Mapping near-real-time soil moisture dynamics over Tasmania with transfer learning

Soil moisture, an essential parameter for hydroclimatic studies, exhibits considerable spatial and temporal variability, which complicates its mapping at high spatiotemporal resolutions. Although current remote sensing products offer global estimates of soil moisture at fine temporal resolutions, th...

Full description

Saved in:
Bibliographic Details
Published inSoil Vol. 11; no. 1; pp. 287 - 307
Main Authors Widyastuti, Marliana Tri, Padarian, José, Minasny, Budiman, Webb, Mathew, Taufik, Muh, Kidd, Darren
Format Journal Article
LanguageEnglish
Published Göttingen Copernicus GmbH 08.04.2025
Copernicus Publications
Subjects
Online AccessGet full text
ISSN2199-398X
2199-3971
2199-398X
2199-3971
DOI10.5194/soil-11-287-2025

Cover

Loading…
Abstract Soil moisture, an essential parameter for hydroclimatic studies, exhibits considerable spatial and temporal variability, which complicates its mapping at high spatiotemporal resolutions. Although current remote sensing products offer global estimates of soil moisture at fine temporal resolutions, they do so at a coarse spatial resolution. Deep learning (DL) techniques have recently been employed to produce high-resolution maps of various soil properties; however, these methods require substantial training data. This study sought to map daily soil moisture across Tasmania, Australia, at an 80 m resolution using a limited set of training data. We assessed three modeling strategies: DL models calibrated using an Australian dataset (51 411 observation points), models calibrated using the Tasmanian dataset (9825 observation points), and a transfer learning technique that transferred information from the Australian models to Tasmania using region-specific data. We also evaluated two DL approaches, i.e., multilayer perceptron (MLP) and long short-term memory (LSTM). The models included the Soil Moisture Active Passive (SMAP) dataset, weather data, an elevation map, land cover, and multilevel soil property maps as inputs to generate soil moisture at the surface (0–30 cm) and subsurface (30–60 cm) layers. Results showed that (1) models calibrated from the Australian dataset performed worse than Tasmanian models regardless of the type of DL approaches; (2) Tasmanian models, calibrated solely using local data, resulted in shortcomings in predicting soil moisture; and (3) transfer learning exhibited remarkable performance improvements (error reductions of up to 45 % and a 50 % increase in correlation) and resolved the drawbacks of the two previous models. The LSTM models with transfer learning had the highest overall performance with an average mean absolute error (MAE) of 0.07 m3 m−3 and a correlation coefficient (r) of 0.77 across stations for the surface layer as well as MAE=0.07m3m-3 and r=0.69 for the subsurface layer. The fine-resolution soil moisture maps captured the detailed landscape variation as well as temporal variation according to four distinct seasons in Tasmania. The models were then applied to generate daily soil moisture maps of Tasmania, integrated into a near-real-time monitoring system to assist agricultural decision-making.
AbstractList Soil moisture, an essential parameter for hydroclimatic studies, exhibits considerable spatial and temporal variability, which complicates its mapping at high spatiotemporal resolutions. Although current remote sensing products offer global estimates of soil moisture at fine temporal resolutions, they do so at a coarse spatial resolution. Deep learning (DL) techniques have recently been employed to produce high-resolution maps of various soil properties; however, these methods require substantial training data. This study sought to map daily soil moisture across Tasmania, Australia, at an 80 m resolution using a limited set of training data. We assessed three modeling strategies: DL models calibrated using an Australian dataset (51 411 observation points), models calibrated using the Tasmanian dataset (9825 observation points), and a transfer learning technique that transferred information from the Australian models to Tasmania using region-specific data. We also evaluated two DL approaches, i.e., multilayer perceptron (MLP) and long short-term memory (LSTM). The models included the Soil Moisture Active Passive (SMAP) dataset, weather data, an elevation map, land cover, and multilevel soil property maps as inputs to generate soil moisture at the surface (0-30 cm) and subsurface (30-60 cm) layers. Results showed that (1) models calibrated from the Australian dataset performed worse than Tasmanian models regardless of the type of DL approaches; (2) Tasmanian models, calibrated solely using local data, resulted in shortcomings in predicting soil moisture; and (3) transfer learning exhibited remarkable performance improvements (error reductions of up to 45 % and a 50 % increase in correlation) and resolved the drawbacks of the two previous models. The LSTM models with transfer learning had the highest overall performance with an average mean absolute error (MAE) of 0.07 m.sup.3 m.sup.-3 and a correlation coefficient (r) of 0.77 across stations for the surface layer as well as MAE=0.07m3m-3 and r=0.69 for the subsurface layer. The fine-resolution soil moisture maps captured the detailed landscape variation as well as temporal variation according to four distinct seasons in Tasmania. The models were then applied to generate daily soil moisture maps of Tasmania, integrated into a near-real-time monitoring system to assist agricultural decision-making.
Soil moisture, an essential parameter for hydroclimatic studies, exhibits considerable spatial and temporal variability, which complicates its mapping at high spatiotemporal resolutions. Although current remote sensing products offer global estimates of soil moisture at fine temporal resolutions, they do so at a coarse spatial resolution. Deep learning (DL) techniques have recently been employed to produce high-resolution maps of various soil properties; however, these methods require substantial training data. This study sought to map daily soil moisture across Tasmania, Australia, at an 80 m resolution using a limited set of training data. We assessed three modeling strategies: DL models calibrated using an Australian dataset (51 411 observation points), models calibrated using the Tasmanian dataset (9825 observation points), and a transfer learning technique that transferred information from the Australian models to Tasmania using region-specific data. We also evaluated two DL approaches, i.e., multilayer perceptron (MLP) and long short-term memory (LSTM). The models included the Soil Moisture Active Passive (SMAP) dataset, weather data, an elevation map, land cover, and multilevel soil property maps as inputs to generate soil moisture at the surface (0–30 cm) and subsurface (30–60 cm) layers. Results showed that (1) models calibrated from the Australian dataset performed worse than Tasmanian models regardless of the type of DL approaches; (2) Tasmanian models, calibrated solely using local data, resulted in shortcomings in predicting soil moisture; and (3) transfer learning exhibited remarkable performance improvements (error reductions of up to 45 % and a 50 % increase in correlation) and resolved the drawbacks of the two previous models. The LSTM models with transfer learning had the highest overall performance with an average mean absolute error (MAE) of 0.07 m3m-3 and a correlation coefficient (r) of 0.77 across stations for the surface layer as well as MAE=0.07m3m-3 and r=0.69 for the subsurface layer. The fine-resolution soil moisture maps captured the detailed landscape variation as well as temporal variation according to four distinct seasons in Tasmania. The models were then applied to generate daily soil moisture maps of Tasmania, integrated into a near-real-time monitoring system to assist agricultural decision-making.
Soil moisture, an essential parameter for hydroclimatic studies, exhibits considerable spatial and temporal variability, which complicates its mapping at high spatiotemporal resolutions. Although current remote sensing products offer global estimates of soil moisture at fine temporal resolutions, they do so at a coarse spatial resolution. Deep learning (DL) techniques have recently been employed to produce high-resolution maps of various soil properties; however, these methods require substantial training data. This study sought to map daily soil moisture across Tasmania, Australia, at an 80 m resolution using a limited set of training data. We assessed three modeling strategies: DL models calibrated using an Australian dataset (51 411 observation points), models calibrated using the Tasmanian dataset (9825 observation points), and a transfer learning technique that transferred information from the Australian models to Tasmania using region-specific data. We also evaluated two DL approaches, i.e., multilayer perceptron (MLP) and long short-term memory (LSTM). The models included the Soil Moisture Active Passive (SMAP) dataset, weather data, an elevation map, land cover, and multilevel soil property maps as inputs to generate soil moisture at the surface (0–30 cm) and subsurface (30–60 cm) layers. Results showed that (1) models calibrated from the Australian dataset performed worse than Tasmanian models regardless of the type of DL approaches; (2) Tasmanian models, calibrated solely using local data, resulted in shortcomings in predicting soil moisture; and (3) transfer learning exhibited remarkable performance improvements (error reductions of up to 45 % and a 50 % increase in correlation) and resolved the drawbacks of the two previous models. The LSTM models with transfer learning had the highest overall performance with an average mean absolute error (MAE) of 0.07 m3 m−3 and a correlation coefficient (r) of 0.77 across stations for the surface layer as well as MAE=0.07m3m-3 and r=0.69 for the subsurface layer. The fine-resolution soil moisture maps captured the detailed landscape variation as well as temporal variation according to four distinct seasons in Tasmania. The models were then applied to generate daily soil moisture maps of Tasmania, integrated into a near-real-time monitoring system to assist agricultural decision-making.
Soil moisture, an essential parameter for hydroclimatic studies, exhibits considerable spatial and temporal variability, which complicates its mapping at high spatiotemporal resolutions. Although current remote sensing products offer global estimates of soil moisture at fine temporal resolutions, they do so at a coarse spatial resolution. Deep learning (DL) techniques have recently been employed to produce high-resolution maps of various soil properties; however, these methods require substantial training data. This study sought to map daily soil moisture across Tasmania, Australia, at an 80 m resolution using a limited set of training data. We assessed three modeling strategies: DL models calibrated using an Australian dataset (51 411 observation points), models calibrated using the Tasmanian dataset (9825 observation points), and a transfer learning technique that transferred information from the Australian models to Tasmania using region-specific data. We also evaluated two DL approaches, i.e., multilayer perceptron (MLP) and long short-term memory (LSTM). The models included the Soil Moisture Active Passive (SMAP) dataset, weather data, an elevation map, land cover, and multilevel soil property maps as inputs to generate soil moisture at the surface (0–30 cm) and subsurface (30–60 cm) layers. Results showed that (1) models calibrated from the Australian dataset performed worse than Tasmanian models regardless of the type of DL approaches; (2) Tasmanian models, calibrated solely using local data, resulted in shortcomings in predicting soil moisture; and (3) transfer learning exhibited remarkable performance improvements (error reductions of up to 45 % and a 50 % increase in correlation) and resolved the drawbacks of the two previous models. The LSTM models with transfer learning had the highest overall performance with an average mean absolute error (MAE) of 0.07  m3 m−3 and a correlation coefficient ( r ) of 0.77 across stations for the surface layer as well as MAE= 0.07 m 3 m - 3 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="96pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="b05688daef17e3a769d11816504850c5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-11-287-2025-ie00001.svg" width="96pt" height="13pt" src="soil-11-287-2025-ie00001.png"/></svg:svg> and r=0.69 for the subsurface layer. The fine-resolution soil moisture maps captured the detailed landscape variation as well as temporal variation according to four distinct seasons in Tasmania. The models were then applied to generate daily soil moisture maps of Tasmania, integrated into a near-real-time monitoring system to assist agricultural decision-making.
Audience Academic
Author Padarian, José
Taufik, Muh
Minasny, Budiman
Widyastuti, Marliana Tri
Webb, Mathew
Kidd, Darren
Author_xml – sequence: 1
  givenname: Marliana Tri
  orcidid: 0000-0002-4777-4850
  surname: Widyastuti
  fullname: Widyastuti, Marliana Tri
– sequence: 2
  givenname: José
  orcidid: 0000-0003-2250-5299
  surname: Padarian
  fullname: Padarian, José
– sequence: 3
  givenname: Budiman
  surname: Minasny
  fullname: Minasny, Budiman
– sequence: 4
  givenname: Mathew
  surname: Webb
  fullname: Webb, Mathew
– sequence: 5
  givenname: Muh
  orcidid: 0000-0003-3952-6010
  surname: Taufik
  fullname: Taufik, Muh
– sequence: 6
  givenname: Darren
  surname: Kidd
  fullname: Kidd, Darren
BookMark eNptktFrFDEQxhepYK1993HBJx-2ZpJsNnksRe1BRagVfAvTzeTMsZucyZ7a_745T9QDCSTh45sfmcz3vDmJKVLTvAR20YORb0oKUwfQcT10nPH-SXPKwZhOGP3l5J_7s-a8lA1jDFQPwIfT5vYDbrchrttImLtMOHVLmKndE9s5hbLsMrXuIeIcxtKm75TbOywzxoDtj7B8bZeMsfgqT5UQK-pF89TjVOj893nWfH739u7qurv5-H51dXnTjUKJpVOyd8pIiSRJ9YTi3inSQhEoryXvnfB1c-C407JXkhvjgN2PnIR2fc_FWbM6cF3Cjd3mMGN-sAmD_SWkvLaYlzBOZGlgbGCAijhKI0f03hms0ugHD15V1qsDa5vTtx2VxW7SLsf6fCtAD9KoAeRf1xorNESfavPjHMpoL7WQmgHTorou_uOqy1H9wzo4H6p-VPD6qKB6Fvq5rHFXil19uj32soN3zKmUTP5P48DsPgt2PzkLYGsW7D4L4hHsbKc4
Cites_doi 10.1071/SR13100
10.1007/s00704-020-03259-4
10.1016/j.jhydrol.2022.127570
10.1016/j.rse.2019.02.022
10.5194/hess-25-5749-2021
10.1016/j.jhydrol.2022.127705
10.1016/j.jhydrol.2020.125360
10.1016/j.compag.2022.106816
10.1007/s42452-021-04427-5
10.1016/j.artint.2021.103502
10.1016/j.knosys.2015.01.010
10.3390/w13182584
10.1016/j.compag.2020.105709
10.1016/j.jhydrol.2022.127784
10.5194/essd-14-5267-2022
10.1016/j.ejrh.2024.102020
10.1016/j.agrformet.2021.108738
10.1071/SR14268
10.1016/j.jhydrol.2023.130038
10.1016/j.geoderma.2023.116452
10.1029/2018WR024618
10.2307/2532051
10.5194/hess-22-5341-2018
10.1016/B978-0-444-63623-2.00007-4
10.1016/j.geoderma.2024.117094
10.3390/s23041976
10.5194/soil-6-565-2020
10.1016/j.geoderma.2022.115695
10.1109/TKDE.2009.191
10.1175/JHM-D-17-0063.1
10.1016/j.geodrs.2015.08.005
10.1016/S0016-7061(99)00003-8
10.5194/bg-13-5895-2016
10.1016/j.jhydrol.2023.130211
10.1175/JHM-D-19-0169.1
10.3389/frsen.2022.932431
10.1016/j.procir.2021.03.088
10.1109/JSTARS.2021.3069774
10.1038/s41598-022-19357-4
10.5194/soil-6-389-2020
10.3390/rs14225681
10.1038/323533a0
10.1029/2012WR011976
10.1071/SR08239
10.1038/s41598-018-33516-6
10.1016/j.earscirev.2022.104214
10.1016/j.agwat.2020.106430
10.1016/j.geoderma.2021.115651
10.1016/j.geoderma.2019.03.002
10.5194/essd-13-4349-2021
10.1016/j.geoderma.2017.10.006
10.3389/ffgc.2023.1295731
10.3390/algor2030973
10.3390/agriculture13050965
10.1023/A:1022825732324
10.1029/2021GL096847
10.1016/j.jhydrol.2021.126698
10.1016/j.geoderma.2019.01.009
10.5194/soil-5-79-2019
ContentType Journal Article
Copyright COPYRIGHT 2025 Copernicus GmbH
2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 Copernicus GmbH
– notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7UA
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.5194/soil-11-287-2025
DatabaseName CrossRef
Gale In Context: Science
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2199-398X
2199-3971
EndPage 307
ExternalDocumentID oai_doaj_org_article_e700701a6e2a494caffd9a070cf7f1f6
A834801083
10_5194_soil_11_287_2025
GeographicLocations Australia
Tasmania Australia
GeographicLocations_xml – name: Australia
– name: Tasmania Australia
GroupedDBID 2XV
5VS
8FE
8FH
AAFWJ
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
H13
HCIFZ
IAG
IAO
IEA
ISR
ITC
KQ8
LK5
M7R
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
RKB
PMFND
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c363t-645d6944ae4e65ea3bd6e836e16f8425d3f25dd1d2d84564299d10bc2e38d5523
IEDL.DBID BENPR
ISSN 2199-398X
2199-3971
IngestDate Wed Aug 27 01:23:10 EDT 2025
Wed Jul 23 11:40:16 EDT 2025
Tue Jun 17 21:58:29 EDT 2025
Tue Jun 10 21:02:03 EDT 2025
Fri Jun 27 05:14:52 EDT 2025
Tue Jul 01 05:17:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-645d6944ae4e65ea3bd6e836e16f8425d3f25dd1d2d84564299d10bc2e38d5523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2250-5299
0000-0003-3952-6010
0000-0002-4777-4850
OpenAccessLink https://www.proquest.com/docview/3187496714?pq-origsite=%requestingapplication%
PQID 3187496714
PQPubID 2040561
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_e700701a6e2a494caffd9a070cf7f1f6
proquest_journals_3187496714
gale_infotracmisc_A834801083
gale_infotracacademiconefile_A834801083
gale_incontextgauss_ISR_A834801083
crossref_primary_10_5194_soil_11_287_2025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-08
PublicationDateYYYYMMDD 2025-04-08
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-08
  day: 08
PublicationDecade 2020
PublicationPlace Göttingen
PublicationPlace_xml – name: Göttingen
PublicationTitle Soil
PublicationYear 2025
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref24
  doi: 10.1071/SR13100
– ident: ref37
– ident: ref61
  doi: 10.1007/s00704-020-03259-4
– ident: ref71
  doi: 10.1016/j.jhydrol.2022.127570
– ident: ref62
  doi: 10.1016/j.rse.2019.02.022
– ident: ref13
  doi: 10.5194/hess-25-5749-2021
– ident: ref16
  doi: 10.1016/j.jhydrol.2022.127705
– ident: ref19
  doi: 10.1016/j.jhydrol.2020.125360
– ident: ref27
  doi: 10.1016/j.compag.2022.106816
– ident: ref70
  doi: 10.1007/s42452-021-04427-5
– ident: ref69
– ident: ref1
  doi: 10.1016/j.artint.2021.103502
– ident: ref35
  doi: 10.1016/j.knosys.2015.01.010
– ident: ref18
  doi: 10.3390/w13182584
– ident: ref58
  doi: 10.1016/j.compag.2020.105709
– ident: ref65
  doi: 10.1016/j.jhydrol.2022.127784
– ident: ref29
  doi: 10.5194/essd-14-5267-2022
– ident: ref10
  doi: 10.1016/j.ejrh.2024.102020
– ident: ref56
  doi: 10.1016/j.agrformet.2021.108738
– ident: ref22
  doi: 10.1071/SR14268
– ident: ref68
  doi: 10.1016/j.jhydrol.2023.130038
– ident: ref36
– ident: ref2
– ident: ref11
  doi: 10.1016/j.geoderma.2023.116452
– ident: ref25
  doi: 10.1029/2018WR024618
– ident: ref32
  doi: 10.2307/2532051
– ident: ref3
  doi: 10.5194/hess-22-5341-2018
– ident: ref49
  doi: 10.1016/B978-0-444-63623-2.00007-4
– ident: ref39
  doi: 10.1016/j.geoderma.2024.117094
– ident: ref48
  doi: 10.3390/s23041976
– ident: ref54
– ident: ref12
– ident: ref42
  doi: 10.5194/soil-6-565-2020
– ident: ref43
  doi: 10.1016/j.geoderma.2022.115695
– ident: ref47
  doi: 10.1109/TKDE.2009.191
– ident: ref50
  doi: 10.1175/JHM-D-17-0063.1
– ident: ref23
  doi: 10.1016/j.geodrs.2015.08.005
– ident: ref6
  doi: 10.1016/S0016-7061(99)00003-8
– ident: ref5
  doi: 10.5194/bg-13-5895-2016
– ident: ref60
– ident: ref31
  doi: 10.1016/j.jhydrol.2023.130211
– ident: ref14
  doi: 10.1175/JHM-D-19-0169.1
– ident: ref17
  doi: 10.3389/frsen.2022.932431
– ident: ref33
  doi: 10.1016/j.procir.2021.03.088
– ident: ref66
  doi: 10.1109/JSTARS.2021.3069774
– ident: ref40
  doi: 10.1038/s41598-022-19357-4
– ident: ref46
  doi: 10.5194/soil-6-389-2020
– ident: ref7
  doi: 10.3390/rs14225681
– ident: ref51
  doi: 10.1038/323533a0
– ident: ref53
  doi: 10.1029/2012WR011976
– ident: ref9
  doi: 10.1071/SR08239
– ident: ref55
– ident: ref4
  doi: 10.1038/s41598-018-33516-6
– ident: ref15
– ident: ref59
  doi: 10.1016/j.earscirev.2022.104214
– ident: ref67
  doi: 10.1016/j.agwat.2020.106430
– ident: ref28
  doi: 10.1016/j.geoderma.2021.115651
– ident: ref63
– ident: ref64
  doi: 10.1016/j.geoderma.2019.03.002
– ident: ref41
  doi: 10.5194/essd-13-4349-2021
– ident: ref8
  doi: 10.1016/j.geoderma.2017.10.006
– ident: ref30
  doi: 10.3389/ffgc.2023.1295731
– ident: ref21
– ident: ref20
  doi: 10.3390/algor2030973
– ident: ref52
– ident: ref57
  doi: 10.3390/agriculture13050965
– ident: ref38
  doi: 10.1023/A:1022825732324
– ident: ref34
  doi: 10.1029/2021GL096847
– ident: ref26
  doi: 10.1016/j.jhydrol.2021.126698
– ident: ref44
  doi: 10.1016/j.geoderma.2019.01.009
– ident: ref45
  doi: 10.5194/soil-5-79-2019
SSID ssj0001651127
Score 2.2880998
Snippet Soil moisture, an essential parameter for hydroclimatic studies, exhibits considerable spatial and temporal variability, which complicates its mapping at high...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 287
SubjectTerms Accuracy
Agriculture
Algorithms
Calibration
Correlation coefficient
Correlation coefficients
Datasets
Decision making
Deep learning
Environmental monitoring
Land cover
Long short-term memory
Machine learning
Mapping
Meteorological data
Moisture content
Multilayer perceptrons
Real time
Remote sensing
Soil dynamics
Soil layers
Soil moisture
Soil properties
Soil sciences
Spatial discrimination learning
Spatial resolution
Surface layers
Temporal variations
Training
Transfer learning
Water
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXQQTxELSbNE2Oq7isgh58gLcwzWMRtCvb9f8701bZPYgXL3vIDrT5Jul8006-YewkhX5Q4UKKXPtSKANWgLGlALBZiFoT5adqi3s9ela3L_nLXKsvqglr5YFb4M5jQYo0GejYB2WVh5SCBRzyqUhZasS2MebNJVPN2xVNRILOSuOOtAKDbtZ-o0TCos7ryesbnSfDbAFXCXXJnotJjXT_bw_oJuoM19laRxf5oL3NDbYUq022OhhPO8mMuMUe7oA0Fsa8wkUrkAO-CWoYz-ny_H2CbkQzHtrO8zWnkk3-BDXpXgCn17B81pBXHO5aSIy32fPw-ulqJLpOCcJLLWdCqzxoqxREFXUeQZZBRyN1zHSi72xBJvwJGTrGkH4MxqCQXZS-H6UJOeaiO2y5mlRxl3FbQI4kxCPKVhXRgCeh0KL0xnujA_TY2TdW7qMVxHCYSBCujiaGKYVDXB3h2mOXBOaPHUlZNwPoYNc52P3l4B47Jlc4EquoqBpmDJ917W4eH9zASFK_QRbZY6edUZogaB66wwU4J9K3WrA8WLDE3eQX__72uOt2c-0kNS60usjU3n_MaJ-tEDpN_Y85YMuz6Wc8RGozK4-aVfwFxDn00w
  priority: 102
  providerName: Directory of Open Access Journals
Title Mapping near-real-time soil moisture dynamics over Tasmania with transfer learning
URI https://www.proquest.com/docview/3187496714
https://doaj.org/article/e700701a6e2a494caffd9a070cf7f1f6
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tIeQp90mweiBEoPIvFKlqVT2ISEtJBQtgnsTYz1MIXUTteb_58Zr7bpHpKLD_KA0MxI-kYafcPYQQqToMKRFKX2tVAGrABjawFgixC1JshP2RZX-uJG_ZiX83zg1ue0yvWaOCzUofN0Rn4oqXic1VWhju_-CqoaRberuYTGS7aFS7ApR2zr5Ozq5-zxlEUToKA30zgzrZDWzFd3lQhc1GHf_b6ld2UYNaC3ULXs__amgcL_qYV62H3O37DtDBv5dGXnt-xFbN-x19Nmkakz4ns2uwTiWmh4i84rEAveCiocz6l7_qdDc6IYD6sK9D2n1E1-DT3xXwCn41i-HEAsNudSEs0HdnN-dn16IXLFBOGllkuhVRm0VQqiirqMIOugo5E6FjrRfVuQCT-hQAMZ4pHBvSgUR7WfRGlCiTHpRzZquzZ-YtxWUCIY8SlYq6powBNhaFV7473RAcbs21pX7m5FjOEwoCC9OhoYhhYO9epIr2N2Qsr8J0eU1kNDt2hcniEuVkQ9VICOE1BWeUjYNWCTT1Uqkh6zL2QKR6QVLWXFNHDf9-77r5mbGkksOIgmx-xrFkodKs1DfmSAYyKeqw3J3Q1JnFV-8_fa4i7P6t49-uDn53_vsFc07iHDx-yy0XJxH_cQvCzr_eyh-0Pw_wCTPu4X
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcEE-xUMBCIMTBahM7jn1AaAutdmm7QstW2ptx_IiQSlI2WyH-FL-RmTwoe4BbLzk4I1kej8ef7ZlvCHkZfeqF3-csk65gQlnNrNIFs1YnPkiJkB-jLWZyciY-LrPlFvk15MJgWOXgE1tH7WuHd-R7HIvHaZkn4t3Fd4ZVo_B1dSih0ZnFcfj5A45szdvpB5jfV2l6dLh4P2F9VQHmuORrJkXmpRbCBhFkFiwvvAyKy5DIiG9Snkf4-AQGoZBrBfy1T_YLlwaufJYh0QG4_B2AGRpW0c7B4ezT_OpWRyKAwRxt8ASaca2W3dsoACWx19RfzzGPDU4pYJ1YnfuvvbAtGfCvjaHd7Y7ukNs9TKXjzq7ukq1Q3SO3xuWqp-oI98n81CK3Q0kr0AoD7HnOsFA9xe7ptxrMB8So7yreNxRDRenCNsi3YSle_9J1C5qhuS9dUT4gZ9eiy4dku6qr8IhQndsMwI-LXmuRB2UdEpTmhVPOKentiLwZdGUuOiIOAwcY1KvBgcFRxoBeDep1RA5QmX_kkEK7bahXpelXpAk5Uh0lVobUCi2cjdC1hSYX85hEOSIvcCoMkmRUGIVT2sumMdPPczNWHFl3AL2OyOteKNagNGf7pAYYE_JqbUjubkjCKnabv4cZN70XacyVzT_-_-_n5MZkcXpiTqaz4yfkJuqgjS5Su2R7vboMTwE4rYtnvbVS8uW6F8hvIp4pSA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQJSHSCnFQiDEwUp37fXaB4RS2qihEFWhlXIzXj-iSu1uyaZC_Wv8OmY2u5Qc4NbLHrwjWf48Ho_tmW8IeRN96oXf4yyTrmBCWc2s0gWzVic-SIkuP0ZbTOTRmfg8y2Yb5FeXC4NhlZ1NbAy1rxzekQ84Fo_TMk_EILZhEScHo49XPxhWkMKX1q6cxkpFjsPNTzi-1R_GBzDXb9N0dHj66Yi1FQaY45IvmRSZl1oIG0SQWbC88DIoLkMiI75PeR7h4xMYkELeFbDdPtkrXBq48lmGpAdg_jdz2BVVj2zuH05Oprc3PBKdGczXBqugGddqtnonBadJDOrq_AJz2uDEApqKlbr_2heb8gH_2iSanW_0iDxsXVY6XOnYFtkI5WPyYDhftLQd4QmZfrXI8zCnJaDCwA-9YFi0nmL39LICVQIx6m9Ke3nuaopho_TU1si9YSleBdNl40BDc1vGYv6UnN0Jls9Ir6zK8JxQndsMHCEXvdYiD8o6JCvNC6ecU9LbPnnfYWWuVqQcBg4ziKvBgcGxxgCuBnHtk30E848c0mk3DdVibtrVaUKOtEeJlSG1QgtnI3RtocnFPCZR9slrnAqDhBklqt7cXte1GX-bmqHiyMADnmyfvGuFYgWgOdsmOMCYkGNrTXJnTRJWtFv_3c24aS1KbW71f_v_v1-Re7AwzJfx5PgFuY8QNIFGaof0lovr8BJ8qGWx2yorJd_ven38Btk4LXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+near-real-time+soil+moisture+dynamics+over+Tasmania+with+transfer+learning&rft.jtitle=Soil&rft.au=Marliana%C2%A0Tri+Widyastuti&rft.au=Padarian%2C+Jos%C3%A9&rft.au=Budiman+Minasny&rft.au=Webb%2C+Mathew&rft.date=2025-04-08&rft.pub=Copernicus+GmbH&rft.issn=2199-398X&rft.eissn=2199-3971&rft.volume=11&rft.issue=1&rft.spage=287&rft.epage=307&rft_id=info:doi/10.5194%2Fsoil-11-287-2025&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-398X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-398X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-398X&client=summon