Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture

Histopathological image recognition of breast cancer is an onerous task. Although many deep learning models have achieved good classification results on histopathological image classification tasks, these models do not take full advantage of the staining properties of histopathological images. In th...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 608; pp. 1093 - 1112
Main Authors He, Zhu, Lin, Mingwei, Xu, Zeshui, Yao, Zhiqiang, Chen, Hong, Alhudhaif, Adi, Alenezi, Fayadh
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Histopathological image recognition of breast cancer is an onerous task. Although many deep learning models have achieved good classification results on histopathological image classification tasks, these models do not take full advantage of the staining properties of histopathological images. In this paper, we propose a novel Deconv-Transformer (DecT) network model, which incorporates the color deconvolution in the form of convolution layers. This model uses a self-attention mechanism to match the independent properties of the HED channel information obtained by the color deconvolution. It also uses a method similar to the residual connection to fuse the information of both RGB and HED color space images, which can compensate for the information loss in the process of transferring RGB images to HED images. The training process of the DecT model is divided into two stages so that the parameters of the deconvolution layer can be better adapted to different types of histopathological images. We use the color jitter in the image data augmentation process to reduce the overfitting in the model training process. The DecT model achieves an average accuracy of 93.02% and F1-score of 0.9389 on BreakHis dataset, and an average accuracy of 79.06% and 81.36% on BACH and UC datasets.
AbstractList Histopathological image recognition of breast cancer is an onerous task. Although many deep learning models have achieved good classification results on histopathological image classification tasks, these models do not take full advantage of the staining properties of histopathological images. In this paper, we propose a novel Deconv-Transformer (DecT) network model, which incorporates the color deconvolution in the form of convolution layers. This model uses a self-attention mechanism to match the independent properties of the HED channel information obtained by the color deconvolution. It also uses a method similar to the residual connection to fuse the information of both RGB and HED color space images, which can compensate for the information loss in the process of transferring RGB images to HED images. The training process of the DecT model is divided into two stages so that the parameters of the deconvolution layer can be better adapted to different types of histopathological images. We use the color jitter in the image data augmentation process to reduce the overfitting in the model training process. The DecT model achieves an average accuracy of 93.02% and F1-score of 0.9389 on BreakHis dataset, and an average accuracy of 79.06% and 81.36% on BACH and UC datasets.
Author He, Zhu
Chen, Hong
Lin, Mingwei
Alenezi, Fayadh
Yao, Zhiqiang
Xu, Zeshui
Alhudhaif, Adi
Author_xml – sequence: 1
  givenname: Zhu
  surname: He
  fullname: He, Zhu
  organization: College of Computer and Cyber Security, Fujian Normal University, Fuzhou, Fujian 350117, China
– sequence: 2
  givenname: Mingwei
  surname: Lin
  fullname: Lin, Mingwei
  email: linmwcs@163.com
  organization: College of Computer and Cyber Security, Fujian Normal University, Fuzhou, Fujian 350117, China
– sequence: 3
  givenname: Zeshui
  surname: Xu
  fullname: Xu, Zeshui
  organization: Business School, Sichuan University, Chengdu, Sichuan 610064, China
– sequence: 4
  givenname: Zhiqiang
  surname: Yao
  fullname: Yao, Zhiqiang
  organization: College of Computer and Cyber Security, Fujian Normal University, Fuzhou, Fujian 350117, China
– sequence: 5
  givenname: Hong
  surname: Chen
  fullname: Chen, Hong
  organization: School of Mathematics and Statistics, Fujian Normal University, Fuzhou, Fujian 350117, China
– sequence: 6
  givenname: Adi
  surname: Alhudhaif
  fullname: Alhudhaif, Adi
  organization: Department of Computer Science, College of Computer Engineering and Sciences in Al-kharj, Prince Sattam Bin Abdulaziz University, P.O. Box 151, Al-Kharj 11942, Saudi Arabia
– sequence: 7
  givenname: Fayadh
  surname: Alenezi
  fullname: Alenezi, Fayadh
  organization: Department of Electrical Engineering, College of Engineering, Jouf University, Saudi Arabia
BookMark eNp9kD1PwzAQhi0EEm3hB7B5hCHh7CROClPFt4TEArNlO2fqKo2RbZD4Ifxf3MKAGDqddLrnPb3PlOyPfkRCThiUDJg4X5VujCUHzksQJczZHpmwruWF4HO2TyYAHArgTXNIpjGuAKBuhZiQr2s0fvwoUlBjtD6sMdDTvHs-u6ALunQx-TeVln7wr86ogbq1ekVqBhWjs3mTnB_p2vc40ExTHVDFRI0aTQ7SKmJP84HJfKD99pUf3reQGnv696sKZukSmvQe8IgcWDVEPP6dM_Jye_N8dV88Pt09XC0eC1OJKhVijn3bMG5bW2HXaYFWN1WldN_Vylo7b9DWdYfaao1gOlBglK4YY7ZTdQvVjLCfXBN8jAGtfAu5YfiUDOTGq1zJ7FVuvEoQMnvNTPuPMS5tPeQ2bthJXv6QmCt9OAwyGofZVO9C7i1773bQ37ZomjQ
CitedBy_id crossref_primary_10_3390_computation11030059
crossref_primary_10_3233_IDA_230651
crossref_primary_10_3389_frai_2022_1000283
crossref_primary_10_3390_info15120808
crossref_primary_10_1007_s44196_023_00397_1
crossref_primary_10_1016_j_ins_2023_120033
crossref_primary_10_3390_diagnostics13040683
crossref_primary_10_1016_j_microc_2024_109990
crossref_primary_10_1109_JSEN_2024_3443885
crossref_primary_10_1186_s42492_025_00186_x
crossref_primary_10_1016_j_compbiomed_2023_107528
crossref_primary_10_1108_IJICC_07_2024_0317
crossref_primary_10_1109_TCSS_2023_3303331
crossref_primary_10_1109_TIM_2025_3527534
crossref_primary_10_1007_s10489_024_05271_x
crossref_primary_10_1108_IJICC_07_2023_0188
crossref_primary_10_3389_fimmu_2024_1465917
crossref_primary_10_1007_s10278_025_01403_y
crossref_primary_10_1016_j_eswa_2023_119711
crossref_primary_10_1109_ACCESS_2023_3347339
crossref_primary_10_1007_s11831_024_10130_6
crossref_primary_10_1038_s41598_024_60245_w
crossref_primary_10_1016_j_bspc_2024_106607
crossref_primary_10_1016_j_neucom_2024_128149
crossref_primary_10_1108_IJICC_10_2023_0302
crossref_primary_10_1007_s10462_024_10963_4
crossref_primary_10_1007_s44196_024_00446_3
crossref_primary_10_1016_j_ins_2023_01_116
crossref_primary_10_1108_IJICC_05_2024_0202
crossref_primary_10_1108_IJICC_02_2024_0091
crossref_primary_10_4018_IJSWIS_352043
crossref_primary_10_1039_D3AY02250A
crossref_primary_10_3390_diagnostics13010089
crossref_primary_10_3390_mi13122197
crossref_primary_10_1007_s44196_024_00409_8
crossref_primary_10_32604_cmes_2024_057889
crossref_primary_10_1007_s44196_024_00533_5
crossref_primary_10_3389_fpsyg_2023_1148391
crossref_primary_10_1039_D4AY01755B
crossref_primary_10_3390_diagnostics14192253
crossref_primary_10_1007_s44196_024_00502_y
crossref_primary_10_1007_s11760_025_04001_1
crossref_primary_10_1007_s42835_024_01904_w
crossref_primary_10_1109_JSTARS_2024_3400762
crossref_primary_10_1108_BPMJ_07_2024_0555
crossref_primary_10_1049_ipr2_12897
crossref_primary_10_1038_s41698_024_00771_y
crossref_primary_10_3390_jcm13144013
crossref_primary_10_1016_j_ins_2022_11_140
crossref_primary_10_1016_j_medengphy_2025_104317
crossref_primary_10_1097_MD_0000000000033885
crossref_primary_10_1108_IJICC_04_2024_0189
crossref_primary_10_1016_j_jvcir_2025_104416
crossref_primary_10_1016_j_health_2024_100340
crossref_primary_10_3233_IDA_230799
crossref_primary_10_1007_s11831_024_10148_w
crossref_primary_10_1007_s11356_023_25797_w
crossref_primary_10_1016_j_eswa_2023_120519
crossref_primary_10_1109_ACCESS_2024_3389295
crossref_primary_10_1108_K_04_2024_0914
crossref_primary_10_1108_K_03_2024_0824
crossref_primary_10_3389_fnmol_2022_1023692
crossref_primary_10_1007_s11517_025_03297_y
crossref_primary_10_1007_s10462_023_10394_7
crossref_primary_10_1016_j_ins_2024_120225
crossref_primary_10_1049_htl2_12093
crossref_primary_10_3389_fnins_2023_1109510
crossref_primary_10_1007_s44196_024_00441_8
crossref_primary_10_1007_s44196_024_00449_0
crossref_primary_10_1016_j_eswa_2024_124113
crossref_primary_10_3389_fnins_2023_1174287
crossref_primary_10_1109_TCE_2023_3264217
crossref_primary_10_1007_s44196_023_00400_9
crossref_primary_10_1016_j_bbe_2024_08_011
crossref_primary_10_1002_ima_23154
crossref_primary_10_3233_JIFS_240531
crossref_primary_10_3390_jimaging10050108
crossref_primary_10_1108_IJICC_08_2023_0230
crossref_primary_10_1016_j_cose_2023_103516
crossref_primary_10_1108_IJICC_02_2024_0077
crossref_primary_10_1186_s12938_023_01157_0
crossref_primary_10_1016_j_heliyon_2024_e27515
crossref_primary_10_1108_IJICC_07_2024_0328
crossref_primary_10_1088_1361_6560_acf556
crossref_primary_10_1007_s00530_022_01028_z
crossref_primary_10_1108_K_03_2024_0837
crossref_primary_10_1109_ACCESS_2023_3343465
crossref_primary_10_1108_K_05_2024_1228
crossref_primary_10_3389_fimmu_2022_1036461
crossref_primary_10_1108_IJICC_06_2024_0266
Cites_doi 10.1001/jama.2015.1405
10.1016/j.ins.2019.08.072
10.1016/j.media.2019.05.010
10.1007/s11263-015-0816-y
10.1016/j.media.2020.101813
10.1109/TBME.2015.2496264
10.1002/mp.13764
10.1109/TMI.2021.3069874
10.1016/j.ins.2021.07.024
10.1016/j.ins.2021.08.043
10.1007/978-3-030-58548-8_7
10.1007/s40747-020-00261-1
10.1108/IJICC-06-2020-0067
10.1109/TKDE.2020.3033324
10.1109/TPAMI.2021.3132503
10.3390/cancers12113337
10.1016/j.ins.2021.09.051
10.1109/TPAMI.2022.3152247
10.1109/ISBI.2009.5193250
10.1007/s11042-020-09991-3
10.1109/TKDE.2020.3014302
10.1007/978-3-030-58558-7_29
10.1109/TKDE.2021.3125252
10.1109/JPROC.2020.3004555
10.1109/JBHI.2019.2944977
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.06.091
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 1112
ExternalDocumentID 10_1016_j_ins_2022_06_091
S0020025522006855
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c363t-69ed7512f7f3e88b6efb533abd84afff95ef448ebfbbe0c80a0cab3111f8a4703
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Tue Jul 01 01:26:52 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Fri Feb 23 02:38:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Histopathological image
Breast cancer
Color deconvolution
Color space
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-69ed7512f7f3e88b6efb533abd84afff95ef448ebfbbe0c80a0cab3111f8a4703
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_ins_2022_06_091
crossref_citationtrail_10_1016_j_ins_2022_06_091
elsevier_sciencedirect_doi_10_1016_j_ins_2022_06_091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Aresta, Araújo, Kwok, Chennamsetty, Safwan, Alex, Marami, Prastawa, Chan, Donovan (b0175) 2019; 56
Chan, Hadjiiski, Samala (b0025) 2020; 47
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (b0155) 2016
Chefer, Gur, Wolf (b0235) 2021
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, arXiv preprint arXiv:2103.14030.
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b0215) 2015; 115
Spanhol, Oliveira, Petitjean, Heutte (b0170) 2015; 63
Huang, Huang, Wang, Jiang (b0135) 2021; 580
Chollet (b0190) 2017
X. Luo, H. Wu, Z. Wang, J. Wang, D. Meng, A Novel Approach to Large-Scale Dynamically Weighted Directed Network Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2021.3132503.
Sun, Zeng, Xu, Peng, Ma (b0180) 2019; 24
X. Luo, Y. Yuan, S. Chen, N. Zeng, Z. Wang, Position-transitional particle swarm optimization-incorporated latent factor analysis, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020.3033324.
Krizhevsky, Sutskever, Hinton (b0090) 2012; 25
H. Chen, C. Li, X. Li, G. Wang, W. Hu, Y. Li, W. Liu, C. Sun, Y. Yao, Y. Teng, GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathological Image Classification, arXiv preprint arXiv:2104.14528.
Gao, Hong, Zhang, Li, Jia, Wu, Wang, Meng, Li (b0160) 2021
M. Macenko, M. Niethammer, J.S. Marron, D. Borland, J.T. Woosley, X. Guan, C. Schmitt, N.E. Thomas, A method for normalizing histology slides for quantitative analysis, in: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2009, pp. 1107-1110.
Huang, Liu, Van Der Maaten, Weinberger (b0185) 2017
Graham, El-Nouby, Touvron, Stock, Joulin, Jégou, Douze (b0140) 2021
Lin, Huang, Chen, Fujita, Wang (b0055) 2021; 7
Srinidhi, Ciga, Martel (b0060) 2021; 67
He, Zhang, Ren, Sun (b0100) 2016
Ruifrok, Johnston (b0085) 2001; 23
K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, A survey on vision transformer, IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2022.3152247.
Fateh, Fateh, Abolghasemi (b0045) 2021; 581
H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, L.-C. Chen, Axial-deeplab: Stand-alone axial-attention for panoptic segmentation, in: European Conference on Computer Vision, Springer, 2020, pp. 108–126.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural information processing systems, 2017, pp. 5998-6008.
Bianconi, Kather, Reyes-Aldasoro (b0210) 2020; 12
A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, N. Houlsby, Big transfer (bit): General visual representation learning, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, Springer, 2020, pp. 491-507.
X. Luo, Y. Zhou, Z. Liu, M. Zhou, Fast and Accurate Non-negative Latent Factor Analysis on High-dimensional and Sparse Matrices in Recommender Systems, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2021.3125252.
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929.
Abdar, Fahami, Chakrabarti, Khosravi, Pławiak, Acharya, Tadeusiewicz, Nahavandi (b0115) 2021; 577
A.C. Society, Breast cancer facts & figures 2019-2020, American Cancer Society, (2019) 1-44.
Kumar, Singh, Saxena, Lakshmanan, Sangaiah, Chauhan, Shrivastava, Singh (b0110) 2020; 508
Vesal, Ravikumar, Davari, Ellmann, Maier (b0120) 2018
Liu, Zhang, Liu, Han, Shi, Guan, He (b0015) 2021; 40
Ioffe, Szegedy, Batch normalization (b0205) 2015
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Representations, 2014, pp. 1-14.
Tan, Le, Efficientnet (b0105) 2019
Lbachir, Daoudi, Tallal (b0020) 2021; 80
Srinivas, Lin, Parmar, Shlens, Abbeel, Vaswani (b0145) 2021
Albashish, Al-Sayyed, Abdullah, Ryalat, Almansour (b0130) 2021
Szegedy, Ioffe, Vanhoucke, Alemi (b0195) 2017
D. Wu, X. Luo, M. Shang, Y. He, G. Wang, X. Wu, A data-characteristic-aware latent factor model for web services QoS prediction, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020.3014302.
Elmore, Longton, Carney, Geller, Onega, Tosteson, Nelson, Pepe, Allison, Schnitt (b0030) 2015; 313
Lin, Chen, Chen (b0050) 2020; 14
Zhuang, Qi, Duan, Xi, Zhu, Zhu, Xiong, He (b0125) 2020; 109
Ferlay, Colombet, Soerjomataram, Parkin, Pineros, Znaor, Bray, Cancer statistics for the year (b0005) 2020; 149
Lin (10.1016/j.ins.2022.06.091_b0050) 2020; 14
He (10.1016/j.ins.2022.06.091_b0100) 2016
Fateh (10.1016/j.ins.2022.06.091_b0045) 2021; 581
Tan (10.1016/j.ins.2022.06.091_b0105) 2019
10.1016/j.ins.2022.06.091_b0080
Vesal (10.1016/j.ins.2022.06.091_b0120) 2018
Chollet (10.1016/j.ins.2022.06.091_b0190) 2017
Huang (10.1016/j.ins.2022.06.091_b0185) 2017
10.1016/j.ins.2022.06.091_b0040
Liu (10.1016/j.ins.2022.06.091_b0015) 2021; 40
Chefer (10.1016/j.ins.2022.06.091_b0235) 2021
Chan (10.1016/j.ins.2022.06.091_b0025) 2020; 47
10.1016/j.ins.2022.06.091_b0225
Aresta (10.1016/j.ins.2022.06.091_b0175) 2019; 56
Srinivas (10.1016/j.ins.2022.06.091_b0145) 2021
Ruifrok (10.1016/j.ins.2022.06.091_b0085) 2001; 23
Krizhevsky (10.1016/j.ins.2022.06.091_b0090) 2012; 25
Srinidhi (10.1016/j.ins.2022.06.091_b0060) 2021; 67
Graham (10.1016/j.ins.2022.06.091_b0140) 2021
Bianconi (10.1016/j.ins.2022.06.091_b0210) 2020; 12
Ferlay (10.1016/j.ins.2022.06.091_b0005) 2020; 149
10.1016/j.ins.2022.06.091_b0065
Spanhol (10.1016/j.ins.2022.06.091_b0170) 2015; 63
10.1016/j.ins.2022.06.091_b0165
10.1016/j.ins.2022.06.091_b0220
Sun (10.1016/j.ins.2022.06.091_b0180) 2019; 24
Abdar (10.1016/j.ins.2022.06.091_b0115) 2021; 577
10.1016/j.ins.2022.06.091_b0200
Huang (10.1016/j.ins.2022.06.091_b0135) 2021; 580
Ioffe (10.1016/j.ins.2022.06.091_b0205) 2015
10.1016/j.ins.2022.06.091_b0070
Szegedy (10.1016/j.ins.2022.06.091_b0155) 2016
Szegedy (10.1016/j.ins.2022.06.091_b0195) 2017
Elmore (10.1016/j.ins.2022.06.091_b0030) 2015; 313
10.1016/j.ins.2022.06.091_b0095
10.1016/j.ins.2022.06.091_b0150
Kumar (10.1016/j.ins.2022.06.091_b0110) 2020; 508
Zhuang (10.1016/j.ins.2022.06.091_b0125) 2020; 109
Gao (10.1016/j.ins.2022.06.091_b0160) 2021
Lin (10.1016/j.ins.2022.06.091_b0055) 2021; 7
10.1016/j.ins.2022.06.091_b0075
10.1016/j.ins.2022.06.091_b0010
10.1016/j.ins.2022.06.091_b0230
Lbachir (10.1016/j.ins.2022.06.091_b0020) 2021; 80
10.1016/j.ins.2022.06.091_b0035
Russakovsky (10.1016/j.ins.2022.06.091_b0215) 2015; 115
Albashish (10.1016/j.ins.2022.06.091_b0130) 2021
References_xml – volume: 47
  start-page: e218
  year: 2020
  end-page: e227
  ident: b0025
  article-title: Computer-aided diagnosis in the era of deep learning
  publication-title: Med. Phys.
– reference: X. Luo, H. Wu, Z. Wang, J. Wang, D. Meng, A Novel Approach to Large-Scale Dynamically Weighted Directed Network Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2021.3132503.
– volume: 63
  start-page: 1455
  year: 2015
  end-page: 1462
  ident: b0170
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 577
  start-page: 353
  year: 2021
  end-page: 378
  ident: b0115
  article-title: BARF: a new direct and cross-based binary residual feature fusion with uncertainty-aware module for medical image classification
  publication-title: Inf. Sci.
– reference: X. Luo, Y. Yuan, S. Chen, N. Zeng, Z. Wang, Position-transitional particle swarm optimization-incorporated latent factor analysis, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020.3033324.
– reference: H. Chen, C. Li, X. Li, G. Wang, W. Hu, Y. Li, W. Liu, C. Sun, Y. Yao, Y. Teng, GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathological Image Classification, arXiv preprint arXiv:2104.14528.
– start-page: 448
  year: 2015
  end-page: 456
  ident: b0205
  article-title: Accelerating deep network training by reducing internal covariate shift
  publication-title: in: International conference on machine learning
– start-page: 4278
  year: 2017
  end-page: 4284
  ident: b0195
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning, in
  publication-title: Thirty-first AAAI conference on artificial intelligence
– volume: 56
  start-page: 122
  year: 2019
  end-page: 139
  ident: b0175
  article-title: Bach: grand challenge on breast cancer histology images
  publication-title: Med. Image Anal.
– volume: 12
  start-page: 3337
  year: 2020
  end-page: 3355
  ident: b0210
  article-title: Experimental assessment of color deconvolution and color normalization for automated classification of histology images stained with hematoxylin and eosin
  publication-title: Cancers
– volume: 23
  start-page: 291
  year: 2001
  end-page: 299
  ident: b0085
  article-title: Quantification of histochemical staining by color deconvolution
  publication-title: Anal. Quant. Cytol. Histol.
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: b0190
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: in: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 16519
  year: 2021
  end-page: 16529
  ident: b0145
  article-title: Bottleneck transformers for visual recognition, in
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b0215
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision
– volume: 40
  start-page: 1977
  year: 2021
  end-page: 1989
  ident: b0015
  article-title: Unpaired stain transfer using pathology-consistent constrained generative adversarial networks
  publication-title: IEEE Trans. Med. Imaging
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0100
  article-title: Deep residual learning for image recognition, in
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: D. Wu, X. Luo, M. Shang, Y. He, G. Wang, X. Wu, A data-characteristic-aware latent factor model for web services QoS prediction, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020.3014302.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: b0185
  article-title: Densely connected convolutional networks
  publication-title: in: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 805
  year: 2021
  end-page: 810
  ident: b0130
  article-title: Deep CNN model based on VGG16 for breast cancer classification
  publication-title: in: 2021 International Conference on Information Technology (ICIT)
– reference: M. Macenko, M. Niethammer, J.S. Marron, D. Borland, J.T. Woosley, X. Guan, C. Schmitt, N.E. Thomas, A method for normalizing histology slides for quantitative analysis, in: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2009, pp. 1107-1110.
– volume: 7
  start-page: 1025
  year: 2021
  end-page: 1043
  ident: b0055
  article-title: Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis
  publication-title: Complex Intell. Syste.
– volume: 313
  start-page: 1122
  year: 2015
  end-page: 1132
  ident: b0030
  article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens
  publication-title: JAMA
– volume: 508
  start-page: 405
  year: 2020
  end-page: 421
  ident: b0110
  article-title: Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer
  publication-title: Inf. Sci.
– volume: 24
  start-page: 1664
  year: 2019
  end-page: 1676
  ident: b0180
  article-title: Computer-aided diagnosis in histopathological images of the endometrium using a convolutional neural network and attention mechanisms
  publication-title: IEEE J. Biomed. Health. Inf.
– start-page: 782
  year: 2021
  end-page: 791
  ident: b0235
  article-title: Transformer interpretability beyond attention visualization, in
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– reference: H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, L.-C. Chen, Axial-deeplab: Stand-alone axial-attention for panoptic segmentation, in: European Conference on Computer Vision, Springer, 2020, pp. 108–126.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0090
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– reference: X. Luo, Y. Zhou, Z. Liu, M. Zhou, Fast and Accurate Non-negative Latent Factor Analysis on High-dimensional and Sparse Matrices in Recommender Systems, IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2021.3125252.
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, arXiv preprint arXiv:2103.14030.
– volume: 67
  year: 2021
  ident: b0060
  article-title: Deep neural network models for computational histopathology: a survey
  publication-title: Med. Image Anal.
– reference: A.C. Society, Breast cancer facts & figures 2019-2020, American Cancer Society, (2019) 1-44.
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: b0105
  article-title: Rethinking model scaling for convolutional neural networks
  publication-title: Int. Conf. Mach. Learn. PMLR
– volume: 580
  start-page: 35
  year: 2021
  end-page: 54
  ident: b0135
  article-title: Facial expression recognition with grid-wise attention and visual transformer
  publication-title: Inf. Sci.
– reference: A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, N. Houlsby, Big transfer (bit): General visual representation learning, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, Springer, 2020, pp. 491-507.
– start-page: 12259
  year: 2021
  end-page: 12269
  ident: b0140
  article-title: LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference, in
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929.
– volume: 14
  start-page: 104
  year: 2020
  end-page: 121
  ident: b0050
  article-title: Bibliometric analysis on Pythagorean fuzzy sets during 2013–2020
  publication-title: Int. J. Intell. Comput. Cybernet.
– volume: 80
  start-page: 9493
  year: 2021
  end-page: 9525
  ident: b0020
  article-title: Automatic computer-aided diagnosis system for mass detection and classification in mammography
  publication-title: Multimedia Tools Appl.
– volume: 109
  start-page: 43
  year: 2020
  end-page: 76
  ident: b0125
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: b0155
  article-title: Rethinking the inception architecture for computer vision, in
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 812
  year: 2018
  end-page: 819
  ident: b0120
  article-title: Classification of breast cancer histology images using transfer learning
  publication-title: International conference image analysis and recognition
– reference: K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, A survey on vision transformer, IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2022.3152247.
– volume: 149
  start-page: 778
  year: 2020
  end-page: 789
  ident: b0005
  article-title: An overview
  publication-title: Int. J. Cancer
– reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural information processing systems, 2017, pp. 5998-6008.
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Representations, 2014, pp. 1-14.
– volume: 581
  start-page: 479
  year: 2021
  end-page: 494
  ident: b0045
  article-title: Multilingual handwritten numeral recognition using a robust deep network joint with transfer learning
  publication-title: Inf. Sci.
– start-page: 299
  year: 2021
  end-page: 308
  ident: b0160
  article-title: Instance-based vision transformer for subtyping of papillary renal cell carcinoma in histopathological image
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 4278
  year: 2017
  ident: 10.1016/j.ins.2022.06.091_b0195
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning, in
– volume: 313
  start-page: 1122
  year: 2015
  ident: 10.1016/j.ins.2022.06.091_b0030
  article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens
  publication-title: JAMA
  doi: 10.1001/jama.2015.1405
– start-page: 770
  year: 2016
  ident: 10.1016/j.ins.2022.06.091_b0100
  article-title: Deep residual learning for image recognition, in
– volume: 508
  start-page: 405
  year: 2020
  ident: 10.1016/j.ins.2022.06.091_b0110
  article-title: Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.08.072
– volume: 56
  start-page: 122
  year: 2019
  ident: 10.1016/j.ins.2022.06.091_b0175
  article-title: Bach: grand challenge on breast cancer histology images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.05.010
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.ins.2022.06.091_b0215
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 67
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0060
  article-title: Deep neural network models for computational histopathology: a survey
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101813
– volume: 63
  start-page: 1455
  year: 2015
  ident: 10.1016/j.ins.2022.06.091_b0170
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2496264
– volume: 47
  start-page: e218
  year: 2020
  ident: 10.1016/j.ins.2022.06.091_b0025
  article-title: Computer-aided diagnosis in the era of deep learning
  publication-title: Med. Phys.
  doi: 10.1002/mp.13764
– volume: 23
  start-page: 291
  year: 2001
  ident: 10.1016/j.ins.2022.06.091_b0085
  article-title: Quantification of histochemical staining by color deconvolution
  publication-title: Anal. Quant. Cytol. Histol.
– volume: 40
  start-page: 1977
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0015
  article-title: Unpaired stain transfer using pathology-consistent constrained generative adversarial networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3069874
– volume: 577
  start-page: 353
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0115
  article-title: BARF: a new direct and cross-based binary residual feature fusion with uncertainty-aware module for medical image classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.07.024
– start-page: 2818
  year: 2016
  ident: 10.1016/j.ins.2022.06.091_b0155
  article-title: Rethinking the inception architecture for computer vision, in
– volume: 580
  start-page: 35
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0135
  article-title: Facial expression recognition with grid-wise attention and visual transformer
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.08.043
– ident: 10.1016/j.ins.2022.06.091_b0010
– start-page: 782
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0235
  article-title: Transformer interpretability beyond attention visualization, in
– ident: 10.1016/j.ins.2022.06.091_b0075
  doi: 10.1007/978-3-030-58548-8_7
– start-page: 12259
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0140
  article-title: LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference, in
– volume: 7
  start-page: 1025
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0055
  article-title: Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis
  publication-title: Complex Intell. Syste.
  doi: 10.1007/s40747-020-00261-1
– start-page: 805
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0130
  article-title: Deep CNN model based on VGG16 for breast cancer classification
– volume: 14
  start-page: 104
  year: 2020
  ident: 10.1016/j.ins.2022.06.091_b0050
  article-title: Bibliometric analysis on Pythagorean fuzzy sets during 2013–2020
  publication-title: Int. J. Intell. Comput. Cybernet.
  doi: 10.1108/IJICC-06-2020-0067
– ident: 10.1016/j.ins.2022.06.091_b0225
  doi: 10.1109/TKDE.2020.3033324
– start-page: 16519
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0145
  article-title: Bottleneck transformers for visual recognition, in
– ident: 10.1016/j.ins.2022.06.091_b0070
– ident: 10.1016/j.ins.2022.06.091_b0040
  doi: 10.1109/TPAMI.2021.3132503
– ident: 10.1016/j.ins.2022.06.091_b0150
– volume: 12
  start-page: 3337
  year: 2020
  ident: 10.1016/j.ins.2022.06.091_b0210
  article-title: Experimental assessment of color deconvolution and color normalization for automated classification of histology images stained with hematoxylin and eosin
  publication-title: Cancers
  doi: 10.3390/cancers12113337
– volume: 581
  start-page: 479
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0045
  article-title: Multilingual handwritten numeral recognition using a robust deep network joint with transfer learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.09.051
– start-page: 448
  year: 2015
  ident: 10.1016/j.ins.2022.06.091_b0205
  article-title: Accelerating deep network training by reducing internal covariate shift
– ident: 10.1016/j.ins.2022.06.091_b0165
  doi: 10.1109/TPAMI.2022.3152247
– start-page: 812
  year: 2018
  ident: 10.1016/j.ins.2022.06.091_b0120
  article-title: Classification of breast cancer histology images using transfer learning
– ident: 10.1016/j.ins.2022.06.091_b0230
  doi: 10.1109/ISBI.2009.5193250
– start-page: 6105
  year: 2019
  ident: 10.1016/j.ins.2022.06.091_b0105
  article-title: Rethinking model scaling for convolutional neural networks
  publication-title: Int. Conf. Mach. Learn. PMLR
– volume: 80
  start-page: 9493
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0020
  article-title: Automatic computer-aided diagnosis system for mass detection and classification in mammography
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09991-3
– ident: 10.1016/j.ins.2022.06.091_b0095
– ident: 10.1016/j.ins.2022.06.091_b0035
  doi: 10.1109/TKDE.2020.3014302
– start-page: 1251
  year: 2017
  ident: 10.1016/j.ins.2022.06.091_b0190
  article-title: Xception: Deep learning with depthwise separable convolutions
– ident: 10.1016/j.ins.2022.06.091_b0080
– start-page: 4700
  year: 2017
  ident: 10.1016/j.ins.2022.06.091_b0185
  article-title: Densely connected convolutional networks
– ident: 10.1016/j.ins.2022.06.091_b0200
  doi: 10.1007/978-3-030-58558-7_29
– volume: 149
  start-page: 778
  issue: 2021
  year: 2020
  ident: 10.1016/j.ins.2022.06.091_b0005
  article-title: An overview
  publication-title: Int. J. Cancer
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.ins.2022.06.091_b0090
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– ident: 10.1016/j.ins.2022.06.091_b0220
  doi: 10.1109/TKDE.2021.3125252
– volume: 109
  start-page: 43
  year: 2020
  ident: 10.1016/j.ins.2022.06.091_b0125
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
– volume: 24
  start-page: 1664
  year: 2019
  ident: 10.1016/j.ins.2022.06.091_b0180
  article-title: Computer-aided diagnosis in histopathological images of the endometrium using a convolutional neural network and attention mechanisms
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2019.2944977
– ident: 10.1016/j.ins.2022.06.091_b0065
– start-page: 299
  year: 2021
  ident: 10.1016/j.ins.2022.06.091_b0160
  article-title: Instance-based vision transformer for subtyping of papillary renal cell carcinoma in histopathological image
SSID ssj0004766
Score 2.631289
Snippet Histopathological image recognition of breast cancer is an onerous task. Although many deep learning models have achieved good classification results on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1093
SubjectTerms Breast cancer
Color deconvolution
Color space
Deep learning
Histopathological image
Title Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture
URI https://dx.doi.org/10.1016/j.ins.2022.06.091
Volume 608
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAoIAoL92AECCFpnGa2mwVUBUQnUDqFsWxLRVBQFVg5F_wf7lzHCgSMDBksOWLI9_lHvJ3d4ztC4ExQJ9ngdSSAhTeDRS3cRDm1kaJVla4rPebcTK6i68mvUmDndW5MASr9Lq_0ulOW_uZjj_NzvN0Sjm-kfOII4qKRY8SzeO4T1J-8vYF88CZpIJ5hAGtrm82HcZrWlDF7ihyJTxl92fbNGdvhits2TuKMKi-ZZU1TNFiS3PlA1ts1ycdwAH4rCI6ZfC_6xp7P6do9zUoa-fUzOAQ526PTmEArtIwNSSu1R9MH1G5QE7-NAGIqre5VjmA1KAIv15CTnKCIzR_GnABlb2egXZbeTmGrNAwv-v8dcU6uxte3J6NAt-GIch5wssgkUb30S-wfcuNECoxVqGTmCkt4sxaK3vGYpBnlFXKhLkIszDPFEclakUWo0bZYM3iqTCbDISRSaS41iJTseZWylx2JQoRPiGXSZuFNQPS3Ncop1YZD2kNRrtPkWcp8SwlQJ7sttnxJ8lzVaDjr8VxzdX0m5SlaEB-J9v6H9k2W6RRBRfcYc1y9mJ20YUp1Z6T0T22MLi8Ho0_AGg09OY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6F5AAcKiighjYwB4QAyYrjtZ3d3qJAlNA2p0TKzfJ6dyUjaqrI7Zvwvp2x15BKwIGDD17veK2d8fxoZ74BeCclxQBTkQfKKA5QxCTQwsVBWDgXpUY72VS9X63T5Tb-ukt2PZh3tTCcVul1f6vTG23tR8Z-N8c3Zck1vlHjEUccFcskeQQDRqdK-jCYrS6W69_lkdP2yJIjJSboDjebNK-yYtDuKGpQPNXkz-bpwOQsnsGR9xVx1n7Oc-jZ6hieHiAIHsPI1x3ge_SFRbzR6P_YF_DzMwe8d0Hd-ad2jx9obPPxHGfYgA1zT-JOA2J5TfoFC3apOYeofVvTLQeJGjWnsNdYsKjQHVlAgzSBka_3aJqlvChjXhk8XPXwxOIlbBdfNvNl4DsxBIVIRR2kypopuQZu6oSVUqfWafITc21knDvnVGIdxXlWO61tWMgwD4tcC9KjTuYxKZVX0K9-VPYEUFqVRloYI3MdG-GUKtREkRzRFQqVDiHsGJAVHqacu2V8z7p8tG8Z8SxjnmWck6cmQ_j0i-Smxej41-S442r2QNAysiF_J3v9f2Rv4fFyc3WZXa7WF6fwhJ-02YNn0K_3t3ZEHk2t33iJvQfBNPeX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconv-transformer+%28DecT%29%3A+A+histopathological+image+classification+model+for+breast+cancer+based+on+color+deconvolution+and+transformer+architecture&rft.jtitle=Information+sciences&rft.au=He%2C+Zhu&rft.au=Lin%2C+Mingwei&rft.au=Xu%2C+Zeshui&rft.au=Yao%2C+Zhiqiang&rft.date=2022-08-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=608&rft.spage=1093&rft.epage=1112&rft_id=info:doi/10.1016%2Fj.ins.2022.06.091&rft.externalDocID=S0020025522006855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon