Attacks on state-of-the-art face recognition using attentional adversarial attack generative network

With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face recognition networks are subject to attacks. Generating adversarial examples is an effective attack method, which misleads the face recognition sys...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 1; pp. 855 - 875
Main Authors Yang, Lu, Song, Qing, Wu, Yingqi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face recognition networks are subject to attacks. Generating adversarial examples is an effective attack method, which misleads the face recognition system through obfuscation attack (rejecting a genuine subject) or impersonation attack (matching to an impostor). In this paper, we introduce a novel GAN, Attentional Adversarial Attack Generative Network ( A 3 G N ), to generate adversarial examples that mislead the network to identify someone as the target person not misclassify inconspicuously. For capturing the geometric and context information of the target person, this work adds a conditional variational autoencoder and attention modules to learn the instance-level correspondences between faces. Unlike traditional two-player GAN, this work introduces a face recognition network as the third player to participate in the competition between generator and discriminator which allows the attacker to impersonate the target person better. The generated faces which are hard to arouse the notice of onlookers can evade recognition by state-of-the-art networks and most of them are recognized as the target person.
AbstractList With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face recognition networks are subject to attacks. Generating adversarial examples is an effective attack method, which misleads the face recognition system through obfuscation attack (rejecting a genuine subject) or impersonation attack (matching to an impostor). In this paper, we introduce a novel GAN, Attentional Adversarial Attack Generative Network ( A 3 G N ), to generate adversarial examples that mislead the network to identify someone as the target person not misclassify inconspicuously. For capturing the geometric and context information of the target person, this work adds a conditional variational autoencoder and attention modules to learn the instance-level correspondences between faces. Unlike traditional two-player GAN, this work introduces a face recognition network as the third player to participate in the competition between generator and discriminator which allows the attacker to impersonate the target person better. The generated faces which are hard to arouse the notice of onlookers can evade recognition by state-of-the-art networks and most of them are recognized as the target person.
With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face recognition networks are subject to attacks. Generating adversarial examples is an effective attack method, which misleads the face recognition system through obfuscation attack (rejecting a genuine subject) or impersonation attack (matching to an impostor). In this paper, we introduce a novel GAN, Attentional Adversarial Attack Generative Network (A3GN), to generate adversarial examples that mislead the network to identify someone as the target person not misclassify inconspicuously. For capturing the geometric and context information of the target person, this work adds a conditional variational autoencoder and attention modules to learn the instance-level correspondences between faces. Unlike traditional two-player GAN, this work introduces a face recognition network as the third player to participate in the competition between generator and discriminator which allows the attacker to impersonate the target person better. The generated faces which are hard to arouse the notice of onlookers can evade recognition by state-of-the-art networks and most of them are recognized as the target person.
Author Yang, Lu
Wu, Yingqi
Song, Qing
Author_xml – sequence: 1
  givenname: Lu
  surname: Yang
  fullname: Yang, Lu
  organization: Pattern Recognition and Intelligence Vision Lab, Beijing University of Posts and Telecommunications
– sequence: 2
  givenname: Qing
  surname: Song
  fullname: Song, Qing
  email: priv@bupt.edu.cn
  organization: Pattern Recognition and Intelligence Vision Lab, Beijing University of Posts and Telecommunications
– sequence: 3
  givenname: Yingqi
  surname: Wu
  fullname: Wu, Yingqi
  organization: Pattern Recognition and Intelligence Vision Lab, Beijing University of Posts and Telecommunications
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTj93sHkvxCwpe9BzSdHbdtmZrklbsrzftCoKHHoaZwPtMhmdEBq5zSMg1g1sGoO4CYyA5BQ4UqgIk3Z-RIcuVoEpxNkizKIGqHNgFGYWwBGBFzuWQLCYxGrsKWeeyEE1E2tU0viM1Pma1sZh5tF3j2timxDa0rslMjOgOb7POzGKHPhjfHubjqqxBh97EdoeZw_jV-dUlOa_NOuDVbx-Tt4f71-kTnb08Pk8nM2pFISItBGBVWatMblXFgMmiZKyEQphSpYStLEoOEmoBLJW0HGXNjTBzMbc2F2Ny0-_d-O5ziyHqZbf16cyguVSFUBxAphTvU9Z3IXis9ca3H8Z_awb6YFP3NnWyqY829T5B5T_ItklXkhC9adenUdGjIf3jGvR_V52gfgDS9YzO
CitedBy_id crossref_primary_10_1007_s11263_024_02031_9
crossref_primary_10_1016_j_future_2022_10_022
crossref_primary_10_1109_TMM_2022_3217413
crossref_primary_10_1109_TBDATA_2024_3403377
crossref_primary_10_3390_app14125183
crossref_primary_10_1109_ACCESS_2023_3307132
crossref_primary_10_3390_jimaging9010018
crossref_primary_10_1109_TIFS_2021_3102492
crossref_primary_10_1007_s11042_022_12865_5
crossref_primary_10_32604_cmc_2023_039781
crossref_primary_10_1016_j_neucom_2023_126321
crossref_primary_10_1007_s10921_023_01028_7
crossref_primary_10_1007_s11042_022_14021_5
crossref_primary_10_1016_j_neucom_2025_129453
crossref_primary_10_1016_j_neucom_2024_129295
crossref_primary_10_1007_s11042_024_19831_3
crossref_primary_10_1109_ACCESS_2024_3435527
crossref_primary_10_1109_TMM_2024_3407679
crossref_primary_10_1109_TPAMI_2024_3522994
crossref_primary_10_1016_j_neucom_2024_127517
crossref_primary_10_1155_2021_3670339
crossref_primary_10_1007_s11263_022_01622_8
crossref_primary_10_1007_s12204_023_2692_x
crossref_primary_10_1016_j_engappai_2024_109451
crossref_primary_10_1109_ACCESS_2021_3096895
crossref_primary_10_1016_j_asoc_2025_112983
crossref_primary_10_1007_s11042_023_18023_9
crossref_primary_10_1007_s11277_021_08176_x
crossref_primary_10_1145_3665496
crossref_primary_10_1109_ACCESS_2024_3439741
crossref_primary_10_1016_j_procs_2021_08_066
crossref_primary_10_1109_TII_2022_3169973
crossref_primary_10_1186_s13636_022_00254_7
crossref_primary_10_1109_TIFS_2024_3402167
Cites_doi 10.24963/ijcai.2019/124
10.1145/3123266.3123278
10.1109/CVPR.2017.632
10.1109/CVPR.2019.00482
10.1109/SP.2017.49
10.1109/CVPR.2018.00745
10.1109/CVPR.2016.90
10.1109/CVPR.2019.00056
10.1109/CVPR.2018.00916
10.1145/2976749.2978392
10.1109/CVPR.2019.00790
10.1109/CVPR.2018.00467
10.1007/978-3-319-97909-0_46
10.1109/WACV.2016.7477558
10.1109/LSP.2018.2822810
10.1109/CVPR.2017.17
10.1109/CVPRW.2017.250
10.1109/ICCV.2017.244
10.1109/CVPR.2016.282
10.1109/CVPR.2019.00954
10.1007/s11042-019-7209-0
10.1109/CVPR.2019.00453
10.1109/MMSP.2018.8547128
10.1007/978-3-319-46475-6_43
10.1109/CVPR.2014.244
10.1109/ICCV.2015.170
10.1145/2964284.2967209
10.1109/CVPR.2016.265
10.1109/CVPR.2014.220
10.1609/aaai.v32i1.12341
10.1109/ACCESS.2018.2807385
10.1109/TMM.2017.2710803
10.1007/978-3-319-46487-9_6
10.1007/978-3-319-46493-0_47
10.1109/CVPR.2015.7298682
10.1007/978-3-319-46478-7_31
10.1109/CVPR.2017.713
10.1109/WACV.2019.00215
10.1109/CVPR.2018.00813
10.24963/ijcai.2018/543
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-020-09604-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 875
ExternalDocumentID 10_1007_s11042_020_09604_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-630e99cc7a5c79101468118063a87363c9ce42040f301f304c2e4f2a3ab3bcc53
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 03:41:42 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Tue Jul 01 04:13:06 EDT 2025
Fri Feb 21 02:37:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Face recognition
Adversarial attack
Generative adversarial networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-630e99cc7a5c79101468118063a87363c9ce42040f301f304c2e4f2a3ab3bcc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s11042-020-09604-z
PQID 2476372004
PQPubID 54626
PageCount 21
ParticipantIDs proquest_journals_2476372004
crossref_primary_10_1007_s11042_020_09604_z
crossref_citationtrail_10_1007_s11042_020_09604_z
springer_journals_10_1007_s11042_020_09604_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Dong Y, Su H, Wu B, Li Z, Liu W, Zhang T, Zhu J (2019) Efficient decision-based black-box adversarial attacks on face recognition. In: CVPR
Sengupta S, Chen J, Castillo C, Patel V, Chellappa R, Jacobs D (2016) Frontal to profile face verification in the wild. In: WACV
Liu J, Zha Z, Tian Q I, Liu D, Yao T, Ling Q, Mei T (2016a) Multi-scale triplet cnn for person re-identification. In: ACM MM
Moosavi-Dezfooli S M, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In: Proc CVPR
Wang X, Girshick R, Gupta A, He K (2017) Non-local neural networks. arXiv:1711.07971
Moosavi-Dezfooli S, Fawzi A, Fawzi O (2017) Universal adversarial perturbations. In: CVPR
Yan X, Yang J, Sohn K, Lee H (2016) Attribute2image: Conditional image generation from visual attributes. arXiv:1512.00570
Gatys L A, Ecker A S, Bethge M (2016) Image style transfer using convolutional neural networks. In: CVPR
Choi Y, Choi M, Kim M, Ha J, Kim S, Choo J (2018) Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR
Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report
Hou R, Ma B, Chang H, Gu X, Shan S, Chen X (2019) Interaction-and-aggregation network for person re-identification. In: CVPR
Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: ECCV
Sohn K, Yan X, Lee H (2015) Learning structured output representation using deep conditional generative models. In: NIPS
Miyato T, Kataoka T, Koyama M, Yoshida Y (2018) Spectral normalization for generative adversarial networks. In: ICLR
Denton E, Chintala S, Fergus R, et al. (2015) Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS
Liu W, Wen Y, Yu Z, Yang M (2016b) Large-margin softmax loss for convolutional neural networks. In: ICML
Yao H, Zhang S, Zhang Y, Li J, Tian Q (2017) One-shot fine-grained instance retrieval. In: ACM MM
Salimans T, Zhang H, Radford A, Metaxas D (2018) Improving gans using optimal transport. In: ICLR
Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR
Goswami G, Ratha N, Agarwal A, Singh R, Vatsa M (2018) Unravelling robustness of deep learning based face recognition against adversarial attacks. arXiv:1803.00401
Song Y, Shu R, Kushman N, Ermon S (2018) Constructing unrestricted adversarial examples with generative models. In: NIPS
Deng J, Guo J, Zafeiriou S (2018) Arcface: Additive angular margin loss for deep face recognition. arXiv:1801.07698
Guo Y, Zhang L, Hu Y, He X, Gao J (2016) Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In: ECCV
Dabouei A, Soleymani S, Dawson J, Nasrabadi NM (2018) Fast geometrically-perturbed adversarial faces. arXiv:1809.08999
Sanakoyeu A, Tschernezki V, Büchler U, Ommer B (2019) Divide and conquer the embedding space for metric learning. In: CVPR
Zhu J, Park T, Isola P, Efros A (2017a) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV
Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. arXiv:1606.03498
Bose A, Aarabi P (2018) Adversarial attacks on face detectors using neural net based constrained optimization. arXiv:1805.12302
Kanbak C, Moosavi-Dezfooli SM, Frossard P (2017) Geometric robustness of deep networks: analysis and improvement. arXiv:1711.09115
Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy
Su J, Vargas DV, Sakurai K (2017) One pixel attack for fooling deep neural networks. arXiv:1710.08864
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2013) Intriguing properties of neural networks. In: ICLR
Hu J, Shen L, Sun G (2017) Squeeze-and-excitation networks. arXiv:1709.01507
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets, pp 2672–2680
Gao Z (2017) Wu Y, Jia Y, Learning a robust representation via a deep network on symmetric positive definite manifolds. Pattern Recognit
He Q, He B, Zhang Y (2019) Multimedia based fast face recognition algorithm of speed up robust features. Multimed Tools Appl
Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively with application to face verification. In: CVPR
Wang F, Liu W, Liu H, Cheng J (2018) Additive margin softmax for face verification. arXiv:1801.05599
Sharif M, Bhagavatula S, Bauer L, Reiter MK (2018) Adversarial generative nets: Neural network attacks on state-of-the-art face recognition. arXiv:1801.00349
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR
Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: CVPR
Engstrom L, Tsipras D, Schmidt L, Madry A (2017) A rotation and a translation suffice: Fooling cnns with simple transformations. arXiv:1712.02779
Yi D, Lei Z, Liao S, Li SZ (2014) Learning face representation from scratch. arXiv:1411.7923
SharifMBhagavatulaSBauerLReiterMKAccessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition2016InACM SIGSAC10.1145/2976749.2978392
Lin T Y, RoyChowdhury A, Maji S (2015) Bilinear cnns for fine-grained visual recognition. In: ICCV
Ulyanov D, Lebedev V, Vedaldi A, Lempitsky V (2016) Texture networks: Feed-forward synthesis of textures and stylized images. In: ICML
Miyato T, i Maeda S, Koyama M, Nakae K, Ishii S (2016) Distributional smoothing with virtual adversarial training. In: ICLR
Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification. In: CVPR
Zhang X, Xiong H, Lin W, Tian Q (2017) Picking neural activations for fine-grained recognition. In: TOMM
Chen S, Liu Y, Gao X, Han Z (2018) Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile devices. In: CCBR
Xiao C, Li B, Zhu J, He W, Liu M, Xiao D, Song D (2018a) Generating adversarial examples with adversarial networks. In: IJCAI
Kingma D, Ba J (2014) Adam: A method for stochastic optimization. In: ICLR
(2018) Deep face recognition: A survey. arXiv:1804.06655
Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. In: CVPR
Xiao C, Zhu J, Li B, He W, Liu M, Song D (2018b) Spatially transformed adversarial examples. arXiv:1801.02612
Mao S, Zhang S, Yang M (2019) Resolution-invariant person re-identification. In: IJCAI
Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: ICML
Sun Y, Liang D, Wang X, Tan X (2015) Deepid3: Face recognition with very deep neural networks. arXiv:1502.00873
Huang Z, Wang R, Shan S, Gool L, Chen X (2016) Cross euclidean-to-riemannian metric learning with application to face recognition from video. In: TPAMI
Huang R, Xu B, Schuurmans D, Szepesvari C (2015) Learning with a strong adversary. arXiv:1511.03034
Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: CVPR
Odena A, Olah C, Shlens J (2017) Conditional image synthesis with auxiliary classifier gans. In: ICML
Johnson J, Alahi A (2016) Fei-Fei L. In: ECCV. Perceptual losses for real-time style transfer and super-resolution
Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR
Isola P, Zhu J, Zhou T, Efros A (2017) Image-to-image translation with conditional adversarial networks. In: CVPR
Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) Sphereface: Deep hypersphere embedding for face recognition. In: CVPR
Mathieu M, Zhao J, Ramesh A, Sprechmann P, LeCun Y (2016) Disentangling factors of variation in deep representation using adversarial training. In: NIPS
Zhu J, Zhang R, Pathak D, Darrell T, Efros A, Wang O, Shechtman E (2017b) Toward multimodal image-to-image translation. In: NIPS
Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in computer vision: A survey. arXiv:1801.00553
Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved training of wasserstein gans. arXiv:1704.00028
Moschoglou S, Papaioannou A, Sagonas C, Deng J, Kotsia I, Zafeiriou S (2017) Agedb: The first manually collected in-the-wild age database. In: CVPR Workshop
9604_CR19
9604_CR18
9604_CR15
9604_CR59
9604_CR14
9604_CR58
9604_CR17
9604_CR16
9604_CR11
9604_CR55
9604_CR10
9604_CR54
9604_CR13
9604_CR57
9604_CR12
9604_CR56
9604_CR51
9604_CR53
9604_CR52
9604_CR48
9604_CR47
9604_CR49
9604_CR44
9604_CR43
9604_CR46
9604_CR45
9604_CR40
9604_CR42
9604_CR41
9604_CR37
9604_CR36
9604_CR39
9604_CR38
9604_CR33
9604_CR32
9604_CR35
9604_CR34
9604_CR31
9604_CR30
9604_CR71
9604_CR70
9604_CR2
9604_CR1
9604_CR4
9604_CR3
9604_CR9
9604_CR29
9604_CR6
9604_CR26
9604_CR5
9604_CR25
9604_CR69
9604_CR8
9604_CR28
9604_CR7
9604_CR27
9604_CR22
9604_CR66
9604_CR21
9604_CR65
9604_CR24
9604_CR68
9604_CR23
M Sharif (9604_CR50) 2016
9604_CR67
9604_CR62
9604_CR61
9604_CR20
9604_CR64
9604_CR63
9604_CR60
References_xml – reference: Mathieu M, Zhao J, Ramesh A, Sprechmann P, LeCun Y (2016) Disentangling factors of variation in deep representation using adversarial training. In: NIPS
– reference: Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: CVPR
– reference: Zhang X, Xiong H, Lin W, Tian Q (2017) Picking neural activations for fine-grained recognition. In: TOMM
– reference: Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: ICML
– reference: Guo Y, Zhang L, Hu Y, He X, Gao J (2016) Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In: ECCV
– reference: Sohn K, Yan X, Lee H (2015) Learning structured output representation using deep conditional generative models. In: NIPS
– reference: Huang R, Xu B, Schuurmans D, Szepesvari C (2015) Learning with a strong adversary. arXiv:1511.03034
– reference: Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. arXiv:1606.03498
– reference: Gao Z (2017) Wu Y, Jia Y, Learning a robust representation via a deep network on symmetric positive definite manifolds. Pattern Recognit
– reference: Odena A, Olah C, Shlens J (2017) Conditional image synthesis with auxiliary classifier gans. In: ICML
– reference: Sun Y, Liang D, Wang X, Tan X (2015) Deepid3: Face recognition with very deep neural networks. arXiv:1502.00873
– reference: Huang Z, Wang R, Shan S, Gool L, Chen X (2016) Cross euclidean-to-riemannian metric learning with application to face recognition from video. In: TPAMI
– reference: Moschoglou S, Papaioannou A, Sagonas C, Deng J, Kotsia I, Zafeiriou S (2017) Agedb: The first manually collected in-the-wild age database. In: CVPR Workshop
– reference: (2018) Deep face recognition: A survey. arXiv:1804.06655
– reference: Dabouei A, Soleymani S, Dawson J, Nasrabadi NM (2018) Fast geometrically-perturbed adversarial faces. arXiv:1809.08999
– reference: Gatys L A, Ecker A S, Bethge M (2016) Image style transfer using convolutional neural networks. In: CVPR
– reference: Sengupta S, Chen J, Castillo C, Patel V, Chellappa R, Jacobs D (2016) Frontal to profile face verification in the wild. In: WACV
– reference: Isola P, Zhu J, Zhou T, Efros A (2017) Image-to-image translation with conditional adversarial networks. In: CVPR
– reference: Ulyanov D, Lebedev V, Vedaldi A, Lempitsky V (2016) Texture networks: Feed-forward synthesis of textures and stylized images. In: ICML
– reference: Liu W, Wen Y, Yu Z, Yang M (2016b) Large-margin softmax loss for convolutional neural networks. In: ICML
– reference: Deng J, Guo J, Zafeiriou S (2018) Arcface: Additive angular margin loss for deep face recognition. arXiv:1801.07698
– reference: Hu J, Shen L, Sun G (2017) Squeeze-and-excitation networks. arXiv:1709.01507
– reference: Salimans T, Zhang H, Radford A, Metaxas D (2018) Improving gans using optimal transport. In: ICLR
– reference: Xiao C, Li B, Zhu J, He W, Liu M, Xiao D, Song D (2018a) Generating adversarial examples with adversarial networks. In: IJCAI
– reference: Zhu J, Park T, Isola P, Efros A (2017a) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV
– reference: Sharif M, Bhagavatula S, Bauer L, Reiter MK (2018) Adversarial generative nets: Neural network attacks on state-of-the-art face recognition. arXiv:1801.00349
– reference: Dong Y, Su H, Wu B, Li Z, Liu W, Zhang T, Zhu J (2019) Efficient decision-based black-box adversarial attacks on face recognition. In: CVPR
– reference: Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. In: CVPR
– reference: Kanbak C, Moosavi-Dezfooli SM, Frossard P (2017) Geometric robustness of deep networks: analysis and improvement. arXiv:1711.09115
– reference: Moosavi-Dezfooli S, Fawzi A, Fawzi O (2017) Universal adversarial perturbations. In: CVPR
– reference: Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2013) Intriguing properties of neural networks. In: ICLR
– reference: Zhu J, Zhang R, Pathak D, Darrell T, Efros A, Wang O, Shechtman E (2017b) Toward multimodal image-to-image translation. In: NIPS
– reference: Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) Sphereface: Deep hypersphere embedding for face recognition. In: CVPR
– reference: Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively with application to face verification. In: CVPR
– reference: Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy
– reference: Lin T Y, RoyChowdhury A, Maji S (2015) Bilinear cnns for fine-grained visual recognition. In: ICCV
– reference: Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in computer vision: A survey. arXiv:1801.00553
– reference: Denton E, Chintala S, Fergus R, et al. (2015) Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS
– reference: Yao H, Zhang S, Zhang Y, Li J, Tian Q (2017) One-shot fine-grained instance retrieval. In: ACM MM
– reference: Choi Y, Choi M, Kim M, Ha J, Kim S, Choo J (2018) Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR
– reference: He Q, He B, Zhang Y (2019) Multimedia based fast face recognition algorithm of speed up robust features. Multimed Tools Appl
– reference: Sanakoyeu A, Tschernezki V, Büchler U, Ommer B (2019) Divide and conquer the embedding space for metric learning. In: CVPR
– reference: Wang F, Liu W, Liu H, Cheng J (2018) Additive margin softmax for face verification. arXiv:1801.05599
– reference: Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: CVPR
– reference: SharifMBhagavatulaSBauerLReiterMKAccessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition2016InACM SIGSAC10.1145/2976749.2978392
– reference: Mao S, Zhang S, Yang M (2019) Resolution-invariant person re-identification. In: IJCAI
– reference: Hou R, Ma B, Chang H, Gu X, Shan S, Chen X (2019) Interaction-and-aggregation network for person re-identification. In: CVPR
– reference: Yan X, Yang J, Sohn K, Lee H (2016) Attribute2image: Conditional image generation from visual attributes. arXiv:1512.00570
– reference: Bose A, Aarabi P (2018) Adversarial attacks on face detectors using neural net based constrained optimization. arXiv:1805.12302
– reference: Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR
– reference: Chen S, Liu Y, Gao X, Han Z (2018) Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile devices. In: CCBR
– reference: Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: ECCV
– reference: Yi D, Lei Z, Liao S, Li SZ (2014) Learning face representation from scratch. arXiv:1411.7923
– reference: Johnson J, Alahi A (2016) Fei-Fei L. In: ECCV. Perceptual losses for real-time style transfer and super-resolution
– reference: Moosavi-Dezfooli S M, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In: Proc CVPR
– reference: Engstrom L, Tsipras D, Schmidt L, Madry A (2017) A rotation and a translation suffice: Fooling cnns with simple transformations. arXiv:1712.02779
– reference: Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved training of wasserstein gans. arXiv:1704.00028
– reference: Liu J, Zha Z, Tian Q I, Liu D, Yao T, Ling Q, Mei T (2016a) Multi-scale triplet cnn for person re-identification. In: ACM MM
– reference: Song Y, Shu R, Kushman N, Ermon S (2018) Constructing unrestricted adversarial examples with generative models. In: NIPS
– reference: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets, pp 2672–2680
– reference: Kingma D, Ba J (2014) Adam: A method for stochastic optimization. In: ICLR
– reference: Wang X, Girshick R, Gupta A, He K (2017) Non-local neural networks. arXiv:1711.07971
– reference: Xiao C, Zhu J, Li B, He W, Liu M, Song D (2018b) Spatially transformed adversarial examples. arXiv:1801.02612
– reference: Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification. In: CVPR
– reference: Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR
– reference: Miyato T, i Maeda S, Koyama M, Nakae K, Ishii S (2016) Distributional smoothing with virtual adversarial training. In: ICLR
– reference: Miyato T, Kataoka T, Koyama M, Yoshida Y (2018) Spectral normalization for generative adversarial networks. In: ICLR
– reference: Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report
– reference: Su J, Vargas DV, Sakurai K (2017) One pixel attack for fooling deep neural networks. arXiv:1710.08864
– reference: Goswami G, Ratha N, Agarwal A, Singh R, Vatsa M (2018) Unravelling robustness of deep learning based face recognition against adversarial attacks. arXiv:1803.00401
– ident: 9604_CR36
  doi: 10.24963/ijcai.2019/124
– ident: 9604_CR7
– ident: 9604_CR67
  doi: 10.1145/3123266.3123278
– ident: 9604_CR18
– ident: 9604_CR43
– ident: 9604_CR37
– ident: 9604_CR27
  doi: 10.1109/CVPR.2017.632
– ident: 9604_CR9
  doi: 10.1109/CVPR.2019.00482
– ident: 9604_CR10
– ident: 9604_CR4
  doi: 10.1109/SP.2017.49
– ident: 9604_CR23
  doi: 10.1109/CVPR.2018.00745
– ident: 9604_CR20
  doi: 10.1109/CVPR.2016.90
– ident: 9604_CR47
  doi: 10.1109/CVPR.2019.00056
– ident: 9604_CR24
– ident: 9604_CR53
– ident: 9604_CR57
– ident: 9604_CR38
– ident: 9604_CR6
  doi: 10.1109/CVPR.2018.00916
– ident: 9604_CR13
– ident: 9604_CR59
– volume-title: Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition
  year: 2016
  ident: 9604_CR50
  doi: 10.1145/2976749.2978392
– ident: 9604_CR65
– ident: 9604_CR34
– ident: 9604_CR44
– ident: 9604_CR61
– ident: 9604_CR11
  doi: 10.1109/CVPR.2019.00790
– ident: 9604_CR29
  doi: 10.1109/CVPR.2018.00467
– ident: 9604_CR5
  doi: 10.1007/978-3-319-97909-0_46
– ident: 9604_CR49
  doi: 10.1109/WACV.2016.7477558
– ident: 9604_CR60
  doi: 10.1109/LSP.2018.2822810
– ident: 9604_CR54
– ident: 9604_CR71
– ident: 9604_CR40
  doi: 10.1109/CVPR.2017.17
– ident: 9604_CR42
  doi: 10.1109/CVPRW.2017.250
– ident: 9604_CR70
  doi: 10.1109/ICCV.2017.244
– ident: 9604_CR41
  doi: 10.1109/CVPR.2016.282
– ident: 9604_CR12
– ident: 9604_CR22
  doi: 10.1109/CVPR.2019.00954
– ident: 9604_CR16
– ident: 9604_CR39
– ident: 9604_CR21
  doi: 10.1007/s11042-019-7209-0
– ident: 9604_CR31
– ident: 9604_CR68
– ident: 9604_CR30
  doi: 10.1109/CVPR.2019.00453
– ident: 9604_CR26
– ident: 9604_CR51
– ident: 9604_CR3
  doi: 10.1109/MMSP.2018.8547128
– ident: 9604_CR28
  doi: 10.1007/978-3-319-46475-6_43
– ident: 9604_CR55
  doi: 10.1109/CVPR.2014.244
– ident: 9604_CR32
  doi: 10.1109/ICCV.2015.170
– ident: 9604_CR45
– ident: 9604_CR33
  doi: 10.1145/2964284.2967209
– ident: 9604_CR14
  doi: 10.1109/CVPR.2016.265
– ident: 9604_CR58
  doi: 10.1109/CVPR.2014.220
– ident: 9604_CR15
– ident: 9604_CR17
  doi: 10.1609/aaai.v32i1.12341
– ident: 9604_CR1
  doi: 10.1109/ACCESS.2018.2807385
– ident: 9604_CR69
  doi: 10.1109/TMM.2017.2710803
– ident: 9604_CR19
  doi: 10.1007/978-3-319-46487-9_6
– ident: 9604_CR2
– ident: 9604_CR66
  doi: 10.1007/978-3-319-46493-0_47
– ident: 9604_CR25
– ident: 9604_CR48
  doi: 10.1109/CVPR.2015.7298682
– ident: 9604_CR46
– ident: 9604_CR52
– ident: 9604_CR63
  doi: 10.1007/978-3-319-46478-7_31
– ident: 9604_CR35
  doi: 10.1109/CVPR.2017.713
– ident: 9604_CR56
– ident: 9604_CR8
  doi: 10.1109/WACV.2019.00215
– ident: 9604_CR62
  doi: 10.1109/CVPR.2018.00813
– ident: 9604_CR64
  doi: 10.24963/ijcai.2018/543
SSID ssj0016524
Score 2.5349364
Snippet With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 855
SubjectTerms Computer Communication Networks
Computer Science
Data Structures and Information Theory
Face recognition
Multimedia
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
Target recognition
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWWDgo4AoFOSBDSwS27GTEVVUFRJMVOoW2a7dBaWIhqW_Hl_qtlABEkOW5OzB5_PdxXfvAVzn3DvvdE61loIKZRNqlGFUh8RN28zkUmOi-PQsB0PxOMpGESYHe2E27u_vZsE9CUYxycFgW9D5NuxkKVdI09CTvdWNgcwigW2e0OAF09gg8_Mc353QOrLcuAxtfEz_EPZjcEjuF9o8gi1XteFgSbxAoh22Ye8LiuAxjO_rGjvlybQiTX8QnXoa4joseiNeW0dWVUJBAgvdJwRRNWOtOdHIyTzTuBPxfZiKTBowajwJSbWoEz-BYf_hpTegkTyBWi55TSVPXFFYq3RmVYGMvDJHuDfJda6ChC2sEyyYsA8mHh5hmROeaa4NN9Zm_BRa1bRyZ0BSE9azMGOVFC6kY2NjvU6YTwqeWuEY70C6XM3SRmRxJLh4LdeYyKiBMmigbDRQzjtwsxrztsDV-FO6u1RSGW1sVjIRzkaFVt6B26Xi1p9_n-38f-IXsMuwkKX579KFVv3-4S5DJFKbq2YLfgIemNTA
  priority: 102
  providerName: Springer Nature
Title Attacks on state-of-the-art face recognition using attentional adversarial attack generative network
URI https://link.springer.com/article/10.1007/s11042-020-09604-z
https://www.proquest.com/docview/2476372004
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV2xbtswED0k9tIOTZumiJvU4NCtJSKRFEVNhW3YCRrUKIIYSCaBpKksgZzU6pKv751M2W2AZpAESBQHHu94R767B_DZyCpUwRpurVZc5T7hLneCWwzcrM-c0ZYCxR9zfbFQ32-ym7jhto6wys4mtoZ6ufK0R34mFGpCTjL99vDIiTWKTlcjhcY-9NEEG9OD_ng6_3m1PUfQWaS1NQnHtTGNaTOb5LmUUlMofCI3XvGnf5emnb_57Ii0XXlmb-FNdBnZaCPjd7AX6kM46OgYWNTOQ3j9V23B97AcNQ3lz7NVzdqsIb6qOHp7BIVjlfWBbbFD2ILg73eMam1GBDqzxNS8tjQ_6T12xe7aEtVkH1m9QY8fwWI2vZ5c8EipwL3UsuFaJqEovM9t5vOCeHq1oSJwWlqTYwtf-KAEKnaFio-X8iKoSlhpnXTeZ_ID9OpVHY6BpQ7Hs3DLPCkCBmlL5yubiCopZOpVEHIAaTeapY_1xon24r7cVUomCZQogbKVQPk0gC_bfx421TZebH3aCamMmrcud_NkAF87we0-_7-3jy_3dgKvBMFZ2t2XU-g1v36HT-iPNG4I-2Z2PoT-aDYez-l5fns5HcapiF8neoL3hRj9AdUC4pk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4hGICBN6I8PcAEFont5jEgVAGlPCeQ2ILtOiwoBRqE4EfxG7nLowUk2DpkSRwP_s73sO_uA9iOZOpSpyOudaC4Cq3HTWgE1xi4ads0UaApULy6Djq36vyueTcGn3UtDKVV1jqxUNTdnqUz8n2hcCeEhOnh0zMn1ii6Xa0pNEqxuHDvbxiy9Q_OjhHfHSHaJzdHHV6xCnArA5nzQHoujq0NddOGMVHVBhH1QQukjkIcYWPrlEDZTlH28VFWOJUKLbWRxlpiiUCVP6EkWnKqTG-fDm4tgmZFoht5HC2xXxXplKV6PhXCULBGQYPiHz8N4dC7_XUhW9i59hzMVA4qa5USNQ9jLluA2Zr8gVW6YAGmv3UyXIRuK8-pWp_1MlbUKPFeytG3pMQ7lmrr2CBTCUdQsv0Do86eVb4708QL3de0G-g9TsUeiobYpI1ZVuaqL8HtSJZ6GcazXuZWgPkG1zM23dCLHYaEXWNT7YnUi6VvlROyAX69momtupsTycZjMuzLTAgkiEBSIJB8NGB38M9T2dvj39HrNUhJtc_7yVAqG7BXAzf8_Pdsq__PtgWTnZury-Ty7PpiDaYEJdIU5z7rMJ6_vLoN9IRys1mIH4P7Ucv7FwTWFn4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRULtAQptxfKqD_TUWiS2N48DQhRY8WhXqCoSt9T22ntBWWCDEPw0fh0zibPbVio3Drkkjg-eh2fsb-YD2M6kd97pjGudKK5SG3GTGsE1Jm7a9kyWaEoUfwyS4wt1etm7nIOnthaGYJWtT6wd9XBs6Yx8Ryi0hJRkuuMDLOL8sL93fcOJQYpuWls6jUZFztzDPaZvk92TQ5T1ZyH6R78OjnlgGOBWJrLiiYxcnlub6p5Nc6KtTTLqiZZInaU4wubWKYF67tEO8FFWOOWFltpIYy0xRqD7n08pK-rA_LejwfnP6R1G0guUulnEcV-OQ8lOU7gXU1kMpW6UQij--Pe2OIt1_7merXe9_jtYDOEq22_0axnmXLkCSy0VBAueYQXe_tHX8D0M96uKavfZuGR1xRIfe46RJsHwmNfWsSluCUcQ9H7EqM9nQL8zTSzRE022Qe9xKjaq22OTb2Zlg1z_ABevstgfoVOOS7cKLDa4nrkZplHuMEEcGut1JHyUy9gqJ2QX4nY1Cxt6nRPlxlUx69JMEihQAkUtgeKxC1-m_1w3nT5eHL3RCqkIVj8pZjraha-t4Gaf_z_b2suzfYIF1PXi-8ngbB3eCELV1IdAG9Cpbu_cJoZFldkK-sfg92ur_DPW0hwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attacks+on+state-of-the-art+face+recognition+using+attentional+adversarial+attack+generative+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Lu%2C+Yang&rft.au=Song%2C+Qing&rft.au=Wu%2C+Yingqi&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=1&rft.spage=855&rft.epage=875&rft_id=info:doi/10.1007%2Fs11042-020-09604-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon