Emerging trends in federated learning: from model fusion to federated X learning

Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. As a flexible learning setting, federated learning has the potential to integrate with other learning frameworks. We conduct a focused survey of federate...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 15; no. 9; pp. 3769 - 3790
Main Authors Ji, Shaoxiong, Tan, Yue, Saravirta, Teemu, Yang, Zhiqin, Liu, Yixin, Vasankari, Lauri, Pan, Shirui, Long, Guodong, Walid, Anwar
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02119-1

Cover

Loading…
Abstract Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. As a flexible learning setting, federated learning has the potential to integrate with other learning frameworks. We conduct a focused survey of federated learning in conjunction with other learning algorithms. Specifically, we explore various learning algorithms to improve the vanilla federated averaging algorithm and review model fusion methods such as adaptive aggregation, regularization, clustered methods, and Bayesian methods. Following the emerging trends, we also discuss federated learning in the intersection with other learning paradigms, termed federated X learning, where X includes multitask learning, meta-learning, transfer learning, unsupervised learning, and reinforcement learning. In addition to reviewing state-of-the-art studies, this paper also identifies key challenges and applications in this field, while also highlighting promising future directions.
AbstractList Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. As a flexible learning setting, federated learning has the potential to integrate with other learning frameworks. We conduct a focused survey of federated learning in conjunction with other learning algorithms. Specifically, we explore various learning algorithms to improve the vanilla federated averaging algorithm and review model fusion methods such as adaptive aggregation, regularization, clustered methods, and Bayesian methods. Following the emerging trends, we also discuss federated learning in the intersection with other learning paradigms, termed federated X learning, where X includes multitask learning, meta-learning, transfer learning, unsupervised learning, and reinforcement learning. In addition to reviewing state-of-the-art studies, this paper also identifies key challenges and applications in this field, while also highlighting promising future directions.
Author Tan, Yue
Walid, Anwar
Saravirta, Teemu
Long, Guodong
Ji, Shaoxiong
Vasankari, Lauri
Pan, Shirui
Yang, Zhiqin
Liu, Yixin
Author_xml – sequence: 1
  givenname: Shaoxiong
  surname: Ji
  fullname: Ji, Shaoxiong
  email: shaoxiong.ji@helsinki.fi
  organization: University of Helsinki
– sequence: 2
  givenname: Yue
  surname: Tan
  fullname: Tan, Yue
  organization: University of Technology Sydney
– sequence: 3
  givenname: Teemu
  surname: Saravirta
  fullname: Saravirta, Teemu
  organization: University of Helsinki
– sequence: 4
  givenname: Zhiqin
  surname: Yang
  fullname: Yang, Zhiqin
  organization: Beihang University
– sequence: 5
  givenname: Yixin
  surname: Liu
  fullname: Liu, Yixin
  email: yixin.liu@monash.edu
  organization: Monash University
– sequence: 6
  givenname: Lauri
  surname: Vasankari
  fullname: Vasankari, Lauri
  organization: Aalto University
– sequence: 7
  givenname: Shirui
  surname: Pan
  fullname: Pan, Shirui
  organization: Griffith University
– sequence: 8
  givenname: Guodong
  surname: Long
  fullname: Long, Guodong
  organization: University of Technology Sydney
– sequence: 9
  givenname: Anwar
  surname: Walid
  fullname: Walid, Anwar
  organization: Amazon, Columbia University
BookMark eNp9kE1LAzEQhoNUsNb-AU8Lnlczm_1IvEmpH1DQg0JvId1MypZtUpP04L83ulLFQwMhA3meZOY9JyPrLBJyCfQaKG1uAjBaFjktyrQBRA4nZAy85jmnfDk61A2ckWkIG5pWTRmjxZi8zLfo151dZ9Gj1SHrbGZQo1cRddaj8jZd3mbGu222dRr7zOxD52wW3R9weUAvyKlRfcDpzzkhb_fz19ljvnh-eJrdLfKW1SzmDSizErptQDdVKVrOALium1JhIwoUqtVVGo7RVVsDoDBYlaYVAhhHpemKTcjV8O7Ou_c9hig3bu9t-lIyKpioQFCeKD5QrXcheDSy7aKKqf_oVddLoPIrQjlEKFOE8jtCCUkt_qk7322V_zgusUEKCbZr9L9dHbE-AbJMhQk
CitedBy_id crossref_primary_10_61186_jsdp_21_3_23
crossref_primary_10_1145_3701724
crossref_primary_10_3389_fenrg_2024_1444697
crossref_primary_10_3390_electronics14061215
crossref_primary_10_1109_JIOT_2024_3406634
crossref_primary_10_32628_CSEIT25111294
crossref_primary_10_26599_TST_2024_9010042
crossref_primary_10_1016_j_knosys_2025_113277
crossref_primary_10_3390_electronics14020295
crossref_primary_10_1109_ACCESS_2025_3547641
crossref_primary_10_1038_s41598_025_89612_x
crossref_primary_10_4018_IJeC_349745
crossref_primary_10_1109_ACCESS_2024_3413069
crossref_primary_10_1109_ACCESS_2024_3514319
crossref_primary_10_1109_ACCESS_2025_3535952
crossref_primary_10_1007_s13042_024_02436_5
crossref_primary_10_32604_cmc_2024_054484
crossref_primary_10_1109_ACCESS_2024_3508030
crossref_primary_10_1007_s42979_024_03137_0
Cites_doi 10.3390/s20144048
10.1109/MIS.2020.3014880
10.1145/3459637.3482252
10.1109/TIFS.2023.3255171
10.1109/MIS.2020.2988525
10.1109/INFOCOM41043.2020.9155494
10.1609/aaai.v37i9.26331
10.1007/978-3-030-58951-6_24
10.1145/3501816
10.1609/aaai.v35i9.16920
10.1145/3298981
10.1145/3580305.3599346
10.1609/aaai.v35i10.17118
10.24963/ijcai.2022/303
10.1109/JIOT.2023.3324666
10.1109/TCAD.2022.3205551
10.1109/MIS.2020.2994942
10.1609/aaai.v36i8.20825
10.1007/s11280-022-01046-x
10.1109/TMI.2023.3235757
10.1109/CVPR46437.2021.01549
10.1109/MCOM.001.1900461
10.1109/MIS.2020.2988604
10.1109/MSP.2020.2975749
10.1109/TNNLS.2022.3224252
10.1145/3534678.3539384
10.1145/3581783.3612217
10.1016/j.apenergy.2022.120526
10.1109/TNNLS.2020.3015958
10.1016/j.comnet.2021.108468
10.1109/GCWkshps56602.2022.10008598
10.1109/CVPR42600.2020.00975
10.1109/CVPR52688.2022.00988
10.1007/978-3-030-60548-3_15
10.1016/j.neucom.2023.126831
10.36227/techrxiv.12503420
10.1109/TITS.2023.3303991
10.1109/TNNLS.2019.2953131
10.1155/2022/2913293
10.1609/aaai.v38i13.29329
10.1109/TETC.2020.2983404
10.1109/JIOT.2023.3302065
10.1109/CVPR46437.2021.01057
10.1109/JIOT.2023.3302792
10.24963/ijcai.2021/720 10.24963/ijcai.2021/720
10.1109/INFOCOM41043.2020.9155268
10.1007/978-3-031-16437-8_19
10.1145/3539597.3570463
10.1007/978-3-031-20056-4_40
10.1007/s11280-019-00775-w
10.1145/3397271.3401081
10.1109/TKDE.2022.3220219
10.1109/CVPR52688.2022.00991
10.1109/CVPR52688.2022.00993
10.1109/TNSE.2020.2996612
10.1145/3394486.3403176
10.1016/j.knosys.2023.110347
10.1109/TPDS.2023.3289444
10.24963/ijcai.2022/306
10.24963/ijcai.2021/217
10.1109/TPDS.2022.3230938
10.1609/aaai.v35i9.16960
10.1109/CVPR52729.2023.01563
10.1007/978-3-030-60636-7_1
10.1007/978-3-030-63076-8_17
10.1109/IJCNN55064.2022.9892624
10.1016/j.knosys.2022.109384
10.1145/3534678.3539308
10.1017/9781108571401
10.1109/TKDE.2022.3172903
10.1016/j.media.2023.102976
10.1109/TII.2021.3113708
10.1109/IJCNN48605.2020.9207469
10.1109/ICCV51070.2023.01509
10.24963/ijcai.2021/202
10.1109/IJCNN.2019.8852464
10.1007/978-3-030-72188-6_6
10.1609/aaai.v35i8.16849
10.1145/3604939
10.1631/FITEE.2200268
10.1109/JSAC.2020.3036946
10.1145/3510031
10.1109/MASS52906.2021.00031
10.1609/aaai.v36i8.20903
10.1109/ICCV51070.2023.01559
10.1109/TNNLS.2022.3233093
10.1145/3523227.3546771
10.1007/978-3-030-63076-8_1
10.1109/COMST.2020.2986024
10.1007/978-3-030-63076-8_14
10.1109/GLOBECOM48099.2022.10000892
10.1007/s40747-020-00247-z
10.1609/aaai.v35i12.17291
10.1109/ISPDC52870.2021.9521631
10.1609/aaai.v36i8.20819
10.1109/TITS.2023.3286439
10.1609/aaai.v35i10.17053
10.1109/JIOT.2022.3201231
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s13042-024-02119-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 3790
ExternalDocumentID 10_1007_s13042_024_02119_1
GrantInformation_xml – fundername: ARC Future Fellowship
  grantid: No. FT210100097
– fundername: University of Helsinki (including Helsinki University Central Hospital)
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
C6C
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-71afb9dc71d7549c83118d674ae792e9acd510030bc611e9fe54fc99138ead0b3
IEDL.DBID 8FG
ISSN 1868-8071
IngestDate Tue Sep 02 03:18:57 EDT 2025
Tue Jul 01 03:51:05 EDT 2025
Thu Apr 24 23:00:28 EDT 2025
Fri Feb 21 02:38:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Model fusion
Learning algorithms
Federated learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-71afb9dc71d7549c83118d674ae792e9acd510030bc611e9fe54fc99138ead0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s13042-024-02119-1
PQID 3093951908
PQPubID 2043904
PageCount 22
ParticipantIDs proquest_journals_3093951908
crossref_citationtrail_10_1007_s13042_024_02119_1
crossref_primary_10_1007_s13042_024_02119_1
springer_journals_10_1007_s13042_024_02119_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ChenZLiWXingXYuanYMedical federated learning with joint graph purification for noisy label learningMed Image Anal202390102976
Zhan Y, Zhang J (2020) An incentive mechanism design for efficient edge learning by deep reinforcement learning approach. In: IEEE international conference on computer communications, IEEE, pp 2489–2498
QiTWuFWuCLyuLXuTLiaoHYangZHuangYXieXFairvfl: a fair vertical federated learning framework with contrastive adversarial learningAdv Neural Inf Process Syst20223578527865
ChenYSunXJinYCommunication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregationIEEE Trans Neural Netw Learn Syst2020311042294238
Xu J, Wang F (2019) Federated learning for healthcare informatics. arXiv preprint arXiv:1911.06270
ThapaCMahawaga ArachchigePCCamtepeSSunLSplitfed: when federated learning meets split learningProc AAAI Conf Artif Intell20223688485849310.1609/aaai.v36i8.20825
Reddi S, Charles Z, Zaheer M, Garrett Z, Rush K, Konečnỳ J, Kumar S, McMahan HB (2021) Adaptive federated optimization. In: International conference on learning representations
Ji S, Long G, Pan S, Zhu T, Jiang J, Wang S, Li X(2019) Knowledge transferring via model aggregation for online social care. arXiv preprint arXiv:1905.07665
Tang Z, Wang Y, He X, Zhang L, Pan X, Wang Q, Zeng R, Zhao K, Shi S, He B, et al (2023) Fusionai: decentralized training and deploying llms with massive consumer-level gpus. arXiv preprint arXiv:2309.01172
McMahan HB, Moore E, Ramage D, Hampson S, et al (2017) Communication-efficient learning of deep networks from decentralized data. In: International Conference on artificial intelligence and statistics, pp 1273–1282
KhalatbarisoltaniABoulonLHuXIntegrating model predictive control with federated reinforcement learning for decentralized energy management of fuel cell vehiclesIEEE Trans Intell Transp Syst202310.1109/TITS.2023.3303991
Park S, Han S, Wu F, Kim S, Zhu B, Xie X, Cha M ( 2023) Feddefender: client-side attack-tolerant federated learning. In: Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining, pp 1850–1861
SinghSPJaggiMModel fusion via optimal transportAdv Neural Inf Process Syst2020332204522055
TanYLiuYLongGJiangJLuQZhangCFederated learning on non-iid graphs via structural knowledge sharingProc AAAI Conf Artif Intel20233799539961
WangBYuanZYingYYangTMemory-based optimization methods for model-agnostic meta-learning and personalized federated learningJ Mach Learn Res2023241464596092
Li Q, Wen Z, He B (2019) Federated learning systems: vision, hype and reality for data privacy and protection. arXiv preprint arXiv:1907.09693
Ji S, Jiang W, Walid A, Li X (2020) Dynamic sampling and selective masking for communication-efficient federated learning. arXiv preprint arXiv:2003.09603
He C, Tan C, Tang H, Qiu S, Liu J (2019) Central server free federated learning over single-sided trust social networks. arXiv preprint arXiv:1910.04956
WatkinsCJDayanPQ-learningMach Learn19928279292
Mansour Y, Mohri M, Ro J, Suresh AT (2020) Three approaches for personalization with applications to federated learning. arXiv preprint arXiv:2002.10619
ChaHParkJKimHBennisMKimS-LProxy experience replay: federated distillation for distributed reinforcement learningIEEE Intell Syst202035494101
LiCWangHCommunication efficient federated learning for generalized linear banditsAdv Neural Inf Process Syst2022353841138423
Wen Y, Geiping JA, Fowl L, Goldblum M, Goldstein T (2022) In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S (eds) Proceedings of the 39th international conference on machine learning. Proceedings of machine learning research. Fishing for user data in large-batch federated learning via gradient magnification, vol 162, pp 23668–23684. https://proceedings.mlr.press/v162/wen22a.html
SattlerFMüllerK-RSamekWClustered federated learning: model-agnostic distributed multitask optimization under privacy constraintsIEEE Trans Neural Netw Learn Syst2020328371037224296542
Li X, Huang K, Yang W, Wang S, Zhang Z (2020) On the convergence of Fedavg on non-iid data. In: International conference on learning representations
HijaziNMAloqailyMGuizaniMOuniBKarrayFSecure federated learning with fully homomorphic encryption for IoT communicationsIEEE Internet of Things J202310.1109/JIOT.2023.3302065
EzzeldinY.HYanSHeCFerraraEAvestimehrA. SFairfed: Enabling group fairness in federated learningProc AAAI Conf Artif Intell20233774947502
ZhangYZhangWPuLLinTYanJTo distill or not to distill: towards fast, accurate and communication efficient federated distillation learningIEEE Internet of Things J202310.1109/JIOT.2023.3324666
YangYYangRPengHLiYLiTLiaoYZhouPFedACK: federated adversarial contrastive knowledge distillation for cross-lingual and cross-model social bot detectionProc ACM Web Conf2023202313141323
GuptaSHuangYZhongZGaoTLiKChenDRecovering private text in federated learning of language modelsAdv Neural Inf Process Syst20223581308143
ZhuHZhangHJinYFrom federated learning to federated neural architecture search: a surveyComplex Intell Syst202072639657
Dennis DK, Li T, Smith V (2021) Heterogeneity for the win: one-shot federated clustering. In: International conference on machine learning, PMLR, pp 2611–2620
Fan C, Liu P (2020) Federated generative adversarial learning. arXiv preprint arXiv:2005.03793
Durmus AE, Yue Z, Ramon M, Matthew M, Paul W, Venkatesh S (2021) Federated learning based on dynamic regularization. In: International conference on learning representations
Xiao J, Du C, Duan Z, Guo W (2021) A novel server-side aggregation strategy for federated learning in non-iid situations. In: 2021 20th International symposium on parallel and distributed computing (ISPDC), IEEE, pp 17–24
Bietti A, Wei C-Y, Dudik M, Langford J, Wu S (2022) Personalization improves privacy-accuracy tradeoffs in federated learning. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S (eds) Proceedings of the 39th international conference on machine learning. Proceedings of machine learning research, vol 162, pp 1945–1962. https://proceedings.mlr.press/v162/bietti22a.html
QiuDXueJZhangTWangJSunMFederated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance tradingAppl Energy2023333120526
Han S, Park S, Wu F, Kim S, Wu C, Xie X, Cha M( 2022) Fedx: unsupervised federated learning with cross knowledge distillation. In: European conference on computer vision, Springer, pp 691–707
FengSLiBYuHLiuYYangQSemi-supervised federated heterogeneous transfer learningKnowl-Based Syst2022252109384
Smith V, Chiang C-K, Sanjabi M, Talwalkar AS (2017) Federated multi-task learning. In: Advances in neural information processing systems, pp 4427– 4437
Yu FX, Rawat AS, Menon AK, Kumar S (2020) Federated learning with only positive labels. In: International conference on machine learning
JinXBuJYuZZhangHWangYFedCrack: federated transfer learning with unsupervised representation for crack detectionIEEE Trans Intell Transp Syst202310.1109/TITS.2023.3286439
Lu Y, Chen L, Zhang Y, Zhang Y, Han B, Cheung Y-m, Wang H (2023) Federated learning with extremely noisy clients via negative distillation. arXiv preprint arXiv:2312.12703
Karimireddy SP, Jaggi M, Kale S, Mohri M, Reddi SJ, Stich SU, Suresh AT (2020) Mime: Mimicking centralized stochastic algorithms in federated learning. arXiv preprint arXiv:2008.03606
Zhang X, Li Y, Li W, Guo K, Shao Y (2022) Personalized federated learning via variational bayesian inference. In: International conference on machine learning, PMLR, pp 26293–26310
Huang Y, Gupta S, Song Z, Li K, Arora S (2021) Evaluating gradient inversion attacks and defenses in federated learning. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW (eds) Advances in neural information processing systems, vol 34, pp 7232–7241. https://proceedings.neurips.cc/paper/2021/file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf
Hoang M, Hoang N, Low BKH, Kingsford C ( 2019) Collective model fusion for multiple black-box experts. In: International conference on machine learning, PMLR, pp 2742–2750
Jiang J, Ji S, Long G (2020) Decentralized knowledge acquisition for mobile internet applications. World Wide Web
Tan AZ, Yu H, Cui L, Yang Q (2021) Towards personalized federated learning. arXiv preprint arXiv:2103.00710
Shang X, Huang G, Lu Y, Lou J, Han B, Cheung Y-m, Wang H (2023) Federated semi-supervised learning with annotation heterogeneity. arXiv preprint arXiv:2303.02445
Zhu L, Lin H, Lu Y, Lin Y, Han S (2021) Delayed gradient averaging: tolerate the communication latency for federated learning. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW (eds) Advances in neural information processing systems, vol 34, pp 29995–30007. https://proceedings.neurips.cc/paper/2021/file/fc03d48253286a798f5116ec00e99b2b-Paper.pdf
Briggs C, Fan Z, Andras P (2020) Federated learning with hierarchical clustering of local updates to improve training on non-iid data. In: International joint conference on neural network
Liang X, Lin Y, Fu H, Zhu L, Li, X ( 2022) Rscfed: random sampling consensus federated semi-supervised learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10154–10163
ChenCLiuYMaXLyuLCalfat: calibrated federated adversarial training with label skewnessAdv Neural Inf Process Syst20223535693581
Wang H-P, Stich S, He Y, Fritz M (2022) Progfed: effective, communication, and computation efficient federated learning by progressive training. In: International conference on machine learning, PMLR, pp 23034–23054
He C, Li S, So J, Zhang M, Wang H, Wang X, Vepakomma P, Singh A, Qiu H, Shen L, Zhao P, Kang Y, Liu Y, Raskar R, Yang Q, Annavaram M, Avestimehr S (2020) FedML: a research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518
Grammenos A, Mendoza Smith R, Crowcroft J, Mascolo C (2020) Federated principal component analysis. In: Advances in neural information processing systems
Zhuang W, Wen Y, Zhang S (2022) Diverge
2119_CR76
2119_CR75
S Gupta (2119_CR164) 2022; 35
2119_CR74
B Zhao (2119_CR160) 2022; 36
2119_CR71
Q Yang (2119_CR107) 2019; 10
Q Guo (2119_CR23) 2023; 560
2119_CR78
H Gao (2119_CR181) 2021; 35
2119_CR80
RS Sutton (2119_CR137) 1988; 3
Z Chen (2119_CR203) 2023; 90
Y.H Ezzeldin (2119_CR45) 2023; 37
2119_CR66
2119_CR65
D Chai (2119_CR120) 2020; 36
2119_CR63
2119_CR62
X Wang (2119_CR22) 2020; 39
2119_CR60
C He (2119_CR67) 2020; 33
K Sohn (2119_CR129) 2020; 33
J Hong (2119_CR91) 2023; 37
X-X Wei (2119_CR79) 2023
2119_CR68
J Liu (2119_CR18) 2021; 199
MS Ozdayi (2119_CR159) 2021; 35
E Diao (2119_CR77) 2022; 35
X Cao (2119_CR162) 2021; 35
CJ Watkins (2119_CR136) 1992; 8
Y Tan (2119_CR194) 2023; 37
R Liu (2119_CR156) 2021; 35
2119_CR99
F Zhang (2119_CR94) 2023; 24
2119_CR98
2119_CR97
2119_CR96
M Alawad (2119_CR122) 2020; 9
2119_CR95
2119_CR182
2119_CR93
2119_CR184
2119_CR92
2119_CR186
WYB Lim (2119_CR112) 2020; 22
2119_CR187
C Chen (2119_CR90) 2022; 35
2119_CR188
S Che (2119_CR201) 2022; 13
2119_CR189
2119_CR88
2119_CR86
2119_CR85
C He (2119_CR61) 2022; 36
2119_CR84
2119_CR193
Z Zhu (2119_CR185) 2022; 162
2119_CR82
2119_CR195
2119_CR81
2119_CR197
2119_CR199
2119_CR89
T Qi (2119_CR87) 2022; 35
Y Yang (2119_CR70) 2023; 2023
2119_CR161
2119_CR163
2119_CR165
Y Chen (2119_CR52) 2020; 35
2119_CR166
2119_CR167
2119_CR168
2119_CR169
S Feng (2119_CR53) 2022; 252
Y Tan (2119_CR33) 2022; 36
2119_CR171
2119_CR172
2119_CR173
2119_CR174
2119_CR175
H Zhu (2119_CR152) 2020; 7
2119_CR176
2119_CR177
Y Yang (2119_CR149) 2021; 35
J-B Grill (2119_CR133) 2020; 33
2119_CR141
2119_CR142
2119_CR143
G Long (2119_CR35) 2023; 26
2119_CR144
2119_CR145
2119_CR146
2119_CR147
2119_CR148
Y Cui (2119_CR192) 2022
Y Chang (2119_CR178) 2023; 18
T Lin (2119_CR69) 2020; 33
2119_CR150
2119_CR151
2119_CR8
2119_CR153
2119_CR154
2119_CR155
2119_CR9
Y Kang (2119_CR83) 2022; 13
2119_CR1
2119_CR4
2119_CR3
2119_CR6
SP Singh (2119_CR119) 2020; 33
2119_CR5
Y Chen (2119_CR10) 2020; 31
X Xu (2119_CR200) 2021; 18
2119_CR121
A Khalatbarisoltani (2119_CR139) 2023
2119_CR123
2119_CR124
2119_CR125
2119_CR126
2119_CR127
2119_CR128
Z Liu (2119_CR198) 2022; 13
Z Sun (2119_CR191) 2022; 35
H Cha (2119_CR101) 2020; 35
B Wang (2119_CR64) 2023; 24
M Zhu (2119_CR204) 2023
P Xiao (2119_CR43) 2023; 37
2119_CR131
2119_CR132
NM Hijazi (2119_CR179) 2023
2119_CR134
2119_CR135
H Yang (2119_CR50) 2020; 8
2119_CR138
X Yang (2119_CR130) 2022; 35
X Jin (2119_CR54) 2023
P Zhao (2119_CR180) 2022; 10
2119_CR11
2119_CR19
S Niknam (2119_CR113) 2020; 58
2119_CR17
2119_CR100
2119_CR16
2119_CR15
2119_CR102
2119_CR14
2119_CR103
2119_CR13
2119_CR104
T Li (2119_CR12) 2020; 37
W Mai (2119_CR105) 2023; 18
2119_CR106
2119_CR108
2119_CR109
C Thapa (2119_CR157) 2022; 36
Y Tan (2119_CR7) 2022; 35
X Wu (2119_CR20) 2020; 20
S Zawad (2119_CR158) 2021; 35
2119_CR110
2119_CR111
2119_CR114
2119_CR115
2119_CR116
2119_CR117
2119_CR118
Z Liu (2119_CR202) 2022; 36
CT Dinh (2119_CR32) 2022
2119_CR31
2119_CR30
2119_CR39
2119_CR38
2119_CR37
2119_CR36
2119_CR34
2119_CR205
2119_CR206
2119_CR207
2119_CR208
H Wang (2119_CR2) 2020; 33
Z Wu (2119_CR72) 2023
X Cao (2119_CR58) 2023; 265
K Fan (2119_CR170) 2023
2119_CR21
2119_CR29
2119_CR28
2119_CR27
2119_CR26
2119_CR25
2119_CR24
K Wang (2119_CR51) 2022
2119_CR55
O Marfoq (2119_CR59) 2021; 34
D Qiu (2119_CR140) 2023; 333
2119_CR56
F Liang (2119_CR196) 2021; 35
Y Liu (2119_CR48) 2020; 35
2119_CR44
2119_CR42
2119_CR41
2119_CR40
Y Zhang (2119_CR73) 2023
F Sattler (2119_CR57) 2020; 32
2119_CR49
2119_CR47
2119_CR46
C Li (2119_CR190) 2022; 35
Z Tang (2119_CR183) 2022; 34
References_xml – reference: Arivazhagan MG, Aggarwal V, Singh AK, Choudhary S (2019) Federated learning with personalization layers. arXiv: 1912.00818 [cs.LG]
– reference: Shang X, Huang G, Lu Y, Lou J, Han B, Cheung Y-m, Wang H (2023) Federated semi-supervised learning with annotation heterogeneity. arXiv preprint arXiv:2303.02445
– reference: Rong D, He Q, Chen J ( 2022) Poisoning deep learning based recommender model in federated learning scenarios. In: Raedt LD (ed) Proceedings of the thirty-first international joint conference on artificial intelligence, IJCAI-22, pp 2204– 2210 . Main Track. https://doi.org/10.24963/ijcai.2022/306
– reference: LongGXieMShenTZhouTWangXJiangJMulti-center federated learning: clients clustering for better personalizationWorld Wide Web2023261481500
– reference: Liang PP, Liu T, Ziyin L, Salakhutdinov R, Morency L-P (2020) Think locally, act globally: federated learning with local and global representations. Adv Neural Inf Process Syst
– reference: WatkinsCJDayanPQ-learningMach Learn19928279292
– reference: Li T, Sanjabi M, Beirami A, Smith V (2020) Fair resource allocation in federated learning. In: International conference on learning representations
– reference: ChenYQinXWangJYuCGaoWFedhealth: a federated transfer learning framework for wearable healthcareIEEE Intell Syst20203548393
– reference: AlawadMYoonH-JGaoSMumphreyBWuX-CDurbinEBJeongJCHandsIRustDCoyleLPrivacy-preserving deep learning nlp models for cancer registriesIEEE Trans Emerg Top Comput20209312191230
– reference: DinhCTVuTTTranNHDaoMNZhangHA new look and convergence rate of federated multitask learning with Laplacian regularizationIEEE Trans Neural Netw Learn Syst202210.1109/TNNLS.2022.3224252
– reference: Huang Y, Chu L, Zhou Z, Wang L, Liu J, Pei J, Zhang Y (2021) Personalized cross-silo federated learning on non-iid data. In: AAAI conference on artificial intelligence
– reference: MaiWYaoJChenGZhangYCheungY-MHanBServer-client collaborative distillation for federated reinforcement learningACM Trans Knowl Discov Data2023181122
– reference: TanYLongGLIULZhouTLuQJiangJZhangCFedproto: federated prototype learning across heterogeneous clientsProc AAAI Conf Artif Intell20223688432844010.1609/aaai.v36i8.20819
– reference: KangYLiuYLiangXFedcvt: semi-supervised vertical federated learning with cross-view trainingACM Trans Intell Syst Technol (TIST)2022134116
– reference: ZhuZHongJDrewSZhouJResilient and communication efficient learning for heterogeneous federated systemsProc Mach Learn Res202216227504
– reference: Chen H-Y, Chao W-L (2020) FedBE: making bayesian model ensemble applicable to federated learning. In: International conference on learning representations
– reference: Yu FX, Rawat AS, Menon AK, Kumar S (2020) Federated learning with only positive labels. In: International conference on machine learning
– reference: Jiang M, Yang H, Li X, Liu Q, Heng P-A, Dou Q ( 2022) Dynamic bank learning for semi-supervised federated image diagnosis with class imbalance. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 196–206
– reference: Tolpegin V, Truex S, Gursoy ME, Liu L (2020) Data poisoning attacks against federated learning systems. In: Computer security–ESORICS 2020: 25th European Symposium on research in computer security, ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings, Part I 25, Springer, pp 480–501
– reference: SuttonRSLearning to predict by the methods of temporal differencesMach Learn19883944
– reference: YangYYangRPengHLiYLiTLiaoYZhouPFedACK: federated adversarial contrastive knowledge distillation for cross-lingual and cross-model social bot detectionProc ACM Web Conf2023202313141323
– reference: Zhang X, Chen X, Hong M, Wu S, Yi J (2022) Understanding clipping for federated learning: convergence and client-level differential privacy. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S (eds) Proceedings of the 39th international conference on machine learning. Proceedings of machine learning research, vol 162, pp 26048–26067. https://proceedings.mlr.press/v162/zhang22b.html
– reference: Lyu L, Yu H, Yang Q (2020) Threats to federated learning: a survey. arXiv preprint arXiv:2003.02133
– reference: SohnKBerthelotDCarliniNZhangZZhangHRaffelCACubukEDKurakinALiC-LFixmatch: simplifying semi-supervised learning with consistency and confidenceAdv Neural Inf Process Syst202033596608
– reference: Yurochkin M, Agarwal M, Ghosh S, Greenewald K, Hoang N, Khazaeni Y (2019) Bayesian nonparametric federated learning of neural networks. In: International conference on machine learning, pp 7252–7261
– reference: JinXBuJYuZZhangHWangYFedCrack: federated transfer learning with unsupervised representation for crack detectionIEEE Trans Intell Transp Syst202310.1109/TITS.2023.3286439
– reference: Caldas S, Smith V, Talwalkar A (2018) Federated kernelized multi-task learning. In: Conference on machine learning and systems
– reference: MarfoqONegliaGBelletAKameniLVidalRFederated multi-task learning under a mixture of distributionsAdv Neural Inf Process Syst2021341543415447
– reference: ChenYSunXJinYCommunication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregationIEEE Trans Neural Netw Learn Syst2020311042294238
– reference: SunZWeiEA communication-efficient algorithm with linear convergence for federated minimax learningAdv Neural Inf Process Syst20223560606073
– reference: Bietti A, Wei C-Y, Dudik M, Langford J, Wu S (2022) Personalization improves privacy-accuracy tradeoffs in federated learning. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S (eds) Proceedings of the 39th international conference on machine learning. Proceedings of machine learning research, vol 162, pp 1945–1962. https://proceedings.mlr.press/v162/bietti22a.html
– reference: Tang Z, Chu X, Ran RY, Lee S, Shi S, Zhang Y, Wang Y, Liang AQ, Avestimehr S, He C (2023) Fedml parrot: a scalable federated learning system via heterogeneity-aware scheduling on sequential and hierarchical training. arXiv preprint arXiv:2303.01778
– reference: Jiang Y, Konečnỳ J, Rush K, Kannan S (2019) Improving federated learning personalization via model agnostic meta learning. In: Advances in neural information processing systems workshop
– reference: Durmus AE, Yue Z, Ramon M, Matthew M, Paul W, Venkatesh S (2021) Federated learning based on dynamic regularization. In: International conference on learning representations
– reference: Lubana E, Tang CI, Kawsar F, Dick R, Mathur A (2022) Orchestra: unsupervised federated learning via globally consistent clustering. In: International conference on machine learning, PMLR, pp 14461–14484
– reference: Zhuo HH, Feng W, Xu Q, Yang Q, Lin Y (2019) Federated deep reinforcement learning. arXiv preprint arXiv:1901.08277
– reference: HongJWangHWangZZhouJFederated robustness propagation: sharing adversarial robustness in heterogeneous federated learningProc AAAI Conf Artif Intell20233778937901
– reference: Chen X, He K (2021) Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 15750–15758
– reference: Liu Y, Pan S, Jin M, Zhou C, Xia F, Yu PS (2021) Graph self-supervised learning: a survey. arXiv preprint arXiv:2103.00111
– reference: CaoXJiaJGongNZProvably secure federated learning against malicious clientsProc AAAI Conf Artif Intell20213586885689310.1609/aaai.v35i8.16849
– reference: XiaoPChengSBayesian federated neural matching that completes full informationProc AAAI Conf Artif Intell2023371047310480
– reference: ChaiDWangLChenKYangQSecure federated matrix factorizationIEEE Intell Syst20203651120
– reference: Kim J, Kim G, Han B (2022) Multi-level branched regularization for federated learning. In: International conference on machine learning, PMLR, pp 11058–11073
– reference: Tan Y, Chen C, Zhuang W, Dong X, Lyu L, Long G (2023) Is heterogeneity notorious? taming heterogeneity to handle test-time shift in federated learning. In: Thirty-seventh conference on neural information processing systems
– reference: Zhu L, Lin H, Lu Y, Lin Y, Han S (2021) Delayed gradient averaging: tolerate the communication latency for federated learning. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW (eds) Advances in neural information processing systems, vol 34, pp 29995–30007. https://proceedings.neurips.cc/paper/2021/file/fc03d48253286a798f5116ec00e99b2b-Paper.pdf
– reference: YangHHeHZhangWCaoXFedSteg: a federated transfer learning framework for secure image steganalysisIEEE Trans Netw Sci Eng20208210841094
– reference: QiTWuFWuCLyuLXuTLiaoHYangZHuangYXieXFairvfl: a fair vertical federated learning framework with contrastive adversarial learningAdv Neural Inf Process Syst20223578527865
– reference: Jin H, Peng Y, Yang W, Wang S, Zhang Z (2022) Federated reinforcement learning with environment heterogeneity. In: International conference on artificial intelligence and statistics, PMLR, pp 18–37
– reference: LiuJWangJHRongCXuYYuTWangJFedpa: an adaptively partial model aggregation strategy in federated learningComput Netw2021199108468
– reference: Singh I, Zhou H, Yang K, Ding M, Lin B, Xie P (2020) Differentially-private federated neural architecture search. In: FL-international conference on machine learning workshop
– reference: Chen R, Wan Q, Prakash P, Zhang L, Yuan X, Gong Y, Fu X, Pan M (2023) Workie-talkie: accelerating federated learning by overlapping computing and communications via contrastive regularization. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 16999–17009
– reference: He C, Li S, So J, Zhang M, Wang H, Wang X, Vepakomma P, Singh A, Qiu H, Shen L, Zhao P, Kang Y, Liu Y, Raskar R, Yang Q, Annavaram M, Avestimehr S (2020) FedML: a research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518
– reference: WangHSreenivasanKRajputSVishwakarmaHAgarwalSSohnJ-YLeeKPapailiopoulosDAttack of the tails: yes, you really can backdoor federated learningAdv Neural Inf Process Sys2020331607016084
– reference: Konečnỳ J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D (2016) Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492
– reference: Li Q, Wen Z, He B (2019) Federated learning systems: vision, hype and reality for data privacy and protection. arXiv preprint arXiv:1907.09693
– reference: Karimireddy SP, Kale S, Mohri M, Reddi SJ, Stich SU, Suresh AT (2020) Scaffold: stochastic controlled averaging for federated learning. In: International conference on machine learning, pp 5132–5143
– reference: Wang H, Yurochkin M, Sun Y, Papailiopoulos D, Khazaeni Y (2020) Federated learning with matched averaging. In: International conference on learning representations
– reference: ZhaoBSunPWangTJiangKFedinv: byzantine-robust federated learning by inversing local model updatesProc AAAI Conf Artif Intell20223689171917910.1609/aaai.v36i8.20903
– reference: Tan AZ, Yu H, Cui L, Yang Q (2021) Towards personalized federated learning. arXiv preprint arXiv:2103.00710
– reference: ThapaCMahawaga ArachchigePCCamtepeSSunLSplitfed: when federated learning meets split learningProc AAAI Conf Artif Intell20223688485849310.1609/aaai.v36i8.20825
– reference: LinTKongLStichSUJaggiMEnsemble distillation for robust model fusion in federated learningAdv Neural Inf Process Syst20203323512363
– reference: Fan FX, Ma Y, Dai Z, Tan C, Low BKH (2023) Fedhql: federated heterogeneous q-learning. In: Proceedings of the 2023 international conference on autonomous agents and multiagent systems, pp 2810–2812
– reference: WeiX-XHuangHBalanced federated semi-supervised learning with fairness-aware pseudo-labelingIEEE Trans Neural Netw Learn Syst202310.1109/TNNLS.2022.3233093
– reference: Long G, Tan Y, Jiang J, Zhang C (2020) Federated learning for open banking. In: Federated learning: privacy and incentive, pp 240–254
– reference: He K, Fan H, Wu Y, Xie S, Girshick R (2020) Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9729–9738
– reference: Xie Y, Zhang W, Pi R, Wu F, Chen Q, Xie X, Kim S (2022) Robust federated learning against both data heterogeneity and poisoning attack via aggregation optimization. arXiv preprint
– reference: ZhangFKuangKChenLYouZShenTXiaoJZhangYWuCWuFZhuangYFederated unsupervised representation learningFront Inf Technol Electron Eng202324811811193
– reference: ZhangYZhangWPuLLinTYanJTo distill or not to distill: towards fast, accurate and communication efficient federated distillation learningIEEE Internet of Things J202310.1109/JIOT.2023.3324666
– reference: Zhang J, Li B, Chen C, Lyu L, Wu S, Ding S, Wu C (2023) Delving into the adversarial robustness of federated learning. In: Proceedings of the AAAI conference on artificial intelligence
– reference: Lu Y, Chen L, Zhang Y, Zhang Y, Han B, Cheung Y-m, Wang H (2023) Federated learning with extremely noisy clients via negative distillation. arXiv preprint arXiv:2312.12703
– reference: Grammenos A, Mendoza Smith R, Crowcroft J, Mascolo C (2020) Federated principal component analysis. In: Advances in neural information processing systems
– reference: Rehman YAU, Gao Y, Gusmao PPB, Alibeigi M, Shen J, Lane ND (2023) L-DAWA: layer-wise divergence aware weight aggregation in federated self-supervised visual representation learning. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 16464–16473
– reference: He C, Annavaram M, Avestimehr S (2020) FedNAS: federated deep learning via neural architecture search. In: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: Jeong E, Oh S, Kim H, Park J, Bennis M, Kim S-L (2018) Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID private data. In: Advances in neural information processing systems
– reference: Li D, Wang J (2019) FedMD: heterogenous federated learning via model distillation. In: Advances in neural information processing systems workshop
– reference: McMahan HB, Moore E, Ramage D, Hampson S, et al (2017) Communication-efficient learning of deep networks from decentralized data. In: International Conference on artificial intelligence and statistics, pp 1273–1282
– reference: He C, Tan C, Tang H, Qiu S, Liu J (2019) Central server free federated learning over single-sided trust social networks. arXiv preprint arXiv:1910.04956
– reference: Reddi S, Charles Z, Zaheer M, Garrett Z, Rush K, Konečnỳ J, Kumar S, McMahan HB (2021) Adaptive federated optimization. In: International conference on learning representations
– reference: Pan Q, Zhu Y (2022) Fedwalk: communication efficient federated unsupervised node embedding with differential privacy. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pp 1317–1326
– reference: TanYLiuYLongGJiangJLuQZhangCFederated learning on non-iid graphs via structural knowledge sharingProc AAAI Conf Artif Intel20233799539961
– reference: Hu R, Gong Y, Guo Y ( 2021) Federated learning with sparsification-amplified privacy and adaptive optimization. In: Zhou Z-H (ed) Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI-21, pp 1463–1469 . Main Track. https://doi.org/10.24963/ijcai.2021/202
– reference: HeCAnnavaramMAvestimehrSGroup knowledge transfer: federated learning of large cnns at the edgeAdv Neural Inf Process Syst2020331406814080
– reference: Li X, Huang K, Yang W, Wang S, Zhang Z (2020) On the convergence of Fedavg on non-iid data. In: International conference on learning representations
– reference: LiangFPanWMingZFedrec++: Lossless federated recommendation with explicit feedbackProc AAAI Conf Artif Intel20213542244231
– reference: Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. In: International conference on machine learning, PMLR, pp 1597–1607
– reference: HijaziNMAloqailyMGuizaniMOuniBKarrayFSecure federated learning with fully homomorphic encryption for IoT communicationsIEEE Internet of Things J202310.1109/JIOT.2023.3302065
– reference: WangBYuanZYingYYangTMemory-based optimization methods for model-agnostic meta-learning and personalized federated learningJ Mach Learn Res2023241464596092
– reference: DiaoEDingJTarokhVSemifl: semi-supervised federated learning for unlabeled clients with alternate trainingAdv Neural Inf Process Syst2022351787117884
– reference: Yang Z, Zhang Y, Zheng Y, Tian X, Peng H, Liu T, Han B (2023) FedFed: feature distillation against data heterogeneity in federated learning. In: Thirty-seventh conference on neural information processing systems
– reference: QiuDXueJZhangTWangJSunMFederated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance tradingAppl Energy2023333120526
– reference: Yuan W, Yin H, Wu F, Zhang S, He T, Wang H (2023) Federated unlearning for on-device recommendation. In: Proceedings of the sixteenth ACM international conference on web search and data mining, pp 393–401
– reference: SattlerFMüllerK-RSamekWClustered federated learning: model-agnostic distributed multitask optimization under privacy constraintsIEEE Trans Neural Netw Learn Syst2020328371037224296542
– reference: Peng X, Huang Z, Zhu Y, Saenko K (2020) Federated adversarial domain adaptation. In: International conference on learning representations
– reference: Ji S, Pan S, Long G, Li X, Jiang J, Huang Z (2019) Learning private neural language modeling with attentive aggregation. In: International joint conference on neural network
– reference: Smith V, Chiang C-K, Sanjabi M, Talwalkar AS (2017) Federated multi-task learning. In: Advances in neural information processing systems, pp 4427– 4437
– reference: Yapp AZH, Koh HSN, Lai YT, Kang J, Li X, Ng JS, Jiang H, Lim WYB, Xiong Z, Niyato D ( 2021) Communication-efficient and scalable decentralized federated edge learning. In: Zhou Z-H (ed) Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI-21, pp 5032– 5035 . https://doi.org/10.24963/ijcai.2021/720 . Demo Track. https://doi.org/10.24963/ijcai.2021/720
– reference: Mansour Y, Mohri M, Ro J, Suresh AT (2020) Three approaches for personalization with applications to federated learning. arXiv preprint arXiv:2002.10619
– reference: WangKLiJWuWAn efficient intrusion detection method based on federated transfer learning and an extreme learning machine with privacy preservationSecur Commun Netw202210.1155/2022/2913293
– reference: Cai L, Chen N, Cao Y, He J, Li Y (2023) FedCE: personalized federated learning method based on clustering ensembles. In: Proceedings of the 31st ACM international conference on multimedia, pp 1625–1633
– reference: Wang H, Kaplan Z, Niu D, Li B (2020) Optimizing federated learning on non-IID data with reinforcement learning. In: IEEE international conference on computer communications, IEEE, pp 1698–1707
– reference: ChenZLiWXingXYuanYMedical federated learning with joint graph purification for noisy label learningMed Image Anal202390102976
– reference: ChenCLiuYMaXLyuLCalfat: calibrated federated adversarial training with label skewnessAdv Neural Inf Process Syst20223535693581
– reference: Ma Y, Xie Z, Wang J, Chen K, Shou L (2022) Continual federated learning based on knowledge distillation. In: Raedt LD (ed) Proceedings of the thirty-first international joint conference on artificial intelligence, IJCAI, vol 22, pp 2182–2188. (Main Track.). https://doi.org/10.24963/ijcai.2022/303
– reference: Dennis DK, Li T, Smith V (2021) Heterogeneity for the win: one-shot federated clustering. In: International conference on machine learning, PMLR, pp 2611–2620
– reference: Tang Z, Zhang Y, Shi S, He X, Han B, Chu X ( 2022) Virtual homogeneity learning: defending against data heterogeneity in federated learning. In: International conference on machine learning, PMLR, pp 21111–21132
– reference: Deng Y, Kamani MM, Mahdavi M (2020) Adaptive personalized federated learning. arXiv:2003:13461
– reference: Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V (2020) How to backdoor federated learning. In: International conference on artificial intelligence and statistics, PMLR, pp 2938–2948
– reference: Wang Y, Lin L, Chen J ( 2022) Communication-efficient adaptive federated learning. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S (eds) Proceedings of the 39th international conference on machine learning. Proceedings of machine learning research, vol 162, pp 22802–22838 . https://proceedings.mlr.press/v162/wang22o.html
– reference: CheSKongZPengHSunLLeowAChenYHeLFederated multi-view learning for private medical data integration and analysisACM Trans Intell Syst Technol (TIST)2022134123
– reference: Mohri M, Sivek G, Suresh AT (2019) Agnostic federated learning. In: International conference on machine learning
– reference: LiuZYangLFanZPengHYuPSFederated social recommendation with graph neural networkACM Trans Intell Syst Technol (TIST)2022134124
– reference: Li Q, He B, Song D (2021) Model-contrastive federated learning. arXiv: 2103.16257 [cs.LG]
– reference: Ji S, Jiang W, Walid A, Li X (2020) Dynamic sampling and selective masking for communication-efficient federated learning. arXiv preprint arXiv:2003.09603
– reference: Isik B, Pase F, Gunduz D, Weissman T, Michele Z: Sparse random networks for communication-efficient federated learning. In: The Eleventh international conference on learning representations (2022)
– reference: Lin Y, Ren P, Chen Z, Ren Z, Yu D, Ma J, Rijke Md, Cheng X (2020) Meta matrix factorization for federated rating predictions. In: SIGIR, pp 981– 990
– reference: Xu J, Wang F (2019) Federated learning for healthcare informatics. arXiv preprint arXiv:1911.06270
– reference: FengSLiBYuHLiuYYangQSemi-supervised federated heterogeneous transfer learningKnowl-Based Syst2022252109384
– reference: Zhang Z, Jiang Y, Shi Y, Shi Y, Chen W ( 2022) Federated reinforcement learning for real-time electric vehicle charging and discharging control. In: 2022 IEEE Globecom workshops (GC Wkshps), IEEE, pp 1717–1722
– reference: ZhuMChenZYuanYFedDM: federated weakly supervised segmentation via annotation calibration and gradient de-conflictingIEEE Trans Med Imag202310.1109/TMI.2023.3235757
– reference: Liang X, Lin Y, Fu H, Zhu L, Li, X ( 2022) Rscfed: random sampling consensus federated semi-supervised learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10154–10163
– reference: Chung J, Lee K, Ramchandran K (2022) Federated unsupervised clustering with generative models. In: AAAI 2022 international workshop on trustable, verifiable and auditable federated learning
– reference: Jeong W, Yoon J, Yang E, Hwang SJ (2021) Federated semi-supervised learning with inter-client consistency & disjoint learning. In: International conference on learning representations
– reference: Cheng A, Wang P, Zhang XS, Cheng J (2022) Differentially private federated learning with local regularization and sparsification. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10122–10131
– reference: Tang Z, Wang Y, He X, Zhang L, Pan X, Wang Q, Zeng R, Zhao K, Shi S, He B, et al (2023) Fusionai: decentralized training and deploying llms with massive consumer-level gpus. arXiv preprint arXiv:2309.01172
– reference: WuZSunSWangYLiuMPanQJiangXGaoBFedICT: federated multi-task distillation for multi-access edge computingIEEE Trans Parallel Distrib Syst202310.1109/TPDS.2023.3289444
– reference: WangXLiRWangCLiXTalebTLeungVCAttention-weighted federated deep reinforcement learning for device-to-device assisted heterogeneous collaborative edge cachingIEEE J Sel Areas Commun2020391154169
– reference: ZawadSAliAChenP-YAnwarAZhouYBaracaldoNTianYYanFCurse or redemption? how data heterogeneity affects the robustness of federated learningProc AAAI Conf Artif Intell20213512108071081410.1609/aaai.v35i12.17291
– reference: Rasouli M, Sun T, Rajagopal R (2020) FedGAN: federated generative adversarial networks for distributed data. arXiv preprint arXiv:2006.07228
– reference: Fan C, Liu P (2020) Federated generative adversarial learning. arXiv preprint arXiv:2005.03793
– reference: Xiao J, Du C, Duan Z, Guo W (2021) A novel server-side aggregation strategy for federated learning in non-iid situations. In: 2021 20th International symposium on parallel and distributed computing (ISPDC), IEEE, pp 17–24
– reference: CaoXLiZSunGYuHGuizaniMCross-silo heterogeneous model federated multitask learningKnowl-Based Syst2023265110347
– reference: Li M, Li Q, Wang Y (2023) Class balanced adaptive pseudo labeling for federated semi-supervised learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 16292–16301
– reference: Zhang X, Li Y, Li W, Guo K, Shao Y (2022) Personalized federated learning via variational bayesian inference. In: International conference on machine learning, PMLR, pp 26293–26310
– reference: Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles Z, Cormode G, Cummings R, et al (2019) Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977
– reference: Lin S, Yang L, He Z, Fan D, Zhang J (2021) Metagater: fast learning of conditional channel gated networks via federated meta-learning. In: 2021 IEEE 18th international conference on mobile Ad Hoc and smart systems (MASS), IEEE, pp 164– 172
– reference: Yi L, Gang W, Xiaoguang L (2022) QSFL: a two-level uplink communication optimization framework for federated learning. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S (eds) Proceedings of the 39th international conference on machine learning. Proceedings of machine learning research, vol 162, pp 25501–25513. https://proceedings.mlr.press/v162/yi22a.html
– reference: Augenstein S, McMahan HB, Ramage D, Ramaswamy S, Kairouz P, Chen M, Mathews R, Arcas BA (2020) Generative models for effective ml on private, decentralized datasets. In: International conference on learning representations
– reference: YangQLiuYChenTTongYFederated machine learning: concept and applicationsACM Trans Intell Syst Technol201910212
– reference: LiuYKangYXingCChenTYangQA secure federated transfer learning frameworkIEEE Intell Syst2020357082
– reference: Chen J, Zhang A ( 2022) FedMSplit: correlation-adaptive federated multi-task learning across multimodal split networks. In: Proceedings of the 28th ACM SIGKDD Conference on knowledge discovery and data mining, pp 87– 96
– reference: Fallah A, Mokhtari A, Ozdaglar A (2020) Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. In: Advances in neural information processing systems
– reference: EzzeldinY.HYanSHeCFerraraEAvestimehrA. SFairfed: Enabling group fairness in federated learningProc AAAI Conf Artif Intell20233774947502
– reference: Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020) Federated optimization in heterogeneous networks. In: Conference on machine learning and systems
– reference: Lyu L, Xu X, Wang Q, Yu H (2020) Collaborative fairness in federated learning. Federated Learning: privacy and Incentive, pp. 189–204
– reference: Peng H, Li H, Song Y, Zheng V, Li J (2021) Differentially private federated knowledge graphs embedding. In: Proceedings of the 30th ACM international conference on information & knowledge management, pp 1416–1425
– reference: FanKHongJLiWZhaoXLiHYangYFlsg: a novel defense strategy against inference attacks in vertical federated learningIEEE Internet of Things J202310.1109/JIOT.2023.3302792
– reference: YangYGuanZLiJZhaoWCuiJWangQInterpretable and efficient heterogeneous graph convolutional networkIEEE Trans Knowl Data Eng202135216371650
– reference: GrillJ-BStrubFAltchéFTallecCRichemondPBuchatskayaEDoerschCAvila PiresBGuoZGheshlaghi AzarMBootstrap your own latent-a new approach to self-supervised learningAdv Neural Inf Process Syst2020332127121284
– reference: HeCCeyaniEBalasubramanianKAnnavaramMAvestimehrSSpreadGNN: decentralized multi-task federated learning for graph neural networks on molecular dataProc AAAI Conf Artif Intell20223668656873
– reference: Sun L, Qian J, Chen X (2021) LDP-FL: practical private aggregation in federated learning with local differential privacy. In: Zhou Z-H (ed) Proceedings of the Thirtieth international joint conference on artificial intelligence, IJCAI-21, pp 1571–1578 . Main Track. https://doi.org/10.24963/ijcai.2021/217
– reference: LiCWangHCommunication efficient federated learning for generalized linear banditsAdv Neural Inf Process Syst2022353841138423
– reference: Jin Y, Wei X, Liu Y, Yang Q (2020) A survey towards federated semi-supervised learning. arXiv preprint arXiv:2002.11545
– reference: Jiang J, Ji S, Long G (2020) Decentralized knowledge acquisition for mobile internet applications. World Wide Web
– reference: Briggs C, Fan Z, Andras P (2020) Federated learning with hierarchical clustering of local updates to improve training on non-iid data. In: International joint conference on neural network
– reference: Chen X, Fan H, Girshick R, He K (2020) Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297
– reference: LiuZChenYZhaoYYuHLiuYBaoRJiangJNieZXuQYangQContribution-aware federated learning for smart healthcareProc AAAI Conf Artif Intel2022361239612404
– reference: YangXSongZKingIXuZA survey on deep semi-supervised learningIEEE Trans Knowl Data Eng202235989348954
– reference: KhalatbarisoltaniABoulonLHuXIntegrating model predictive control with federated reinforcement learning for decentralized energy management of fuel cell vehiclesIEEE Trans Intell Transp Syst202310.1109/TITS.2023.3303991
– reference: ZhuHZhangHJinYFrom federated learning to federated neural architecture search: a surveyComplex Intell Syst202072639657
– reference: Lo SK, Lu Q, Wang C, Paik H, Zhu L (2020) A systematic literature review on federated machine learning: from a software engineering perspective. arXiv preprint arXiv:2007.11354
– reference: Hoang M, Hoang N, Low BKH, Kingsford C ( 2019) Collective model fusion for multiple black-box experts. In: International conference on machine learning, PMLR, pp 2742–2750
– reference: Ji S, Long G, Pan S, Zhu T, Jiang J, Wang S, Li X(2019) Knowledge transferring via model aggregation for online social care. arXiv preprint arXiv:1905.07665
– reference: Ghosh A, Chung J, Yin D, Ramchandran K (2020) An efficient framework for clustered federated learning. In: Advances in neural information processing systems
– reference: WuXLiangZWangJFedMed: a federated learning framework for language modelingSensors202020144048
– reference: Papernot N, Abadi M, Erlingsson Ú, Goodfellow I, Talwar K (2017) Semi-supervised knowledge transfer for deep learning from private training data. In: International conference on learning representations
– reference: Zhang L, Shen L, Ding L, Tao D, Duan L-Y (2022) Fine-tuning global model via data-free knowledge distillation for non-iid federated learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10174–10183
– reference: Park J, Han D-J, Choi M, Moon J (2021) Sageflow: robust federated learning against both stragglers and adversaries. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW (eds) Advances in neural information processing systems, vol 34, pp 840–851. https://proceedings.neurips.cc/paper/2021/file/076a8133735eb5d7552dc195b125a454-Paper.pdf
– reference: Zhan Y, Zhang J (2020) An incentive mechanism design for efficient edge learning by deep reinforcement learning approach. In: IEEE international conference on computer communications, IEEE, pp 2489–2498
– reference: OzdayiMSKantarciogluMGelYRDefending against backdoors in federated learning with robust learning rateProc AAAI Conf Artif Intell202135109268927610.1609/aaai.v35i10.17118
– reference: XuXPengHBhuiyanMZAHaoZLiuLSunLHeLPrivacy-preserving federated depression detection from multisource mobile health dataIEEE Trans Industr Inf202118747884797
– reference: SinghSPJaggiMModel fusion via optimal transportAdv Neural Inf Process Syst2020332204522055
– reference: Li X, Song Z, Yang J (2023) Federated adversarial learning: a framework with convergence analysis. In: International conference on machine learning, PMLR, pp 19932–19959
– reference: Zhang Z, Panda A, Song L, Yang Y, Mahoney M, Mittal P, Kannan R, Gonzalez J (2022) Neurotoxin: durable backdoors in federated learning. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 26429–26446
– reference: GuoQQiYQiSWuDLiQFedmcsa: personalized federated learning via model components self-attentionNeurocomputing2023560126831
– reference: Jin X, Chen P-Y, Hsu C-Y, Yu C-M, Chen T (2021) CAFE: catastrophic data leakage in vertical federated learning. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW (eds) Advances in neural information processing systems, vol 34, pp 994–1006. https://proceedings.neurips.cc/paper/2021/file/08040837089cdf46631a10aca5258e16-Paper.pdf
– reference: Yao X, Huang T, Zhang R-X, Li R, Sun L (2019) Federated learning with unbiased gradient aggregation and controllable meta updating. In: Advances in neural information processing systems workshop
– reference: CuiYCaoKZhouJWeiTOptimizing training efficiency and cost of hierarchical federated learning in heterogeneous mobile-edge cloud computingIEEE Tran Comput-Aid Des Integr Circuits Syst202210.1109/TCAD.2022.3205551
– reference: Park S, Han S, Wu F, Kim S, Zhu B, Xie X, Cha M ( 2023) Feddefender: client-side attack-tolerant federated learning. In: Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining, pp 1850–1861
– reference: Zhu Z, Si S, Wang J, Xiao J (2022) Cali3f: calibrated fast fair federated recommendation system. In: 2022 international joint conference on neural networks (IJCNN), IEEE, pp 1–8
– reference: Zhuang W, Wen Y, Zhang S (2022) Divergence-aware federated self-supervised learning. In: International conference on learning representations
– reference: Han S, Park S, Wu F, Kim S, Wu C, Xie X, Cha M( 2022) Fedx: unsupervised federated learning with cross knowledge distillation. In: European conference on computer vision, Springer, pp 691–707
– reference: LiuRCaoYChenHGuoRYoshikawaMFlame: differentially private federated learning in the shuffle modelProc AAAI Conf Artif Intell202135108688869610.1609/aaai.v35i10.17053
– reference: LiTSahuAKTalwalkarASmithVFederated learning: challenges, methods, and future directionsIEEE Sign Process Mag20203735060
– reference: Wen Y, Geiping JA, Fowl L, Goldblum M, Goldstein T (2022) In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S (eds) Proceedings of the 39th international conference on machine learning. Proceedings of machine learning research. Fishing for user data in large-batch federated learning via gradient magnification, vol 162, pp 23668–23684. https://proceedings.mlr.press/v162/wen22a.html
– reference: Wang K, Mathews R, Kiddon C, Eichner H, Beaufays F, Ramage D (2019) Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252
– reference: Huang Y, Gupta S, Song Z, Li K, Arora S (2021) Evaluating gradient inversion attacks and defenses in federated learning. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW (eds) Advances in neural information processing systems, vol 34, pp 7232–7241. https://proceedings.neurips.cc/paper/2021/file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf
– reference: Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In: International conference on machine learning, pp 1126– 1135
– reference: Zheng K, Liu X, Zhu G, Wu X, Niu J (2022) ChannelFed: enabling personalized federated learning via localized channel attention. In: GLOBECOM 2022-2022 IEEE global communications conference, IEEE, pp 2987–2992
– reference: Bram Bv, Saeed A, Ozcelebi T (2020) Towards federated unsupervised representation learning. In: ACM EdgeSys, pp 31–36
– reference: Sun J, Li A, DiValentin L, Hassanzadeh A, Chen Y, Li H ( 2021) FL-WBC: enhancing robustness against model poisoning attacks in federated learning from a client perspective. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW (eds) Advances in neural information processing systems, vol 34, pp 12613– 12624. https://proceedings.neurips.cc/paper/2021/file/692baebec3bb4b53d7ebc3b9fabac31b-Paper.pdf
– reference: TanYLongGMaJLiuLZhouTJiangJFederated learning from pre-trained models: a contrastive learning approachAdv Neural Inf Process Syst2022351933219344
– reference: Lattimore T, Szepesvári C (2020) Bandit algorithms
– reference: Khodadadian S, Sharma P, Joshi G, Maguluri ST (2022) Federated reinforcement learning: linear speedup under markovian sampling. In: International conference on machine learning, PMLR, pp 10997–11057
– reference: LimWYBLuongNCHoangDTJiaoYLiangY-CYangQNiyatoDMiaoCFederated learning in mobile edge networks: a comprehensive surveyIEEE Commun Surv Tutor202022320312063
– reference: Yeganeh Y, Farshad A, Navab N, Albarqouni S (2020) Inverse distance aggregation for federated learning with non-iid data. In: DCL workshop at MICCAI, pp 150–159
– reference: ChangYZhangKGongJQianHPrivacy-preserving federated learning via functional encryption, revisitedIEEE Trans Inf Forens Secur20231818551869
– reference: GaoHXuAHuangHOn the convergence of communication-efficient local sgd for federated learningProc AAAI Conf Artif Intel20213597510751810.1609/aaai.v35i9.16920
– reference: Liu S, Ge Y, Xu S, Zhang Y, Marian A (2022) Fairness-aware federated matrix factorization. In: Proceedings of the 16th ACM conference on recommender systems, pp 168–178
– reference: Agarwal N, Kairouz P, Liu Z (2021) The skellam mechanism for differentially private federated learning. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW (eds) Advances in neural information processing systems, vol 34, pp 5052–5064. https://proceedings.neurips.cc/paper/2021/file/285baacbdf8fda1de94b19282acd23e2-Paper.pdf
– reference: ChaHParkJKimHBennisMKimS-LProxy experience replay: federated distillation for distributed reinforcement learningIEEE Intell Syst202035494101
– reference: NiknamSDhillonHSReedJHFederated learning for wireless communications: motivation, opportunities, and challengesIEEE Commun Mag20205864651
– reference: ZhaoPCaoZJiangJGaoFPractical private aggregation in federated learning against inference attackIEEE Internet Things J2022101318329
– reference: Karimireddy SP, Jaggi M, Kale S, Mohri M, Reddi SJ, Stich SU, Suresh AT (2020) Mime: Mimicking centralized stochastic algorithms in federated learning. arXiv preprint arXiv:2008.03606
– reference: Muhammad K, Wang Q, O’Reilly-Morgan D, Tragos E, Smyth B, Hurley N, Geraci J, Lawlor A (2020) FedFast: going beyond average for faster training of federated recommender systems. In: SIGKDD, pp 1234–1242
– reference: GuptaSHuangYZhongZGaoTLiKChenDRecovering private text in federated learning of language modelsAdv Neural Inf Process Syst20223581308143
– reference: TangZShiSLiBChuXGossipfl: a decentralized federated learning framework with sparsified and adaptive communicationIEEE Trans Parallel Distrib Syst2022343909922
– reference: Wang H-P, Stich S, He Y, Fritz M (2022) Progfed: effective, communication, and computation efficient federated learning by progressive training. In: International conference on machine learning, PMLR, pp 23034–23054
– reference: Long G, Shen T, Tan Y, Gerrard L, Clarke A, Jiang J (2021) Federated learning for privacy-preserving open innovation future on digital health. In: Humanity driven AI: productivity, well-being, sustainability and partnership, pp 113–133
– volume: 20
  start-page: 4048
  issue: 14
  year: 2020
  ident: 2119_CR20
  publication-title: Sensors
  doi: 10.3390/s20144048
– volume: 36
  start-page: 11
  issue: 5
  year: 2020
  ident: 2119_CR120
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2020.3014880
– ident: 2119_CR208
– ident: 2119_CR37
– ident: 2119_CR134
– ident: 2119_CR163
– ident: 2119_CR169
  doi: 10.1145/3459637.3482252
– volume: 18
  start-page: 1855
  year: 2023
  ident: 2119_CR178
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2023.3255171
– volume: 35
  start-page: 70
  year: 2020
  ident: 2119_CR48
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2020.2988525
– ident: 2119_CR66
– ident: 2119_CR14
– volume: 36
  start-page: 12396
  year: 2022
  ident: 2119_CR202
  publication-title: Proc AAAI Conf Artif Intel
– ident: 2119_CR100
  doi: 10.1109/INFOCOM41043.2020.9155494
– ident: 2119_CR55
– ident: 2119_CR89
  doi: 10.1609/aaai.v37i9.26331
– volume: 33
  start-page: 22045
  year: 2020
  ident: 2119_CR119
  publication-title: Adv Neural Inf Process Syst
– ident: 2119_CR4
  doi: 10.1007/978-3-030-58951-6_24
– ident: 2119_CR117
– volume: 13
  start-page: 1
  issue: 4
  year: 2022
  ident: 2119_CR201
  publication-title: ACM Trans Intell Syst Technol (TIST)
  doi: 10.1145/3501816
– volume: 35
  start-page: 7510
  issue: 9
  year: 2021
  ident: 2119_CR181
  publication-title: Proc AAAI Conf Artif Intel
  doi: 10.1609/aaai.v35i9.16920
– volume: 10
  start-page: 12
  issue: 2
  year: 2019
  ident: 2119_CR107
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3298981
– ident: 2119_CR175
  doi: 10.1145/3580305.3599346
– volume: 35
  start-page: 9268
  issue: 10
  year: 2021
  ident: 2119_CR159
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v35i10.17118
– ident: 2119_CR145
– ident: 2119_CR71
  doi: 10.24963/ijcai.2022/303
– year: 2023
  ident: 2119_CR73
  publication-title: IEEE Internet of Things J
  doi: 10.1109/JIOT.2023.3324666
– year: 2022
  ident: 2119_CR192
  publication-title: IEEE Tran Comput-Aid Des Integr Circuits Syst
  doi: 10.1109/TCAD.2022.3205551
– volume: 33
  start-page: 14068
  year: 2020
  ident: 2119_CR67
  publication-title: Adv Neural Inf Process Syst
– volume: 35
  start-page: 94
  issue: 4
  year: 2020
  ident: 2119_CR101
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2020.2994942
– volume: 36
  start-page: 8485
  issue: 8
  year: 2022
  ident: 2119_CR157
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v36i8.20825
– ident: 2119_CR25
– volume: 26
  start-page: 481
  issue: 1
  year: 2023
  ident: 2119_CR35
  publication-title: World Wide Web
  doi: 10.1007/s11280-022-01046-x
– ident: 2119_CR116
– volume: 33
  start-page: 2351
  year: 2020
  ident: 2119_CR69
  publication-title: Adv Neural Inf Process Syst
– year: 2023
  ident: 2119_CR204
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2023.3235757
– volume: 37
  start-page: 9953
  year: 2023
  ident: 2119_CR194
  publication-title: Proc AAAI Conf Artif Intel
– ident: 2119_CR135
  doi: 10.1109/CVPR46437.2021.01549
– ident: 2119_CR207
– volume: 58
  start-page: 46
  issue: 6
  year: 2020
  ident: 2119_CR113
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.001.1900461
– volume: 35
  start-page: 83
  issue: 4
  year: 2020
  ident: 2119_CR52
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2020.2988604
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  ident: 2119_CR12
  publication-title: IEEE Sign Process Mag
  doi: 10.1109/MSP.2020.2975749
– year: 2022
  ident: 2119_CR32
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3224252
– ident: 2119_CR60
  doi: 10.1145/3534678.3539384
– ident: 2119_CR39
  doi: 10.1145/3581783.3612217
– ident: 2119_CR42
– ident: 2119_CR95
– volume: 333
  start-page: 120526
  year: 2023
  ident: 2119_CR140
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120526
– ident: 2119_CR5
– volume: 32
  start-page: 3710
  issue: 8
  year: 2020
  ident: 2119_CR57
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3015958
– ident: 2119_CR85
– ident: 2119_CR62
– ident: 2119_CR56
– ident: 2119_CR118
– volume: 35
  start-page: 19332
  year: 2022
  ident: 2119_CR7
  publication-title: Adv Neural Inf Process Syst
– volume: 199
  start-page: 108468
  year: 2021
  ident: 2119_CR18
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2021.108468
– ident: 2119_CR141
  doi: 10.1109/GCWkshps56602.2022.10008598
– volume: 35
  start-page: 8130
  year: 2022
  ident: 2119_CR164
  publication-title: Adv Neural Inf Process Syst
– ident: 2119_CR131
  doi: 10.1109/CVPR42600.2020.00975
– ident: 2119_CR6
– ident: 2119_CR173
– ident: 2119_CR30
  doi: 10.1109/CVPR52688.2022.00988
– ident: 2119_CR9
  doi: 10.1007/978-3-030-60548-3_15
– volume: 560
  start-page: 126831
  year: 2023
  ident: 2119_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126831
– ident: 2119_CR154
  doi: 10.36227/techrxiv.12503420
– year: 2023
  ident: 2119_CR139
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2023.3303991
– volume: 31
  start-page: 4229
  issue: 10
  year: 2020
  ident: 2119_CR10
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2953131
– year: 2022
  ident: 2119_CR51
  publication-title: Secur Commun Netw
  doi: 10.1155/2022/2913293
– ident: 2119_CR174
– ident: 2119_CR206
– ident: 2119_CR29
– ident: 2119_CR124
  doi: 10.1609/aaai.v38i13.29329
– volume: 33
  start-page: 21271
  year: 2020
  ident: 2119_CR133
  publication-title: Adv Neural Inf Process Syst
– ident: 2119_CR41
– volume: 9
  start-page: 1219
  issue: 3
  year: 2020
  ident: 2119_CR122
  publication-title: IEEE Trans Emerg Top Comput
  doi: 10.1109/TETC.2020.2983404
– year: 2023
  ident: 2119_CR179
  publication-title: IEEE Internet of Things J
  doi: 10.1109/JIOT.2023.3302065
– volume: 162
  start-page: 27504
  year: 2022
  ident: 2119_CR185
  publication-title: Proc Mach Learn Res
– ident: 2119_CR147
  doi: 10.1109/CVPR46437.2021.01057
– year: 2023
  ident: 2119_CR170
  publication-title: IEEE Internet of Things J
  doi: 10.1109/JIOT.2023.3302792
– ident: 2119_CR96
– ident: 2119_CR68
– ident: 2119_CR186
  doi: 10.24963/ijcai.2021/720 10.24963/ijcai.2021/720
– ident: 2119_CR102
  doi: 10.1109/INFOCOM41043.2020.9155268
– ident: 2119_CR78
  doi: 10.1007/978-3-031-16437-8_19
– ident: 2119_CR199
  doi: 10.1145/3539597.3570463
– ident: 2119_CR123
– ident: 2119_CR146
– ident: 2119_CR98
  doi: 10.1007/978-3-031-20056-4_40
– ident: 2119_CR106
– ident: 2119_CR19
  doi: 10.1007/s11280-019-00775-w
– volume: 35
  start-page: 6060
  year: 2022
  ident: 2119_CR191
  publication-title: Adv Neural Inf Process Syst
– ident: 2119_CR63
– volume: 33
  start-page: 16070
  year: 2020
  ident: 2119_CR2
  publication-title: Adv Neural Inf Process Sys
– ident: 2119_CR65
  doi: 10.1145/3397271.3401081
– volume: 35
  start-page: 3569
  year: 2022
  ident: 2119_CR90
  publication-title: Adv Neural Inf Process Syst
– volume: 37
  start-page: 7893
  year: 2023
  ident: 2119_CR91
  publication-title: Proc AAAI Conf Artif Intell
– volume: 35
  start-page: 8934
  issue: 9
  year: 2022
  ident: 2119_CR130
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2022.3220219
– ident: 2119_CR1
– ident: 2119_CR80
  doi: 10.1109/CVPR52688.2022.00991
– ident: 2119_CR74
  doi: 10.1109/CVPR52688.2022.00993
– ident: 2119_CR172
– volume: 8
  start-page: 1084
  issue: 2
  year: 2020
  ident: 2119_CR50
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2020.2996612
– ident: 2119_CR36
  doi: 10.1145/3394486.3403176
– ident: 2119_CR75
– volume: 265
  start-page: 110347
  year: 2023
  ident: 2119_CR58
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110347
– year: 2023
  ident: 2119_CR72
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2023.3289444
– volume: 35
  start-page: 7852
  year: 2022
  ident: 2119_CR87
  publication-title: Adv Neural Inf Process Syst
– ident: 2119_CR108
– ident: 2119_CR125
– ident: 2119_CR34
– ident: 2119_CR177
– ident: 2119_CR86
– ident: 2119_CR171
  doi: 10.24963/ijcai.2022/306
– ident: 2119_CR40
– ident: 2119_CR28
– volume: 35
  start-page: 17871
  year: 2022
  ident: 2119_CR77
  publication-title: Adv Neural Inf Process Syst
– volume: 33
  start-page: 596
  year: 2020
  ident: 2119_CR129
  publication-title: Adv Neural Inf Process Syst
– ident: 2119_CR168
  doi: 10.24963/ijcai.2021/217
– ident: 2119_CR114
– volume: 34
  start-page: 909
  issue: 3
  year: 2022
  ident: 2119_CR183
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2022.3230938
– ident: 2119_CR93
– ident: 2119_CR21
  doi: 10.1609/aaai.v35i9.16960
– ident: 2119_CR166
– ident: 2119_CR81
  doi: 10.1109/CVPR52729.2023.01563
– ident: 2119_CR84
  doi: 10.1007/978-3-030-60636-7_1
– ident: 2119_CR205
  doi: 10.1007/978-3-030-63076-8_17
– volume: 36
  start-page: 6865
  year: 2022
  ident: 2119_CR61
  publication-title: Proc AAAI Conf Artif Intell
– ident: 2119_CR197
  doi: 10.1109/IJCNN55064.2022.9892624
– ident: 2119_CR155
– volume: 252
  start-page: 109384
  year: 2022
  ident: 2119_CR53
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.109384
– ident: 2119_CR195
  doi: 10.1145/3534678.3539308
– volume: 35
  start-page: 4224
  year: 2021
  ident: 2119_CR196
  publication-title: Proc AAAI Conf Artif Intel
– ident: 2119_CR138
  doi: 10.1017/9781108571401
– ident: 2119_CR184
– ident: 2119_CR92
– ident: 2119_CR16
– volume: 24
  start-page: 1
  year: 2023
  ident: 2119_CR64
  publication-title: J Mach Learn Res
– ident: 2119_CR8
– ident: 2119_CR161
– ident: 2119_CR142
– volume: 37
  start-page: 7494
  year: 2023
  ident: 2119_CR45
  publication-title: Proc AAAI Conf Artif Intell
– ident: 2119_CR148
  doi: 10.1109/TKDE.2022.3172903
– volume: 3
  start-page: 9
  year: 1988
  ident: 2119_CR137
  publication-title: Mach Learn
– volume: 90
  start-page: 102976
  year: 2023
  ident: 2119_CR203
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102976
– ident: 2119_CR150
– ident: 2119_CR189
– volume: 37
  start-page: 10473
  year: 2023
  ident: 2119_CR43
  publication-title: Proc AAAI Conf Artif Intell
– volume: 18
  start-page: 4788
  issue: 7
  year: 2021
  ident: 2119_CR200
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2021.3113708
– ident: 2119_CR3
– ident: 2119_CR13
  doi: 10.1109/IJCNN48605.2020.9207469
– ident: 2119_CR176
– volume: 2023
  start-page: 1314
  year: 2023
  ident: 2119_CR70
  publication-title: Proc ACM Web Conf
– ident: 2119_CR27
– ident: 2119_CR97
  doi: 10.1109/ICCV51070.2023.01509
– ident: 2119_CR153
– ident: 2119_CR144
– ident: 2119_CR121
– ident: 2119_CR167
  doi: 10.24963/ijcai.2021/202
– ident: 2119_CR182
– ident: 2119_CR104
– ident: 2119_CR11
  doi: 10.1109/IJCNN.2019.8852464
– ident: 2119_CR127
– ident: 2119_CR151
  doi: 10.1007/978-3-030-72188-6_6
– volume: 35
  start-page: 6885
  issue: 8
  year: 2021
  ident: 2119_CR162
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v35i8.16849
– ident: 2119_CR82
– ident: 2119_CR76
– volume: 18
  start-page: 1
  issue: 1
  year: 2023
  ident: 2119_CR105
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3604939
– ident: 2119_CR110
– volume: 24
  start-page: 1181
  issue: 8
  year: 2023
  ident: 2119_CR94
  publication-title: Front Inf Technol Electron Eng
  doi: 10.1631/FITEE.2200268
– volume: 13
  start-page: 1
  issue: 4
  year: 2022
  ident: 2119_CR198
  publication-title: ACM Trans Intell Syst Technol (TIST)
– volume: 39
  start-page: 154
  issue: 1
  year: 2020
  ident: 2119_CR22
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2020.3036946
– volume: 13
  start-page: 1
  issue: 4
  year: 2022
  ident: 2119_CR83
  publication-title: ACM Trans Intell Syst Technol (TIST)
  doi: 10.1145/3510031
– ident: 2119_CR128
  doi: 10.1109/MASS52906.2021.00031
– volume: 36
  start-page: 9171
  issue: 8
  year: 2022
  ident: 2119_CR160
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v36i8.20903
– volume: 35
  start-page: 1637
  issue: 2
  year: 2021
  ident: 2119_CR149
  publication-title: IEEE Trans Knowl Data Eng
– ident: 2119_CR187
– ident: 2119_CR44
– ident: 2119_CR38
– ident: 2119_CR31
  doi: 10.1109/ICCV51070.2023.01559
– ident: 2119_CR103
– year: 2023
  ident: 2119_CR79
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3233093
– ident: 2119_CR47
  doi: 10.1145/3523227.3546771
– ident: 2119_CR111
  doi: 10.1007/978-3-030-63076-8_1
– volume: 22
  start-page: 2031
  issue: 3
  year: 2020
  ident: 2119_CR112
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2020.2986024
– ident: 2119_CR132
– ident: 2119_CR193
– volume: 8
  start-page: 279
  year: 1992
  ident: 2119_CR136
  publication-title: Mach Learn
– ident: 2119_CR46
  doi: 10.1007/978-3-030-63076-8_14
– ident: 2119_CR24
  doi: 10.1109/GLOBECOM48099.2022.10000892
– volume: 7
  start-page: 639
  issue: 2
  year: 2020
  ident: 2119_CR152
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-020-00247-z
– volume: 35
  start-page: 10807
  issue: 12
  year: 2021
  ident: 2119_CR158
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v35i12.17291
– ident: 2119_CR188
– ident: 2119_CR49
– ident: 2119_CR165
– volume: 34
  start-page: 15434
  year: 2021
  ident: 2119_CR59
  publication-title: Adv Neural Inf Process Syst
– ident: 2119_CR17
  doi: 10.1109/ISPDC52870.2021.9521631
– ident: 2119_CR26
– volume: 36
  start-page: 8432
  issue: 8
  year: 2022
  ident: 2119_CR33
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v36i8.20819
– year: 2023
  ident: 2119_CR54
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2023.3286439
– ident: 2119_CR99
– volume: 35
  start-page: 8688
  issue: 10
  year: 2021
  ident: 2119_CR156
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v35i10.17053
– ident: 2119_CR115
– ident: 2119_CR15
– ident: 2119_CR88
– volume: 35
  start-page: 38411
  year: 2022
  ident: 2119_CR190
  publication-title: Adv Neural Inf Process Syst
– volume: 10
  start-page: 318
  issue: 1
  year: 2022
  ident: 2119_CR180
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3201231
– ident: 2119_CR143
– ident: 2119_CR109
– ident: 2119_CR126
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.526923
Snippet Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. As a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3769
SubjectTerms Adaptive algorithms
Algorithms
Artificial Intelligence
Bayesian analysis
Communication
Complex Systems
Computational Intelligence
Control
Engineering
Federated learning
Informatics
Machine learning
Mechatronics
Original Article
Paradigms
Pattern Recognition
Privacy
Regularization
Regularization methods
Robotics
State-of-the-art reviews
Systems Biology
Taxonomy
Trends
Unsupervised learning
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RS8MwEA4yX_RB3FScTsmDD4oGkiVNE9-GOIag-OBgb6VNExGkiuv-v5csXaeo4ENf2usGl7ved8nddwidUa4LmpqSiDyhREhDibJUkBxis0gUs1b6buT7BzmZirtZMotNYfOm2r05kgxf6rbZzWfeBGIKXIxpAjnPZgK5u7fr6XDUWBFnnl-lDbKci8Aztdp5oRLuLYsRlVSejZfFbpqf_-ZrxGph6LeT0xCQxrtoJyJJPFoufRdt2KqHttf4BXuoGz13js8jvfTFHnr0-1B-NBGuQz0sfqmw85QSgDpLHKdIPF9j33iCw6Ac7BZ-Tw3Xb2uCs5XoPpqOb59uJiTOVSCGS16TlOWu0KVJWZlCemgUhyyjlKnIbaqHVuemBE8F7y-MZMxqZxPhDABJrsDuaMEPUKd6q-whwsYCInOMqtQ5URinDS9oqa1IjDYu533EGt1lJpKO-9kXr1lLl-z1nYG-s6DvjPXR5eqd9yXlxp_Sg2ZJsuh-88wf7wJ01FT10VWzTO3j33_t6H_ix2hrGCzF15wNUKf-WNgTACl1cRps8hPY-9dG
  priority: 102
  providerName: Springer Nature
Title Emerging trends in federated learning: from model fusion to federated X learning
URI https://link.springer.com/article/10.1007/s13042-024-02119-1
https://www.proquest.com/docview/3093951908
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZ4XPaCeK22vOQDBxBrrV07js0FlaoFgUAIbaXuKUocGyGhFmj4_8ykTrMgwSGJZDs-jGc84_HMN4QccmkLnrqSqTzhTGnHmfFcsRx0s0qM8F5jNvLNrb4cqatxMo4Ot1kMq2z2xHqjLqcOfeR_8MYOrAHLzdnzC8OqUXi7GktoLJNVAZoGOdwMLxp-kgKRVlp1K6WqEacWPhiuoW0elmi0QVxeEfNq5tl1eNRnoMTgEcIy8VF3tQbppzvUWjUN18latClpb84EG2TJTzbJRpTaGT2K0NLHW-QOfVBYlohWdSwsfZzQgHASYHGWNFaQeDilmHRC6yI5NLyhP41W0_8GjhdDt8loOPjbv2SxpgJzUsuKpSIPhS1dKsoUjobOSDhhlDpVuU9t19vclSClIPmF00J4G3yiggMjUhrgOV7In2RlMp34X4Q6D9ZYENykIajCBetkwUvrVeKsC7nsENFQK3MRcBzrXjxlLVQyUjgDCmc1hTPRISeLf57ncBvfjt5rFiGLojfLWkbpkN_NwrTdX8-28_1su-RHt-YFjC_bIyvV65vfB4OkKg5qrjsgq72Lf9cD-J4Pbu_uobWv-_AedXvvAt7a7g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONALAkrV5VUfWqmIWrXXzsNIqKoK26U8xAGkvYXEsRES2gU2CPGn-I3M5LEBJLhxyCVxrGj8xfN57PkG4JtQJhORzblOA8F1aAWPndA8Rd-sg1g6F1I28uFR2D_V_wfBYAoemlwYOlbZzInlRJ2PLMXIf9GOHbIBI-LfV9ecqkbR7mpTQqOCxb67v8Ml23h7bwfH93u329s9-dvndVUBblWoCh7J1Gcmt5HMI1wc2Vghx87DSKcuMl1nUpsjThH7mQ2ldMa7QHuLNErFaHWRKez3A8xohZ9Dmem9fw1-lSRll9a9K6VLhatJzEeEeK86BhmHMekAyzqPp8rmo9ACR6eJl5SGy-e-siXAL_ZsS1fYm4e5msOyPxXoFmDKDRdhoZ4lxuxHLWW98QmOKeZFZZBYUZ69ZRdD5km-AhluzuqKFedbjJJcWFmUh_lbit-xYvSk4WDSdAlO38Xan2F6OBq6L8CsQ_bnpYgj73VmvbEqE7lxOrDG-lR1QDbWSmwtcE51Ni6TVpqZLJyghZPSwonswObknatK3uPN1qvNICT1rz5OWmB24GczMO3j13tbfru3rzDbPzk8SA72jvZX4GO3xAWdbVuF6eLm1q0hGSqy9RKBDM7eG_KP7P8TIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yQfRB3FScTs2DD4qGJUuaNr7JdMxfYw8O9lbaNBFBuuG6_99L165TVPChL-2lhcul911y9x1CZ5SrmPo6ISLyKBFSUxIYKkgEvll4ATNGumrk54Hsj8TD2BuvVPHn2e7lkeSipsGxNKVZe5rYdlX45qJwAv4FLsYUgfhnHSIV5pL6urJbWhRnjmulcrici5xzarkLQyXcWyQmBjJwzLysqKz5-TNfvVcFSb-doubOqbeDtgtUiW8WZlBHayZtoK0VrsEGqhereIbPC6rpi100dHtSrk0RzvLcWPyWYuvoJQCBJrjoKPF6jV0RCs6b5mA7d_trOJusCI6Xonto1Lt76fZJ0WOBaC55RnwW2Vgl2meJD6GiDjhEHIn0RWR81TEq0gmsWvgTxFoyZpQ1nrAaQCUPwAZpzPdRLZ2k5gBhbQCdWUYD31oRa6s0j2mijPC00jbiTcRK3YW6ICB3fTDew4o62ek7BH2Hub5D1kSXyzHTBf3Gn9KtckrCYinOQnfUCzBS0aCJrsppqh7__rbD_4mfoo3hbS98uh88HqHNTm40LhWthWrZx9wcA3bJ4pPcPD8BHEHeXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+trends+in+federated+learning%3A+from+model+fusion+to+federated+X+learning&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Ji%2C+Shaoxiong&rft.au=Tan%2C+Yue&rft.au=Saravirta%2C+Teemu&rft.au=Yang%2C+Zhiqin&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=9&rft.spage=3769&rft.epage=3790&rft_id=info:doi/10.1007%2Fs13042-024-02119-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon