Linearly convergent bilevel optimization with single-step inner methods
We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach, and treating the inner problem as an implicit function. The overall idea is to solve the full-system optimality conditions, but to precondit...
Saved in:
Published in | Computational optimization and applications Vol. 87; no. 2; pp. 571 - 610 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach, and treating the inner problem as an implicit function. The overall idea is to solve the full-system optimality conditions, but to precondition them to alternate between taking steps of simple conventional methods for the inner problem, the adjoint equation, and the outer problem. While the inner objective has to be smooth, the outer objective may be nonsmooth subject to a prox-contractivity condition. We prove
linear convergence
of the approach for combinations of gradient descent and forward-backward splitting with exact and inexact solution of the adjoint equation. We demonstrate good performance on learning the regularization parameter for anisotropic total variation image denoising, and the convolution kernel for image deconvolution. |
---|---|
AbstractList | We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach, and treating the inner problem as an implicit function. The overall idea is to solve the full-system optimality conditions, but to precondition them to alternate between taking steps of simple conventional methods for the inner problem, the adjoint equation, and the outer problem. While the inner objective has to be smooth, the outer objective may be nonsmooth subject to a prox-contractivity condition. We prove linear convergence of the approach for combinations of gradient descent and forward-backward splitting with exact and inexact solution of the adjoint equation. We demonstrate good performance on learning the regularization parameter for anisotropic total variation image denoising, and the convolution kernel for image deconvolution. We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach, and treating the inner problem as an implicit function. The overall idea is to solve the full-system optimality conditions, but to precondition them to alternate between taking steps of simple conventional methods for the inner problem, the adjoint equation, and the outer problem. While the inner objective has to be smooth, the outer objective may be nonsmooth subject to a prox-contractivity condition. We prove linear convergence of the approach for combinations of gradient descent and forward-backward splitting with exact and inexact solution of the adjoint equation. We demonstrate good performance on learning the regularization parameter for anisotropic total variation image denoising, and the convolution kernel for image deconvolution. |
Author | Suonperä, Ensio Valkonen, Tuomo |
Author_xml | – sequence: 1 givenname: Ensio orcidid: 0000-0002-2111-0239 surname: Suonperä fullname: Suonperä, Ensio email: ensio.suonpera@helsinki.fi organization: Department of Mathematics and Statistics, University of Helsinki – sequence: 2 givenname: Tuomo surname: Valkonen fullname: Valkonen, Tuomo organization: Department of Mathematics and Statistics, University of Helsinki, ModeMat, Escuela Politécnica Nacional |
BookMark | eNp9kE1LAzEQhoMo2Fb_gKcFz9HZTJNsjiJahYIXPYf9mG1TttmaxEr99a6tIHjoaS7v887MM2anvvfE2FUONzmAvo05yMJwEMgBpNBcn7BRLjVyUZjpKRuBEYorADxn4xhXAGA0ihGbzZ2nMnS7rO79lsKCfMoq19GWuqzfJLd2X2Vyvc8-XVpm0flFRzwm2mTOewrZmtKyb-IFO2vLLtLl75ywt8eH1_snPn-ZPd_fzXmNChNXNFWyncqWSlRFK3OssalaEkKboi4IqAGsEEpZaJCmVEZB01aoGlNphAYn7PrQuwn9-wfFZFf9R_DDSiuMkMJoQBxSxSFVhz7GQK2tXdq_kULpOpuD_dFmD9rsoM3utVk9oOIfugluXYbdcQgPUBzCfkHh76oj1DeWVoJP |
CitedBy_id | crossref_primary_10_1007_s10589_024_00587_3 |
Cites_doi | 10.1007/s00245-018-9541-6 10.1007/s10851-016-0663-7 10.1007/s10107-012-0535-x 10.1080/02331939508844060 10.1088/0266-5611/30/5/055012 10.1016/j.amc.2012.10.010 10.1017/CBO9780511983658 10.1007/s10851-017-0736-2 10.1137/18M1170194 10.1007/bf01585928 10.1080/10556788.2019.1619729 10.1016/j.jmaa.2015.09.023 10.1007/s10851-016-0662-8 10.1137/0913035 10.1137/16m105592x 10.1109/TMI.2020.3017353 10.1007/s10851-021-01020-8 10.1287/moor.2021.1122 10.1137/120882706 10.1137/100814494 10.1007/s10589-020-00254-3 10.1007/s10107-011-0508-5 10.3934/ipi.2015.9.1139 10.1137/20m1377199 10.1088/1361-6420/aade77 10.1007/s10851-010-0251-1 10.1016/0305-0548(82)90007-7 10.1007/s11228-016-0371-x 10.1137/21M143412X 10.1007/978-981-10-4774-9 10.1137/1.9781611971309 10.5281/zenodo.7974062 10.1007/978-3-662-45827-3 10.1609/aaai.v36i7.20706 10.1515/9783110430394-008 10.1007/978-3-662-45504-3_8 10.1287/moor.2021.1164 10.1007/978-3-030-52119-6 10.1007/978-3-030-03009-4_93-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10589-023-00527-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Mathematics |
EISSN | 1573-2894 |
EndPage | 610 |
ExternalDocumentID | 10_1007_s10589_023_00527_7 |
GrantInformation_xml | – fundername: Academy of Finland grantid: 314701, 320022, and 345486 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-6e465f45fea368f513c3dbfe22798c8e0ed03b30a587059a6960dfb36d9b730d3 |
IEDL.DBID | BENPR |
ISSN | 0926-6003 |
IngestDate | Sat Aug 16 17:11:47 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Tue Jul 01 00:44:28 EDT 2025 Fri Feb 21 02:42:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nonsmooth Forward-backward Bilevel optimization Inverse problems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-6e465f45fea368f513c3dbfe22798c8e0ed03b30a587059a6960dfb36d9b730d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2111-0239 |
OpenAccessLink | https://link.springer.com/10.1007/s10589-023-00527-7 |
PQID | 2925297033 |
PQPubID | 30811 |
PageCount | 40 |
ParticipantIDs | proquest_journals_2925297033 crossref_citationtrail_10_1007_s10589_023_00527_7 crossref_primary_10_1007_s10589_023_00527_7 springer_journals_10_1007_s10589_023_00527_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240300 2024-03-00 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal |
PublicationTitle | Computational optimization and applications |
PublicationTitleAbbrev | Comput Optim Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | De Los Reyes, Schönlieb, Valkonen (CR42) 2017; 57 CR39 CR34 CR33 CR32 CR30 Fliege, Tin, Zemkoho (CR3) 2021; 78 Chambolle, Pock (CR16) 2011; 40 CR5 Ehrhardt, Roberts (CR15) 2021 De Los Reyes, Schönlieb, Valkonen (CR43) 2016; 434 CR49 Chambolle, Pock (CR45) 2021; 14 CR47 Allende, Still (CR2) 2012; 138 Ochs, Ranftl, Brox, Pock (CR46) 2016; 56 Dempe (CR31) 2006 Luo, Pang, Ralph (CR29) 1996 Sabach, Shtern (CR40) 2017; 27 Hare, Lewis (CR48) 2004; 11 Kunisch, Pock (CR8) 2013; 6 Valkonen (CR53) 2014; 30 Sherry, Benning, De los Reyes, Graves, Maierhofer, Williams, Schönlieb, Ehrhardt (CR11) 2020; 39 CR19 Hintermüller, Wu (CR44) 2015; 9 Jiang, Li, Huang, Wu (CR4) 2013; 219 CR14 De Los Reyes, Schönlieb (CR7) 2013; 7 CR13 CR12 Dempe, Zemkoho (CR37) 2012; 138 CR54 Hintermüller, Rautenberg, Wu, Langer (CR10) 2017; 59 CR51 CR50 Mehlitz, Zemkoho (CR38) 2021 Zemkoho (CR36) 2016; 24 He, Yuan (CR17) 2012; 5 Clason, Mazurenko, Valkonen (CR52) 2019; 29 Holler, Kunisch, Barnard (CR9) 2018; 34 CR28 CR26 CR25 CR23 Ye, Zhu (CR35) 1995; 33 CR22 CR21 Valkonen (CR18) 2020; 82 CR20 Yang, Ji, Liang (CR24) 2021; 34 Ji, Liang (CR27) 2022; 23 Bard, Falk (CR1) 1982; 9 Shehu, Vuong, Zemkoho (CR41) 2019; 36 Van der Vorst (CR55) 1992; 13 Falk, Liu (CR6) 1995; 70 S Sabach (527_CR40) 2017; 27 A Chambolle (527_CR45) 2021; 14 S Dempe (527_CR37) 2012; 138 JC De Los Reyes (527_CR7) 2013; 7 527_CR5 JF Bard (527_CR1) 1982; 9 527_CR28 527_CR26 AB Zemkoho (527_CR36) 2016; 24 527_CR20 527_CR21 GB Allende (527_CR2) 2012; 138 JE Falk (527_CR6) 1995; 70 527_CR25 527_CR22 527_CR23 WL Hare (527_CR48) 2004; 11 B He (527_CR17) 2012; 5 P Ochs (527_CR46) 2016; 56 C Clason (527_CR52) 2019; 29 M Hintermüller (527_CR10) 2017; 59 527_CR39 ZQ Luo (527_CR29) 1996 S Dempe (527_CR31) 2006 527_CR32 527_CR30 J Yang (527_CR24) 2021; 34 A Chambolle (527_CR16) 2011; 40 527_CR33 527_CR34 F Sherry (527_CR11) 2020; 39 T Valkonen (527_CR18) 2020; 82 527_CR49 K Ji (527_CR27) 2022; 23 K Kunisch (527_CR8) 2013; 6 JC De Los Reyes (527_CR42) 2017; 57 527_CR47 MJ Ehrhardt (527_CR15) 2021 JJ Ye (527_CR35) 1995; 33 T Valkonen (527_CR53) 2014; 30 J Fliege (527_CR3) 2021; 78 HA Van der Vorst (527_CR55) 1992; 13 527_CR50 G Holler (527_CR9) 2018; 34 M Hintermüller (527_CR44) 2015; 9 527_CR19 Y Shehu (527_CR41) 2019; 36 P Mehlitz (527_CR38) 2021 Y Jiang (527_CR4) 2013; 219 527_CR54 527_CR51 JC De Los Reyes (527_CR43) 2016; 434 527_CR13 527_CR14 527_CR12 |
References_xml | – ident: CR22 – volume: 82 start-page: 1 issue: 2 year: 2020 ident: CR18 article-title: Testing and non-linear preconditioning of the proximal point method publication-title: Appl. Math. Optim. doi: 10.1007/s00245-018-9541-6 – volume: 56 start-page: 175 issue: 2 year: 2016 end-page: 194 ident: CR46 article-title: Techniques for gradient-based bilevel optimization with non-smooth lower level problems publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-016-0663-7 – ident: CR49 – ident: CR39 – ident: CR51 – volume: 138 start-page: 309 issue: 1–2 year: 2012 end-page: 332 ident: CR2 article-title: Solving bilevel programs with the KKT-approach publication-title: Math. Program. doi: 10.1007/s10107-012-0535-x – ident: CR12 – volume: 33 start-page: 9 issue: 1 year: 1995 end-page: 27 ident: CR35 article-title: Optimality conditions for bilevel programming problems publication-title: Optimization doi: 10.1080/02331939508844060 – ident: CR54 – volume: 30 issue: 5 year: 2014 ident: CR53 article-title: A primal-dual hybrid gradient method for non-linear operators with applications to MRI publication-title: Inverse Prob. doi: 10.1088/0266-5611/30/5/055012 – volume: 219 start-page: 4332 issue: 9 year: 2013 end-page: 4339 ident: CR4 article-title: Application of particle swarm optimization based on CHKS smoothing function for solving nonlinear bilevel programming problem publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.10.010 – ident: CR25 – year: 1996 ident: CR29 publication-title: Mathematical Programs with Equilibrium Constraints doi: 10.1017/CBO9780511983658 – volume: 59 start-page: 515 year: 2017 ident: CR10 article-title: Optimal selection of the regularization function in a weighted total variation model. Part II: algorithm, its analysis and numerical tests publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-017-0736-2 – ident: CR21 – volume: 29 start-page: 933 year: 2019 end-page: 963 ident: CR52 article-title: Acceleration and global convergence of a first-order primal-dual method for nonconvex problems publication-title: SIAM J. Optim. doi: 10.1137/18M1170194 – ident: CR19 – volume: 70 start-page: 47 issue: 1–3 year: 1995 end-page: 72 ident: CR6 article-title: On bilevel programming, Part I: general nonlinear cases publication-title: Math. Program. doi: 10.1007/bf01585928 – volume: 36 start-page: 1 issue: 1 year: 2019 end-page: 19 ident: CR41 article-title: An inertial extrapolation method for convex simple bilevel optimization publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2019.1619729 – ident: CR50 – volume: 34 start-page: 13670 year: 2021 end-page: 13682 ident: CR24 article-title: Provably faster algorithms for bilevel optimization publication-title: Adv. Neural. Inf. Process. Syst. – ident: CR32 – volume: 434 start-page: 464 year: 2016 end-page: 500 ident: CR43 article-title: The structure of optimal parameters for image restoration problems publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.09.023 – ident: CR5 – volume: 57 start-page: 1 year: 2017 end-page: 25 ident: CR42 article-title: Bilevel parameter learning for higher-order total variation regularisation models publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-016-0662-8 – volume: 13 start-page: 631 issue: 2 year: 1992 end-page: 644 ident: CR55 article-title: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems publication-title: SIAM J. Sci. Comput. doi: 10.1137/0913035 – ident: CR26 – volume: 27 start-page: 640 issue: 2 year: 2017 end-page: 660 ident: CR40 article-title: A first order method for solving convex bilevel optimization problems publication-title: SIAM J. Optim. doi: 10.1137/16m105592x – ident: CR47 – ident: CR14 – volume: 39 start-page: 4310 issue: 12 year: 2020 end-page: 4321 ident: CR11 article-title: Learning the sampling pattern for MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3017353 – ident: CR30 – year: 2006 ident: CR31 publication-title: Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications – volume: 7 start-page: 1183 year: 2013 end-page: 1214 ident: CR7 article-title: Image denoising: learning noise distribution via PDE-constrained optimization publication-title: Inverse Prob. Imag. – ident: CR33 – volume: 11 start-page: 251 issue: 2 year: 2004 end-page: 266 ident: CR48 article-title: Identifying active constraints via partial smoothness and prox-regularity publication-title: J. Convex Anal. – volume: 23 start-page: 1 year: 2022 end-page: 56 ident: CR27 article-title: Lower bounds and accelerated algorithms for bilevel optimization publication-title: J. Mach. Learn. Res. – year: 2021 ident: CR15 article-title: Inexact derivative-free optimization for bilevel learning publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-021-01020-8 – year: 2021 ident: CR38 article-title: Sufficient optimality conditions in bilevel programming publication-title: Math. Oper. Res. doi: 10.1287/moor.2021.1122 – volume: 6 start-page: 938 issue: 2 year: 2013 end-page: 983 ident: CR8 article-title: A bilevel optimization approach for parameter learning in variational models publication-title: SIAM J. Imag. Sci. doi: 10.1137/120882706 – volume: 5 start-page: 119 issue: 1 year: 2012 end-page: 149 ident: CR17 article-title: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective publication-title: SIAM J. Imag. Sci. doi: 10.1137/100814494 – ident: CR23 – volume: 78 start-page: 793 year: 2021 end-page: 824 ident: CR3 article-title: Gauss-newton-type methods for bilevel optimization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-020-00254-3 – volume: 138 start-page: 447 issue: 1–2 year: 2012 end-page: 473 ident: CR37 article-title: The bilevel programming problem: reformulations, constraint qualifications and optimality conditions publication-title: Math. Program. doi: 10.1007/s10107-011-0508-5 – volume: 9 start-page: 1139 issue: 4 year: 2015 end-page: 1169 ident: CR44 article-title: Bilevel optimization for calibrating point spread functions in blind deconvolution publication-title: Inverse Probl. Imag. doi: 10.3934/ipi.2015.9.1139 – volume: 14 start-page: 778 issue: 2 year: 2021 end-page: 813 ident: CR45 article-title: Learning consistent discretizations of the total variation publication-title: SIAM J. Imag. Sci. doi: 10.1137/20m1377199 – ident: CR13 – volume: 34 issue: 11 year: 2018 ident: CR9 article-title: A bilevel approach for parameter learning in inverse problems publication-title: Inverse Prob. doi: 10.1088/1361-6420/aade77 – volume: 40 start-page: 120 year: 2011 end-page: 145 ident: CR16 article-title: A first-order primal-dual algorithm for convex problems with applications to imaging publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-010-0251-1 – ident: CR34 – volume: 9 start-page: 77 issue: 1 year: 1982 end-page: 100 ident: CR1 article-title: An explicit solution to the multi-level programming problem publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(82)90007-7 – ident: CR28 – volume: 24 start-page: 423 issue: 3 year: 2016 end-page: 448 ident: CR36 article-title: Solving ill-posed bilevel programs publication-title: Set-valued Var. Anal. doi: 10.1007/s11228-016-0371-x – ident: CR20 – volume: 13 start-page: 631 issue: 2 year: 1992 ident: 527_CR55 publication-title: SIAM J. Sci. Comput. doi: 10.1137/0913035 – volume: 34 issue: 11 year: 2018 ident: 527_CR9 publication-title: Inverse Prob. doi: 10.1088/1361-6420/aade77 – volume: 59 start-page: 515 year: 2017 ident: 527_CR10 publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-017-0736-2 – volume: 138 start-page: 447 issue: 1–2 year: 2012 ident: 527_CR37 publication-title: Math. Program. doi: 10.1007/s10107-011-0508-5 – ident: 527_CR5 – ident: 527_CR13 – ident: 527_CR49 – ident: 527_CR26 – ident: 527_CR51 – ident: 527_CR14 doi: 10.1137/21M143412X – volume: 138 start-page: 309 issue: 1–2 year: 2012 ident: 527_CR2 publication-title: Math. Program. doi: 10.1007/s10107-012-0535-x – ident: 527_CR30 doi: 10.1007/978-981-10-4774-9 – volume: 29 start-page: 933 year: 2019 ident: 527_CR52 publication-title: SIAM J. Optim. doi: 10.1137/18M1170194 – ident: 527_CR22 – volume: 70 start-page: 47 issue: 1–3 year: 1995 ident: 527_CR6 publication-title: Math. Program. doi: 10.1007/bf01585928 – year: 2021 ident: 527_CR15 publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-021-01020-8 – ident: 527_CR47 doi: 10.1137/1.9781611971309 – volume: 82 start-page: 1 issue: 2 year: 2020 ident: 527_CR18 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-018-9541-6 – volume: 6 start-page: 938 issue: 2 year: 2013 ident: 527_CR8 publication-title: SIAM J. Imag. Sci. doi: 10.1137/120882706 – volume: 78 start-page: 793 year: 2021 ident: 527_CR3 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-020-00254-3 – volume: 219 start-page: 4332 issue: 9 year: 2013 ident: 527_CR4 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.10.010 – ident: 527_CR54 doi: 10.5281/zenodo.7974062 – volume: 5 start-page: 119 issue: 1 year: 2012 ident: 527_CR17 publication-title: SIAM J. Imag. Sci. doi: 10.1137/100814494 – volume: 57 start-page: 1 year: 2017 ident: 527_CR42 publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-016-0662-8 – volume: 56 start-page: 175 issue: 2 year: 2016 ident: 527_CR46 publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-016-0663-7 – volume: 34 start-page: 13670 year: 2021 ident: 527_CR24 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 527_CR32 doi: 10.1007/978-3-662-45827-3 – ident: 527_CR25 – volume: 30 issue: 5 year: 2014 ident: 527_CR53 publication-title: Inverse Prob. doi: 10.1088/0266-5611/30/5/055012 – volume: 40 start-page: 120 year: 2011 ident: 527_CR16 publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-010-0251-1 – volume: 23 start-page: 1 year: 2022 ident: 527_CR27 publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 423 issue: 3 year: 2016 ident: 527_CR36 publication-title: Set-valued Var. Anal. doi: 10.1007/s11228-016-0371-x – volume-title: Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications year: 2006 ident: 527_CR31 – volume: 36 start-page: 1 issue: 1 year: 2019 ident: 527_CR41 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2019.1619729 – ident: 527_CR21 – ident: 527_CR23 doi: 10.1609/aaai.v36i7.20706 – ident: 527_CR50 doi: 10.1515/9783110430394-008 – volume-title: Mathematical Programs with Equilibrium Constraints year: 1996 ident: 527_CR29 doi: 10.1017/CBO9780511983658 – ident: 527_CR12 doi: 10.1007/978-3-662-45504-3_8 – ident: 527_CR19 – volume: 27 start-page: 640 issue: 2 year: 2017 ident: 527_CR40 publication-title: SIAM J. Optim. doi: 10.1137/16m105592x – ident: 527_CR39 doi: 10.1287/moor.2021.1164 – volume: 7 start-page: 1183 year: 2013 ident: 527_CR7 publication-title: Inverse Prob. Imag. – ident: 527_CR34 doi: 10.1007/978-3-030-52119-6 – volume: 33 start-page: 9 issue: 1 year: 1995 ident: 527_CR35 publication-title: Optimization doi: 10.1080/02331939508844060 – ident: 527_CR20 doi: 10.1007/978-3-030-03009-4_93-1 – year: 2021 ident: 527_CR38 publication-title: Math. Oper. Res. doi: 10.1287/moor.2021.1122 – ident: 527_CR28 – volume: 11 start-page: 251 issue: 2 year: 2004 ident: 527_CR48 publication-title: J. Convex Anal. – volume: 434 start-page: 464 year: 2016 ident: 527_CR43 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.09.023 – volume: 9 start-page: 1139 issue: 4 year: 2015 ident: 527_CR44 publication-title: Inverse Probl. Imag. doi: 10.3934/ipi.2015.9.1139 – ident: 527_CR33 – volume: 14 start-page: 778 issue: 2 year: 2021 ident: 527_CR45 publication-title: SIAM J. Imag. Sci. doi: 10.1137/20m1377199 – volume: 39 start-page: 4310 issue: 12 year: 2020 ident: 527_CR11 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3017353 – volume: 9 start-page: 77 issue: 1 year: 1982 ident: 527_CR1 publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(82)90007-7 |
SSID | ssj0009732 |
Score | 2.3901827 |
Snippet | We propose a new approach to solving bilevel optimization problems, intermediate between solving full-system optimality conditions with a Newton-type approach,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 571 |
SubjectTerms | Algorithms Convergence Convex and Discrete Geometry Inverse problems Management Science Mathematics Mathematics and Statistics Methods Operations Research Operations Research/Decision Theory Optimization Regularization Statistics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWcqAoIAoL3lgA0tpHDv2WCFKhVQmKnWL4tdU2ooUfj_nPJqCAIkxiu3hHr6H774DuDGe6dxpS62TniZxrqj0TlMeWSGUSbwUoVF48izG0-Rpxmd1U1jRVLs3T5LlTb3V7MZDeU_MaMhlpjTdhT0eYneU4mk8bKF203IsWaRiQdGcs7pV5uczvpqj1sf89ixaWpvRIRzUbiIZVnw9gh236MH-Fnggfk02iKtFD7rBa6xAl4_hESNMF5CLSVlUHvor10Sj_n-4OVniJfFad1-SkIYlIV0wdxT5vSLlKC5SzZUuTmA6eni5H9N6YgI1TLA1FS4R3Cfcu5wJ6fmAGWa1dwEmUBrpImcjplmUc1RTrnKB8Yv1mgmrNKq6ZafQWSwX7gyI4lp7ofM0MR5tFldSS2cFHpELY5nvw6AhXGZqOPEw1WKetUDIgdgZEjsriZ2lfbjd7FlVYBp_rr5s-JHVilVksYp5rPCaYn24a3jU_v79tPP_Lb-ALopWUlWbXUJn_fburtD9WOvrUto-AfP00bo priority: 102 providerName: Springer Nature |
Title | Linearly convergent bilevel optimization with single-step inner methods |
URI | https://link.springer.com/article/10.1007/s10589-023-00527-7 https://www.proquest.com/docview/2925297033 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED4BXWBAPEV5VB7YwCLEsWNPqFRtEQiEEJVgiuLXVNpCC7-fc-oSQIIlQx4e7nIPn---D-DYeKZLpy21TnqapaWi0jtNeWKFUCbzUoRB4ds7cTXIrp_4Uyy4TWNb5cInVo7ajk2okZ-lKuWpwv-TXUxeaWCNCqerkUJjGRrogiVuvhqX3bv7hxp2N68oyhKVCoqhncWxmTg8x0O7UMpoqI3mNP8Zmup889cRaRV5ehuwHlNG0p7reBOW3GgL1r4BCW5DH7eULkAVk6qLPAxUzohGg_9wQzJGr_ASxy1JqLuSUB8YOooKnpCKe4vMiaSnOzDodR87VzRSJFDDBJtR4TLBfca9K5mQnp8zw6z2LuACSiNd4mzCNEtKjnbJVSlww2K9ZsIqjbZt2S6sjMYjtwdEca290GWeGY9BiiuppbMClyiFscw34XwhncJE_PBAYzEsauTjINECJVpUEi3yJpx8fTOZo2f8-_bhQuhFtKRpUeu9CacLRdSP_15t___VDmA1xfxk3k52CCuzt3d3hPnFTLdgWfb6LWi0-8833Vb8pfBuR3TwOkjbn0wP0Zc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NUxQxEO0CPIgHChGKVdAc9KQphmSSSQ4URanL4i6cdqu4hcnXad1d3VXLP8VvpDMfjFolN84z04fOS6fT0_0ewFsXuS2D9dQHFWnOSk1VDJaKzEupXR6VTIPCl1dyMMm_XIvrNbhtZ2FSW2UbE6tA7ecu1ciPmGaCacQnP118o0k1Kv1dbSU0algMw-9feGVbnlx8wvV9x1j_8_jjgDaqAtRxyVdUhlyKmIsYSi5VFMfccW9jSFR6yqmQBZ9xy7NSIJSFLiXm-D5aLr22uB08R7vr8CTnXKcdpfrnHclvUQmiZZpJiokEb4Z0mlE9kZqTGKepElvQ4u-DsMtu__khW51z_W3YahJUclYj6jmshdkOPPuDtvAFnOMFNiRiZFL1rKfxzRWxGF5-himZYwz62gx3klTlJakaMQ0U4bQgldIXqWWrl7sweRTX7cHGbD4L-0C0sDZKWxa5i3gkCq2sCl6iiVI6z2MPjlvvGNewlSfRjKnpeJaTRw161FQeNUUP3t9_s6i5Oh58-6B1umn27dJ0KOvBh3Yhusf_t_byYWtv4OlgfDkyo4ur4SvYZJgZ1Y1sB7Cx-v4jHGJms7KvKzgRuHls_N4B5-4Iyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1BIlX0gFoKIkDbPdBTu8LsetfeQ4VokxSaNkIVSNyM9-uUJoEEUP9af11n7XXdVio3zrbnMPt2dnY88x7AvvFcl05bal3uacpKRXPvNBWJlVKZ1OcyDAp_HcuTi_TzpbhcgZ_NLExoq2xiYhWo7cyEGvkBU0wwhfjkBz62RZz1h0fzaxoUpMKf1kZOo4bIyP24x-vb4v1pH9f6DWPDwfnHExoVBqjhki-pdKkUPhXelVzmXhxyw632LtDq5SZ3ibMJ1zwpBcJaqFJivm-95tIqjVvDcrS7Ct0Mb0VJB7ofBuOzby3lb1bJoyWKSYppBY8jO3FwT4RWJcZpqMtmNPv7WGxz3X9-z1an3vAZrMd0lRzX-HoOK266AU__IDF8AZ_wOusCTTKpOtjDMOeSaAw2d25CZhiRvsdRTxJqviTUJiaOIrjmpNL9IrWI9WITLh7FeVvQmc6mbhuIElp7qcssNR4PSKFynTsr0UQpjeW-B4eNdwoTucuDhMakaFmXg0cL9GhRebTIevD29zfzmrnjwbf3GqcXcRcvihZzPXjXLET7-P_Wdh629hqeIHaLL6fj0S6sMUyT6q62Pegsb27dS0xzlvpVxBOBq8eG8C-22g5c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linearly+convergent+bilevel+optimization+with+single-step+inner+methods&rft.jtitle=Computational+optimization+and+applications&rft.au=Suonper%C3%A4%2C+Ensio&rft.au=Valkonen%2C+Tuomo&rft.date=2024-03-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=87&rft.issue=2&rft.spage=571&rft.epage=610&rft_id=info:doi/10.1007%2Fs10589-023-00527-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_023_00527_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |