149 year: 2020 ident: 10014_CR36 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103811 – volume: 129 start-page: 1056 issue: 10 year: 2006 ident: 10014_CR8 publication-title: J. Mech. Des. doi: 10.1115/1.2757191 – volume: 37 start-page: 135 issue: 1 year: 2013 ident: 10014_CR24 publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2012.07.010 – volume: 134 year: 2021 ident: 10014_CR18 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2021.103001 – volume-title: Compliant Mechanisms year: 2001 ident: 10014_CR1 – volume: 175 year: 2022 ident: 10014_CR37 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2022.104963 – start-page: 179 volume-title: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 22nd Biennial Mechanisms Conference: Robotics, Spatial Mechanisms, and Mechanical Systems year: 1992 ident: 10014_CR43 doi: 10.1115/DETC1992-0213 – volume: 39 start-page: 1604 issue: 14 year: 2020 ident: 10014_CR5 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364920910487 – volume: 13 start-page: 137 issue: 2 year: 2004 ident: 10014_CR9 publication-title: J. Microelectromech. Syst. doi: 10.1109/jmems.2004.825308 – volume: 143 issue: 5 year: 2020 ident: 10014_CR39 publication-title: J. Mech. Des. doi: 10.1115/1.4048220 – volume: 57 start-page: 365 issue: 3–4 year: 2023 ident: 10014_CR47 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-023-09883-y – volume: 155 year: 2021 ident: 10014_CR17 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.104067 – start-page: 187 volume-title: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 22nd Biennial Mechanisms Conference: Robotics, Spatial Mechanisms, and Mechanical Systems year: 1992 ident: 10014_CR44 doi: 10.1115/DETC1992-0214 – start-page: 85 volume-title: Structures and Their Analysis year: 2016 ident: 10014_CR23 doi: 10.1007/978-3-319-31081-7_6 – volume: 35 start-page: 554 issue: 4 year: 2011 ident: 10014_CR2 publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2011.03.001 – volume: 129 start-page: 1198 issue: 11 year: 2006 ident: 10014_CR10 publication-title: J. Mech. Des. doi: 10.1115/1.2771577 – volume: 9 issue: 3 year: 2017 ident: 10014_CR34 publication-title: J. Mech. Robot. doi: 10.1115/1.4035986 – volume: 13 issue: 12 year: 2022 ident: 10014_CR50 publication-title: Micromachines doi: 10.3390/mi13122172 – volume: 3 issue: 1 year: 2011 ident: 10014_CR38 publication-title: ASME. J. Mech. Robot. doi: 10.1115/1.4002513 – volume: 2015 start-page: 1 year: 2015 ident: 10014_CR22 publication-title: Shock Vib. doi: 10.1155/2015/672831 – volume: 56 start-page: 553 issue: 6 year: 2003 ident: 10014_CR46 publication-title: ASME. J. Mech. Des. doi: 10.1115/1.1590354 – volume: 4 start-page: 345 issue: 2 year: 2013 ident: 10014_CR27 publication-title: Mech. Sci. doi: 10.5194/ms-4-345-2013 – volume: 38 start-page: 711 issue: 4 year: 2014 ident: 10014_CR11 publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2014.03.008 – volume: 13 issue: 2 year: 2021 ident: 10014_CR4 publication-title: J. Mech. Robot. doi: 10.1115/1.4049491 – volume: 331 year: 2021 ident: 10014_CR14 publication-title: Sens. Actuators A, Phys. doi: 10.1016/j.sna.2021.112899 – volume-title: Analysis of Aircraft Structures year: 2008 ident: 10014_CR48 doi: 10.1017/CBO9780511801631 – volume: 30 issue: 7 year: 2018 ident: 10014_CR6 publication-title: Nanotechnology doi: 10.1088/1361-6528/aaf26f – volume: 10 start-page: 191 year: 2016 ident: 10014_CR49 publication-title: Int. J. Interact. Des. Manuf. doi: 10.1007/s12008-016-0299-2 – volume: 10 issue: 10 year: 2019 ident: 10014_CR3 publication-title: Micromachines doi: 10.3390/mi10100665 – volume: 72 issue: 3 year: 2020 ident: 10014_CR16 publication-title: Appl. Mech. Rev. doi: 10.1115/1.4045679 – start-page: 883 volume-title: ASME International Mechanical Engineering Congress and Exposition year: 2000 ident: 10014_CR30 doi: 10.1115/IMECE2000-2390 |
SSID | ssj0021549 |
Score | 2.3904197 |
Snippet | This paper presents a comparison among different flexibility models of elastic elements to be implemented in multibody simulations of compliant mechanisms. In... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 453 |
SubjectTerms | Automotive Engineering Closed loops Computing time Control Curved beams Dynamical Systems Elasticity Electrical Engineering Engineering Finite element method Flexibility Geometric nonlinearity Kinematics Matrix methods Mechanical Engineering Multibody systems Optimization Rigid structures Vibration |
Title | Comparison of flexibility models for the multibody simulation of compliant mechanisms |
URI | https://link.springer.com/article/10.1007/s11044-024-10014-4 https://www.proquest.com/docview/3179218219 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0oXPTgB2pEkfTgTRvZ3ba7PZINSDR6ggRPG3bbJiQCxsUD_95pKaBETbzspR-bzOxk3myn7wFch5IrE2tEboZryoRQGHMFpyMhjUh0i4_cr4GnZ9EbsIchH3qaHHsXZuv8_q7E9MQYxUxCLVsQo2wXqjyIYivTkIp0XVxZqjFXXCWMcsFa_oLMz3t8T0IbZLl1GOpyTPcIDjw4JO2lN49hR09rcOiBIvFhWNZg_wuL4AkM0rWWIJkZYizFpWt5XRCnc1MSBKYEgR5x3YP5TC1IOZ543S67ZNlXjjYmE21vAo_LSXkK_W6nn_aoV0ugRSSiOY3DSKuCySTPsUQwiMt4FOZYrQUF47FRCiutQIlIJ2gIRC0IxOyZaWgQQ2iZR2dQmc6m-hwIx5GI54YrljCMd2lJCHMuCyZGcUuqOgQr62WFZxK3ghav2YYD2Vo8wxdlzuIZq8PNes3bkkfjz9mNlVMyH1NlhkhHWr75QNbhduWozfDvu138b_ol7IVW5Nc1mjWgMn__0FeIPOZ5E6rt-5fHTtN9evgchO1PS-bNcA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHtSDD9SIovbgTZvAbtvdHgmRoAInSLht2G2bkAgYFw_8e6ely6pRE899bDLT6XyznfkG4DaQXJlII3IzXFMmhEKbyzidCGlErBt84n4N9AeiO2JPYz72RWF5ke1ePEm6m7osdsPIgVH0KdTyBjHKtmEHwUBsz_IoaG3CLEs65sKsmFEuWMOXyvy8x1d3VGLMb8-iztt0juDAw0TSWuv1GLb0vAqHHjISb5B5FfY_8QmewKi96SpIFoYYS3bpkl9XxHW8yQlCVIKQj7g8wnShViSfznwHL7tknWGO0iYzbWuCp_ksP4Vh52HY7lLfN4FmoQiXNApCrTIm4zTFYMEgQuNhkGLc1swYj4xSGHM1lQh1jIJA_IKQzL6eBgbRhJZpeAaV-WKuz4FwHAl5arhiMUPLl5aOMOUyY2ISNaSqQbOQXpJ5TnHb2uIlKdmQrcQT_FDiJJ6wGtxt1ryuGTX-nF0vlJJ468oTxDzSMs83ZQ3uC0WVw7_vdvG_6Tew2x32e0nvcfB8CXuBbf3r0s_qUFm-vesrxCPL9Nodvw-GiNIK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAcWAqIQgEfuIFFk9hOfESFqmwVh1bqLWpiW6pEF5Fw6N8zdtIFBEicvUSaieP3MjNvAC59yZUJNSI3wzVlQig8cymnAyGNiHSDD9yvgZeOaPfYY5_3V6r4Xbb7PCRZ1DRYlaZxfjNV5mZZ-IYsglG8X6jVEGKUrcMGMhXP0q-maC4olxUgc5QrYpQL1ijLZn7e4-vVtMSb30Kk7uZp7cFOCRnJbeHjfVjT4yrslvCRlIczq8L2irbgAfSaiw6DZGKIscKXLhF2Rlz3m4wgXCUI_4jLKUwmakay4ajs5mWXFNnmaHky0rY-eJiNskPotu67zTYteyjQNBBBTkM_0CplMkoSJA4G0RoP_AQ5nJcyHhqlkH95SgQ6QkMglkF4ZiOpvkFkoWUSHEFlPBnrYyAcRwKeGK5YxPArIK00YcJlysQgbEhVA29uvTgt9cVtm4u3eKmMbC0e44NiZ_GY1eBqsWZaqGv8Obs-d0pcnrQsRvwjrQq9J2twPXfUcvj33U7-N_0CNl_vWvHzQ-fpFLZ82wXYZaLVoZK_f-gzhCZ5cu7evk_uYdYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+flexibility+models+for+the+multibody+simulation+of+compliant+mechanisms&rft.jtitle=Multibody+system+dynamics&rft.au=Sorgon%C3%A0%2C+Orazio&rft.au=Cirelli%2C+Marco&rft.au=Giannini%2C+Oliviero&rft.au=Verotti%2C+Matteo&rft.date=2025-03-01&rft.pub=Springer+Netherlands&rft.issn=1384-5640&rft.eissn=1573-272X&rft.volume=63&rft.issue=3&rft.spage=453&rft.epage=474&rft_id=info:doi/10.1007%2Fs11044-024-10014-4&rft.externalDocID=10_1007_s11044_024_10014_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5640&client=summon |