Comparison of flexibility models for the multibody simulation of compliant mechanisms

This paper presents a comparison among different flexibility models of elastic elements to be implemented in multibody simulations of compliant mechanisms. In addition to finite-element analysis and a pseudo-rigid body model, a novel matrix-based approach, called the Displaced Compliance Matrix Meth...

Full description

Saved in:
Bibliographic Details
Published inMultibody system dynamics Vol. 63; no. 3; pp. 453 - 474
Main Authors Sorgonà, Orazio, Cirelli, Marco, Giannini, Oliviero, Verotti, Matteo
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a comparison among different flexibility models of elastic elements to be implemented in multibody simulations of compliant mechanisms. In addition to finite-element analysis and a pseudo-rigid body model, a novel matrix-based approach, called the Displaced Compliance Matrix Method, is proposed as a further flexibility model to take into account geometric nonlinearities. According to the proposed formulation, the representation of the elastic elements is obtained by resorting to the ellipse of elasticity theory, which guarantees the definition of the compliance matrices in diagonal form. The ellipse of elasticity is also implemented to predict the linear response of the compliant mechanism. Multibody simulations are performed on compliant systems with open-loop and closed-loop kinematic chains, subject to different load conditions. Beams with uniform cross-section and initially curved axis are considered as flexible elements. For each flexibility model, accuracies of displacements and rotations, and computational time, are evaluated and compared. The numerical results have been also compared to the data obtained through a set of experimental tests.
AbstractList This paper presents a comparison among different flexibility models of elastic elements to be implemented in multibody simulations of compliant mechanisms. In addition to finite-element analysis and a pseudo-rigid body model, a novel matrix-based approach, called the Displaced Compliance Matrix Method, is proposed as a further flexibility model to take into account geometric nonlinearities. According to the proposed formulation, the representation of the elastic elements is obtained by resorting to the ellipse of elasticity theory, which guarantees the definition of the compliance matrices in diagonal form. The ellipse of elasticity is also implemented to predict the linear response of the compliant mechanism. Multibody simulations are performed on compliant systems with open-loop and closed-loop kinematic chains, subject to different load conditions. Beams with uniform cross-section and initially curved axis are considered as flexible elements. For each flexibility model, accuracies of displacements and rotations, and computational time, are evaluated and compared. The numerical results have been also compared to the data obtained through a set of experimental tests.
Author Sorgonà, Orazio
Verotti, Matteo
Cirelli, Marco
Giannini, Oliviero
Author_xml – sequence: 1
  givenname: Orazio
  surname: Sorgonà
  fullname: Sorgonà, Orazio
  organization: Dept. of Engineering, Niccoló Cusano University
– sequence: 2
  givenname: Marco
  surname: Cirelli
  fullname: Cirelli, Marco
  organization: Department of Enterprise Engineering, University of Rome Tor Vergata
– sequence: 3
  givenname: Oliviero
  surname: Giannini
  fullname: Giannini, Oliviero
  organization: Dept. of Engineering, Niccoló Cusano University
– sequence: 4
  givenname: Matteo
  surname: Verotti
  fullname: Verotti, Matteo
  email: matteo.verotti@unige.it
  organization: DIME, University of Genova
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9FMkt3sHqX4BQUvFbyF_Uhsyu5mTVKw_97YFQQPPc0MvM_MO-8CzQY3aISugd4CpfIuAFAhCGWCpBkEEWdoDpnkhEn2Pks9LwTJckEv0CKEHaUMMlHO0dvK9WPlbXADdgabTn_Z2nY2HnDvWt0FbJzHcatxv--irV17wMGmvop2Qpq0oLPVEHGvm2012NCHS3Ruqi7oq9-6RJvHh83qmaxfn15W92vS8JxHIhnXbSPKoq6lkKbkLOOsliChEZk0bVsyAW3OdZEek0xCzkVWcGak4Lqs-RLdTGtH7z73OkS1c3s_pIuKgywZFAzKpComVeNdCF4b1dh4tB99ZTsFVP1kqKYMVTqljhkqkVD2Dx297St_OA3xCQpJPHxo_-fqBPUNa_KFnQ
CitedBy_id crossref_primary_10_3390_math12172680
Cites_doi 10.1016/j.mechmachtheory.2021.104343
10.1115/1.4041585
10.1016/j.mechmachtheory.2023.105308
10.1115/1.4040628
10.1016/j.precisioneng.2023.02.002
10.1016/j.euromechsol.2010.04.003
10.1002/9781118516485.ch8
10.1115/1.4031028
10.1007/s12541-015-0228-5
10.1115/1.3046148
10.1016/j.ijsolstr.2016.02.017
10.1016/j.mechmachtheory.2017.06.016
10.1063/1.4813252
10.1109/TRO.2013.2248536
10.1115/1.1455031
10.1115/1.4042366
10.3390/mi13101734
10.1016/j.mechmachtheory.2018.03.014
10.1016/j.precisioneng.2023.01.006
10.1016/j.mechmachtheory.2020.103811
10.1115/1.2757191
10.1016/j.precisioneng.2012.07.010
10.1016/j.cad.2021.103001
10.1016/j.mechmachtheory.2022.104963
10.1115/DETC1992-0213
10.1177/0278364920910487
10.1109/jmems.2004.825308
10.1115/1.4048220
10.1007/s11044-023-09883-y
10.1016/j.mechmachtheory.2020.104067
10.1115/DETC1992-0214
10.1007/978-3-319-31081-7_6
10.1016/j.precisioneng.2011.03.001
10.1115/1.2771577
10.1115/1.4035986
10.3390/mi13122172
10.1115/1.4002513
10.1155/2015/672831
10.1115/1.1590354
10.5194/ms-4-345-2013
10.1016/j.precisioneng.2014.03.008
10.1115/1.4049491
10.1016/j.sna.2021.112899
10.1017/CBO9780511801631
10.1088/1361-6528/aaf26f
10.1007/s12008-016-0299-2
10.3390/mi10100665
10.1115/1.4045679
10.1115/IMECE2000-2390
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. 2025
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11044-024-10014-4
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-272X
EndPage 474
ExternalDocumentID 10_1007_s11044_024_10014_4
GrantInformation_xml – fundername: Università degli Studi di Genova
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c363t-723edc498bb747f932532b7171c457fdd9241d63e802472716345832f743e9b3
IEDL.DBID C6C
ISSN 1384-5640
IngestDate Fri Jul 25 10:52:15 EDT 2025
Tue Aug 05 11:57:16 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Thu Mar 20 02:10:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Flexible multibody
Flexures
Compliance matrix
Compliant mechanisms
Chain algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-723edc498bb747f932532b7171c457fdd9241d63e802472716345832f743e9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s11044-024-10014-4
PQID 3179218219
PQPubID 2043839
PageCount 22
ParticipantIDs proquest_journals_3179218219
crossref_citationtrail_10_1007_s11044_024_10014_4
crossref_primary_10_1007_s11044_024_10014_4
springer_journals_10_1007_s11044_024_10014_4
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Multibody system dynamics
PublicationTitleAbbrev Multibody Syst Dyn
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References T.-M. Li (10014_CR28) 2015; 16
C. Li (10014_CR41) 2023; 81
M. Ling (10014_CR13) 2018; 125
T. Wang (10014_CR14) 2021; 331
B. McCarthy (10014_CR40) 2023; 81
T.M. Wasfy (10014_CR46) 2003; 56
G. Chen (10014_CR26) 2019; 11
S.M. Lyon (10014_CR30) 2000
A. Cammarata (10014_CR49) 2016; 10
B.K. Donaldson (10014_CR48) 2008
G. Balduzzi (10014_CR20) 2016; 90
N.-H. Nguyen (10014_CR22) 2015; 2015
M. Verotti (10014_CR36) 2020; 149
H. Tang (10014_CR42) 2013; 29
M.B. Fuchs (10014_CR23) 2016
T. Morales Bieze (10014_CR5) 2020; 39
A.K. Rai (10014_CR8) 2006; 129
J. Qiu (10014_CR9) 2004; 13
A. Shooshtari (10014_CR19) 2010; 29
A. Cammarata (10014_CR50) 2022; 13
H. Lipkin (10014_CR43) 1992
Q. Li (10014_CR24) 2013; 37
S.-K. Zhu (10014_CR34) 2017; 9
L.L. Howell (10014_CR1) 2001
V.K. Venkiteswaran (10014_CR33) 2018; 140
Y. Tian (10014_CR2) 2011; 35
N. Wang (10014_CR12) 2019; 141
G. Krishnan (10014_CR38) 2011; 3
J.S. Han (10014_CR10) 2006; 129
Y.-Q. Yu (10014_CR35) 2017; 116
M. Ling (10014_CR16) 2020; 72
C. Kimball (10014_CR31) 2002; 124
O. Sorgonà (10014_CR45) 2023; 184
Q. Meng (10014_CR27) 2013; 4
K. Xu (10014_CR6) 2018; 30
A.N. Danun (10014_CR39) 2020; 143
F. Ma (10014_CR25) 2015; 8
C.A. Mattson (10014_CR29) 2013
S. Henning (10014_CR17) 2021; 155
T.L. Thomas (10014_CR4) 2021; 13
P. Bilancia (10014_CR18) 2021; 134
D. Alazard (10014_CR47) 2023; 57
S. Wu (10014_CR15) 2022; 13
K. Wu (10014_CR7) 2021; 162
H.-J. Su (10014_CR32) 2009; 1
H. Lipkin (10014_CR44) 1992
M. Cera (10014_CR37) 2022; 175
G. Hao (10014_CR3) 2019; 10
R.C. Shi (10014_CR21) 2013; 84
H. Ahuett-Garza (10014_CR11) 2014; 38
References_xml – volume: 162
  year: 2021
  ident: 10014_CR7
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2021.104343
– volume: 11
  issue: 1
  year: 2019
  ident: 10014_CR26
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4041585
– volume: 184
  year: 2023
  ident: 10014_CR45
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2023.105308
– volume: 140
  issue: 9
  year: 2018
  ident: 10014_CR33
  publication-title: ASME. J. Mech. Des.
  doi: 10.1115/1.4040628
– volume: 81
  start-page: 60
  year: 2023
  ident: 10014_CR40
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2023.02.002
– volume: 29
  start-page: 826
  issue: 5
  year: 2010
  ident: 10014_CR19
  publication-title: Eur. J. Mech. A, Solids
  doi: 10.1016/j.euromechsol.2010.04.003
– volume-title: Synthesis Through Rigid-Body Replacement
  year: 2013
  ident: 10014_CR29
  doi: 10.1002/9781118516485.ch8
– volume: 8
  issue: 2
  year: 2015
  ident: 10014_CR25
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4031028
– volume: 16
  start-page: 1735
  year: 2015
  ident: 10014_CR28
  publication-title: Int. J. Prec. Eng. Manuf.
  doi: 10.1007/s12541-015-0228-5
– volume: 1
  issue: 2
  year: 2009
  ident: 10014_CR32
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.3046148
– volume: 90
  start-page: 236
  year: 2016
  ident: 10014_CR20
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.02.017
– volume: 116
  start-page: 501
  year: 2017
  ident: 10014_CR35
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.06.016
– volume: 84
  issue: 7
  year: 2013
  ident: 10014_CR21
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4813252
– volume: 29
  start-page: 650
  issue: 3
  year: 2013
  ident: 10014_CR42
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2013.2248536
– volume: 124
  start-page: 223
  issue: 2
  year: 2002
  ident: 10014_CR31
  publication-title: J. Mech. Des.
  doi: 10.1115/1.1455031
– volume: 141
  issue: 5
  year: 2019
  ident: 10014_CR12
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4042366
– volume: 13
  issue: 10
  year: 2022
  ident: 10014_CR15
  publication-title: Micromachines
  doi: 10.3390/mi13101734
– volume: 125
  start-page: 169
  year: 2018
  ident: 10014_CR13
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2018.03.014
– volume: 81
  start-page: 207
  year: 2023
  ident: 10014_CR41
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2023.01.006
– volume: 149
  year: 2020
  ident: 10014_CR36
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103811
– volume: 129
  start-page: 1056
  issue: 10
  year: 2006
  ident: 10014_CR8
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2757191
– volume: 37
  start-page: 135
  issue: 1
  year: 2013
  ident: 10014_CR24
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2012.07.010
– volume: 134
  year: 2021
  ident: 10014_CR18
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2021.103001
– volume-title: Compliant Mechanisms
  year: 2001
  ident: 10014_CR1
– volume: 175
  year: 2022
  ident: 10014_CR37
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2022.104963
– start-page: 179
  volume-title: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 22nd Biennial Mechanisms Conference: Robotics, Spatial Mechanisms, and Mechanical Systems
  year: 1992
  ident: 10014_CR43
  doi: 10.1115/DETC1992-0213
– volume: 39
  start-page: 1604
  issue: 14
  year: 2020
  ident: 10014_CR5
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364920910487
– volume: 13
  start-page: 137
  issue: 2
  year: 2004
  ident: 10014_CR9
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/jmems.2004.825308
– volume: 143
  issue: 5
  year: 2020
  ident: 10014_CR39
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4048220
– volume: 57
  start-page: 365
  issue: 3–4
  year: 2023
  ident: 10014_CR47
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-023-09883-y
– volume: 155
  year: 2021
  ident: 10014_CR17
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.104067
– start-page: 187
  volume-title: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 22nd Biennial Mechanisms Conference: Robotics, Spatial Mechanisms, and Mechanical Systems
  year: 1992
  ident: 10014_CR44
  doi: 10.1115/DETC1992-0214
– start-page: 85
  volume-title: Structures and Their Analysis
  year: 2016
  ident: 10014_CR23
  doi: 10.1007/978-3-319-31081-7_6
– volume: 35
  start-page: 554
  issue: 4
  year: 2011
  ident: 10014_CR2
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2011.03.001
– volume: 129
  start-page: 1198
  issue: 11
  year: 2006
  ident: 10014_CR10
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2771577
– volume: 9
  issue: 3
  year: 2017
  ident: 10014_CR34
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4035986
– volume: 13
  issue: 12
  year: 2022
  ident: 10014_CR50
  publication-title: Micromachines
  doi: 10.3390/mi13122172
– volume: 3
  issue: 1
  year: 2011
  ident: 10014_CR38
  publication-title: ASME. J. Mech. Robot.
  doi: 10.1115/1.4002513
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10014_CR22
  publication-title: Shock Vib.
  doi: 10.1155/2015/672831
– volume: 56
  start-page: 553
  issue: 6
  year: 2003
  ident: 10014_CR46
  publication-title: ASME. J. Mech. Des.
  doi: 10.1115/1.1590354
– volume: 4
  start-page: 345
  issue: 2
  year: 2013
  ident: 10014_CR27
  publication-title: Mech. Sci.
  doi: 10.5194/ms-4-345-2013
– volume: 38
  start-page: 711
  issue: 4
  year: 2014
  ident: 10014_CR11
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2014.03.008
– volume: 13
  issue: 2
  year: 2021
  ident: 10014_CR4
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4049491
– volume: 331
  year: 2021
  ident: 10014_CR14
  publication-title: Sens. Actuators A, Phys.
  doi: 10.1016/j.sna.2021.112899
– volume-title: Analysis of Aircraft Structures
  year: 2008
  ident: 10014_CR48
  doi: 10.1017/CBO9780511801631
– volume: 30
  issue: 7
  year: 2018
  ident: 10014_CR6
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaf26f
– volume: 10
  start-page: 191
  year: 2016
  ident: 10014_CR49
  publication-title: Int. J. Interact. Des. Manuf.
  doi: 10.1007/s12008-016-0299-2
– volume: 10
  issue: 10
  year: 2019
  ident: 10014_CR3
  publication-title: Micromachines
  doi: 10.3390/mi10100665
– volume: 72
  issue: 3
  year: 2020
  ident: 10014_CR16
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4045679
– start-page: 883
  volume-title: ASME International Mechanical Engineering Congress and Exposition
  year: 2000
  ident: 10014_CR30
  doi: 10.1115/IMECE2000-2390
SSID ssj0021549
Score 2.3904197
Snippet This paper presents a comparison among different flexibility models of elastic elements to be implemented in multibody simulations of compliant mechanisms. In...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 453
SubjectTerms Automotive Engineering
Closed loops
Computing time
Control
Curved beams
Dynamical Systems
Elasticity
Electrical Engineering
Engineering
Finite element method
Flexibility
Geometric nonlinearity
Kinematics
Matrix methods
Mechanical Engineering
Multibody systems
Optimization
Rigid structures
Vibration
Title Comparison of flexibility models for the multibody simulation of compliant mechanisms
URI https://link.springer.com/article/10.1007/s11044-024-10014-4
https://www.proquest.com/docview/3179218219
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0oXPTgB2pEkfTgTRvZ3ba7PZINSDR6ggRPG3bbJiQCxsUD_95pKaBETbzspR-bzOxk3myn7wFch5IrE2tEboZryoRQGHMFpyMhjUh0i4_cr4GnZ9EbsIchH3qaHHsXZuv8_q7E9MQYxUxCLVsQo2wXqjyIYivTkIp0XVxZqjFXXCWMcsFa_oLMz3t8T0IbZLl1GOpyTPcIDjw4JO2lN49hR09rcOiBIvFhWNZg_wuL4AkM0rWWIJkZYizFpWt5XRCnc1MSBKYEgR5x3YP5TC1IOZ543S67ZNlXjjYmE21vAo_LSXkK_W6nn_aoV0ugRSSiOY3DSKuCySTPsUQwiMt4FOZYrQUF47FRCiutQIlIJ2gIRC0IxOyZaWgQQ2iZR2dQmc6m-hwIx5GI54YrljCMd2lJCHMuCyZGcUuqOgQr62WFZxK3ghav2YYD2Vo8wxdlzuIZq8PNes3bkkfjz9mNlVMyH1NlhkhHWr75QNbhduWozfDvu138b_ol7IVW5Nc1mjWgMn__0FeIPOZ5E6rt-5fHTtN9evgchO1PS-bNcA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHtSDD9SIovbgTZvAbtvdHgmRoAInSLht2G2bkAgYFw_8e6ely6pRE899bDLT6XyznfkG4DaQXJlII3IzXFMmhEKbyzidCGlErBt84n4N9AeiO2JPYz72RWF5ke1ePEm6m7osdsPIgVH0KdTyBjHKtmEHwUBsz_IoaG3CLEs65sKsmFEuWMOXyvy8x1d3VGLMb8-iztt0juDAw0TSWuv1GLb0vAqHHjISb5B5FfY_8QmewKi96SpIFoYYS3bpkl9XxHW8yQlCVIKQj7g8wnShViSfznwHL7tknWGO0iYzbWuCp_ksP4Vh52HY7lLfN4FmoQiXNApCrTIm4zTFYMEgQuNhkGLc1swYj4xSGHM1lQh1jIJA_IKQzL6eBgbRhJZpeAaV-WKuz4FwHAl5arhiMUPLl5aOMOUyY2ISNaSqQbOQXpJ5TnHb2uIlKdmQrcQT_FDiJJ6wGtxt1ryuGTX-nF0vlJJ468oTxDzSMs83ZQ3uC0WVw7_vdvG_6Tew2x32e0nvcfB8CXuBbf3r0s_qUFm-vesrxCPL9Nodvw-GiNIK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAcWAqIQgEfuIFFk9hOfESFqmwVh1bqLWpiW6pEF5Fw6N8zdtIFBEicvUSaieP3MjNvAC59yZUJNSI3wzVlQig8cymnAyGNiHSDD9yvgZeOaPfYY5_3V6r4Xbb7PCRZ1DRYlaZxfjNV5mZZ-IYsglG8X6jVEGKUrcMGMhXP0q-maC4olxUgc5QrYpQL1ijLZn7e4-vVtMSb30Kk7uZp7cFOCRnJbeHjfVjT4yrslvCRlIczq8L2irbgAfSaiw6DZGKIscKXLhF2Rlz3m4wgXCUI_4jLKUwmakay4ajs5mWXFNnmaHky0rY-eJiNskPotu67zTYteyjQNBBBTkM_0CplMkoSJA4G0RoP_AQ5nJcyHhqlkH95SgQ6QkMglkF4ZiOpvkFkoWUSHEFlPBnrYyAcRwKeGK5YxPArIK00YcJlysQgbEhVA29uvTgt9cVtm4u3eKmMbC0e44NiZ_GY1eBqsWZaqGv8Obs-d0pcnrQsRvwjrQq9J2twPXfUcvj33U7-N_0CNl_vWvHzQ-fpFLZ82wXYZaLVoZK_f-gzhCZ5cu7evk_uYdYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+flexibility+models+for+the+multibody+simulation+of+compliant+mechanisms&rft.jtitle=Multibody+system+dynamics&rft.au=Sorgon%C3%A0%2C+Orazio&rft.au=Cirelli%2C+Marco&rft.au=Giannini%2C+Oliviero&rft.au=Verotti%2C+Matteo&rft.date=2025-03-01&rft.pub=Springer+Netherlands&rft.issn=1384-5640&rft.eissn=1573-272X&rft.volume=63&rft.issue=3&rft.spage=453&rft.epage=474&rft_id=info:doi/10.1007%2Fs11044-024-10014-4&rft.externalDocID=10_1007_s11044_024_10014_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5640&client=summon