Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts
Water electrolysis for hydrogen production requires better catalysts to lower the kinetic barrier of the oxygen evolution reaction. Herein, conceptually-new, noble-metal-free, porous, atomically-thick sheets are first put forward as an excellent platform to promote the oxygen evolution activity thro...
Saved in:
Published in | Chemical science (Cambridge) Vol. 5; no. 10; pp. 3976 - 3982 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.08.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 2041-6520 2041-6539 |
DOI | 10.1039/C4SC00565A |
Cover
Loading…
Abstract | Water electrolysis for hydrogen production requires better catalysts to lower the kinetic barrier of the oxygen evolution reaction. Herein, conceptually-new, noble-metal-free, porous, atomically-thick sheets are first put forward as an excellent platform to promote the oxygen evolution activity through affording abundant catalytically active sites and enhanced two-dimensional conductivity. As an example, the synthetic porous Co sub(3)O sub(4) atomically-thick sheets with a thickness of 0.43 nm and about 30% pore occupancy afford low-coordinated Co super(3+) atoms to serve as the catalytically active sites, while the obviously increased density of states at the valence band and conduction band edge facilitate fast electron transport along their two-dimensional conducting paths. As a result, the porous, atomically-thick Co sub(3)O sub(4) sheets exhibit an electrocatalytic current up to 341.7 mA cm super(-2), roughly 50-times larger than that of the bulk counterpart and even more strikingly higher than that of most existing reports under similar conditions. This work holds great promise for triggering breakthroughs in the field of electrocatalysis. |
---|---|
AbstractList | Water electrolysis for hydrogen production requires better catalysts to lower the kinetic barrier of the oxygen evolution reaction. Herein, conceptually-new, noble-metal-free, porous, atomically-thick sheets are first put forward as an excellent platform to promote the oxygen evolution activity through affording abundant catalytically active sites and enhanced two-dimensional conductivity. As an example, the synthetic porous Co sub(3)O sub(4) atomically-thick sheets with a thickness of 0.43 nm and about 30% pore occupancy afford low-coordinated Co super(3+) atoms to serve as the catalytically active sites, while the obviously increased density of states at the valence band and conduction band edge facilitate fast electron transport along their two-dimensional conducting paths. As a result, the porous, atomically-thick Co sub(3)O sub(4) sheets exhibit an electrocatalytic current up to 341.7 mA cm super(-2), roughly 50-times larger than that of the bulk counterpart and even more strikingly higher than that of most existing reports under similar conditions. This work holds great promise for triggering breakthroughs in the field of electrocatalysis. |
Author | Liang, Liang Gao, Shan Lei, Fengcai Xie, Yi Sun, Yongfu Liu, Jiawei |
Author_xml | – sequence: 1 givenname: Yongfu surname: Sun fullname: Sun, Yongfu – sequence: 2 givenname: Shan surname: Gao fullname: Gao, Shan – sequence: 3 givenname: Fengcai surname: Lei fullname: Lei, Fengcai – sequence: 4 givenname: Jiawei surname: Liu fullname: Liu, Jiawei – sequence: 5 givenname: Liang surname: Liang fullname: Liang, Liang – sequence: 6 givenname: Yi surname: Xie fullname: Xie, Yi |
BookMark | eNqFkU9LxDAQxYMouK578RPkKEI1aZq0PS7Ff7DgQT2X2XS6jWSbNcku9tvbZUVBBN9l5vCbxzzeGTnuXY-EXHB2zZkob6rsuWJMKjk_IpOUZTxRUpTH33vKTskshDc2Sggu03xC7Dy6tdFg7ZDEzvR09EwsDOixodotwUbqPkyDdOO82wYaOsQYaOs87cyqswPFtjXaYL8HhxX2Ce6c3Zl-RdGijt5piGCHEMM5OWnBBpx9zSl5vbt9qR6SxdP9YzVfJFooEcdPOW-A6VElsIa1olCqbCBnLG8VQ13IMYsqocyQyxxSmZc8X0LWMA1CNWJKLg--G-_etxhivTZBo7XQ45ih5irnUvJcFf-jUqlCcpWqEb06oNq7EDy29cabNfih5qzeF1D_FDDC7BesTYRoXB89GPvXyScaz4sN |
CitedBy_id | crossref_primary_10_1021_acsami_6b07986 crossref_primary_10_1016_j_electacta_2018_11_111 crossref_primary_10_1002_celc_201701226 crossref_primary_10_1002_adfm_201703363 crossref_primary_10_1002_adma_201800865 crossref_primary_10_1063_5_0033912 crossref_primary_10_1007_s10800_018_1275_2 crossref_primary_10_1016_j_jcat_2023_115239 crossref_primary_10_1002_celc_201901363 crossref_primary_10_1016_j_jpowsour_2015_06_056 crossref_primary_10_1021_acscatal_8b04064 crossref_primary_10_1002_adfm_202007602 crossref_primary_10_1016_j_apsusc_2020_148897 crossref_primary_10_1016_j_jcis_2018_12_054 crossref_primary_10_1016_j_jhazmat_2023_131434 crossref_primary_10_1021_acs_chemmater_9b02397 crossref_primary_10_1039_D0NJ06110G crossref_primary_10_1007_s12274_017_1806_x crossref_primary_10_1039_C6CY02611G crossref_primary_10_1016_j_flatc_2022_100419 crossref_primary_10_1016_j_jechem_2022_03_044 crossref_primary_10_1002_adfm_202200663 crossref_primary_10_1016_j_nanoen_2018_12_063 crossref_primary_10_1016_j_electacta_2017_07_091 crossref_primary_10_1016_j_cej_2017_01_073 crossref_primary_10_1021_acsmaterialslett_0c00549 crossref_primary_10_1021_acssuschemeng_7b02163 crossref_primary_10_1002_smll_201702987 crossref_primary_10_1039_D1RA09094A crossref_primary_10_1039_D3DT03477A crossref_primary_10_1039_C5TA01012H crossref_primary_10_1016_j_apcatb_2020_119255 crossref_primary_10_1039_D0NR08976A crossref_primary_10_1002_eem2_12171 crossref_primary_10_1016_j_ijhydene_2018_11_018 crossref_primary_10_1016_j_cattod_2019_05_003 crossref_primary_10_1039_D0SE01711F crossref_primary_10_1360_SSC_2022_0170 crossref_primary_10_1002_ange_202314185 crossref_primary_10_1002_cctc_201500396 crossref_primary_10_1016_j_jece_2023_109696 crossref_primary_10_1039_C4TA03776F crossref_primary_10_3866_PKU_WHXB202308052 crossref_primary_10_1021_acs_nanolett_1c02008 crossref_primary_10_1039_D4SE00468J crossref_primary_10_3390_catal12070705 crossref_primary_10_1039_C7RA01683B crossref_primary_10_1002_smll_201803576 crossref_primary_10_1016_j_electacta_2018_02_095 crossref_primary_10_1021_acs_chemrev_6b00558 crossref_primary_10_3390_nano12244419 crossref_primary_10_1016_j_ijhydene_2021_11_007 crossref_primary_10_1002_adfm_201804886 crossref_primary_10_1016_j_mseb_2025_118011 crossref_primary_10_1016_j_ijhydene_2025_02_449 crossref_primary_10_1039_C4CS00236A crossref_primary_10_1039_C6TA02157C crossref_primary_10_1002_batt_202100339 crossref_primary_10_1016_j_enchem_2023_100104 crossref_primary_10_1002_adma_201503730 crossref_primary_10_1021_acsami_7b00899 crossref_primary_10_1021_jacsau_3c00471 crossref_primary_10_1021_acsami_5b10118 crossref_primary_10_1039_C6RA15624J crossref_primary_10_1002_chem_202003596 crossref_primary_10_1002_adma_201604765 crossref_primary_10_1016_j_pmatsci_2020_100637 crossref_primary_10_1039_D0SE01253J crossref_primary_10_1016_j_electacta_2018_08_067 crossref_primary_10_1039_D5SC00330J crossref_primary_10_1007_s12274_015_0950_4 crossref_primary_10_1039_C7DT03648E crossref_primary_10_1149_2_1091613jes crossref_primary_10_1016_j_nantod_2016_10_004 crossref_primary_10_1039_C4RA11417E crossref_primary_10_1039_D3CC03110A crossref_primary_10_1021_acscatal_8b00820 crossref_primary_10_1002_anie_201509800 crossref_primary_10_1002_ange_201502226 crossref_primary_10_1007_s12274_016_1078_x crossref_primary_10_1039_C7QI00167C crossref_primary_10_1021_acs_chemmater_7b02666 crossref_primary_10_1039_C6TA04078K crossref_primary_10_1002_adfm_202316544 crossref_primary_10_1002_adma_202302860 crossref_primary_10_1002_cctc_201901088 crossref_primary_10_1088_0957_4484_26_41_415401 crossref_primary_10_1021_acscatal_6b01080 crossref_primary_10_1002_aenm_201900954 crossref_primary_10_1002_aenm_201700779 crossref_primary_10_1016_j_jpowsour_2014_12_085 crossref_primary_10_1002_adma_201904870 crossref_primary_10_1002_adma_201602270 crossref_primary_10_1039_D2CS00931E crossref_primary_10_1002_adma_201703657 crossref_primary_10_1016_j_fuel_2022_124399 crossref_primary_10_1021_acs_inorgchem_9b00463 crossref_primary_10_1038_s41598_022_23777_7 crossref_primary_10_1002_aesr_202300075 crossref_primary_10_1002_asia_201600115 crossref_primary_10_1039_C4QI00127C crossref_primary_10_1016_j_cclet_2021_08_025 crossref_primary_10_1016_j_mtener_2020_100497 crossref_primary_10_1002_cssc_201900943 crossref_primary_10_1016_j_cej_2019_03_163 crossref_primary_10_1038_s41598_018_35831_4 crossref_primary_10_1002_anie_201502226 crossref_primary_10_1039_C9TA07857F crossref_primary_10_1002_smll_201700806 crossref_primary_10_1039_C9NJ00488B crossref_primary_10_1038_s41598_019_51979_z crossref_primary_10_1039_C9SE00776H crossref_primary_10_1007_s11581_019_03135_w crossref_primary_10_1016_j_ccr_2021_214389 crossref_primary_10_1016_j_electacta_2023_143335 crossref_primary_10_1016_j_ijhydene_2022_11_234 crossref_primary_10_2139_ssrn_4002361 crossref_primary_10_1002_celc_201900212 crossref_primary_10_1016_j_apsusc_2017_02_190 crossref_primary_10_1039_C5CC06623A crossref_primary_10_1039_C8NH00461G crossref_primary_10_1002_chem_201703565 crossref_primary_10_1038_nature16455 crossref_primary_10_1039_C9RA07258F crossref_primary_10_1016_j_jallcom_2021_159324 crossref_primary_10_1016_j_mtener_2019_01_006 crossref_primary_10_1016_j_flatc_2019_100133 crossref_primary_10_1039_C9TA13685A crossref_primary_10_1039_C6RA25810G crossref_primary_10_1039_C7TA02838E crossref_primary_10_1039_C6QI00355A crossref_primary_10_1016_j_jpowsour_2018_06_030 crossref_primary_10_3390_coatings9050309 crossref_primary_10_1002_smll_201702753 crossref_primary_10_1021_acssuschemeng_1c03936 crossref_primary_10_1002_adfm_201904922 crossref_primary_10_1002_anie_201701477 crossref_primary_10_1007_s42864_020_00065_3 crossref_primary_10_1088_1361_6528_acc038 crossref_primary_10_1039_D0EE01714K crossref_primary_10_1039_D4NJ01487A crossref_primary_10_1016_j_chempr_2018_02_006 crossref_primary_10_3390_polym9120676 crossref_primary_10_1016_j_arabjc_2019_08_006 crossref_primary_10_1016_j_mtnano_2021_100124 crossref_primary_10_1016_j_materresbull_2019_110680 crossref_primary_10_1021_acs_jpcc_5b09442 crossref_primary_10_1039_D3NJ03244B crossref_primary_10_1016_j_jece_2024_115017 crossref_primary_10_1021_acsaem_8b02067 crossref_primary_10_1002_ange_201701477 crossref_primary_10_1016_j_cattod_2019_10_027 crossref_primary_10_1021_acs_inorgchem_9b00007 crossref_primary_10_1002_aesr_202200071 crossref_primary_10_1039_C6DT00102E crossref_primary_10_1016_j_ijhydene_2017_08_160 crossref_primary_10_1039_C7CS00418D crossref_primary_10_1016_j_electacta_2020_135885 crossref_primary_10_1021_acscatal_7b03594 crossref_primary_10_1017_S1431927617010005 crossref_primary_10_1039_C8TA10162K crossref_primary_10_1002_chem_201504739 crossref_primary_10_1039_C9CE01883B crossref_primary_10_1021_jacs_7b08881 crossref_primary_10_1039_C9CC02845E crossref_primary_10_1002_adma_201606793 crossref_primary_10_1002_asia_202100175 crossref_primary_10_1016_j_ccr_2023_215383 crossref_primary_10_1007_s12274_017_1670_8 crossref_primary_10_1021_acsaem_8b02176 crossref_primary_10_1039_D4CC05348F crossref_primary_10_1002_advs_201500003 crossref_primary_10_1016_S1872_5813_21_60079_8 crossref_primary_10_1002_adfm_201801983 crossref_primary_10_1039_C7TA00075H crossref_primary_10_2139_ssrn_3972161 crossref_primary_10_3390_ma13143119 crossref_primary_10_1002_admi_201801160 crossref_primary_10_1016_j_apcatb_2018_12_028 crossref_primary_10_1021_acsami_1c21481 crossref_primary_10_1039_C8RA02959H crossref_primary_10_1016_j_jcis_2021_05_040 crossref_primary_10_1002_adfm_201603904 crossref_primary_10_1002_smll_201701931 crossref_primary_10_1039_D2NR03433F crossref_primary_10_1002_ange_201701531 crossref_primary_10_1016_j_nanoen_2019_01_094 crossref_primary_10_1021_acsnano_7b08691 crossref_primary_10_1039_D3SE00221G crossref_primary_10_1021_acsami_7b04395 crossref_primary_10_1007_s12678_015_0263_0 crossref_primary_10_1021_ja5096733 crossref_primary_10_1016_j_cej_2022_135230 crossref_primary_10_1007_s41918_018_0014_z crossref_primary_10_1016_j_catcom_2017_09_003 crossref_primary_10_1002_aenm_201600437 crossref_primary_10_1016_j_jcat_2017_11_017 crossref_primary_10_1039_C7TA00185A crossref_primary_10_1016_j_cej_2017_05_125 crossref_primary_10_1002_chem_201900045 crossref_primary_10_1039_C8CC01724G crossref_primary_10_1002_anie_201509982 crossref_primary_10_1021_acsenergylett_8b00809 crossref_primary_10_1021_acssuschemeng_6b01156 crossref_primary_10_1039_C7DT00906B crossref_primary_10_1039_C7NR06254K crossref_primary_10_1016_j_flatc_2019_100109 crossref_primary_10_1039_C7NR02385E crossref_primary_10_1039_D4NR02783C crossref_primary_10_1021_acs_chemrev_7b00689 crossref_primary_10_1002_asia_202100995 crossref_primary_10_1021_acsami_6b07209 crossref_primary_10_1021_acsami_7b01591 crossref_primary_10_3390_su10020478 crossref_primary_10_1016_j_electacta_2017_01_042 crossref_primary_10_1021_acscentsci_6b00164 crossref_primary_10_1016_j_electacta_2018_01_203 crossref_primary_10_1002_jccs_202200012 crossref_primary_10_1039_D1TA09457B crossref_primary_10_1002_anie_202314185 crossref_primary_10_1002_smll_201600332 crossref_primary_10_1016_j_jcis_2023_07_117 crossref_primary_10_1088_2053_1583_4_1_015022 crossref_primary_10_1016_j_electacta_2019_01_085 crossref_primary_10_1016_j_electacta_2016_07_078 crossref_primary_10_1016_j_jcis_2022_02_010 crossref_primary_10_1039_C5EE01290B crossref_primary_10_1002_cctc_201601607 crossref_primary_10_1039_D1NR06285A crossref_primary_10_1002_ange_201804417 crossref_primary_10_1002_ejic_201403015 crossref_primary_10_1007_s13762_021_03413_z crossref_primary_10_1016_j_apsusc_2022_152842 crossref_primary_10_1002_cssc_201801162 crossref_primary_10_1021_acs_jpclett_9b02601 crossref_primary_10_1021_jacs_5b02465 crossref_primary_10_1039_C7CC07186H crossref_primary_10_1002_ange_201509800 crossref_primary_10_1039_C9NR05919A crossref_primary_10_1038_am_2017_114 crossref_primary_10_1021_acssuschemeng_0c02421 crossref_primary_10_1016_j_nanoen_2020_105409 crossref_primary_10_1002_eom2_12005 crossref_primary_10_1021_acsami_7b18208 crossref_primary_10_1002_cssc_201901424 crossref_primary_10_1021_acs_chemmater_0c04785 crossref_primary_10_1002_tcr_202400166 crossref_primary_10_1002_advs_201900272 crossref_primary_10_1039_D1RA05045A crossref_primary_10_1038_ncomms14036 crossref_primary_10_1002_anie_202002650 crossref_primary_10_1039_D1NJ01286J crossref_primary_10_1039_C4MH00208C crossref_primary_10_1002_adma_201805127 crossref_primary_10_1016_j_cclet_2019_11_022 crossref_primary_10_1016_j_nanoen_2016_10_020 crossref_primary_10_1016_j_apsadv_2021_100184 crossref_primary_10_1016_j_matt_2020_04_002 crossref_primary_10_1016_j_nanoen_2019_02_028 crossref_primary_10_1002_anie_201804417 crossref_primary_10_1016_j_mtadv_2023_100404 crossref_primary_10_1016_j_nanoen_2020_105080 crossref_primary_10_1039_C6SC05687C crossref_primary_10_1039_C8NR09218D crossref_primary_10_1021_acscatal_7b00007 crossref_primary_10_1039_D0RA09615F crossref_primary_10_1016_j_ijhydene_2021_03_187 crossref_primary_10_1002_aenm_201701905 crossref_primary_10_3866_PKU_WHXB202305019 crossref_primary_10_1002_idm2_12172 crossref_primary_10_2139_ssrn_4003181 crossref_primary_10_1039_D2QI02487J crossref_primary_10_1021_acsnano_9b03649 crossref_primary_10_1016_j_jcis_2019_09_009 crossref_primary_10_1016_j_molstruc_2024_141056 crossref_primary_10_1016_j_nanoen_2015_10_016 crossref_primary_10_1016_j_jechem_2018_09_011 crossref_primary_10_1016_j_nanoen_2018_08_045 crossref_primary_10_1002_adma_202008422 crossref_primary_10_1002_ange_202002650 crossref_primary_10_1016_j_jpowsour_2018_08_028 crossref_primary_10_1002_anie_202419661 crossref_primary_10_1039_C8TA06921B crossref_primary_10_1002_ange_201505245 crossref_primary_10_1021_acscatal_7b02313 crossref_primary_10_1007_s11581_020_03866_1 crossref_primary_10_1039_C9SE01312A crossref_primary_10_1039_C5RA09063F crossref_primary_10_1002_jccs_201900001 crossref_primary_10_1016_j_ijhydene_2022_06_306 crossref_primary_10_1016_j_jechem_2022_06_045 crossref_primary_10_1016_j_apcatb_2022_121364 crossref_primary_10_1016_j_cej_2022_135035 crossref_primary_10_1021_acs_chemmater_0c02385 crossref_primary_10_1016_j_apcatb_2020_119571 crossref_primary_10_1016_j_ijhydene_2017_12_023 crossref_primary_10_1002_anie_201701531 crossref_primary_10_1016_j_nanoen_2017_12_016 crossref_primary_10_1039_C5QI00197H crossref_primary_10_1021_acssuschemeng_8b03153 crossref_primary_10_1039_D0CY01408G crossref_primary_10_3390_nano13020237 crossref_primary_10_1016_j_carbon_2018_08_023 crossref_primary_10_1021_acs_nanolett_1c00918 crossref_primary_10_1016_j_cclet_2022_05_085 crossref_primary_10_1016_j_jwpe_2022_103204 crossref_primary_10_1016_j_jallcom_2018_09_269 crossref_primary_10_1002_solr_202000403 crossref_primary_10_1002_adfm_202200763 crossref_primary_10_1021_acsomega_6b00448 crossref_primary_10_1038_ncomms14503 crossref_primary_10_1021_acs_chemmater_5b00878 crossref_primary_10_1016_j_ijhydene_2020_12_050 crossref_primary_10_1002_smll_202002240 crossref_primary_10_1038_s41467_019_11765_x crossref_primary_10_1016_j_sna_2020_112026 crossref_primary_10_1021_acscatal_7b04276 crossref_primary_10_1002_ange_201509982 crossref_primary_10_1016_j_jallcom_2018_06_085 crossref_primary_10_1016_j_ijhydene_2019_06_086 crossref_primary_10_1039_C8NR10521A crossref_primary_10_1039_D0CS00575D crossref_primary_10_1021_jacs_8b04546 crossref_primary_10_1007_s40820_024_01366_9 crossref_primary_10_1016_j_snb_2015_10_100 crossref_primary_10_1021_acsaem_9b01807 crossref_primary_10_1002_admi_201600632 crossref_primary_10_1016_j_apcatb_2020_119477 crossref_primary_10_1002_adma_201701546 crossref_primary_10_1016_j_diamond_2022_108912 crossref_primary_10_1007_s41810_020_00065_3 crossref_primary_10_1039_C9NJ00470J crossref_primary_10_1002_ange_202419661 crossref_primary_10_1002_anie_201505245 crossref_primary_10_1016_j_electacta_2019_134756 crossref_primary_10_1039_D0NR04378H |
Cites_doi | 10.1039/C0SC00418A 10.1038/ncomms3390 10.1021/ja403102j 10.1016/S1452-3981(23)15306-5 10.1126/science.1209816 10.1002/anie.201204675 10.1126/science.1128045 10.1002/anie.200906745 10.1103/PhysRevLett.77.3865 10.1021/ja203877y 10.1016/j.jpowsour.2011.06.050 10.1021/jz201619r 10.1126/science.1188035 10.1021/ja411835a 10.1039/c2ee21745g 10.1038/nnano.2010.279 10.1021/ja211526y 10.1021/ja210924t 10.1002/cssc.201100075 10.1021/ja405997s 10.1021/cr1002326 10.1039/c3nr01178j 10.1007/s12274-012-0237-y 10.1039/c2ee21191b 10.1021/ja3102049 10.1039/C3CS60231A 10.1126/science.1162018 10.1016/S1293-2558(00)80081-3 10.1073/pnas.1001859107 10.1007/s12274-012-0280-8 10.1002/anie.201301066 10.1038/nmat3145 10.1002/adfm.201102860 10.1103/PhysRevB.54.11169 10.1039/c0cs00186d 10.1039/B800489G 10.1038/nmat3087 10.1002/anie.200805534 10.1038/ncomms2066 10.1021/ja400555q 10.1002/aenm.201300611 10.1039/C3QI00050H 10.1021/ja1060438 10.1021/jp904022e 10.1039/c002074e 10.1021/nl0706300 10.1039/c0cc05383j 10.1126/science.1233638 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7TG KL. 7SR 8BQ 8FD JG9 |
DOI | 10.1039/C4SC00565A |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 3982 |
ExternalDocumentID | 10_1039_C4SC00565A |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ACRPL ADBBV ADMRA ADNMO AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI AOIJS APEMP ASPBG AUDPV AVWKF AZFZN BCNDV BLAPV BSQNT C6K CAG CITATION COF D0L ECGLT EE0 EF- F5P FEDTE GROUPED_DOAJ H13 HVGLF HYE HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS ROL RPM RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH 7TG KL. 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c363t-6511da0cccc9a0d0f38669da7007f60ec8552069a94e157a257917ba4d0ca36d3 |
ISSN | 2041-6520 |
IngestDate | Thu Jul 10 17:59:24 EDT 2025 Fri Jul 11 03:21:17 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Tue Jul 01 03:45:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c363t-6511da0cccc9a0d0f38669da7007f60ec8552069a94e157a257917ba4d0ca36d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1566851626 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1671551768 proquest_miscellaneous_1566851626 crossref_primary_10_1039_C4SC00565A crossref_citationtrail_10_1039_C4SC00565A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140801 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 20140801 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chemical science (Cambridge) |
PublicationYear | 2014 |
References | Zaharieva (C4SC00565A-(cit8g)/*[position()=1]) 2012; 5 Zhu (C4SC00565A-(cit9b)/*[position()=1]) 2013; 5 Rosen (C4SC00565A-(cit2a)/*[position()=1]) 2013; 135 Wu (C4SC00565A-(cit6b)/*[position()=1]) 2012; 5 Liang (C4SC00565A-(cit17b)/*[position()=1]) 2012; 134 Jiao (C4SC00565A-(cit6c)/*[position()=1]) 2010; 3 Gao (C4SC00565A-(cit3b)/*[position()=1]) 2012; 134 Sun (C4SC00565A-(cit16b)/*[position()=1]) 2014; 1 Najafpour (C4SC00565A-(cit5a)/*[position()=1]) 2010; 49 Dincă (C4SC00565A-(cit8f)/*[position()=1]) 2010; 107 Sun (C4SC00565A-(cit9a)/*[position()=1]) 2012; 3 Yuan (C4SC00565A-(cit15)/*[position()=1]) 2012; 22 Walter (C4SC00565A-(cit4a)/*[position()=1]) 2010; 110 Kresse (C4SC00565A-(cit20a)/*[position()=1]) 1999; 59 Sun (C4SC00565A-(cit16a)/*[position()=1]) 2014; 4 Reece (C4SC00565A-(cit1b)/*[position()=1]) 2011; 334 Ithurria (C4SC00565A-(cit12a)/*[position()=1]) 2011; 10 Radisavljevic (C4SC00565A-(cit11a)/*[position()=1]) 2011; 6 Kanan (C4SC00565A-(cit8a)/*[position()=1]) 2008; 321 Xu (C4SC00565A-(cit7a)/*[position()=1]) 2012; 3 Kudo (C4SC00565A-(cit2b)/*[position()=1]) 2009; 38 McCool (C4SC00565A-(cit5b)/*[position()=1]) 2011; 133 Tüysüz (C4SC00565A-(cit17d)/*[position()=1]) 2013; 6 Shi (C4SC00565A-(cit13a)/*[position()=1]) 2011; 40 Hamdani (C4SC00565A-(cit18b)/*[position()=1]) 2010; 5 Kresse (C4SC00565A-(cit20b)/*[position()=1]) 1996; 54 Chemelewski (C4SC00565A-(cit8c)/*[position()=1]) 2014; 136 Liang (C4SC00565A-(cit17a)/*[position()=1]) 2011; 10 Chou (C4SC00565A-(cit17e)/*[position()=1]) 2011; 4 Sun (C4SC00565A-(cit1a)/*[position()=1]) 2012; 51 Wang (C4SC00565A-(cit4b)/*[position()=1]) 2013; 52 Rios (C4SC00565A-(cit18a)/*[position()=1]) 1999; 1 Esswein (C4SC00565A-(cit17c)/*[position()=1]) 2009; 113 Tang (C4SC00565A-(cit14b)/*[position()=1]) 2006; 314 Jiao (C4SC00565A-(cit6a)/*[position()=1]) 2009; 48 Sun (C4SC00565A-(cit11b)/*[position()=1]) 2014; 43 Schliehe (C4SC00565A-(cit12b)/*[position()=1]) 2012; 329 Bajdich (C4SC00565A-(cit19a)/*[position()=1]) 2013; 135 Perdew (C4SC00565A-(cit21)/*[position()=1]) 1996; 77 Chen (C4SC00565A-(cit13b)/*[position()=1]) 2010; 132 Zhang (C4SC00565A-(cit14a)/*[position()=1]) 2007; 7 Zhao (C4SC00565A-(cit3a)/*[position()=1]) 2013; 4 Blakmore (C4SC00565A-(cit8e)/*[position()=1]) 2011; 2 Sun (C4SC00565A-(cit10)/*[position()=1]) 2012; 134 Fan (C4SC00565A-(cit7b)/*[position()=1]) 2011; 47 Smith (C4SC00565A-(cit8d)/*[position()=1]) 2013; 135 Sun (C4SC00565A-(cit19b)/*[position()=1]) 2011; 196 Yuan (C4SC00565A-(cit6d)/*[position()=1]) 2012; 5 Smith (C4SC00565A-(cit8b)/*[position()=1]) 2013; 340 |
References_xml | – volume: 2 start-page: 94 year: 2011 ident: C4SC00565A-(cit8e)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C0SC00418A – volume: 4 start-page: 2390 year: 2013 ident: C4SC00565A-(cit3a)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3390 – volume: 135 start-page: 11580 year: 2013 ident: C4SC00565A-(cit8d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403102j – volume: 5 start-page: 556 year: 2010 ident: C4SC00565A-(cit18b)/*[position()=1] publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15306-5 – volume: 334 start-page: 645 year: 2011 ident: C4SC00565A-(cit1b)/*[position()=1] publication-title: Science doi: 10.1126/science.1209816 – volume: 51 start-page: 8727 year: 2012 ident: C4SC00565A-(cit1a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204675 – volume: 314 start-page: 274 year: 2006 ident: C4SC00565A-(cit14b)/*[position()=1] publication-title: Science doi: 10.1126/science.1128045 – volume: 49 start-page: 2233 year: 2010 ident: C4SC00565A-(cit5a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906745 – volume: 77 start-page: 3865 year: 1996 ident: C4SC00565A-(cit21)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 133 start-page: 11446 year: 2011 ident: C4SC00565A-(cit5b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203877y – volume: 196 start-page: 8644 year: 2011 ident: C4SC00565A-(cit19b)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.06.050 – volume: 3 start-page: 309 year: 2012 ident: C4SC00565A-(cit7a)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201619r – volume: 329 start-page: 550 year: 2012 ident: C4SC00565A-(cit12b)/*[position()=1] publication-title: Science doi: 10.1126/science.1188035 – volume: 136 start-page: 2843 year: 2014 ident: C4SC00565A-(cit8c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411835a – volume: 59 start-page: 1578 year: 1999 ident: C4SC00565A-(cit20a)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 5 start-page: 7883 year: 2012 ident: C4SC00565A-(cit6d)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21745g – volume: 6 start-page: 147 year: 2011 ident: C4SC00565A-(cit11a)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 134 start-page: 2930 year: 2012 ident: C4SC00565A-(cit3b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211526y – volume: 134 start-page: 3517 year: 2012 ident: C4SC00565A-(cit17b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210924t – volume: 4 start-page: 1566 year: 2011 ident: C4SC00565A-(cit17e)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201100075 – volume: 135 start-page: 13521 year: 2013 ident: C4SC00565A-(cit19a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405997s – volume: 110 start-page: 6446 year: 2010 ident: C4SC00565A-(cit4a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 5 start-page: 5241 year: 2013 ident: C4SC00565A-(cit9b)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr01178j – volume: 5 start-page: 521 year: 2012 ident: C4SC00565A-(cit6b)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-012-0237-y – volume: 5 start-page: 7081 year: 2012 ident: C4SC00565A-(cit8g)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21191b – volume: 134 start-page: 20294 year: 2012 ident: C4SC00565A-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3102049 – volume: 43 start-page: 530 year: 2014 ident: C4SC00565A-(cit11b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60231A – volume: 321 start-page: 1072 year: 2008 ident: C4SC00565A-(cit8a)/*[position()=1] publication-title: Science doi: 10.1126/science.1162018 – volume: 1 start-page: 267 year: 1999 ident: C4SC00565A-(cit18a)/*[position()=1] publication-title: Solid State Sci. doi: 10.1016/S1293-2558(00)80081-3 – volume: 107 start-page: 10337 year: 2010 ident: C4SC00565A-(cit8f)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1001859107 – volume: 6 start-page: 47 year: 2013 ident: C4SC00565A-(cit17d)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-012-0280-8 – volume: 52 start-page: 5248 year: 2013 ident: C4SC00565A-(cit4b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301066 – volume: 10 start-page: 936 year: 2011 ident: C4SC00565A-(cit12a)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3145 – volume: 22 start-page: 2560 year: 2012 ident: C4SC00565A-(cit15)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102860 – volume: 54 start-page: 11169 year: 1996 ident: C4SC00565A-(cit20b)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 40 start-page: 3854 year: 2011 ident: C4SC00565A-(cit13a)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00186d – volume: 38 start-page: 253 year: 2009 ident: C4SC00565A-(cit2b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 10 start-page: 780 year: 2011 ident: C4SC00565A-(cit17a)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3087 – volume: 48 start-page: 1841 year: 2009 ident: C4SC00565A-(cit6a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200805534 – volume: 3 start-page: 1057 year: 2012 ident: C4SC00565A-(cit9a)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2066 – volume: 135 start-page: 4516 year: 2013 ident: C4SC00565A-(cit2a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400555q – volume: 4 start-page: 1300611 year: 2014 ident: C4SC00565A-(cit16a)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300611 – volume: 1 start-page: 58 year: 2014 ident: C4SC00565A-(cit16b)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C3QI00050H – volume: 132 start-page: 13162 year: 2010 ident: C4SC00565A-(cit13b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1060438 – volume: 113 start-page: 15068 year: 2009 ident: C4SC00565A-(cit17c)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp904022e – volume: 3 start-page: 1018 year: 2010 ident: C4SC00565A-(cit6c)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c002074e – volume: 7 start-page: 1670 year: 2007 ident: C4SC00565A-(cit14a)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl0706300 – volume: 47 start-page: 3469 year: 2011 ident: C4SC00565A-(cit7b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc05383j – volume: 340 start-page: 60 year: 2013 ident: C4SC00565A-(cit8b)/*[position()=1] publication-title: Science doi: 10.1126/science.1233638 |
SSID | ssj0000331527 |
Score | 2.5700545 |
Snippet | Water electrolysis for hydrogen production requires better catalysts to lower the kinetic barrier of the oxygen evolution reaction. Herein, conceptually-new,... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3976 |
SubjectTerms | Catalysis Cobalt oxides Electrocatalysis Electrocatalysts Evolution Platforms Porosity Two dimensional |
Title | Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts |
URI | https://www.proquest.com/docview/1566851626 https://www.proquest.com/docview/1671551768 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoAL4imWl4zggqJAHDtOc1xVoBUSXLorLafIdibbSFGL2ES74cJfZ-wkbrZUaKGHqLKcppn5NJ4Zz3wm5G0GPAUZCQxLDNiWHAh1WSYhJEqbuSnSWNkd3S9f5fGp-HyWnM1mvyZVS22j35ufe_tK_kerOIZ6tV2y_6BZ_6M4gN9Rv3hFDeP1Rjo-ajau27_uwmZVrQMM5cNadfb4zcBYoo8m2FxVBQToZNtS14sVQOMIGAJLU1x3tpyjci2ROLHD54SA5srlGIbzcVx6p7vo-Z48pcHIMjA2Bdmt4LH5a5JbWLbOpn3brM_L1lf6KJedXa6m1UCupgBle25U5Uer1mGsUpdQTbMTTPjauMGIxZFgoUzifu8FpmM9idFohZMp2KKJSbUO015bH3FLlboQy4XlM008W-qWUHtnofPlh27jnWf59t5b5HaMcQabpHvcUs75cOyvf4-R4pZnH7a3X3dqrq_pzlE5uU_uDREGPerh8oDMYP2Q3FmMB_s9IvUObOgENrSHDXWwoT1saA8birChPWyohw3dgQ3dhc1jcvrp48niOBwO3QgNl7zBd2SsUJHBT6aiIir5XMqsUCk6k6WMwMwTlILMVCaAJalCk48Rv1aiiIzisuBPyAH-bXhKKJNpLJXScTlnQqdKM65TMJoLCRKK5JC8G6WWm4GR3h6MUud_KuiQvPFzv_c8LHtnvR6Fn6NQ7d6XWgNKKrdpCgwuMHz_yxyZ2gACA_BnN3rac3J3C_kX5KD50cJLdFEb_crB6DcIhJTB |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically-thin+non-layered+cobalt+oxide+porous+sheets+for+highly+efficient+oxygen-evolving+electrocatalysts&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Sun%2C+Yongfu&rft.au=Gao%2C+Shan&rft.au=Lei%2C+Fengcai&rft.au=Liu%2C+Jiawei&rft.date=2014-08-01&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=5&rft.issue=10&rft.spage=3976&rft_id=info:doi/10.1039%2FC4SC00565A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4SC00565A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |