Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture
Histopathological image recognition of breast cancer is an onerous task. Although many deep learning models have achieved good classification results on histopathological image classification tasks, these models do not take full advantage of the staining properties of histopathological images. In th...
Saved in:
Published in | Information sciences Vol. 608; pp. 1093 - 1112 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Histopathological image recognition of breast cancer is an onerous task. Although many deep learning models have achieved good classification results on histopathological image classification tasks, these models do not take full advantage of the staining properties of histopathological images. In this paper, we propose a novel Deconv-Transformer (DecT) network model, which incorporates the color deconvolution in the form of convolution layers. This model uses a self-attention mechanism to match the independent properties of the HED channel information obtained by the color deconvolution. It also uses a method similar to the residual connection to fuse the information of both RGB and HED color space images, which can compensate for the information loss in the process of transferring RGB images to HED images. The training process of the DecT model is divided into two stages so that the parameters of the deconvolution layer can be better adapted to different types of histopathological images. We use the color jitter in the image data augmentation process to reduce the overfitting in the model training process. The DecT model achieves an average accuracy of 93.02% and F1-score of 0.9389 on BreakHis dataset, and an average accuracy of 79.06% and 81.36% on BACH and UC datasets. |
---|---|
AbstractList | Histopathological image recognition of breast cancer is an onerous task. Although many deep learning models have achieved good classification results on histopathological image classification tasks, these models do not take full advantage of the staining properties of histopathological images. In this paper, we propose a novel Deconv-Transformer (DecT) network model, which incorporates the color deconvolution in the form of convolution layers. This model uses a self-attention mechanism to match the independent properties of the HED channel information obtained by the color deconvolution. It also uses a method similar to the residual connection to fuse the information of both RGB and HED color space images, which can compensate for the information loss in the process of transferring RGB images to HED images. The training process of the DecT model is divided into two stages so that the parameters of the deconvolution layer can be better adapted to different types of histopathological images. We use the color jitter in the image data augmentation process to reduce the overfitting in the model training process. The DecT model achieves an average accuracy of 93.02% and F1-score of 0.9389 on BreakHis dataset, and an average accuracy of 79.06% and 81.36% on BACH and UC datasets. |
Author | He, Zhu Chen, Hong Lin, Mingwei Alenezi, Fayadh Yao, Zhiqiang Xu, Zeshui Alhudhaif, Adi |
Author_xml | – sequence: 1 givenname: Zhu surname: He fullname: He, Zhu organization: College of Computer and Cyber Security, Fujian Normal University, Fuzhou, Fujian 350117, China – sequence: 2 givenname: Mingwei surname: Lin fullname: Lin, Mingwei email: linmwcs@163.com organization: College of Computer and Cyber Security, Fujian Normal University, Fuzhou, Fujian 350117, China – sequence: 3 givenname: Zeshui surname: Xu fullname: Xu, Zeshui organization: Business School, Sichuan University, Chengdu, Sichuan 610064, China – sequence: 4 givenname: Zhiqiang surname: Yao fullname: Yao, Zhiqiang organization: College of Computer and Cyber Security, Fujian Normal University, Fuzhou, Fujian 350117, China – sequence: 5 givenname: Hong surname: Chen fullname: Chen, Hong organization: School of Mathematics and Statistics, Fujian Normal University, Fuzhou, Fujian 350117, China – sequence: 6 givenname: Adi surname: Alhudhaif fullname: Alhudhaif, Adi organization: Department of Computer Science, College of Computer Engineering and Sciences in Al-kharj, Prince Sattam Bin Abdulaziz University, P.O. Box 151, Al-Kharj 11942, Saudi Arabia – sequence: 7 givenname: Fayadh surname: Alenezi fullname: Alenezi, Fayadh organization: Department of Electrical Engineering, College of Engineering, Jouf University, Saudi Arabia |
BookMark | eNp9kD1PwzAQhi0EEm3hB7B5hCHh7CROClPFt4TEArNlO2fqKo2RbZD4Ifxf3MKAGDqddLrnPb3PlOyPfkRCThiUDJg4X5VujCUHzksQJczZHpmwruWF4HO2TyYAHArgTXNIpjGuAKBuhZiQr2s0fvwoUlBjtD6sMdDTvHs-u6ALunQx-TeVln7wr86ogbq1ekVqBhWjs3mTnB_p2vc40ExTHVDFRI0aTQ7SKmJP84HJfKD99pUf3reQGnv696sKZukSmvQe8IgcWDVEPP6dM_Jye_N8dV88Pt09XC0eC1OJKhVijn3bMG5bW2HXaYFWN1WldN_Vylo7b9DWdYfaao1gOlBglK4YY7ZTdQvVjLCfXBN8jAGtfAu5YfiUDOTGq1zJ7FVuvEoQMnvNTPuPMS5tPeQ2bthJXv6QmCt9OAwyGofZVO9C7i1773bQ37ZomjQ |
CitedBy_id | crossref_primary_10_3390_computation11030059 crossref_primary_10_3233_IDA_230651 crossref_primary_10_3389_frai_2022_1000283 crossref_primary_10_3390_info15120808 crossref_primary_10_1007_s44196_023_00397_1 crossref_primary_10_1016_j_ins_2023_120033 crossref_primary_10_3390_diagnostics13040683 crossref_primary_10_1016_j_microc_2024_109990 crossref_primary_10_1109_JSEN_2024_3443885 crossref_primary_10_1186_s42492_025_00186_x crossref_primary_10_1016_j_compbiomed_2023_107528 crossref_primary_10_1108_IJICC_07_2024_0317 crossref_primary_10_1109_TCSS_2023_3303331 crossref_primary_10_1109_TIM_2025_3527534 crossref_primary_10_1007_s10489_024_05271_x crossref_primary_10_1108_IJICC_07_2023_0188 crossref_primary_10_3389_fimmu_2024_1465917 crossref_primary_10_1007_s10278_025_01403_y crossref_primary_10_1016_j_eswa_2023_119711 crossref_primary_10_1109_ACCESS_2023_3347339 crossref_primary_10_1007_s11831_024_10130_6 crossref_primary_10_1038_s41598_024_60245_w crossref_primary_10_1016_j_bspc_2024_106607 crossref_primary_10_1016_j_neucom_2024_128149 crossref_primary_10_1108_IJICC_10_2023_0302 crossref_primary_10_1007_s10462_024_10963_4 crossref_primary_10_1007_s44196_024_00446_3 crossref_primary_10_1016_j_ins_2023_01_116 crossref_primary_10_1108_IJICC_05_2024_0202 crossref_primary_10_1108_IJICC_02_2024_0091 crossref_primary_10_4018_IJSWIS_352043 crossref_primary_10_1039_D3AY02250A crossref_primary_10_3390_diagnostics13010089 crossref_primary_10_3390_mi13122197 crossref_primary_10_1007_s44196_024_00409_8 crossref_primary_10_32604_cmes_2024_057889 crossref_primary_10_1007_s44196_024_00533_5 crossref_primary_10_3389_fpsyg_2023_1148391 crossref_primary_10_1039_D4AY01755B crossref_primary_10_3390_diagnostics14192253 crossref_primary_10_1007_s44196_024_00502_y crossref_primary_10_1007_s11760_025_04001_1 crossref_primary_10_1007_s42835_024_01904_w crossref_primary_10_1109_JSTARS_2024_3400762 crossref_primary_10_1108_BPMJ_07_2024_0555 crossref_primary_10_1049_ipr2_12897 crossref_primary_10_1038_s41698_024_00771_y crossref_primary_10_3390_jcm13144013 crossref_primary_10_1016_j_ins_2022_11_140 crossref_primary_10_1016_j_medengphy_2025_104317 crossref_primary_10_1097_MD_0000000000033885 crossref_primary_10_1108_IJICC_04_2024_0189 crossref_primary_10_1016_j_jvcir_2025_104416 crossref_primary_10_1016_j_health_2024_100340 crossref_primary_10_3233_IDA_230799 crossref_primary_10_1007_s11831_024_10148_w crossref_primary_10_1007_s11356_023_25797_w crossref_primary_10_1016_j_eswa_2023_120519 crossref_primary_10_1109_ACCESS_2024_3389295 crossref_primary_10_1108_K_04_2024_0914 crossref_primary_10_1108_K_03_2024_0824 crossref_primary_10_3389_fnmol_2022_1023692 crossref_primary_10_1007_s11517_025_03297_y crossref_primary_10_1007_s10462_023_10394_7 crossref_primary_10_1016_j_ins_2024_120225 crossref_primary_10_1049_htl2_12093 crossref_primary_10_3389_fnins_2023_1109510 crossref_primary_10_1007_s44196_024_00441_8 crossref_primary_10_1007_s44196_024_00449_0 crossref_primary_10_1016_j_eswa_2024_124113 crossref_primary_10_3389_fnins_2023_1174287 crossref_primary_10_1109_TCE_2023_3264217 crossref_primary_10_1007_s44196_023_00400_9 crossref_primary_10_1016_j_bbe_2024_08_011 crossref_primary_10_1002_ima_23154 crossref_primary_10_3233_JIFS_240531 crossref_primary_10_3390_jimaging10050108 crossref_primary_10_1108_IJICC_08_2023_0230 crossref_primary_10_1016_j_cose_2023_103516 crossref_primary_10_1108_IJICC_02_2024_0077 crossref_primary_10_1186_s12938_023_01157_0 crossref_primary_10_1016_j_heliyon_2024_e27515 crossref_primary_10_1108_IJICC_07_2024_0328 crossref_primary_10_1088_1361_6560_acf556 crossref_primary_10_1007_s00530_022_01028_z crossref_primary_10_1108_K_03_2024_0837 crossref_primary_10_1109_ACCESS_2023_3343465 crossref_primary_10_1108_K_05_2024_1228 crossref_primary_10_3389_fimmu_2022_1036461 crossref_primary_10_1108_IJICC_06_2024_0266 |
Cites_doi | 10.1001/jama.2015.1405 10.1016/j.ins.2019.08.072 10.1016/j.media.2019.05.010 10.1007/s11263-015-0816-y 10.1016/j.media.2020.101813 10.1109/TBME.2015.2496264 10.1002/mp.13764 10.1109/TMI.2021.3069874 10.1016/j.ins.2021.07.024 10.1016/j.ins.2021.08.043 10.1007/978-3-030-58548-8_7 10.1007/s40747-020-00261-1 10.1108/IJICC-06-2020-0067 10.1109/TKDE.2020.3033324 10.1109/TPAMI.2021.3132503 10.3390/cancers12113337 10.1016/j.ins.2021.09.051 10.1109/TPAMI.2022.3152247 10.1109/ISBI.2009.5193250 10.1007/s11042-020-09991-3 10.1109/TKDE.2020.3014302 10.1007/978-3-030-58558-7_29 10.1109/TKDE.2021.3125252 10.1109/JPROC.2020.3004555 10.1109/JBHI.2019.2944977 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2022.06.091 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 1112 |
ExternalDocumentID | 10_1016_j_ins_2022_06_091 S0020025522006855 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c363t-69ed7512f7f3e88b6efb533abd84afff95ef448ebfbbe0c80a0cab3111f8a4703 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Tue Jul 01 01:26:52 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Fri Feb 23 02:38:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Histopathological image Breast cancer Color deconvolution Color space |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-69ed7512f7f3e88b6efb533abd84afff95ef448ebfbbe0c80a0cab3111f8a4703 |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_1016_j_ins_2022_06_091 crossref_citationtrail_10_1016_j_ins_2022_06_091 elsevier_sciencedirect_doi_10_1016_j_ins_2022_06_091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Information sciences |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Aresta, Araújo, Kwok, Chennamsetty, Safwan, Alex, Marami, Prastawa, Chan, Donovan (b0175) 2019; 56 Chan, Hadjiiski, Samala (b0025) 2020; 47 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (b0155) 2016 Chefer, Gur, Wolf (b0235) 2021 Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, arXiv preprint arXiv:2103.14030. Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b0215) 2015; 115 Spanhol, Oliveira, Petitjean, Heutte (b0170) 2015; 63 Huang, Huang, Wang, Jiang (b0135) 2021; 580 Chollet (b0190) 2017 X. Luo, H. Wu, Z. Wang, J. Wang, D. Meng, A Novel Approach to Large-Scale Dynamically Weighted Directed Network Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2021.3132503. Sun, Zeng, Xu, Peng, Ma (b0180) 2019; 24 X. Luo, Y. Yuan, S. Chen, N. Zeng, Z. Wang, Position-transitional particle swarm optimization-incorporated latent factor analysis, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020.3033324. Krizhevsky, Sutskever, Hinton (b0090) 2012; 25 H. Chen, C. Li, X. Li, G. Wang, W. Hu, Y. Li, W. Liu, C. Sun, Y. Yao, Y. Teng, GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathological Image Classification, arXiv preprint arXiv:2104.14528. Gao, Hong, Zhang, Li, Jia, Wu, Wang, Meng, Li (b0160) 2021 M. Macenko, M. Niethammer, J.S. Marron, D. Borland, J.T. Woosley, X. Guan, C. Schmitt, N.E. Thomas, A method for normalizing histology slides for quantitative analysis, in: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2009, pp. 1107-1110. Huang, Liu, Van Der Maaten, Weinberger (b0185) 2017 Graham, El-Nouby, Touvron, Stock, Joulin, Jégou, Douze (b0140) 2021 Lin, Huang, Chen, Fujita, Wang (b0055) 2021; 7 Srinidhi, Ciga, Martel (b0060) 2021; 67 He, Zhang, Ren, Sun (b0100) 2016 Ruifrok, Johnston (b0085) 2001; 23 K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, A survey on vision transformer, IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2022.3152247. Fateh, Fateh, Abolghasemi (b0045) 2021; 581 H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, L.-C. Chen, Axial-deeplab: Stand-alone axial-attention for panoptic segmentation, in: European Conference on Computer Vision, Springer, 2020, pp. 108–126. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural information processing systems, 2017, pp. 5998-6008. Bianconi, Kather, Reyes-Aldasoro (b0210) 2020; 12 A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, N. Houlsby, Big transfer (bit): General visual representation learning, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, Springer, 2020, pp. 491-507. X. Luo, Y. Zhou, Z. Liu, M. Zhou, Fast and Accurate Non-negative Latent Factor Analysis on High-dimensional and Sparse Matrices in Recommender Systems, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2021.3125252. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929. Abdar, Fahami, Chakrabarti, Khosravi, Pławiak, Acharya, Tadeusiewicz, Nahavandi (b0115) 2021; 577 A.C. Society, Breast cancer facts & figures 2019-2020, American Cancer Society, (2019) 1-44. Kumar, Singh, Saxena, Lakshmanan, Sangaiah, Chauhan, Shrivastava, Singh (b0110) 2020; 508 Vesal, Ravikumar, Davari, Ellmann, Maier (b0120) 2018 Liu, Zhang, Liu, Han, Shi, Guan, He (b0015) 2021; 40 Ioffe, Szegedy, Batch normalization (b0205) 2015 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Representations, 2014, pp. 1-14. Tan, Le, Efficientnet (b0105) 2019 Lbachir, Daoudi, Tallal (b0020) 2021; 80 Srinivas, Lin, Parmar, Shlens, Abbeel, Vaswani (b0145) 2021 Albashish, Al-Sayyed, Abdullah, Ryalat, Almansour (b0130) 2021 Szegedy, Ioffe, Vanhoucke, Alemi (b0195) 2017 D. Wu, X. Luo, M. Shang, Y. He, G. Wang, X. Wu, A data-characteristic-aware latent factor model for web services QoS prediction, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020.3014302. Elmore, Longton, Carney, Geller, Onega, Tosteson, Nelson, Pepe, Allison, Schnitt (b0030) 2015; 313 Lin, Chen, Chen (b0050) 2020; 14 Zhuang, Qi, Duan, Xi, Zhu, Zhu, Xiong, He (b0125) 2020; 109 Ferlay, Colombet, Soerjomataram, Parkin, Pineros, Znaor, Bray, Cancer statistics for the year (b0005) 2020; 149 Lin (10.1016/j.ins.2022.06.091_b0050) 2020; 14 He (10.1016/j.ins.2022.06.091_b0100) 2016 Fateh (10.1016/j.ins.2022.06.091_b0045) 2021; 581 Tan (10.1016/j.ins.2022.06.091_b0105) 2019 10.1016/j.ins.2022.06.091_b0080 Vesal (10.1016/j.ins.2022.06.091_b0120) 2018 Chollet (10.1016/j.ins.2022.06.091_b0190) 2017 Huang (10.1016/j.ins.2022.06.091_b0185) 2017 10.1016/j.ins.2022.06.091_b0040 Liu (10.1016/j.ins.2022.06.091_b0015) 2021; 40 Chefer (10.1016/j.ins.2022.06.091_b0235) 2021 Chan (10.1016/j.ins.2022.06.091_b0025) 2020; 47 10.1016/j.ins.2022.06.091_b0225 Aresta (10.1016/j.ins.2022.06.091_b0175) 2019; 56 Srinivas (10.1016/j.ins.2022.06.091_b0145) 2021 Ruifrok (10.1016/j.ins.2022.06.091_b0085) 2001; 23 Krizhevsky (10.1016/j.ins.2022.06.091_b0090) 2012; 25 Srinidhi (10.1016/j.ins.2022.06.091_b0060) 2021; 67 Graham (10.1016/j.ins.2022.06.091_b0140) 2021 Bianconi (10.1016/j.ins.2022.06.091_b0210) 2020; 12 Ferlay (10.1016/j.ins.2022.06.091_b0005) 2020; 149 10.1016/j.ins.2022.06.091_b0065 Spanhol (10.1016/j.ins.2022.06.091_b0170) 2015; 63 10.1016/j.ins.2022.06.091_b0165 10.1016/j.ins.2022.06.091_b0220 Sun (10.1016/j.ins.2022.06.091_b0180) 2019; 24 Abdar (10.1016/j.ins.2022.06.091_b0115) 2021; 577 10.1016/j.ins.2022.06.091_b0200 Huang (10.1016/j.ins.2022.06.091_b0135) 2021; 580 Ioffe (10.1016/j.ins.2022.06.091_b0205) 2015 10.1016/j.ins.2022.06.091_b0070 Szegedy (10.1016/j.ins.2022.06.091_b0155) 2016 Szegedy (10.1016/j.ins.2022.06.091_b0195) 2017 Elmore (10.1016/j.ins.2022.06.091_b0030) 2015; 313 10.1016/j.ins.2022.06.091_b0095 10.1016/j.ins.2022.06.091_b0150 Kumar (10.1016/j.ins.2022.06.091_b0110) 2020; 508 Zhuang (10.1016/j.ins.2022.06.091_b0125) 2020; 109 Gao (10.1016/j.ins.2022.06.091_b0160) 2021 Lin (10.1016/j.ins.2022.06.091_b0055) 2021; 7 10.1016/j.ins.2022.06.091_b0075 10.1016/j.ins.2022.06.091_b0010 10.1016/j.ins.2022.06.091_b0230 Lbachir (10.1016/j.ins.2022.06.091_b0020) 2021; 80 10.1016/j.ins.2022.06.091_b0035 Russakovsky (10.1016/j.ins.2022.06.091_b0215) 2015; 115 Albashish (10.1016/j.ins.2022.06.091_b0130) 2021 |
References_xml | – volume: 47 start-page: e218 year: 2020 end-page: e227 ident: b0025 article-title: Computer-aided diagnosis in the era of deep learning publication-title: Med. Phys. – reference: X. Luo, H. Wu, Z. Wang, J. Wang, D. Meng, A Novel Approach to Large-Scale Dynamically Weighted Directed Network Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2021.3132503. – volume: 63 start-page: 1455 year: 2015 end-page: 1462 ident: b0170 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Trans. Biomed. Eng. – volume: 577 start-page: 353 year: 2021 end-page: 378 ident: b0115 article-title: BARF: a new direct and cross-based binary residual feature fusion with uncertainty-aware module for medical image classification publication-title: Inf. Sci. – reference: X. Luo, Y. Yuan, S. Chen, N. Zeng, Z. Wang, Position-transitional particle swarm optimization-incorporated latent factor analysis, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020.3033324. – reference: H. Chen, C. Li, X. Li, G. Wang, W. Hu, Y. Li, W. Liu, C. Sun, Y. Yao, Y. Teng, GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathological Image Classification, arXiv preprint arXiv:2104.14528. – start-page: 448 year: 2015 end-page: 456 ident: b0205 article-title: Accelerating deep network training by reducing internal covariate shift publication-title: in: International conference on machine learning – start-page: 4278 year: 2017 end-page: 4284 ident: b0195 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning, in publication-title: Thirty-first AAAI conference on artificial intelligence – volume: 56 start-page: 122 year: 2019 end-page: 139 ident: b0175 article-title: Bach: grand challenge on breast cancer histology images publication-title: Med. Image Anal. – volume: 12 start-page: 3337 year: 2020 end-page: 3355 ident: b0210 article-title: Experimental assessment of color deconvolution and color normalization for automated classification of histology images stained with hematoxylin and eosin publication-title: Cancers – volume: 23 start-page: 291 year: 2001 end-page: 299 ident: b0085 article-title: Quantification of histochemical staining by color deconvolution publication-title: Anal. Quant. Cytol. Histol. – start-page: 1251 year: 2017 end-page: 1258 ident: b0190 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: in: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 16519 year: 2021 end-page: 16529 ident: b0145 article-title: Bottleneck transformers for visual recognition, in publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b0215 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vision – volume: 40 start-page: 1977 year: 2021 end-page: 1989 ident: b0015 article-title: Unpaired stain transfer using pathology-consistent constrained generative adversarial networks publication-title: IEEE Trans. Med. Imaging – start-page: 770 year: 2016 end-page: 778 ident: b0100 article-title: Deep residual learning for image recognition, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: D. Wu, X. Luo, M. Shang, Y. He, G. Wang, X. Wu, A data-characteristic-aware latent factor model for web services QoS prediction, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020.3014302. – start-page: 4700 year: 2017 end-page: 4708 ident: b0185 article-title: Densely connected convolutional networks publication-title: in: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 805 year: 2021 end-page: 810 ident: b0130 article-title: Deep CNN model based on VGG16 for breast cancer classification publication-title: in: 2021 International Conference on Information Technology (ICIT) – reference: M. Macenko, M. Niethammer, J.S. Marron, D. Borland, J.T. Woosley, X. Guan, C. Schmitt, N.E. Thomas, A method for normalizing histology slides for quantitative analysis, in: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2009, pp. 1107-1110. – volume: 7 start-page: 1025 year: 2021 end-page: 1043 ident: b0055 article-title: Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis publication-title: Complex Intell. Syste. – volume: 313 start-page: 1122 year: 2015 end-page: 1132 ident: b0030 article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens publication-title: JAMA – volume: 508 start-page: 405 year: 2020 end-page: 421 ident: b0110 article-title: Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer publication-title: Inf. Sci. – volume: 24 start-page: 1664 year: 2019 end-page: 1676 ident: b0180 article-title: Computer-aided diagnosis in histopathological images of the endometrium using a convolutional neural network and attention mechanisms publication-title: IEEE J. Biomed. Health. Inf. – start-page: 782 year: 2021 end-page: 791 ident: b0235 article-title: Transformer interpretability beyond attention visualization, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – reference: H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, L.-C. Chen, Axial-deeplab: Stand-alone axial-attention for panoptic segmentation, in: European Conference on Computer Vision, Springer, 2020, pp. 108–126. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b0090 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – reference: X. Luo, Y. Zhou, Z. Liu, M. Zhou, Fast and Accurate Non-negative Latent Factor Analysis on High-dimensional and Sparse Matrices in Recommender Systems, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2021.3125252. – reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, arXiv preprint arXiv:2103.14030. – volume: 67 year: 2021 ident: b0060 article-title: Deep neural network models for computational histopathology: a survey publication-title: Med. Image Anal. – reference: A.C. Society, Breast cancer facts & figures 2019-2020, American Cancer Society, (2019) 1-44. – start-page: 6105 year: 2019 end-page: 6114 ident: b0105 article-title: Rethinking model scaling for convolutional neural networks publication-title: Int. Conf. Mach. Learn. PMLR – volume: 580 start-page: 35 year: 2021 end-page: 54 ident: b0135 article-title: Facial expression recognition with grid-wise attention and visual transformer publication-title: Inf. Sci. – reference: A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, N. Houlsby, Big transfer (bit): General visual representation learning, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, Springer, 2020, pp. 491-507. – start-page: 12259 year: 2021 end-page: 12269 ident: b0140 article-title: LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference, in publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929. – volume: 14 start-page: 104 year: 2020 end-page: 121 ident: b0050 article-title: Bibliometric analysis on Pythagorean fuzzy sets during 2013–2020 publication-title: Int. J. Intell. Comput. Cybernet. – volume: 80 start-page: 9493 year: 2021 end-page: 9525 ident: b0020 article-title: Automatic computer-aided diagnosis system for mass detection and classification in mammography publication-title: Multimedia Tools Appl. – volume: 109 start-page: 43 year: 2020 end-page: 76 ident: b0125 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE – start-page: 2818 year: 2016 end-page: 2826 ident: b0155 article-title: Rethinking the inception architecture for computer vision, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 812 year: 2018 end-page: 819 ident: b0120 article-title: Classification of breast cancer histology images using transfer learning publication-title: International conference image analysis and recognition – reference: K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, A survey on vision transformer, IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2022.3152247. – volume: 149 start-page: 778 year: 2020 end-page: 789 ident: b0005 article-title: An overview publication-title: Int. J. Cancer – reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural information processing systems, 2017, pp. 5998-6008. – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Representations, 2014, pp. 1-14. – volume: 581 start-page: 479 year: 2021 end-page: 494 ident: b0045 article-title: Multilingual handwritten numeral recognition using a robust deep network joint with transfer learning publication-title: Inf. Sci. – start-page: 299 year: 2021 end-page: 308 ident: b0160 article-title: Instance-based vision transformer for subtyping of papillary renal cell carcinoma in histopathological image publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 4278 year: 2017 ident: 10.1016/j.ins.2022.06.091_b0195 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning, in – volume: 313 start-page: 1122 year: 2015 ident: 10.1016/j.ins.2022.06.091_b0030 article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens publication-title: JAMA doi: 10.1001/jama.2015.1405 – start-page: 770 year: 2016 ident: 10.1016/j.ins.2022.06.091_b0100 article-title: Deep residual learning for image recognition, in – volume: 508 start-page: 405 year: 2020 ident: 10.1016/j.ins.2022.06.091_b0110 article-title: Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.08.072 – volume: 56 start-page: 122 year: 2019 ident: 10.1016/j.ins.2022.06.091_b0175 article-title: Bach: grand challenge on breast cancer histology images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.05.010 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.ins.2022.06.091_b0215 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-015-0816-y – volume: 67 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0060 article-title: Deep neural network models for computational histopathology: a survey publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101813 – volume: 63 start-page: 1455 year: 2015 ident: 10.1016/j.ins.2022.06.091_b0170 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2496264 – volume: 47 start-page: e218 year: 2020 ident: 10.1016/j.ins.2022.06.091_b0025 article-title: Computer-aided diagnosis in the era of deep learning publication-title: Med. Phys. doi: 10.1002/mp.13764 – volume: 23 start-page: 291 year: 2001 ident: 10.1016/j.ins.2022.06.091_b0085 article-title: Quantification of histochemical staining by color deconvolution publication-title: Anal. Quant. Cytol. Histol. – volume: 40 start-page: 1977 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0015 article-title: Unpaired stain transfer using pathology-consistent constrained generative adversarial networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3069874 – volume: 577 start-page: 353 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0115 article-title: BARF: a new direct and cross-based binary residual feature fusion with uncertainty-aware module for medical image classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.07.024 – start-page: 2818 year: 2016 ident: 10.1016/j.ins.2022.06.091_b0155 article-title: Rethinking the inception architecture for computer vision, in – volume: 580 start-page: 35 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0135 article-title: Facial expression recognition with grid-wise attention and visual transformer publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.08.043 – ident: 10.1016/j.ins.2022.06.091_b0010 – start-page: 782 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0235 article-title: Transformer interpretability beyond attention visualization, in – ident: 10.1016/j.ins.2022.06.091_b0075 doi: 10.1007/978-3-030-58548-8_7 – start-page: 12259 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0140 article-title: LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference, in – volume: 7 start-page: 1025 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0055 article-title: Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis publication-title: Complex Intell. Syste. doi: 10.1007/s40747-020-00261-1 – start-page: 805 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0130 article-title: Deep CNN model based on VGG16 for breast cancer classification – volume: 14 start-page: 104 year: 2020 ident: 10.1016/j.ins.2022.06.091_b0050 article-title: Bibliometric analysis on Pythagorean fuzzy sets during 2013–2020 publication-title: Int. J. Intell. Comput. Cybernet. doi: 10.1108/IJICC-06-2020-0067 – ident: 10.1016/j.ins.2022.06.091_b0225 doi: 10.1109/TKDE.2020.3033324 – start-page: 16519 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0145 article-title: Bottleneck transformers for visual recognition, in – ident: 10.1016/j.ins.2022.06.091_b0070 – ident: 10.1016/j.ins.2022.06.091_b0040 doi: 10.1109/TPAMI.2021.3132503 – ident: 10.1016/j.ins.2022.06.091_b0150 – volume: 12 start-page: 3337 year: 2020 ident: 10.1016/j.ins.2022.06.091_b0210 article-title: Experimental assessment of color deconvolution and color normalization for automated classification of histology images stained with hematoxylin and eosin publication-title: Cancers doi: 10.3390/cancers12113337 – volume: 581 start-page: 479 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0045 article-title: Multilingual handwritten numeral recognition using a robust deep network joint with transfer learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.09.051 – start-page: 448 year: 2015 ident: 10.1016/j.ins.2022.06.091_b0205 article-title: Accelerating deep network training by reducing internal covariate shift – ident: 10.1016/j.ins.2022.06.091_b0165 doi: 10.1109/TPAMI.2022.3152247 – start-page: 812 year: 2018 ident: 10.1016/j.ins.2022.06.091_b0120 article-title: Classification of breast cancer histology images using transfer learning – ident: 10.1016/j.ins.2022.06.091_b0230 doi: 10.1109/ISBI.2009.5193250 – start-page: 6105 year: 2019 ident: 10.1016/j.ins.2022.06.091_b0105 article-title: Rethinking model scaling for convolutional neural networks publication-title: Int. Conf. Mach. Learn. PMLR – volume: 80 start-page: 9493 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0020 article-title: Automatic computer-aided diagnosis system for mass detection and classification in mammography publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-09991-3 – ident: 10.1016/j.ins.2022.06.091_b0095 – ident: 10.1016/j.ins.2022.06.091_b0035 doi: 10.1109/TKDE.2020.3014302 – start-page: 1251 year: 2017 ident: 10.1016/j.ins.2022.06.091_b0190 article-title: Xception: Deep learning with depthwise separable convolutions – ident: 10.1016/j.ins.2022.06.091_b0080 – start-page: 4700 year: 2017 ident: 10.1016/j.ins.2022.06.091_b0185 article-title: Densely connected convolutional networks – ident: 10.1016/j.ins.2022.06.091_b0200 doi: 10.1007/978-3-030-58558-7_29 – volume: 149 start-page: 778 issue: 2021 year: 2020 ident: 10.1016/j.ins.2022.06.091_b0005 article-title: An overview publication-title: Int. J. Cancer – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.ins.2022.06.091_b0090 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – ident: 10.1016/j.ins.2022.06.091_b0220 doi: 10.1109/TKDE.2021.3125252 – volume: 109 start-page: 43 year: 2020 ident: 10.1016/j.ins.2022.06.091_b0125 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3004555 – volume: 24 start-page: 1664 year: 2019 ident: 10.1016/j.ins.2022.06.091_b0180 article-title: Computer-aided diagnosis in histopathological images of the endometrium using a convolutional neural network and attention mechanisms publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2019.2944977 – ident: 10.1016/j.ins.2022.06.091_b0065 – start-page: 299 year: 2021 ident: 10.1016/j.ins.2022.06.091_b0160 article-title: Instance-based vision transformer for subtyping of papillary renal cell carcinoma in histopathological image |
SSID | ssj0004766 |
Score | 2.631289 |
Snippet | Histopathological image recognition of breast cancer is an onerous task. Although many deep learning models have achieved good classification results on... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1093 |
SubjectTerms | Breast cancer Color deconvolution Color space Deep learning Histopathological image |
Title | Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture |
URI | https://dx.doi.org/10.1016/j.ins.2022.06.091 |
Volume | 608 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAoIAoL92AECCFpnGa2mwVUBUQnUDqFsWxLRVBQFVg5F_wf7lzHCgSMDBksOWLI9_lHvJ3d4ztC4ExQJ9ngdSSAhTeDRS3cRDm1kaJVla4rPebcTK6i68mvUmDndW5MASr9Lq_0ulOW_uZjj_NzvN0Sjm-kfOII4qKRY8SzeO4T1J-8vYF88CZpIJ5hAGtrm82HcZrWlDF7ihyJTxl92fbNGdvhits2TuKMKi-ZZU1TNFiS3PlA1ts1ycdwAH4rCI6ZfC_6xp7P6do9zUoa-fUzOAQ526PTmEArtIwNSSu1R9MH1G5QE7-NAGIqre5VjmA1KAIv15CTnKCIzR_GnABlb2egXZbeTmGrNAwv-v8dcU6uxte3J6NAt-GIch5wssgkUb30S-wfcuNECoxVqGTmCkt4sxaK3vGYpBnlFXKhLkIszDPFEclakUWo0bZYM3iqTCbDISRSaS41iJTseZWylx2JQoRPiGXSZuFNQPS3Ncop1YZD2kNRrtPkWcp8SwlQJ7sttnxJ8lzVaDjr8VxzdX0m5SlaEB-J9v6H9k2W6RRBRfcYc1y9mJ20YUp1Z6T0T22MLi8Ho0_AGg09OY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6F5AAcKiighjYwB4QAyYrjtZ3d3qJAlNA2p0TKzfJ6dyUjaqrI7Zvwvp2x15BKwIGDD17veK2d8fxoZ74BeCclxQBTkQfKKA5QxCTQwsVBWDgXpUY72VS9X63T5Tb-ukt2PZh3tTCcVul1f6vTG23tR8Z-N8c3Zck1vlHjEUccFcskeQQDRqdK-jCYrS6W69_lkdP2yJIjJSboDjebNK-yYtDuKGpQPNXkz-bpwOQsnsGR9xVx1n7Oc-jZ6hieHiAIHsPI1x3ge_SFRbzR6P_YF_DzMwe8d0Hd-ad2jx9obPPxHGfYgA1zT-JOA2J5TfoFC3apOYeofVvTLQeJGjWnsNdYsKjQHVlAgzSBka_3aJqlvChjXhk8XPXwxOIlbBdfNvNl4DsxBIVIRR2kypopuQZu6oSVUqfWafITc21knDvnVGIdxXlWO61tWMgwD4tcC9KjTuYxKZVX0K9-VPYEUFqVRloYI3MdG-GUKtREkRzRFQqVDiHsGJAVHqacu2V8z7p8tG8Z8SxjnmWck6cmQ_j0i-Smxej41-S442r2QNAysiF_J3v9f2Rv4fFyc3WZXa7WF6fwhJ-02YNn0K_3t3ZEHk2t33iJvQfBNPeX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconv-transformer+%28DecT%29%3A+A+histopathological+image+classification+model+for+breast+cancer+based+on+color+deconvolution+and+transformer+architecture&rft.jtitle=Information+sciences&rft.au=He%2C+Zhu&rft.au=Lin%2C+Mingwei&rft.au=Xu%2C+Zeshui&rft.au=Yao%2C+Zhiqiang&rft.date=2022-08-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=608&rft.spage=1093&rft.epage=1112&rft_id=info:doi/10.1016%2Fj.ins.2022.06.091&rft.externalDocID=S0020025522006855 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |