Linearly convergent bilevel optimization with single-step inner methods

We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach, and treating the inner problem as an implicit function. The overall idea is to solve the full-system optimality conditions, but to precondit...

Full description

Saved in:
Bibliographic Details
Published inComputational optimization and applications Vol. 87; no. 2; pp. 571 - 610
Main Authors Suonperä, Ensio, Valkonen, Tuomo
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach, and treating the inner problem as an implicit function. The overall idea is to solve the full-system optimality conditions, but to precondition them to alternate between taking steps of simple conventional methods for the inner problem, the adjoint equation, and the outer problem. While the inner objective has to be smooth, the outer objective may be nonsmooth subject to a prox-contractivity condition. We prove linear convergence of the approach for combinations of gradient descent and forward-backward splitting with exact and inexact solution of the adjoint equation. We demonstrate good performance on learning the regularization parameter for anisotropic total variation image denoising, and the convolution kernel for image deconvolution.
AbstractList We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach, and treating the inner problem as an implicit function. The overall idea is to solve the full-system optimality conditions, but to precondition them to alternate between taking steps of simple conventional methods for the inner problem, the adjoint equation, and the outer problem. While the inner objective has to be smooth, the outer objective may be nonsmooth subject to a prox-contractivity condition. We prove linear convergence of the approach for combinations of gradient descent and forward-backward splitting with exact and inexact solution of the adjoint equation. We demonstrate good performance on learning the regularization parameter for anisotropic total variation image denoising, and the convolution kernel for image deconvolution.
We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach, and treating the inner problem as an implicit function. The overall idea is to solve the full-system optimality conditions, but to precondition them to alternate between taking steps of simple conventional methods for the inner problem, the adjoint equation, and the outer problem. While the inner objective has to be smooth, the outer objective may be nonsmooth subject to a prox-contractivity condition. We prove linear convergence of the approach for combinations of gradient descent and forward-backward splitting with exact and inexact solution of the adjoint equation. We demonstrate good performance on learning the regularization parameter for anisotropic total variation image denoising, and the convolution kernel for image deconvolution.
Author Suonperä, Ensio
Valkonen, Tuomo
Author_xml – sequence: 1
  givenname: Ensio
  orcidid: 0000-0002-2111-0239
  surname: Suonperä
  fullname: Suonperä, Ensio
  email: ensio.suonpera@helsinki.fi
  organization: Department of Mathematics and Statistics, University of Helsinki
– sequence: 2
  givenname: Tuomo
  surname: Valkonen
  fullname: Valkonen, Tuomo
  organization: Department of Mathematics and Statistics, University of Helsinki, ModeMat, Escuela Politécnica Nacional
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz9HZTJNsjiJahYIXPYf9mG1TttmaxEr99a6tIHjoaS7v887MM2anvvfE2FUONzmAvo05yMJwEMgBpNBcn7BRLjVyUZjpKRuBEYorADxn4xhXAGA0ihGbzZ2nMnS7rO79lsKCfMoq19GWuqzfJLd2X2Vyvc8-XVpm0flFRzwm2mTOewrZmtKyb-IFO2vLLtLl75ywt8eH1_snPn-ZPd_fzXmNChNXNFWyncqWSlRFK3OssalaEkKboi4IqAGsEEpZaJCmVEZB01aoGlNphAYn7PrQuwn9-wfFZFf9R_DDSiuMkMJoQBxSxSFVhz7GQK2tXdq_kULpOpuD_dFmD9rsoM3utVk9oOIfugluXYbdcQgPUBzCfkHh76oj1DeWVoJP
CitedBy_id crossref_primary_10_1007_s10589_024_00587_3
Cites_doi 10.1007/s00245-018-9541-6
10.1007/s10851-016-0663-7
10.1007/s10107-012-0535-x
10.1080/02331939508844060
10.1088/0266-5611/30/5/055012
10.1016/j.amc.2012.10.010
10.1017/CBO9780511983658
10.1007/s10851-017-0736-2
10.1137/18M1170194
10.1007/bf01585928
10.1080/10556788.2019.1619729
10.1016/j.jmaa.2015.09.023
10.1007/s10851-016-0662-8
10.1137/0913035
10.1137/16m105592x
10.1109/TMI.2020.3017353
10.1007/s10851-021-01020-8
10.1287/moor.2021.1122
10.1137/120882706
10.1137/100814494
10.1007/s10589-020-00254-3
10.1007/s10107-011-0508-5
10.3934/ipi.2015.9.1139
10.1137/20m1377199
10.1088/1361-6420/aade77
10.1007/s10851-010-0251-1
10.1016/0305-0548(82)90007-7
10.1007/s11228-016-0371-x
10.1137/21M143412X
10.1007/978-981-10-4774-9
10.1137/1.9781611971309
10.5281/zenodo.7974062
10.1007/978-3-662-45827-3
10.1609/aaai.v36i7.20706
10.1515/9783110430394-008
10.1007/978-3-662-45504-3_8
10.1287/moor.2021.1164
10.1007/978-3-030-52119-6
10.1007/978-3-030-03009-4_93-1
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-023-00527-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 610
ExternalDocumentID 10_1007_s10589_023_00527_7
GrantInformation_xml – fundername: Academy of Finland
  grantid: 314701, 320022, and 345486
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-6e465f45fea368f513c3dbfe22798c8e0ed03b30a587059a6960dfb36d9b730d3
IEDL.DBID BENPR
ISSN 0926-6003
IngestDate Sat Aug 16 17:11:47 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Tue Jul 01 00:44:28 EDT 2025
Fri Feb 21 02:42:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nonsmooth
Forward-backward
Bilevel optimization
Inverse problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-6e465f45fea368f513c3dbfe22798c8e0ed03b30a587059a6960dfb36d9b730d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2111-0239
OpenAccessLink https://link.springer.com/10.1007/s10589-023-00527-7
PQID 2925297033
PQPubID 30811
PageCount 40
ParticipantIDs proquest_journals_2925297033
crossref_citationtrail_10_1007_s10589_023_00527_7
crossref_primary_10_1007_s10589_023_00527_7
springer_journals_10_1007_s10589_023_00527_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References De Los Reyes, Schönlieb, Valkonen (CR42) 2017; 57
CR39
CR34
CR33
CR32
CR30
Fliege, Tin, Zemkoho (CR3) 2021; 78
Chambolle, Pock (CR16) 2011; 40
CR5
Ehrhardt, Roberts (CR15) 2021
De Los Reyes, Schönlieb, Valkonen (CR43) 2016; 434
CR49
Chambolle, Pock (CR45) 2021; 14
CR47
Allende, Still (CR2) 2012; 138
Ochs, Ranftl, Brox, Pock (CR46) 2016; 56
Dempe (CR31) 2006
Luo, Pang, Ralph (CR29) 1996
Sabach, Shtern (CR40) 2017; 27
Hare, Lewis (CR48) 2004; 11
Kunisch, Pock (CR8) 2013; 6
Valkonen (CR53) 2014; 30
Sherry, Benning, De los Reyes, Graves, Maierhofer, Williams, Schönlieb, Ehrhardt (CR11) 2020; 39
CR19
Hintermüller, Wu (CR44) 2015; 9
Jiang, Li, Huang, Wu (CR4) 2013; 219
CR14
De Los Reyes, Schönlieb (CR7) 2013; 7
CR13
CR12
Dempe, Zemkoho (CR37) 2012; 138
CR54
Hintermüller, Rautenberg, Wu, Langer (CR10) 2017; 59
CR51
CR50
Mehlitz, Zemkoho (CR38) 2021
Zemkoho (CR36) 2016; 24
He, Yuan (CR17) 2012; 5
Clason, Mazurenko, Valkonen (CR52) 2019; 29
Holler, Kunisch, Barnard (CR9) 2018; 34
CR28
CR26
CR25
CR23
Ye, Zhu (CR35) 1995; 33
CR22
CR21
Valkonen (CR18) 2020; 82
CR20
Yang, Ji, Liang (CR24) 2021; 34
Ji, Liang (CR27) 2022; 23
Bard, Falk (CR1) 1982; 9
Shehu, Vuong, Zemkoho (CR41) 2019; 36
Van der Vorst (CR55) 1992; 13
Falk, Liu (CR6) 1995; 70
S Sabach (527_CR40) 2017; 27
A Chambolle (527_CR45) 2021; 14
S Dempe (527_CR37) 2012; 138
JC De Los Reyes (527_CR7) 2013; 7
527_CR5
JF Bard (527_CR1) 1982; 9
527_CR28
527_CR26
AB Zemkoho (527_CR36) 2016; 24
527_CR20
527_CR21
GB Allende (527_CR2) 2012; 138
JE Falk (527_CR6) 1995; 70
527_CR25
527_CR22
527_CR23
WL Hare (527_CR48) 2004; 11
B He (527_CR17) 2012; 5
P Ochs (527_CR46) 2016; 56
C Clason (527_CR52) 2019; 29
M Hintermüller (527_CR10) 2017; 59
527_CR39
ZQ Luo (527_CR29) 1996
S Dempe (527_CR31) 2006
527_CR32
527_CR30
J Yang (527_CR24) 2021; 34
A Chambolle (527_CR16) 2011; 40
527_CR33
527_CR34
F Sherry (527_CR11) 2020; 39
T Valkonen (527_CR18) 2020; 82
527_CR49
K Ji (527_CR27) 2022; 23
K Kunisch (527_CR8) 2013; 6
JC De Los Reyes (527_CR42) 2017; 57
527_CR47
MJ Ehrhardt (527_CR15) 2021
JJ Ye (527_CR35) 1995; 33
T Valkonen (527_CR53) 2014; 30
J Fliege (527_CR3) 2021; 78
HA Van der Vorst (527_CR55) 1992; 13
527_CR50
G Holler (527_CR9) 2018; 34
M Hintermüller (527_CR44) 2015; 9
527_CR19
Y Shehu (527_CR41) 2019; 36
P Mehlitz (527_CR38) 2021
Y Jiang (527_CR4) 2013; 219
527_CR54
527_CR51
JC De Los Reyes (527_CR43) 2016; 434
527_CR13
527_CR14
527_CR12
References_xml – ident: CR22
– volume: 82
  start-page: 1
  issue: 2
  year: 2020
  ident: CR18
  article-title: Testing and non-linear preconditioning of the proximal point method
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-018-9541-6
– volume: 56
  start-page: 175
  issue: 2
  year: 2016
  end-page: 194
  ident: CR46
  article-title: Techniques for gradient-based bilevel optimization with non-smooth lower level problems
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-016-0663-7
– ident: CR49
– ident: CR39
– ident: CR51
– volume: 138
  start-page: 309
  issue: 1–2
  year: 2012
  end-page: 332
  ident: CR2
  article-title: Solving bilevel programs with the KKT-approach
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0535-x
– ident: CR12
– volume: 33
  start-page: 9
  issue: 1
  year: 1995
  end-page: 27
  ident: CR35
  article-title: Optimality conditions for bilevel programming problems
  publication-title: Optimization
  doi: 10.1080/02331939508844060
– ident: CR54
– volume: 30
  issue: 5
  year: 2014
  ident: CR53
  article-title: A primal-dual hybrid gradient method for non-linear operators with applications to MRI
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/30/5/055012
– volume: 219
  start-page: 4332
  issue: 9
  year: 2013
  end-page: 4339
  ident: CR4
  article-title: Application of particle swarm optimization based on CHKS smoothing function for solving nonlinear bilevel programming problem
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.10.010
– ident: CR25
– year: 1996
  ident: CR29
  publication-title: Mathematical Programs with Equilibrium Constraints
  doi: 10.1017/CBO9780511983658
– volume: 59
  start-page: 515
  year: 2017
  ident: CR10
  article-title: Optimal selection of the regularization function in a weighted total variation model. Part II: algorithm, its analysis and numerical tests
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-017-0736-2
– ident: CR21
– volume: 29
  start-page: 933
  year: 2019
  end-page: 963
  ident: CR52
  article-title: Acceleration and global convergence of a first-order primal-dual method for nonconvex problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1170194
– ident: CR19
– volume: 70
  start-page: 47
  issue: 1–3
  year: 1995
  end-page: 72
  ident: CR6
  article-title: On bilevel programming, Part I: general nonlinear cases
  publication-title: Math. Program.
  doi: 10.1007/bf01585928
– volume: 36
  start-page: 1
  issue: 1
  year: 2019
  end-page: 19
  ident: CR41
  article-title: An inertial extrapolation method for convex simple bilevel optimization
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2019.1619729
– ident: CR50
– volume: 34
  start-page: 13670
  year: 2021
  end-page: 13682
  ident: CR24
  article-title: Provably faster algorithms for bilevel optimization
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: CR32
– volume: 434
  start-page: 464
  year: 2016
  end-page: 500
  ident: CR43
  article-title: The structure of optimal parameters for image restoration problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.09.023
– ident: CR5
– volume: 57
  start-page: 1
  year: 2017
  end-page: 25
  ident: CR42
  article-title: Bilevel parameter learning for higher-order total variation regularisation models
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-016-0662-8
– volume: 13
  start-page: 631
  issue: 2
  year: 1992
  end-page: 644
  ident: CR55
  article-title: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0913035
– ident: CR26
– volume: 27
  start-page: 640
  issue: 2
  year: 2017
  end-page: 660
  ident: CR40
  article-title: A first order method for solving convex bilevel optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/16m105592x
– ident: CR47
– ident: CR14
– volume: 39
  start-page: 4310
  issue: 12
  year: 2020
  end-page: 4321
  ident: CR11
  article-title: Learning the sampling pattern for MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3017353
– ident: CR30
– year: 2006
  ident: CR31
  publication-title: Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications
– volume: 7
  start-page: 1183
  year: 2013
  end-page: 1214
  ident: CR7
  article-title: Image denoising: learning noise distribution via PDE-constrained optimization
  publication-title: Inverse Prob. Imag.
– ident: CR33
– volume: 11
  start-page: 251
  issue: 2
  year: 2004
  end-page: 266
  ident: CR48
  article-title: Identifying active constraints via partial smoothness and prox-regularity
  publication-title: J. Convex Anal.
– volume: 23
  start-page: 1
  year: 2022
  end-page: 56
  ident: CR27
  article-title: Lower bounds and accelerated algorithms for bilevel optimization
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: CR15
  article-title: Inexact derivative-free optimization for bilevel learning
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-021-01020-8
– year: 2021
  ident: CR38
  article-title: Sufficient optimality conditions in bilevel programming
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2021.1122
– volume: 6
  start-page: 938
  issue: 2
  year: 2013
  end-page: 983
  ident: CR8
  article-title: A bilevel optimization approach for parameter learning in variational models
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/120882706
– volume: 5
  start-page: 119
  issue: 1
  year: 2012
  end-page: 149
  ident: CR17
  article-title: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/100814494
– ident: CR23
– volume: 78
  start-page: 793
  year: 2021
  end-page: 824
  ident: CR3
  article-title: Gauss-newton-type methods for bilevel optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00254-3
– volume: 138
  start-page: 447
  issue: 1–2
  year: 2012
  end-page: 473
  ident: CR37
  article-title: The bilevel programming problem: reformulations, constraint qualifications and optimality conditions
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0508-5
– volume: 9
  start-page: 1139
  issue: 4
  year: 2015
  end-page: 1169
  ident: CR44
  article-title: Bilevel optimization for calibrating point spread functions in blind deconvolution
  publication-title: Inverse Probl. Imag.
  doi: 10.3934/ipi.2015.9.1139
– volume: 14
  start-page: 778
  issue: 2
  year: 2021
  end-page: 813
  ident: CR45
  article-title: Learning consistent discretizations of the total variation
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/20m1377199
– ident: CR13
– volume: 34
  issue: 11
  year: 2018
  ident: CR9
  article-title: A bilevel approach for parameter learning in inverse problems
  publication-title: Inverse Prob.
  doi: 10.1088/1361-6420/aade77
– volume: 40
  start-page: 120
  year: 2011
  end-page: 145
  ident: CR16
  article-title: A first-order primal-dual algorithm for convex problems with applications to imaging
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-010-0251-1
– ident: CR34
– volume: 9
  start-page: 77
  issue: 1
  year: 1982
  end-page: 100
  ident: CR1
  article-title: An explicit solution to the multi-level programming problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(82)90007-7
– ident: CR28
– volume: 24
  start-page: 423
  issue: 3
  year: 2016
  end-page: 448
  ident: CR36
  article-title: Solving ill-posed bilevel programs
  publication-title: Set-valued Var. Anal.
  doi: 10.1007/s11228-016-0371-x
– ident: CR20
– volume: 13
  start-page: 631
  issue: 2
  year: 1992
  ident: 527_CR55
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0913035
– volume: 34
  issue: 11
  year: 2018
  ident: 527_CR9
  publication-title: Inverse Prob.
  doi: 10.1088/1361-6420/aade77
– volume: 59
  start-page: 515
  year: 2017
  ident: 527_CR10
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-017-0736-2
– volume: 138
  start-page: 447
  issue: 1–2
  year: 2012
  ident: 527_CR37
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0508-5
– ident: 527_CR5
– ident: 527_CR13
– ident: 527_CR49
– ident: 527_CR26
– ident: 527_CR51
– ident: 527_CR14
  doi: 10.1137/21M143412X
– volume: 138
  start-page: 309
  issue: 1–2
  year: 2012
  ident: 527_CR2
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0535-x
– ident: 527_CR30
  doi: 10.1007/978-981-10-4774-9
– volume: 29
  start-page: 933
  year: 2019
  ident: 527_CR52
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1170194
– ident: 527_CR22
– volume: 70
  start-page: 47
  issue: 1–3
  year: 1995
  ident: 527_CR6
  publication-title: Math. Program.
  doi: 10.1007/bf01585928
– year: 2021
  ident: 527_CR15
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-021-01020-8
– ident: 527_CR47
  doi: 10.1137/1.9781611971309
– volume: 82
  start-page: 1
  issue: 2
  year: 2020
  ident: 527_CR18
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-018-9541-6
– volume: 6
  start-page: 938
  issue: 2
  year: 2013
  ident: 527_CR8
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/120882706
– volume: 78
  start-page: 793
  year: 2021
  ident: 527_CR3
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00254-3
– volume: 219
  start-page: 4332
  issue: 9
  year: 2013
  ident: 527_CR4
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.10.010
– ident: 527_CR54
  doi: 10.5281/zenodo.7974062
– volume: 5
  start-page: 119
  issue: 1
  year: 2012
  ident: 527_CR17
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/100814494
– volume: 57
  start-page: 1
  year: 2017
  ident: 527_CR42
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-016-0662-8
– volume: 56
  start-page: 175
  issue: 2
  year: 2016
  ident: 527_CR46
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-016-0663-7
– volume: 34
  start-page: 13670
  year: 2021
  ident: 527_CR24
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 527_CR32
  doi: 10.1007/978-3-662-45827-3
– ident: 527_CR25
– volume: 30
  issue: 5
  year: 2014
  ident: 527_CR53
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/30/5/055012
– volume: 40
  start-page: 120
  year: 2011
  ident: 527_CR16
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-010-0251-1
– volume: 23
  start-page: 1
  year: 2022
  ident: 527_CR27
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 423
  issue: 3
  year: 2016
  ident: 527_CR36
  publication-title: Set-valued Var. Anal.
  doi: 10.1007/s11228-016-0371-x
– volume-title: Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications
  year: 2006
  ident: 527_CR31
– volume: 36
  start-page: 1
  issue: 1
  year: 2019
  ident: 527_CR41
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2019.1619729
– ident: 527_CR21
– ident: 527_CR23
  doi: 10.1609/aaai.v36i7.20706
– ident: 527_CR50
  doi: 10.1515/9783110430394-008
– volume-title: Mathematical Programs with Equilibrium Constraints
  year: 1996
  ident: 527_CR29
  doi: 10.1017/CBO9780511983658
– ident: 527_CR12
  doi: 10.1007/978-3-662-45504-3_8
– ident: 527_CR19
– volume: 27
  start-page: 640
  issue: 2
  year: 2017
  ident: 527_CR40
  publication-title: SIAM J. Optim.
  doi: 10.1137/16m105592x
– ident: 527_CR39
  doi: 10.1287/moor.2021.1164
– volume: 7
  start-page: 1183
  year: 2013
  ident: 527_CR7
  publication-title: Inverse Prob. Imag.
– ident: 527_CR34
  doi: 10.1007/978-3-030-52119-6
– volume: 33
  start-page: 9
  issue: 1
  year: 1995
  ident: 527_CR35
  publication-title: Optimization
  doi: 10.1080/02331939508844060
– ident: 527_CR20
  doi: 10.1007/978-3-030-03009-4_93-1
– year: 2021
  ident: 527_CR38
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2021.1122
– ident: 527_CR28
– volume: 11
  start-page: 251
  issue: 2
  year: 2004
  ident: 527_CR48
  publication-title: J. Convex Anal.
– volume: 434
  start-page: 464
  year: 2016
  ident: 527_CR43
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.09.023
– volume: 9
  start-page: 1139
  issue: 4
  year: 2015
  ident: 527_CR44
  publication-title: Inverse Probl. Imag.
  doi: 10.3934/ipi.2015.9.1139
– ident: 527_CR33
– volume: 14
  start-page: 778
  issue: 2
  year: 2021
  ident: 527_CR45
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/20m1377199
– volume: 39
  start-page: 4310
  issue: 12
  year: 2020
  ident: 527_CR11
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3017353
– volume: 9
  start-page: 77
  issue: 1
  year: 1982
  ident: 527_CR1
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(82)90007-7
SSID ssj0009732
Score 2.3901827
Snippet We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Algorithms
Convergence
Convex and Discrete Geometry
Inverse problems
Management Science
Mathematics
Mathematics and Statistics
Methods
Operations Research
Operations Research/Decision Theory
Optimization
Regularization
Statistics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWcqAoIAoL3lgA0tpHDv2WCFKhVQmKnWL4tdU2ooUfj_nPJqCAIkxiu3hHr6H774DuDGe6dxpS62TniZxrqj0TlMeWSGUSbwUoVF48izG0-Rpxmd1U1jRVLs3T5LlTb3V7MZDeU_MaMhlpjTdhT0eYneU4mk8bKF203IsWaRiQdGcs7pV5uczvpqj1sf89ixaWpvRIRzUbiIZVnw9gh236MH-Fnggfk02iKtFD7rBa6xAl4_hESNMF5CLSVlUHvor10Sj_n-4OVniJfFad1-SkIYlIV0wdxT5vSLlKC5SzZUuTmA6eni5H9N6YgI1TLA1FS4R3Cfcu5wJ6fmAGWa1dwEmUBrpImcjplmUc1RTrnKB8Yv1mgmrNKq6ZafQWSwX7gyI4lp7ofM0MR5tFldSS2cFHpELY5nvw6AhXGZqOPEw1WKetUDIgdgZEjsriZ2lfbjd7FlVYBp_rr5s-JHVilVksYp5rPCaYn24a3jU_v79tPP_Lb-ALopWUlWbXUJn_fburtD9WOvrUto-AfP00bo
  priority: 102
  providerName: Springer Nature
Title Linearly convergent bilevel optimization with single-step inner methods
URI https://link.springer.com/article/10.1007/s10589-023-00527-7
https://www.proquest.com/docview/2925297033
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED4BXWBAPEV5VB7YwCLEsWNPqFRtEQiEEJVgiuLXVNpCC7-fc-oSQIIlQx4e7nIPn---D-DYeKZLpy21TnqapaWi0jtNeWKFUCbzUoRB4ds7cTXIrp_4Uyy4TWNb5cInVo7ajk2okZ-lKuWpwv-TXUxeaWCNCqerkUJjGRrogiVuvhqX3bv7hxp2N68oyhKVCoqhncWxmTg8x0O7UMpoqI3mNP8Zmup889cRaRV5ehuwHlNG0p7reBOW3GgL1r4BCW5DH7eULkAVk6qLPAxUzohGg_9wQzJGr_ASxy1JqLuSUB8YOooKnpCKe4vMiaSnOzDodR87VzRSJFDDBJtR4TLBfca9K5mQnp8zw6z2LuACSiNd4mzCNEtKjnbJVSlww2K9ZsIqjbZt2S6sjMYjtwdEca290GWeGY9BiiuppbMClyiFscw34XwhncJE_PBAYzEsauTjINECJVpUEi3yJpx8fTOZo2f8-_bhQuhFtKRpUeu9CacLRdSP_15t___VDmA1xfxk3k52CCuzt3d3hPnFTLdgWfb6LWi0-8833Vb8pfBuR3TwOkjbn0wP0Zc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NUxQxEO0CPIgHChGKVdAc9KQphmSSSQ4URanL4i6cdqu4hcnXad1d3VXLP8VvpDMfjFolN84z04fOS6fT0_0ewFsXuS2D9dQHFWnOSk1VDJaKzEupXR6VTIPCl1dyMMm_XIvrNbhtZ2FSW2UbE6tA7ecu1ciPmGaCacQnP118o0k1Kv1dbSU0algMw-9feGVbnlx8wvV9x1j_8_jjgDaqAtRxyVdUhlyKmIsYSi5VFMfccW9jSFR6yqmQBZ9xy7NSIJSFLiXm-D5aLr22uB08R7vr8CTnXKcdpfrnHclvUQmiZZpJiokEb4Z0mlE9kZqTGKepElvQ4u-DsMtu__khW51z_W3YahJUclYj6jmshdkOPPuDtvAFnOMFNiRiZFL1rKfxzRWxGF5-himZYwz62gx3klTlJakaMQ0U4bQgldIXqWWrl7sweRTX7cHGbD4L-0C0sDZKWxa5i3gkCq2sCl6iiVI6z2MPjlvvGNewlSfRjKnpeJaTRw161FQeNUUP3t9_s6i5Oh58-6B1umn27dJ0KOvBh3Yhusf_t_byYWtv4OlgfDkyo4ur4SvYZJgZ1Y1sB7Cx-v4jHGJms7KvKzgRuHls_N4B5-4Iyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1BIlX0gFoKIkDbPdBTu8LsetfeQ4VokxSaNkIVSNyM9-uUJoEEUP9af11n7XXdVio3zrbnMPt2dnY88x7AvvFcl05bal3uacpKRXPvNBWJlVKZ1OcyDAp_HcuTi_TzpbhcgZ_NLExoq2xiYhWo7cyEGvkBU0wwhfjkBz62RZz1h0fzaxoUpMKf1kZOo4bIyP24x-vb4v1pH9f6DWPDwfnHExoVBqjhki-pdKkUPhXelVzmXhxyw632LtDq5SZ3ibMJ1zwpBcJaqFJivm-95tIqjVvDcrS7Ct0Mb0VJB7ofBuOzby3lb1bJoyWKSYppBY8jO3FwT4RWJcZpqMtmNPv7WGxz3X9-z1an3vAZrMd0lRzX-HoOK266AU__IDF8AZ_wOusCTTKpOtjDMOeSaAw2d25CZhiRvsdRTxJqviTUJiaOIrjmpNL9IrWI9WITLh7FeVvQmc6mbhuIElp7qcssNR4PSKFynTsr0UQpjeW-B4eNdwoTucuDhMakaFmXg0cL9GhRebTIevD29zfzmrnjwbf3GqcXcRcvihZzPXjXLET7-P_Wdh629hqeIHaLL6fj0S6sMUyT6q62Pegsb27dS0xzlvpVxBOBq8eG8C-22g5c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linearly+convergent+bilevel+optimization+with+single-step+inner+methods&rft.jtitle=Computational+optimization+and+applications&rft.au=Suonper%C3%A4%2C+Ensio&rft.au=Valkonen%2C+Tuomo&rft.date=2024-03-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=87&rft.issue=2&rft.spage=571&rft.epage=610&rft_id=info:doi/10.1007%2Fs10589-023-00527-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_023_00527_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon