Attacks on state-of-the-art face recognition using attentional adversarial attack generative network
With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face recognition networks are subject to attacks. Generating adversarial examples is an effective attack method, which misleads the face recognition sys...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 1; pp. 855 - 875 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face recognition networks are subject to attacks. Generating adversarial examples is an effective attack method, which misleads the face recognition system through obfuscation attack (rejecting a genuine subject) or impersonation attack (matching to an impostor). In this paper, we introduce a novel GAN, Attentional Adversarial Attack Generative Network (
A
3
G
N
), to generate adversarial examples that mislead the network to identify someone as the target person not misclassify inconspicuously. For capturing the geometric and context information of the target person, this work adds a conditional variational autoencoder and attention modules to learn the instance-level correspondences between faces. Unlike traditional two-player GAN, this work introduces a face recognition network as the third player to participate in the competition between generator and discriminator which allows the attacker to impersonate the target person better. The generated faces which are hard to arouse the notice of onlookers can evade recognition by state-of-the-art networks and most of them are recognized as the target person. |
---|---|
AbstractList | With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face recognition networks are subject to attacks. Generating adversarial examples is an effective attack method, which misleads the face recognition system through obfuscation attack (rejecting a genuine subject) or impersonation attack (matching to an impostor). In this paper, we introduce a novel GAN, Attentional Adversarial Attack Generative Network (
A
3
G
N
), to generate adversarial examples that mislead the network to identify someone as the target person not misclassify inconspicuously. For capturing the geometric and context information of the target person, this work adds a conditional variational autoencoder and attention modules to learn the instance-level correspondences between faces. Unlike traditional two-player GAN, this work introduces a face recognition network as the third player to participate in the competition between generator and discriminator which allows the attacker to impersonate the target person better. The generated faces which are hard to arouse the notice of onlookers can evade recognition by state-of-the-art networks and most of them are recognized as the target person. With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face recognition networks are subject to attacks. Generating adversarial examples is an effective attack method, which misleads the face recognition system through obfuscation attack (rejecting a genuine subject) or impersonation attack (matching to an impostor). In this paper, we introduce a novel GAN, Attentional Adversarial Attack Generative Network (A3GN), to generate adversarial examples that mislead the network to identify someone as the target person not misclassify inconspicuously. For capturing the geometric and context information of the target person, this work adds a conditional variational autoencoder and attention modules to learn the instance-level correspondences between faces. Unlike traditional two-player GAN, this work introduces a face recognition network as the third player to participate in the competition between generator and discriminator which allows the attacker to impersonate the target person better. The generated faces which are hard to arouse the notice of onlookers can evade recognition by state-of-the-art networks and most of them are recognized as the target person. |
Author | Yang, Lu Wu, Yingqi Song, Qing |
Author_xml | – sequence: 1 givenname: Lu surname: Yang fullname: Yang, Lu organization: Pattern Recognition and Intelligence Vision Lab, Beijing University of Posts and Telecommunications – sequence: 2 givenname: Qing surname: Song fullname: Song, Qing email: priv@bupt.edu.cn organization: Pattern Recognition and Intelligence Vision Lab, Beijing University of Posts and Telecommunications – sequence: 3 givenname: Yingqi surname: Wu fullname: Wu, Yingqi organization: Pattern Recognition and Intelligence Vision Lab, Beijing University of Posts and Telecommunications |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqOTj93sHkvxCwpe9BzSdHbdtmZrklbsrzftCoKHHoaZwPtMhmdEBq5zSMg1g1sGoO4CYyA5BQ4UqgIk3Z-RIcuVoEpxNkizKIGqHNgFGYWwBGBFzuWQLCYxGrsKWeeyEE1E2tU0viM1Pma1sZh5tF3j2timxDa0rslMjOgOb7POzGKHPhjfHubjqqxBh97EdoeZw_jV-dUlOa_NOuDVbx-Tt4f71-kTnb08Pk8nM2pFISItBGBVWatMblXFgMmiZKyEQphSpYStLEoOEmoBLJW0HGXNjTBzMbc2F2Ny0-_d-O5ziyHqZbf16cyguVSFUBxAphTvU9Z3IXis9ca3H8Z_awb6YFP3NnWyqY829T5B5T_ItklXkhC9adenUdGjIf3jGvR_V52gfgDS9YzO |
CitedBy_id | crossref_primary_10_1007_s11263_024_02031_9 crossref_primary_10_1016_j_future_2022_10_022 crossref_primary_10_1109_TMM_2022_3217413 crossref_primary_10_1109_TBDATA_2024_3403377 crossref_primary_10_3390_app14125183 crossref_primary_10_1109_ACCESS_2023_3307132 crossref_primary_10_3390_jimaging9010018 crossref_primary_10_1109_TIFS_2021_3102492 crossref_primary_10_1007_s11042_022_12865_5 crossref_primary_10_32604_cmc_2023_039781 crossref_primary_10_1016_j_neucom_2023_126321 crossref_primary_10_1007_s10921_023_01028_7 crossref_primary_10_1007_s11042_022_14021_5 crossref_primary_10_1016_j_neucom_2025_129453 crossref_primary_10_1016_j_neucom_2024_129295 crossref_primary_10_1007_s11042_024_19831_3 crossref_primary_10_1109_ACCESS_2024_3435527 crossref_primary_10_1109_TMM_2024_3407679 crossref_primary_10_1109_TPAMI_2024_3522994 crossref_primary_10_1016_j_neucom_2024_127517 crossref_primary_10_1155_2021_3670339 crossref_primary_10_1007_s11263_022_01622_8 crossref_primary_10_1007_s12204_023_2692_x crossref_primary_10_1016_j_engappai_2024_109451 crossref_primary_10_1109_ACCESS_2021_3096895 crossref_primary_10_1016_j_asoc_2025_112983 crossref_primary_10_1007_s11042_023_18023_9 crossref_primary_10_1007_s11277_021_08176_x crossref_primary_10_1145_3665496 crossref_primary_10_1109_ACCESS_2024_3439741 crossref_primary_10_1016_j_procs_2021_08_066 crossref_primary_10_1109_TII_2022_3169973 crossref_primary_10_1186_s13636_022_00254_7 crossref_primary_10_1109_TIFS_2024_3402167 |
Cites_doi | 10.24963/ijcai.2019/124 10.1145/3123266.3123278 10.1109/CVPR.2017.632 10.1109/CVPR.2019.00482 10.1109/SP.2017.49 10.1109/CVPR.2018.00745 10.1109/CVPR.2016.90 10.1109/CVPR.2019.00056 10.1109/CVPR.2018.00916 10.1145/2976749.2978392 10.1109/CVPR.2019.00790 10.1109/CVPR.2018.00467 10.1007/978-3-319-97909-0_46 10.1109/WACV.2016.7477558 10.1109/LSP.2018.2822810 10.1109/CVPR.2017.17 10.1109/CVPRW.2017.250 10.1109/ICCV.2017.244 10.1109/CVPR.2016.282 10.1109/CVPR.2019.00954 10.1007/s11042-019-7209-0 10.1109/CVPR.2019.00453 10.1109/MMSP.2018.8547128 10.1007/978-3-319-46475-6_43 10.1109/CVPR.2014.244 10.1109/ICCV.2015.170 10.1145/2964284.2967209 10.1109/CVPR.2016.265 10.1109/CVPR.2014.220 10.1609/aaai.v32i1.12341 10.1109/ACCESS.2018.2807385 10.1109/TMM.2017.2710803 10.1007/978-3-319-46487-9_6 10.1007/978-3-319-46493-0_47 10.1109/CVPR.2015.7298682 10.1007/978-3-319-46478-7_31 10.1109/CVPR.2017.713 10.1109/WACV.2019.00215 10.1109/CVPR.2018.00813 10.24963/ijcai.2018/543 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-020-09604-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 875 |
ExternalDocumentID | 10_1007_s11042_020_09604_z |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-630e99cc7a5c79101468118063a87363c9ce42040f301f304c2e4f2a3ab3bcc53 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 03:41:42 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Tue Jul 01 04:13:06 EDT 2025 Fri Feb 21 02:37:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Face recognition Adversarial attack Generative adversarial networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-630e99cc7a5c79101468118063a87363c9ce42040f301f304c2e4f2a3ab3bcc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s11042-020-09604-z |
PQID | 2476372004 |
PQPubID | 54626 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2476372004 crossref_primary_10_1007_s11042_020_09604_z crossref_citationtrail_10_1007_s11042_020_09604_z springer_journals_10_1007_s11042_020_09604_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210100 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Dong Y, Su H, Wu B, Li Z, Liu W, Zhang T, Zhu J (2019) Efficient decision-based black-box adversarial attacks on face recognition. In: CVPR Sengupta S, Chen J, Castillo C, Patel V, Chellappa R, Jacobs D (2016) Frontal to profile face verification in the wild. In: WACV Liu J, Zha Z, Tian Q I, Liu D, Yao T, Ling Q, Mei T (2016a) Multi-scale triplet cnn for person re-identification. In: ACM MM Moosavi-Dezfooli S M, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In: Proc CVPR Wang X, Girshick R, Gupta A, He K (2017) Non-local neural networks. arXiv:1711.07971 Moosavi-Dezfooli S, Fawzi A, Fawzi O (2017) Universal adversarial perturbations. In: CVPR Yan X, Yang J, Sohn K, Lee H (2016) Attribute2image: Conditional image generation from visual attributes. arXiv:1512.00570 Gatys L A, Ecker A S, Bethge M (2016) Image style transfer using convolutional neural networks. In: CVPR Choi Y, Choi M, Kim M, Ha J, Kim S, Choo J (2018) Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report Hou R, Ma B, Chang H, Gu X, Shan S, Chen X (2019) Interaction-and-aggregation network for person re-identification. In: CVPR Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: ECCV Sohn K, Yan X, Lee H (2015) Learning structured output representation using deep conditional generative models. In: NIPS Miyato T, Kataoka T, Koyama M, Yoshida Y (2018) Spectral normalization for generative adversarial networks. In: ICLR Denton E, Chintala S, Fergus R, et al. (2015) Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS Liu W, Wen Y, Yu Z, Yang M (2016b) Large-margin softmax loss for convolutional neural networks. In: ICML Yao H, Zhang S, Zhang Y, Li J, Tian Q (2017) One-shot fine-grained instance retrieval. In: ACM MM Salimans T, Zhang H, Radford A, Metaxas D (2018) Improving gans using optimal transport. In: ICLR Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR Goswami G, Ratha N, Agarwal A, Singh R, Vatsa M (2018) Unravelling robustness of deep learning based face recognition against adversarial attacks. arXiv:1803.00401 Song Y, Shu R, Kushman N, Ermon S (2018) Constructing unrestricted adversarial examples with generative models. In: NIPS Deng J, Guo J, Zafeiriou S (2018) Arcface: Additive angular margin loss for deep face recognition. arXiv:1801.07698 Guo Y, Zhang L, Hu Y, He X, Gao J (2016) Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In: ECCV Dabouei A, Soleymani S, Dawson J, Nasrabadi NM (2018) Fast geometrically-perturbed adversarial faces. arXiv:1809.08999 Sanakoyeu A, Tschernezki V, Büchler U, Ommer B (2019) Divide and conquer the embedding space for metric learning. In: CVPR Zhu J, Park T, Isola P, Efros A (2017a) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. arXiv:1606.03498 Bose A, Aarabi P (2018) Adversarial attacks on face detectors using neural net based constrained optimization. arXiv:1805.12302 Kanbak C, Moosavi-Dezfooli SM, Frossard P (2017) Geometric robustness of deep networks: analysis and improvement. arXiv:1711.09115 Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy Su J, Vargas DV, Sakurai K (2017) One pixel attack for fooling deep neural networks. arXiv:1710.08864 Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2013) Intriguing properties of neural networks. In: ICLR Hu J, Shen L, Sun G (2017) Squeeze-and-excitation networks. arXiv:1709.01507 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets, pp 2672–2680 Gao Z (2017) Wu Y, Jia Y, Learning a robust representation via a deep network on symmetric positive definite manifolds. Pattern Recognit He Q, He B, Zhang Y (2019) Multimedia based fast face recognition algorithm of speed up robust features. Multimed Tools Appl Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively with application to face verification. In: CVPR Wang F, Liu W, Liu H, Cheng J (2018) Additive margin softmax for face verification. arXiv:1801.05599 Sharif M, Bhagavatula S, Bauer L, Reiter MK (2018) Adversarial generative nets: Neural network attacks on state-of-the-art face recognition. arXiv:1801.00349 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: CVPR Engstrom L, Tsipras D, Schmidt L, Madry A (2017) A rotation and a translation suffice: Fooling cnns with simple transformations. arXiv:1712.02779 Yi D, Lei Z, Liao S, Li SZ (2014) Learning face representation from scratch. arXiv:1411.7923 SharifMBhagavatulaSBauerLReiterMKAccessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition2016InACM SIGSAC10.1145/2976749.2978392 Lin T Y, RoyChowdhury A, Maji S (2015) Bilinear cnns for fine-grained visual recognition. In: ICCV Ulyanov D, Lebedev V, Vedaldi A, Lempitsky V (2016) Texture networks: Feed-forward synthesis of textures and stylized images. In: ICML Miyato T, i Maeda S, Koyama M, Nakae K, Ishii S (2016) Distributional smoothing with virtual adversarial training. In: ICLR Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification. In: CVPR Zhang X, Xiong H, Lin W, Tian Q (2017) Picking neural activations for fine-grained recognition. In: TOMM Chen S, Liu Y, Gao X, Han Z (2018) Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile devices. In: CCBR Xiao C, Li B, Zhu J, He W, Liu M, Xiao D, Song D (2018a) Generating adversarial examples with adversarial networks. In: IJCAI Kingma D, Ba J (2014) Adam: A method for stochastic optimization. In: ICLR (2018) Deep face recognition: A survey. arXiv:1804.06655 Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. In: CVPR Xiao C, Zhu J, Li B, He W, Liu M, Song D (2018b) Spatially transformed adversarial examples. arXiv:1801.02612 Mao S, Zhang S, Yang M (2019) Resolution-invariant person re-identification. In: IJCAI Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: ICML Sun Y, Liang D, Wang X, Tan X (2015) Deepid3: Face recognition with very deep neural networks. arXiv:1502.00873 Huang Z, Wang R, Shan S, Gool L, Chen X (2016) Cross euclidean-to-riemannian metric learning with application to face recognition from video. In: TPAMI Huang R, Xu B, Schuurmans D, Szepesvari C (2015) Learning with a strong adversary. arXiv:1511.03034 Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: CVPR Odena A, Olah C, Shlens J (2017) Conditional image synthesis with auxiliary classifier gans. In: ICML Johnson J, Alahi A (2016) Fei-Fei L. In: ECCV. Perceptual losses for real-time style transfer and super-resolution Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR Isola P, Zhu J, Zhou T, Efros A (2017) Image-to-image translation with conditional adversarial networks. In: CVPR Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) Sphereface: Deep hypersphere embedding for face recognition. In: CVPR Mathieu M, Zhao J, Ramesh A, Sprechmann P, LeCun Y (2016) Disentangling factors of variation in deep representation using adversarial training. In: NIPS Zhu J, Zhang R, Pathak D, Darrell T, Efros A, Wang O, Shechtman E (2017b) Toward multimodal image-to-image translation. In: NIPS Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in computer vision: A survey. arXiv:1801.00553 Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved training of wasserstein gans. arXiv:1704.00028 Moschoglou S, Papaioannou A, Sagonas C, Deng J, Kotsia I, Zafeiriou S (2017) Agedb: The first manually collected in-the-wild age database. In: CVPR Workshop 9604_CR19 9604_CR18 9604_CR15 9604_CR59 9604_CR14 9604_CR58 9604_CR17 9604_CR16 9604_CR11 9604_CR55 9604_CR10 9604_CR54 9604_CR13 9604_CR57 9604_CR12 9604_CR56 9604_CR51 9604_CR53 9604_CR52 9604_CR48 9604_CR47 9604_CR49 9604_CR44 9604_CR43 9604_CR46 9604_CR45 9604_CR40 9604_CR42 9604_CR41 9604_CR37 9604_CR36 9604_CR39 9604_CR38 9604_CR33 9604_CR32 9604_CR35 9604_CR34 9604_CR31 9604_CR30 9604_CR71 9604_CR70 9604_CR2 9604_CR1 9604_CR4 9604_CR3 9604_CR9 9604_CR29 9604_CR6 9604_CR26 9604_CR5 9604_CR25 9604_CR69 9604_CR8 9604_CR28 9604_CR7 9604_CR27 9604_CR22 9604_CR66 9604_CR21 9604_CR65 9604_CR24 9604_CR68 9604_CR23 M Sharif (9604_CR50) 2016 9604_CR67 9604_CR62 9604_CR61 9604_CR20 9604_CR64 9604_CR63 9604_CR60 |
References_xml | – reference: Mathieu M, Zhao J, Ramesh A, Sprechmann P, LeCun Y (2016) Disentangling factors of variation in deep representation using adversarial training. In: NIPS – reference: Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: CVPR – reference: Zhang X, Xiong H, Lin W, Tian Q (2017) Picking neural activations for fine-grained recognition. In: TOMM – reference: Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: ICML – reference: Guo Y, Zhang L, Hu Y, He X, Gao J (2016) Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In: ECCV – reference: Sohn K, Yan X, Lee H (2015) Learning structured output representation using deep conditional generative models. In: NIPS – reference: Huang R, Xu B, Schuurmans D, Szepesvari C (2015) Learning with a strong adversary. arXiv:1511.03034 – reference: Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. arXiv:1606.03498 – reference: Gao Z (2017) Wu Y, Jia Y, Learning a robust representation via a deep network on symmetric positive definite manifolds. Pattern Recognit – reference: Odena A, Olah C, Shlens J (2017) Conditional image synthesis with auxiliary classifier gans. In: ICML – reference: Sun Y, Liang D, Wang X, Tan X (2015) Deepid3: Face recognition with very deep neural networks. arXiv:1502.00873 – reference: Huang Z, Wang R, Shan S, Gool L, Chen X (2016) Cross euclidean-to-riemannian metric learning with application to face recognition from video. In: TPAMI – reference: Moschoglou S, Papaioannou A, Sagonas C, Deng J, Kotsia I, Zafeiriou S (2017) Agedb: The first manually collected in-the-wild age database. In: CVPR Workshop – reference: (2018) Deep face recognition: A survey. arXiv:1804.06655 – reference: Dabouei A, Soleymani S, Dawson J, Nasrabadi NM (2018) Fast geometrically-perturbed adversarial faces. arXiv:1809.08999 – reference: Gatys L A, Ecker A S, Bethge M (2016) Image style transfer using convolutional neural networks. In: CVPR – reference: Sengupta S, Chen J, Castillo C, Patel V, Chellappa R, Jacobs D (2016) Frontal to profile face verification in the wild. In: WACV – reference: Isola P, Zhu J, Zhou T, Efros A (2017) Image-to-image translation with conditional adversarial networks. In: CVPR – reference: Ulyanov D, Lebedev V, Vedaldi A, Lempitsky V (2016) Texture networks: Feed-forward synthesis of textures and stylized images. In: ICML – reference: Liu W, Wen Y, Yu Z, Yang M (2016b) Large-margin softmax loss for convolutional neural networks. In: ICML – reference: Deng J, Guo J, Zafeiriou S (2018) Arcface: Additive angular margin loss for deep face recognition. arXiv:1801.07698 – reference: Hu J, Shen L, Sun G (2017) Squeeze-and-excitation networks. arXiv:1709.01507 – reference: Salimans T, Zhang H, Radford A, Metaxas D (2018) Improving gans using optimal transport. In: ICLR – reference: Xiao C, Li B, Zhu J, He W, Liu M, Xiao D, Song D (2018a) Generating adversarial examples with adversarial networks. In: IJCAI – reference: Zhu J, Park T, Isola P, Efros A (2017a) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV – reference: Sharif M, Bhagavatula S, Bauer L, Reiter MK (2018) Adversarial generative nets: Neural network attacks on state-of-the-art face recognition. arXiv:1801.00349 – reference: Dong Y, Su H, Wu B, Li Z, Liu W, Zhang T, Zhu J (2019) Efficient decision-based black-box adversarial attacks on face recognition. In: CVPR – reference: Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. In: CVPR – reference: Kanbak C, Moosavi-Dezfooli SM, Frossard P (2017) Geometric robustness of deep networks: analysis and improvement. arXiv:1711.09115 – reference: Moosavi-Dezfooli S, Fawzi A, Fawzi O (2017) Universal adversarial perturbations. In: CVPR – reference: Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2013) Intriguing properties of neural networks. In: ICLR – reference: Zhu J, Zhang R, Pathak D, Darrell T, Efros A, Wang O, Shechtman E (2017b) Toward multimodal image-to-image translation. In: NIPS – reference: Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) Sphereface: Deep hypersphere embedding for face recognition. In: CVPR – reference: Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively with application to face verification. In: CVPR – reference: Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy – reference: Lin T Y, RoyChowdhury A, Maji S (2015) Bilinear cnns for fine-grained visual recognition. In: ICCV – reference: Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in computer vision: A survey. arXiv:1801.00553 – reference: Denton E, Chintala S, Fergus R, et al. (2015) Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS – reference: Yao H, Zhang S, Zhang Y, Li J, Tian Q (2017) One-shot fine-grained instance retrieval. In: ACM MM – reference: Choi Y, Choi M, Kim M, Ha J, Kim S, Choo J (2018) Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR – reference: He Q, He B, Zhang Y (2019) Multimedia based fast face recognition algorithm of speed up robust features. Multimed Tools Appl – reference: Sanakoyeu A, Tschernezki V, Büchler U, Ommer B (2019) Divide and conquer the embedding space for metric learning. In: CVPR – reference: Wang F, Liu W, Liu H, Cheng J (2018) Additive margin softmax for face verification. arXiv:1801.05599 – reference: Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: CVPR – reference: SharifMBhagavatulaSBauerLReiterMKAccessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition2016InACM SIGSAC10.1145/2976749.2978392 – reference: Mao S, Zhang S, Yang M (2019) Resolution-invariant person re-identification. In: IJCAI – reference: Hou R, Ma B, Chang H, Gu X, Shan S, Chen X (2019) Interaction-and-aggregation network for person re-identification. In: CVPR – reference: Yan X, Yang J, Sohn K, Lee H (2016) Attribute2image: Conditional image generation from visual attributes. arXiv:1512.00570 – reference: Bose A, Aarabi P (2018) Adversarial attacks on face detectors using neural net based constrained optimization. arXiv:1805.12302 – reference: Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR – reference: Chen S, Liu Y, Gao X, Han Z (2018) Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile devices. In: CCBR – reference: Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: ECCV – reference: Yi D, Lei Z, Liao S, Li SZ (2014) Learning face representation from scratch. arXiv:1411.7923 – reference: Johnson J, Alahi A (2016) Fei-Fei L. In: ECCV. Perceptual losses for real-time style transfer and super-resolution – reference: Moosavi-Dezfooli S M, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In: Proc CVPR – reference: Engstrom L, Tsipras D, Schmidt L, Madry A (2017) A rotation and a translation suffice: Fooling cnns with simple transformations. arXiv:1712.02779 – reference: Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved training of wasserstein gans. arXiv:1704.00028 – reference: Liu J, Zha Z, Tian Q I, Liu D, Yao T, Ling Q, Mei T (2016a) Multi-scale triplet cnn for person re-identification. In: ACM MM – reference: Song Y, Shu R, Kushman N, Ermon S (2018) Constructing unrestricted adversarial examples with generative models. In: NIPS – reference: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets, pp 2672–2680 – reference: Kingma D, Ba J (2014) Adam: A method for stochastic optimization. In: ICLR – reference: Wang X, Girshick R, Gupta A, He K (2017) Non-local neural networks. arXiv:1711.07971 – reference: Xiao C, Zhu J, Li B, He W, Liu M, Song D (2018b) Spatially transformed adversarial examples. arXiv:1801.02612 – reference: Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification. In: CVPR – reference: Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR – reference: Miyato T, i Maeda S, Koyama M, Nakae K, Ishii S (2016) Distributional smoothing with virtual adversarial training. In: ICLR – reference: Miyato T, Kataoka T, Koyama M, Yoshida Y (2018) Spectral normalization for generative adversarial networks. In: ICLR – reference: Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report – reference: Su J, Vargas DV, Sakurai K (2017) One pixel attack for fooling deep neural networks. arXiv:1710.08864 – reference: Goswami G, Ratha N, Agarwal A, Singh R, Vatsa M (2018) Unravelling robustness of deep learning based face recognition against adversarial attacks. arXiv:1803.00401 – ident: 9604_CR36 doi: 10.24963/ijcai.2019/124 – ident: 9604_CR7 – ident: 9604_CR67 doi: 10.1145/3123266.3123278 – ident: 9604_CR18 – ident: 9604_CR43 – ident: 9604_CR37 – ident: 9604_CR27 doi: 10.1109/CVPR.2017.632 – ident: 9604_CR9 doi: 10.1109/CVPR.2019.00482 – ident: 9604_CR10 – ident: 9604_CR4 doi: 10.1109/SP.2017.49 – ident: 9604_CR23 doi: 10.1109/CVPR.2018.00745 – ident: 9604_CR20 doi: 10.1109/CVPR.2016.90 – ident: 9604_CR47 doi: 10.1109/CVPR.2019.00056 – ident: 9604_CR24 – ident: 9604_CR53 – ident: 9604_CR57 – ident: 9604_CR38 – ident: 9604_CR6 doi: 10.1109/CVPR.2018.00916 – ident: 9604_CR13 – ident: 9604_CR59 – volume-title: Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition year: 2016 ident: 9604_CR50 doi: 10.1145/2976749.2978392 – ident: 9604_CR65 – ident: 9604_CR34 – ident: 9604_CR44 – ident: 9604_CR61 – ident: 9604_CR11 doi: 10.1109/CVPR.2019.00790 – ident: 9604_CR29 doi: 10.1109/CVPR.2018.00467 – ident: 9604_CR5 doi: 10.1007/978-3-319-97909-0_46 – ident: 9604_CR49 doi: 10.1109/WACV.2016.7477558 – ident: 9604_CR60 doi: 10.1109/LSP.2018.2822810 – ident: 9604_CR54 – ident: 9604_CR71 – ident: 9604_CR40 doi: 10.1109/CVPR.2017.17 – ident: 9604_CR42 doi: 10.1109/CVPRW.2017.250 – ident: 9604_CR70 doi: 10.1109/ICCV.2017.244 – ident: 9604_CR41 doi: 10.1109/CVPR.2016.282 – ident: 9604_CR12 – ident: 9604_CR22 doi: 10.1109/CVPR.2019.00954 – ident: 9604_CR16 – ident: 9604_CR39 – ident: 9604_CR21 doi: 10.1007/s11042-019-7209-0 – ident: 9604_CR31 – ident: 9604_CR68 – ident: 9604_CR30 doi: 10.1109/CVPR.2019.00453 – ident: 9604_CR26 – ident: 9604_CR51 – ident: 9604_CR3 doi: 10.1109/MMSP.2018.8547128 – ident: 9604_CR28 doi: 10.1007/978-3-319-46475-6_43 – ident: 9604_CR55 doi: 10.1109/CVPR.2014.244 – ident: 9604_CR32 doi: 10.1109/ICCV.2015.170 – ident: 9604_CR45 – ident: 9604_CR33 doi: 10.1145/2964284.2967209 – ident: 9604_CR14 doi: 10.1109/CVPR.2016.265 – ident: 9604_CR58 doi: 10.1109/CVPR.2014.220 – ident: 9604_CR15 – ident: 9604_CR17 doi: 10.1609/aaai.v32i1.12341 – ident: 9604_CR1 doi: 10.1109/ACCESS.2018.2807385 – ident: 9604_CR69 doi: 10.1109/TMM.2017.2710803 – ident: 9604_CR19 doi: 10.1007/978-3-319-46487-9_6 – ident: 9604_CR2 – ident: 9604_CR66 doi: 10.1007/978-3-319-46493-0_47 – ident: 9604_CR25 – ident: 9604_CR48 doi: 10.1109/CVPR.2015.7298682 – ident: 9604_CR46 – ident: 9604_CR52 – ident: 9604_CR63 doi: 10.1007/978-3-319-46478-7_31 – ident: 9604_CR35 doi: 10.1109/CVPR.2017.713 – ident: 9604_CR56 – ident: 9604_CR8 doi: 10.1109/WACV.2019.00215 – ident: 9604_CR62 doi: 10.1109/CVPR.2018.00813 – ident: 9604_CR64 doi: 10.24963/ijcai.2018/543 |
SSID | ssj0016524 |
Score | 2.5349364 |
Snippet | With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. Therefore, it is very important to study how face... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 855 |
SubjectTerms | Computer Communication Networks Computer Science Data Structures and Information Theory Face recognition Multimedia Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems Target recognition |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWWDgo4AoFOSBDSwS27GTEVVUFRJMVOoW2a7dBaWIhqW_Hl_qtlABEkOW5OzB5_PdxXfvAVzn3DvvdE61loIKZRNqlGFUh8RN28zkUmOi-PQsB0PxOMpGESYHe2E27u_vZsE9CUYxycFgW9D5NuxkKVdI09CTvdWNgcwigW2e0OAF09gg8_Mc353QOrLcuAxtfEz_EPZjcEjuF9o8gi1XteFgSbxAoh22Ye8LiuAxjO_rGjvlybQiTX8QnXoa4joseiNeW0dWVUJBAgvdJwRRNWOtOdHIyTzTuBPxfZiKTBowajwJSbWoEz-BYf_hpTegkTyBWi55TSVPXFFYq3RmVYGMvDJHuDfJda6ChC2sEyyYsA8mHh5hmROeaa4NN9Zm_BRa1bRyZ0BSE9azMGOVFC6kY2NjvU6YTwqeWuEY70C6XM3SRmRxJLh4LdeYyKiBMmigbDRQzjtwsxrztsDV-FO6u1RSGW1sVjIRzkaFVt6B26Xi1p9_n-38f-IXsMuwkKX579KFVv3-4S5DJFKbq2YLfgIemNTA priority: 102 providerName: Springer Nature |
Title | Attacks on state-of-the-art face recognition using attentional adversarial attack generative network |
URI | https://link.springer.com/article/10.1007/s11042-020-09604-z https://www.proquest.com/docview/2476372004 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV2xbtswED0k9tIOTZumiJvU4NCtJSKRFEVNhW3YCRrUKIIYSCaBpKksgZzU6pKv751M2W2AZpAESBQHHu94R767B_DZyCpUwRpurVZc5T7hLneCWwzcrM-c0ZYCxR9zfbFQ32-ym7jhto6wys4mtoZ6ufK0R34mFGpCTjL99vDIiTWKTlcjhcY-9NEEG9OD_ng6_3m1PUfQWaS1NQnHtTGNaTOb5LmUUlMofCI3XvGnf5emnb_57Ii0XXlmb-FNdBnZaCPjd7AX6kM46OgYWNTOQ3j9V23B97AcNQ3lz7NVzdqsIb6qOHp7BIVjlfWBbbFD2ILg73eMam1GBDqzxNS8tjQ_6T12xe7aEtVkH1m9QY8fwWI2vZ5c8EipwL3UsuFaJqEovM9t5vOCeHq1oSJwWlqTYwtf-KAEKnaFio-X8iKoSlhpnXTeZ_ID9OpVHY6BpQ7Hs3DLPCkCBmlL5yubiCopZOpVEHIAaTeapY_1xon24r7cVUomCZQogbKVQPk0gC_bfx421TZebH3aCamMmrcud_NkAF87we0-_7-3jy_3dgKvBMFZ2t2XU-g1v36HT-iPNG4I-2Z2PoT-aDYez-l5fns5HcapiF8neoL3hRj9AdUC4pk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4hGICBN6I8PcAEFont5jEgVAGlPCeQ2ILtOiwoBRqE4EfxG7nLowUk2DpkSRwP_s73sO_uA9iOZOpSpyOudaC4Cq3HTWgE1xi4ads0UaApULy6Djq36vyueTcGn3UtDKVV1jqxUNTdnqUz8n2hcCeEhOnh0zMn1ii6Xa0pNEqxuHDvbxiy9Q_OjhHfHSHaJzdHHV6xCnArA5nzQHoujq0NddOGMVHVBhH1QQukjkIcYWPrlEDZTlH28VFWOJUKLbWRxlpiiUCVP6EkWnKqTG-fDm4tgmZFoht5HC2xXxXplKV6PhXCULBGQYPiHz8N4dC7_XUhW9i59hzMVA4qa5USNQ9jLluA2Zr8gVW6YAGmv3UyXIRuK8-pWp_1MlbUKPFeytG3pMQ7lmrr2CBTCUdQsv0Do86eVb4708QL3de0G-g9TsUeiobYpI1ZVuaqL8HtSJZ6GcazXuZWgPkG1zM23dCLHYaEXWNT7YnUi6VvlROyAX69momtupsTycZjMuzLTAgkiEBSIJB8NGB38M9T2dvj39HrNUhJtc_7yVAqG7BXAzf8_Pdsq__PtgWTnZury-Ty7PpiDaYEJdIU5z7rMJ6_vLoN9IRys1mIH4P7Ucv7FwTWFn4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRULtAQptxfKqD_TUWiS2N48DQhRY8WhXqCoSt9T22ntBWWCDEPw0fh0zibPbVio3Drkkjg-eh2fsb-YD2M6kd97pjGudKK5SG3GTGsE1Jm7a9kyWaEoUfwyS4wt1etm7nIOnthaGYJWtT6wd9XBs6Yx8Ryi0hJRkuuMDLOL8sL93fcOJQYpuWls6jUZFztzDPaZvk92TQ5T1ZyH6R78OjnlgGOBWJrLiiYxcnlub6p5Nc6KtTTLqiZZInaU4wubWKYF67tEO8FFWOOWFltpIYy0xRqD7n08pK-rA_LejwfnP6R1G0guUulnEcV-OQ8lOU7gXU1kMpW6UQij--Pe2OIt1_7merXe9_jtYDOEq22_0axnmXLkCSy0VBAueYQXe_tHX8D0M96uKavfZuGR1xRIfe46RJsHwmNfWsSluCUcQ9H7EqM9nQL8zTSzRE022Qe9xKjaq22OTb2Zlg1z_ABevstgfoVOOS7cKLDa4nrkZplHuMEEcGut1JHyUy9gqJ2QX4nY1Cxt6nRPlxlUx69JMEihQAkUtgeKxC1-m_1w3nT5eHL3RCqkIVj8pZjraha-t4Gaf_z_b2suzfYIF1PXi-8ngbB3eCELV1IdAG9Cpbu_cJoZFldkK-sfg92ur_DPW0hwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attacks+on+state-of-the-art+face+recognition+using+attentional+adversarial+attack+generative+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Lu%2C+Yang&rft.au=Song%2C+Qing&rft.au=Wu%2C+Yingqi&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=1&rft.spage=855&rft.epage=875&rft_id=info:doi/10.1007%2Fs11042-020-09604-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |