Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts

Water electrolysis for hydrogen production requires better catalysts to lower the kinetic barrier of the oxygen evolution reaction. Herein, conceptually-new, noble-metal-free, porous, atomically-thick sheets are first put forward as an excellent platform to promote the oxygen evolution activity thro...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 5; no. 10; pp. 3976 - 3982
Main Authors Sun, Yongfu, Gao, Shan, Lei, Fengcai, Liu, Jiawei, Liang, Liang, Xie, Yi
Format Journal Article
LanguageEnglish
Published 01.08.2014
Subjects
Online AccessGet full text
ISSN2041-6520
2041-6539
DOI10.1039/C4SC00565A

Cover

Loading…
Abstract Water electrolysis for hydrogen production requires better catalysts to lower the kinetic barrier of the oxygen evolution reaction. Herein, conceptually-new, noble-metal-free, porous, atomically-thick sheets are first put forward as an excellent platform to promote the oxygen evolution activity through affording abundant catalytically active sites and enhanced two-dimensional conductivity. As an example, the synthetic porous Co sub(3)O sub(4) atomically-thick sheets with a thickness of 0.43 nm and about 30% pore occupancy afford low-coordinated Co super(3+) atoms to serve as the catalytically active sites, while the obviously increased density of states at the valence band and conduction band edge facilitate fast electron transport along their two-dimensional conducting paths. As a result, the porous, atomically-thick Co sub(3)O sub(4) sheets exhibit an electrocatalytic current up to 341.7 mA cm super(-2), roughly 50-times larger than that of the bulk counterpart and even more strikingly higher than that of most existing reports under similar conditions. This work holds great promise for triggering breakthroughs in the field of electrocatalysis.
AbstractList Water electrolysis for hydrogen production requires better catalysts to lower the kinetic barrier of the oxygen evolution reaction. Herein, conceptually-new, noble-metal-free, porous, atomically-thick sheets are first put forward as an excellent platform to promote the oxygen evolution activity through affording abundant catalytically active sites and enhanced two-dimensional conductivity. As an example, the synthetic porous Co sub(3)O sub(4) atomically-thick sheets with a thickness of 0.43 nm and about 30% pore occupancy afford low-coordinated Co super(3+) atoms to serve as the catalytically active sites, while the obviously increased density of states at the valence band and conduction band edge facilitate fast electron transport along their two-dimensional conducting paths. As a result, the porous, atomically-thick Co sub(3)O sub(4) sheets exhibit an electrocatalytic current up to 341.7 mA cm super(-2), roughly 50-times larger than that of the bulk counterpart and even more strikingly higher than that of most existing reports under similar conditions. This work holds great promise for triggering breakthroughs in the field of electrocatalysis.
Author Liang, Liang
Gao, Shan
Lei, Fengcai
Xie, Yi
Sun, Yongfu
Liu, Jiawei
Author_xml – sequence: 1
  givenname: Yongfu
  surname: Sun
  fullname: Sun, Yongfu
– sequence: 2
  givenname: Shan
  surname: Gao
  fullname: Gao, Shan
– sequence: 3
  givenname: Fengcai
  surname: Lei
  fullname: Lei, Fengcai
– sequence: 4
  givenname: Jiawei
  surname: Liu
  fullname: Liu, Jiawei
– sequence: 5
  givenname: Liang
  surname: Liang
  fullname: Liang, Liang
– sequence: 6
  givenname: Yi
  surname: Xie
  fullname: Xie, Yi
BookMark eNqFkU9LxDAQxYMouK578RPkKEI1aZq0PS7Ff7DgQT2X2XS6jWSbNcku9tvbZUVBBN9l5vCbxzzeGTnuXY-EXHB2zZkob6rsuWJMKjk_IpOUZTxRUpTH33vKTskshDc2Sggu03xC7Dy6tdFg7ZDEzvR09EwsDOixodotwUbqPkyDdOO82wYaOsQYaOs87cyqswPFtjXaYL8HhxX2Ce6c3Zl-RdGijt5piGCHEMM5OWnBBpx9zSl5vbt9qR6SxdP9YzVfJFooEcdPOW-A6VElsIa1olCqbCBnLG8VQ13IMYsqocyQyxxSmZc8X0LWMA1CNWJKLg--G-_etxhivTZBo7XQ45ih5irnUvJcFf-jUqlCcpWqEb06oNq7EDy29cabNfih5qzeF1D_FDDC7BesTYRoXB89GPvXyScaz4sN
CitedBy_id crossref_primary_10_1021_acsami_6b07986
crossref_primary_10_1016_j_electacta_2018_11_111
crossref_primary_10_1002_celc_201701226
crossref_primary_10_1002_adfm_201703363
crossref_primary_10_1002_adma_201800865
crossref_primary_10_1063_5_0033912
crossref_primary_10_1007_s10800_018_1275_2
crossref_primary_10_1016_j_jcat_2023_115239
crossref_primary_10_1002_celc_201901363
crossref_primary_10_1016_j_jpowsour_2015_06_056
crossref_primary_10_1021_acscatal_8b04064
crossref_primary_10_1002_adfm_202007602
crossref_primary_10_1016_j_apsusc_2020_148897
crossref_primary_10_1016_j_jcis_2018_12_054
crossref_primary_10_1016_j_jhazmat_2023_131434
crossref_primary_10_1021_acs_chemmater_9b02397
crossref_primary_10_1039_D0NJ06110G
crossref_primary_10_1007_s12274_017_1806_x
crossref_primary_10_1039_C6CY02611G
crossref_primary_10_1016_j_flatc_2022_100419
crossref_primary_10_1016_j_jechem_2022_03_044
crossref_primary_10_1002_adfm_202200663
crossref_primary_10_1016_j_nanoen_2018_12_063
crossref_primary_10_1016_j_electacta_2017_07_091
crossref_primary_10_1016_j_cej_2017_01_073
crossref_primary_10_1021_acsmaterialslett_0c00549
crossref_primary_10_1021_acssuschemeng_7b02163
crossref_primary_10_1002_smll_201702987
crossref_primary_10_1039_D1RA09094A
crossref_primary_10_1039_D3DT03477A
crossref_primary_10_1039_C5TA01012H
crossref_primary_10_1016_j_apcatb_2020_119255
crossref_primary_10_1039_D0NR08976A
crossref_primary_10_1002_eem2_12171
crossref_primary_10_1016_j_ijhydene_2018_11_018
crossref_primary_10_1016_j_cattod_2019_05_003
crossref_primary_10_1039_D0SE01711F
crossref_primary_10_1360_SSC_2022_0170
crossref_primary_10_1002_ange_202314185
crossref_primary_10_1002_cctc_201500396
crossref_primary_10_1016_j_jece_2023_109696
crossref_primary_10_1039_C4TA03776F
crossref_primary_10_3866_PKU_WHXB202308052
crossref_primary_10_1021_acs_nanolett_1c02008
crossref_primary_10_1039_D4SE00468J
crossref_primary_10_3390_catal12070705
crossref_primary_10_1039_C7RA01683B
crossref_primary_10_1002_smll_201803576
crossref_primary_10_1016_j_electacta_2018_02_095
crossref_primary_10_1021_acs_chemrev_6b00558
crossref_primary_10_3390_nano12244419
crossref_primary_10_1016_j_ijhydene_2021_11_007
crossref_primary_10_1002_adfm_201804886
crossref_primary_10_1016_j_mseb_2025_118011
crossref_primary_10_1016_j_ijhydene_2025_02_449
crossref_primary_10_1039_C4CS00236A
crossref_primary_10_1039_C6TA02157C
crossref_primary_10_1002_batt_202100339
crossref_primary_10_1016_j_enchem_2023_100104
crossref_primary_10_1002_adma_201503730
crossref_primary_10_1021_acsami_7b00899
crossref_primary_10_1021_jacsau_3c00471
crossref_primary_10_1021_acsami_5b10118
crossref_primary_10_1039_C6RA15624J
crossref_primary_10_1002_chem_202003596
crossref_primary_10_1002_adma_201604765
crossref_primary_10_1016_j_pmatsci_2020_100637
crossref_primary_10_1039_D0SE01253J
crossref_primary_10_1016_j_electacta_2018_08_067
crossref_primary_10_1039_D5SC00330J
crossref_primary_10_1007_s12274_015_0950_4
crossref_primary_10_1039_C7DT03648E
crossref_primary_10_1149_2_1091613jes
crossref_primary_10_1016_j_nantod_2016_10_004
crossref_primary_10_1039_C4RA11417E
crossref_primary_10_1039_D3CC03110A
crossref_primary_10_1021_acscatal_8b00820
crossref_primary_10_1002_anie_201509800
crossref_primary_10_1002_ange_201502226
crossref_primary_10_1007_s12274_016_1078_x
crossref_primary_10_1039_C7QI00167C
crossref_primary_10_1021_acs_chemmater_7b02666
crossref_primary_10_1039_C6TA04078K
crossref_primary_10_1002_adfm_202316544
crossref_primary_10_1002_adma_202302860
crossref_primary_10_1002_cctc_201901088
crossref_primary_10_1088_0957_4484_26_41_415401
crossref_primary_10_1021_acscatal_6b01080
crossref_primary_10_1002_aenm_201900954
crossref_primary_10_1002_aenm_201700779
crossref_primary_10_1016_j_jpowsour_2014_12_085
crossref_primary_10_1002_adma_201904870
crossref_primary_10_1002_adma_201602270
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1002_adma_201703657
crossref_primary_10_1016_j_fuel_2022_124399
crossref_primary_10_1021_acs_inorgchem_9b00463
crossref_primary_10_1038_s41598_022_23777_7
crossref_primary_10_1002_aesr_202300075
crossref_primary_10_1002_asia_201600115
crossref_primary_10_1039_C4QI00127C
crossref_primary_10_1016_j_cclet_2021_08_025
crossref_primary_10_1016_j_mtener_2020_100497
crossref_primary_10_1002_cssc_201900943
crossref_primary_10_1016_j_cej_2019_03_163
crossref_primary_10_1038_s41598_018_35831_4
crossref_primary_10_1002_anie_201502226
crossref_primary_10_1039_C9TA07857F
crossref_primary_10_1002_smll_201700806
crossref_primary_10_1039_C9NJ00488B
crossref_primary_10_1038_s41598_019_51979_z
crossref_primary_10_1039_C9SE00776H
crossref_primary_10_1007_s11581_019_03135_w
crossref_primary_10_1016_j_ccr_2021_214389
crossref_primary_10_1016_j_electacta_2023_143335
crossref_primary_10_1016_j_ijhydene_2022_11_234
crossref_primary_10_2139_ssrn_4002361
crossref_primary_10_1002_celc_201900212
crossref_primary_10_1016_j_apsusc_2017_02_190
crossref_primary_10_1039_C5CC06623A
crossref_primary_10_1039_C8NH00461G
crossref_primary_10_1002_chem_201703565
crossref_primary_10_1038_nature16455
crossref_primary_10_1039_C9RA07258F
crossref_primary_10_1016_j_jallcom_2021_159324
crossref_primary_10_1016_j_mtener_2019_01_006
crossref_primary_10_1016_j_flatc_2019_100133
crossref_primary_10_1039_C9TA13685A
crossref_primary_10_1039_C6RA25810G
crossref_primary_10_1039_C7TA02838E
crossref_primary_10_1039_C6QI00355A
crossref_primary_10_1016_j_jpowsour_2018_06_030
crossref_primary_10_3390_coatings9050309
crossref_primary_10_1002_smll_201702753
crossref_primary_10_1021_acssuschemeng_1c03936
crossref_primary_10_1002_adfm_201904922
crossref_primary_10_1002_anie_201701477
crossref_primary_10_1007_s42864_020_00065_3
crossref_primary_10_1088_1361_6528_acc038
crossref_primary_10_1039_D0EE01714K
crossref_primary_10_1039_D4NJ01487A
crossref_primary_10_1016_j_chempr_2018_02_006
crossref_primary_10_3390_polym9120676
crossref_primary_10_1016_j_arabjc_2019_08_006
crossref_primary_10_1016_j_mtnano_2021_100124
crossref_primary_10_1016_j_materresbull_2019_110680
crossref_primary_10_1021_acs_jpcc_5b09442
crossref_primary_10_1039_D3NJ03244B
crossref_primary_10_1016_j_jece_2024_115017
crossref_primary_10_1021_acsaem_8b02067
crossref_primary_10_1002_ange_201701477
crossref_primary_10_1016_j_cattod_2019_10_027
crossref_primary_10_1021_acs_inorgchem_9b00007
crossref_primary_10_1002_aesr_202200071
crossref_primary_10_1039_C6DT00102E
crossref_primary_10_1016_j_ijhydene_2017_08_160
crossref_primary_10_1039_C7CS00418D
crossref_primary_10_1016_j_electacta_2020_135885
crossref_primary_10_1021_acscatal_7b03594
crossref_primary_10_1017_S1431927617010005
crossref_primary_10_1039_C8TA10162K
crossref_primary_10_1002_chem_201504739
crossref_primary_10_1039_C9CE01883B
crossref_primary_10_1021_jacs_7b08881
crossref_primary_10_1039_C9CC02845E
crossref_primary_10_1002_adma_201606793
crossref_primary_10_1002_asia_202100175
crossref_primary_10_1016_j_ccr_2023_215383
crossref_primary_10_1007_s12274_017_1670_8
crossref_primary_10_1021_acsaem_8b02176
crossref_primary_10_1039_D4CC05348F
crossref_primary_10_1002_advs_201500003
crossref_primary_10_1016_S1872_5813_21_60079_8
crossref_primary_10_1002_adfm_201801983
crossref_primary_10_1039_C7TA00075H
crossref_primary_10_2139_ssrn_3972161
crossref_primary_10_3390_ma13143119
crossref_primary_10_1002_admi_201801160
crossref_primary_10_1016_j_apcatb_2018_12_028
crossref_primary_10_1021_acsami_1c21481
crossref_primary_10_1039_C8RA02959H
crossref_primary_10_1016_j_jcis_2021_05_040
crossref_primary_10_1002_adfm_201603904
crossref_primary_10_1002_smll_201701931
crossref_primary_10_1039_D2NR03433F
crossref_primary_10_1002_ange_201701531
crossref_primary_10_1016_j_nanoen_2019_01_094
crossref_primary_10_1021_acsnano_7b08691
crossref_primary_10_1039_D3SE00221G
crossref_primary_10_1021_acsami_7b04395
crossref_primary_10_1007_s12678_015_0263_0
crossref_primary_10_1021_ja5096733
crossref_primary_10_1016_j_cej_2022_135230
crossref_primary_10_1007_s41918_018_0014_z
crossref_primary_10_1016_j_catcom_2017_09_003
crossref_primary_10_1002_aenm_201600437
crossref_primary_10_1016_j_jcat_2017_11_017
crossref_primary_10_1039_C7TA00185A
crossref_primary_10_1016_j_cej_2017_05_125
crossref_primary_10_1002_chem_201900045
crossref_primary_10_1039_C8CC01724G
crossref_primary_10_1002_anie_201509982
crossref_primary_10_1021_acsenergylett_8b00809
crossref_primary_10_1021_acssuschemeng_6b01156
crossref_primary_10_1039_C7DT00906B
crossref_primary_10_1039_C7NR06254K
crossref_primary_10_1016_j_flatc_2019_100109
crossref_primary_10_1039_C7NR02385E
crossref_primary_10_1039_D4NR02783C
crossref_primary_10_1021_acs_chemrev_7b00689
crossref_primary_10_1002_asia_202100995
crossref_primary_10_1021_acsami_6b07209
crossref_primary_10_1021_acsami_7b01591
crossref_primary_10_3390_su10020478
crossref_primary_10_1016_j_electacta_2017_01_042
crossref_primary_10_1021_acscentsci_6b00164
crossref_primary_10_1016_j_electacta_2018_01_203
crossref_primary_10_1002_jccs_202200012
crossref_primary_10_1039_D1TA09457B
crossref_primary_10_1002_anie_202314185
crossref_primary_10_1002_smll_201600332
crossref_primary_10_1016_j_jcis_2023_07_117
crossref_primary_10_1088_2053_1583_4_1_015022
crossref_primary_10_1016_j_electacta_2019_01_085
crossref_primary_10_1016_j_electacta_2016_07_078
crossref_primary_10_1016_j_jcis_2022_02_010
crossref_primary_10_1039_C5EE01290B
crossref_primary_10_1002_cctc_201601607
crossref_primary_10_1039_D1NR06285A
crossref_primary_10_1002_ange_201804417
crossref_primary_10_1002_ejic_201403015
crossref_primary_10_1007_s13762_021_03413_z
crossref_primary_10_1016_j_apsusc_2022_152842
crossref_primary_10_1002_cssc_201801162
crossref_primary_10_1021_acs_jpclett_9b02601
crossref_primary_10_1021_jacs_5b02465
crossref_primary_10_1039_C7CC07186H
crossref_primary_10_1002_ange_201509800
crossref_primary_10_1039_C9NR05919A
crossref_primary_10_1038_am_2017_114
crossref_primary_10_1021_acssuschemeng_0c02421
crossref_primary_10_1016_j_nanoen_2020_105409
crossref_primary_10_1002_eom2_12005
crossref_primary_10_1021_acsami_7b18208
crossref_primary_10_1002_cssc_201901424
crossref_primary_10_1021_acs_chemmater_0c04785
crossref_primary_10_1002_tcr_202400166
crossref_primary_10_1002_advs_201900272
crossref_primary_10_1039_D1RA05045A
crossref_primary_10_1038_ncomms14036
crossref_primary_10_1002_anie_202002650
crossref_primary_10_1039_D1NJ01286J
crossref_primary_10_1039_C4MH00208C
crossref_primary_10_1002_adma_201805127
crossref_primary_10_1016_j_cclet_2019_11_022
crossref_primary_10_1016_j_nanoen_2016_10_020
crossref_primary_10_1016_j_apsadv_2021_100184
crossref_primary_10_1016_j_matt_2020_04_002
crossref_primary_10_1016_j_nanoen_2019_02_028
crossref_primary_10_1002_anie_201804417
crossref_primary_10_1016_j_mtadv_2023_100404
crossref_primary_10_1016_j_nanoen_2020_105080
crossref_primary_10_1039_C6SC05687C
crossref_primary_10_1039_C8NR09218D
crossref_primary_10_1021_acscatal_7b00007
crossref_primary_10_1039_D0RA09615F
crossref_primary_10_1016_j_ijhydene_2021_03_187
crossref_primary_10_1002_aenm_201701905
crossref_primary_10_3866_PKU_WHXB202305019
crossref_primary_10_1002_idm2_12172
crossref_primary_10_2139_ssrn_4003181
crossref_primary_10_1039_D2QI02487J
crossref_primary_10_1021_acsnano_9b03649
crossref_primary_10_1016_j_jcis_2019_09_009
crossref_primary_10_1016_j_molstruc_2024_141056
crossref_primary_10_1016_j_nanoen_2015_10_016
crossref_primary_10_1016_j_jechem_2018_09_011
crossref_primary_10_1016_j_nanoen_2018_08_045
crossref_primary_10_1002_adma_202008422
crossref_primary_10_1002_ange_202002650
crossref_primary_10_1016_j_jpowsour_2018_08_028
crossref_primary_10_1002_anie_202419661
crossref_primary_10_1039_C8TA06921B
crossref_primary_10_1002_ange_201505245
crossref_primary_10_1021_acscatal_7b02313
crossref_primary_10_1007_s11581_020_03866_1
crossref_primary_10_1039_C9SE01312A
crossref_primary_10_1039_C5RA09063F
crossref_primary_10_1002_jccs_201900001
crossref_primary_10_1016_j_ijhydene_2022_06_306
crossref_primary_10_1016_j_jechem_2022_06_045
crossref_primary_10_1016_j_apcatb_2022_121364
crossref_primary_10_1016_j_cej_2022_135035
crossref_primary_10_1021_acs_chemmater_0c02385
crossref_primary_10_1016_j_apcatb_2020_119571
crossref_primary_10_1016_j_ijhydene_2017_12_023
crossref_primary_10_1002_anie_201701531
crossref_primary_10_1016_j_nanoen_2017_12_016
crossref_primary_10_1039_C5QI00197H
crossref_primary_10_1021_acssuschemeng_8b03153
crossref_primary_10_1039_D0CY01408G
crossref_primary_10_3390_nano13020237
crossref_primary_10_1016_j_carbon_2018_08_023
crossref_primary_10_1021_acs_nanolett_1c00918
crossref_primary_10_1016_j_cclet_2022_05_085
crossref_primary_10_1016_j_jwpe_2022_103204
crossref_primary_10_1016_j_jallcom_2018_09_269
crossref_primary_10_1002_solr_202000403
crossref_primary_10_1002_adfm_202200763
crossref_primary_10_1021_acsomega_6b00448
crossref_primary_10_1038_ncomms14503
crossref_primary_10_1021_acs_chemmater_5b00878
crossref_primary_10_1016_j_ijhydene_2020_12_050
crossref_primary_10_1002_smll_202002240
crossref_primary_10_1038_s41467_019_11765_x
crossref_primary_10_1016_j_sna_2020_112026
crossref_primary_10_1021_acscatal_7b04276
crossref_primary_10_1002_ange_201509982
crossref_primary_10_1016_j_jallcom_2018_06_085
crossref_primary_10_1016_j_ijhydene_2019_06_086
crossref_primary_10_1039_C8NR10521A
crossref_primary_10_1039_D0CS00575D
crossref_primary_10_1021_jacs_8b04546
crossref_primary_10_1007_s40820_024_01366_9
crossref_primary_10_1016_j_snb_2015_10_100
crossref_primary_10_1021_acsaem_9b01807
crossref_primary_10_1002_admi_201600632
crossref_primary_10_1016_j_apcatb_2020_119477
crossref_primary_10_1002_adma_201701546
crossref_primary_10_1016_j_diamond_2022_108912
crossref_primary_10_1007_s41810_020_00065_3
crossref_primary_10_1039_C9NJ00470J
crossref_primary_10_1002_ange_202419661
crossref_primary_10_1002_anie_201505245
crossref_primary_10_1016_j_electacta_2019_134756
crossref_primary_10_1039_D0NR04378H
Cites_doi 10.1039/C0SC00418A
10.1038/ncomms3390
10.1021/ja403102j
10.1016/S1452-3981(23)15306-5
10.1126/science.1209816
10.1002/anie.201204675
10.1126/science.1128045
10.1002/anie.200906745
10.1103/PhysRevLett.77.3865
10.1021/ja203877y
10.1016/j.jpowsour.2011.06.050
10.1021/jz201619r
10.1126/science.1188035
10.1021/ja411835a
10.1039/c2ee21745g
10.1038/nnano.2010.279
10.1021/ja211526y
10.1021/ja210924t
10.1002/cssc.201100075
10.1021/ja405997s
10.1021/cr1002326
10.1039/c3nr01178j
10.1007/s12274-012-0237-y
10.1039/c2ee21191b
10.1021/ja3102049
10.1039/C3CS60231A
10.1126/science.1162018
10.1016/S1293-2558(00)80081-3
10.1073/pnas.1001859107
10.1007/s12274-012-0280-8
10.1002/anie.201301066
10.1038/nmat3145
10.1002/adfm.201102860
10.1103/PhysRevB.54.11169
10.1039/c0cs00186d
10.1039/B800489G
10.1038/nmat3087
10.1002/anie.200805534
10.1038/ncomms2066
10.1021/ja400555q
10.1002/aenm.201300611
10.1039/C3QI00050H
10.1021/ja1060438
10.1021/jp904022e
10.1039/c002074e
10.1021/nl0706300
10.1039/c0cc05383j
10.1126/science.1233638
ContentType Journal Article
DBID AAYXX
CITATION
7TG
KL.
7SR
8BQ
8FD
JG9
DOI 10.1039/C4SC00565A
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 3982
ExternalDocumentID 10_1039_C4SC00565A
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ACRPL
ADBBV
ADMRA
ADNMO
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
AOIJS
APEMP
ASPBG
AUDPV
AVWKF
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CAG
CITATION
COF
D0L
ECGLT
EE0
EF-
F5P
FEDTE
GROUPED_DOAJ
H13
HVGLF
HYE
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
ROL
RPM
RPMJG
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
7TG
KL.
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c363t-6511da0cccc9a0d0f38669da7007f60ec8552069a94e157a257917ba4d0ca36d3
ISSN 2041-6520
IngestDate Thu Jul 10 17:59:24 EDT 2025
Fri Jul 11 03:21:17 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Tue Jul 01 03:45:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-6511da0cccc9a0d0f38669da7007f60ec8552069a94e157a257917ba4d0ca36d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1566851626
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1671551768
proquest_miscellaneous_1566851626
crossref_primary_10_1039_C4SC00565A
crossref_citationtrail_10_1039_C4SC00565A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140801
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 20140801
  day: 01
PublicationDecade 2010
PublicationTitle Chemical science (Cambridge)
PublicationYear 2014
References Zaharieva (C4SC00565A-(cit8g)/*[position()=1]) 2012; 5
Zhu (C4SC00565A-(cit9b)/*[position()=1]) 2013; 5
Rosen (C4SC00565A-(cit2a)/*[position()=1]) 2013; 135
Wu (C4SC00565A-(cit6b)/*[position()=1]) 2012; 5
Liang (C4SC00565A-(cit17b)/*[position()=1]) 2012; 134
Jiao (C4SC00565A-(cit6c)/*[position()=1]) 2010; 3
Gao (C4SC00565A-(cit3b)/*[position()=1]) 2012; 134
Sun (C4SC00565A-(cit16b)/*[position()=1]) 2014; 1
Najafpour (C4SC00565A-(cit5a)/*[position()=1]) 2010; 49
Dincă (C4SC00565A-(cit8f)/*[position()=1]) 2010; 107
Sun (C4SC00565A-(cit9a)/*[position()=1]) 2012; 3
Yuan (C4SC00565A-(cit15)/*[position()=1]) 2012; 22
Walter (C4SC00565A-(cit4a)/*[position()=1]) 2010; 110
Kresse (C4SC00565A-(cit20a)/*[position()=1]) 1999; 59
Sun (C4SC00565A-(cit16a)/*[position()=1]) 2014; 4
Reece (C4SC00565A-(cit1b)/*[position()=1]) 2011; 334
Ithurria (C4SC00565A-(cit12a)/*[position()=1]) 2011; 10
Radisavljevic (C4SC00565A-(cit11a)/*[position()=1]) 2011; 6
Kanan (C4SC00565A-(cit8a)/*[position()=1]) 2008; 321
Xu (C4SC00565A-(cit7a)/*[position()=1]) 2012; 3
Kudo (C4SC00565A-(cit2b)/*[position()=1]) 2009; 38
McCool (C4SC00565A-(cit5b)/*[position()=1]) 2011; 133
Tüysüz (C4SC00565A-(cit17d)/*[position()=1]) 2013; 6
Shi (C4SC00565A-(cit13a)/*[position()=1]) 2011; 40
Hamdani (C4SC00565A-(cit18b)/*[position()=1]) 2010; 5
Kresse (C4SC00565A-(cit20b)/*[position()=1]) 1996; 54
Chemelewski (C4SC00565A-(cit8c)/*[position()=1]) 2014; 136
Liang (C4SC00565A-(cit17a)/*[position()=1]) 2011; 10
Chou (C4SC00565A-(cit17e)/*[position()=1]) 2011; 4
Sun (C4SC00565A-(cit1a)/*[position()=1]) 2012; 51
Wang (C4SC00565A-(cit4b)/*[position()=1]) 2013; 52
Rios (C4SC00565A-(cit18a)/*[position()=1]) 1999; 1
Esswein (C4SC00565A-(cit17c)/*[position()=1]) 2009; 113
Tang (C4SC00565A-(cit14b)/*[position()=1]) 2006; 314
Jiao (C4SC00565A-(cit6a)/*[position()=1]) 2009; 48
Sun (C4SC00565A-(cit11b)/*[position()=1]) 2014; 43
Schliehe (C4SC00565A-(cit12b)/*[position()=1]) 2012; 329
Bajdich (C4SC00565A-(cit19a)/*[position()=1]) 2013; 135
Perdew (C4SC00565A-(cit21)/*[position()=1]) 1996; 77
Chen (C4SC00565A-(cit13b)/*[position()=1]) 2010; 132
Zhang (C4SC00565A-(cit14a)/*[position()=1]) 2007; 7
Zhao (C4SC00565A-(cit3a)/*[position()=1]) 2013; 4
Blakmore (C4SC00565A-(cit8e)/*[position()=1]) 2011; 2
Sun (C4SC00565A-(cit10)/*[position()=1]) 2012; 134
Fan (C4SC00565A-(cit7b)/*[position()=1]) 2011; 47
Smith (C4SC00565A-(cit8d)/*[position()=1]) 2013; 135
Sun (C4SC00565A-(cit19b)/*[position()=1]) 2011; 196
Yuan (C4SC00565A-(cit6d)/*[position()=1]) 2012; 5
Smith (C4SC00565A-(cit8b)/*[position()=1]) 2013; 340
References_xml – volume: 2
  start-page: 94
  year: 2011
  ident: C4SC00565A-(cit8e)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C0SC00418A
– volume: 4
  start-page: 2390
  year: 2013
  ident: C4SC00565A-(cit3a)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3390
– volume: 135
  start-page: 11580
  year: 2013
  ident: C4SC00565A-(cit8d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403102j
– volume: 5
  start-page: 556
  year: 2010
  ident: C4SC00565A-(cit18b)/*[position()=1]
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15306-5
– volume: 334
  start-page: 645
  year: 2011
  ident: C4SC00565A-(cit1b)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1209816
– volume: 51
  start-page: 8727
  year: 2012
  ident: C4SC00565A-(cit1a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204675
– volume: 314
  start-page: 274
  year: 2006
  ident: C4SC00565A-(cit14b)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1128045
– volume: 49
  start-page: 2233
  year: 2010
  ident: C4SC00565A-(cit5a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906745
– volume: 77
  start-page: 3865
  year: 1996
  ident: C4SC00565A-(cit21)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 133
  start-page: 11446
  year: 2011
  ident: C4SC00565A-(cit5b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203877y
– volume: 196
  start-page: 8644
  year: 2011
  ident: C4SC00565A-(cit19b)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.06.050
– volume: 3
  start-page: 309
  year: 2012
  ident: C4SC00565A-(cit7a)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz201619r
– volume: 329
  start-page: 550
  year: 2012
  ident: C4SC00565A-(cit12b)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1188035
– volume: 136
  start-page: 2843
  year: 2014
  ident: C4SC00565A-(cit8c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411835a
– volume: 59
  start-page: 1578
  year: 1999
  ident: C4SC00565A-(cit20a)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 5
  start-page: 7883
  year: 2012
  ident: C4SC00565A-(cit6d)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21745g
– volume: 6
  start-page: 147
  year: 2011
  ident: C4SC00565A-(cit11a)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 134
  start-page: 2930
  year: 2012
  ident: C4SC00565A-(cit3b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211526y
– volume: 134
  start-page: 3517
  year: 2012
  ident: C4SC00565A-(cit17b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210924t
– volume: 4
  start-page: 1566
  year: 2011
  ident: C4SC00565A-(cit17e)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100075
– volume: 135
  start-page: 13521
  year: 2013
  ident: C4SC00565A-(cit19a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405997s
– volume: 110
  start-page: 6446
  year: 2010
  ident: C4SC00565A-(cit4a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 5
  start-page: 5241
  year: 2013
  ident: C4SC00565A-(cit9b)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr01178j
– volume: 5
  start-page: 521
  year: 2012
  ident: C4SC00565A-(cit6b)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-012-0237-y
– volume: 5
  start-page: 7081
  year: 2012
  ident: C4SC00565A-(cit8g)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21191b
– volume: 134
  start-page: 20294
  year: 2012
  ident: C4SC00565A-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3102049
– volume: 43
  start-page: 530
  year: 2014
  ident: C4SC00565A-(cit11b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60231A
– volume: 321
  start-page: 1072
  year: 2008
  ident: C4SC00565A-(cit8a)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1162018
– volume: 1
  start-page: 267
  year: 1999
  ident: C4SC00565A-(cit18a)/*[position()=1]
  publication-title: Solid State Sci.
  doi: 10.1016/S1293-2558(00)80081-3
– volume: 107
  start-page: 10337
  year: 2010
  ident: C4SC00565A-(cit8f)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1001859107
– volume: 6
  start-page: 47
  year: 2013
  ident: C4SC00565A-(cit17d)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-012-0280-8
– volume: 52
  start-page: 5248
  year: 2013
  ident: C4SC00565A-(cit4b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301066
– volume: 10
  start-page: 936
  year: 2011
  ident: C4SC00565A-(cit12a)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3145
– volume: 22
  start-page: 2560
  year: 2012
  ident: C4SC00565A-(cit15)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102860
– volume: 54
  start-page: 11169
  year: 1996
  ident: C4SC00565A-(cit20b)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 40
  start-page: 3854
  year: 2011
  ident: C4SC00565A-(cit13a)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00186d
– volume: 38
  start-page: 253
  year: 2009
  ident: C4SC00565A-(cit2b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 10
  start-page: 780
  year: 2011
  ident: C4SC00565A-(cit17a)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3087
– volume: 48
  start-page: 1841
  year: 2009
  ident: C4SC00565A-(cit6a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200805534
– volume: 3
  start-page: 1057
  year: 2012
  ident: C4SC00565A-(cit9a)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2066
– volume: 135
  start-page: 4516
  year: 2013
  ident: C4SC00565A-(cit2a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400555q
– volume: 4
  start-page: 1300611
  year: 2014
  ident: C4SC00565A-(cit16a)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300611
– volume: 1
  start-page: 58
  year: 2014
  ident: C4SC00565A-(cit16b)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C3QI00050H
– volume: 132
  start-page: 13162
  year: 2010
  ident: C4SC00565A-(cit13b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1060438
– volume: 113
  start-page: 15068
  year: 2009
  ident: C4SC00565A-(cit17c)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp904022e
– volume: 3
  start-page: 1018
  year: 2010
  ident: C4SC00565A-(cit6c)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c002074e
– volume: 7
  start-page: 1670
  year: 2007
  ident: C4SC00565A-(cit14a)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl0706300
– volume: 47
  start-page: 3469
  year: 2011
  ident: C4SC00565A-(cit7b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05383j
– volume: 340
  start-page: 60
  year: 2013
  ident: C4SC00565A-(cit8b)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1233638
SSID ssj0000331527
Score 2.5700545
Snippet Water electrolysis for hydrogen production requires better catalysts to lower the kinetic barrier of the oxygen evolution reaction. Herein, conceptually-new,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3976
SubjectTerms Catalysis
Cobalt oxides
Electrocatalysis
Electrocatalysts
Evolution
Platforms
Porosity
Two dimensional
Title Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts
URI https://www.proquest.com/docview/1566851626
https://www.proquest.com/docview/1671551768
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoAL4imWl4zggqJAHDtOc1xVoBUSXLorLafIdibbSFGL2ES74cJfZ-wkbrZUaKGHqLKcppn5NJ4Zz3wm5G0GPAUZCQxLDNiWHAh1WSYhJEqbuSnSWNkd3S9f5fGp-HyWnM1mvyZVS22j35ufe_tK_kerOIZ6tV2y_6BZ_6M4gN9Rv3hFDeP1Rjo-ajau27_uwmZVrQMM5cNadfb4zcBYoo8m2FxVBQToZNtS14sVQOMIGAJLU1x3tpyjci2ROLHD54SA5srlGIbzcVx6p7vo-Z48pcHIMjA2Bdmt4LH5a5JbWLbOpn3brM_L1lf6KJedXa6m1UCupgBle25U5Uer1mGsUpdQTbMTTPjauMGIxZFgoUzifu8FpmM9idFohZMp2KKJSbUO015bH3FLlboQy4XlM008W-qWUHtnofPlh27jnWf59t5b5HaMcQabpHvcUs75cOyvf4-R4pZnH7a3X3dqrq_pzlE5uU_uDREGPerh8oDMYP2Q3FmMB_s9IvUObOgENrSHDXWwoT1saA8birChPWyohw3dgQ3dhc1jcvrp48niOBwO3QgNl7zBd2SsUJHBT6aiIir5XMqsUCk6k6WMwMwTlILMVCaAJalCk48Rv1aiiIzisuBPyAH-bXhKKJNpLJXScTlnQqdKM65TMJoLCRKK5JC8G6WWm4GR3h6MUud_KuiQvPFzv_c8LHtnvR6Fn6NQ7d6XWgNKKrdpCgwuMHz_yxyZ2gACA_BnN3rac3J3C_kX5KD50cJLdFEb_crB6DcIhJTB
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically-thin+non-layered+cobalt+oxide+porous+sheets+for+highly+efficient+oxygen-evolving+electrocatalysts&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Sun%2C+Yongfu&rft.au=Gao%2C+Shan&rft.au=Lei%2C+Fengcai&rft.au=Liu%2C+Jiawei&rft.date=2014-08-01&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=5&rft.issue=10&rft.spage=3976&rft_id=info:doi/10.1039%2FC4SC00565A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4SC00565A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon