Robust and novel attention guided MultiResUnet model for 3D ground reaction force and moment prediction from foot kinematics

Ground reaction force and moment (GRF&M) measurements are vital for biomechanical analysis and significantly impact the clinical domain for early abnormality detection for different neurodegenerative diseases. Force platforms have become the de facto standard for measuring GRF&M signals in r...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 36; no. 3; pp. 1105 - 1121
Main Authors Faisal, Md. Ahasan Atick, Mahmud, Sakib, Chowdhury, Muhammad E. H., Khandakar, Amith, Ahmed, Mosabber Uddin, Alqahtani, Abdulrahman, Alhatou, Mohammed
Format Journal Article
LanguageEnglish
Published London Springer London 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-023-09081-z

Cover

Loading…
Abstract Ground reaction force and moment (GRF&M) measurements are vital for biomechanical analysis and significantly impact the clinical domain for early abnormality detection for different neurodegenerative diseases. Force platforms have become the de facto standard for measuring GRF&M signals in recent years. Although the signal quality achieved from these devices is unparalleled, they are expensive and require laboratory setup, making them unsuitable for many clinical applications. For these reasons, predicting GRF&M from cheaper and more feasible alternatives has become a topic of interest. Several works have been done on predicting GRF&M from kinematic data captured from the subject’s body with the help of motion capture cameras. The problem with these solutions is that they rely on markers placed on the whole body to capture the movements, which can be very infeasible in many practical scenarios. This paper proposes a novel deep learning-based approach to predict 3D GRF&M from only 5 markers placed on the shoe. The proposed network “Attention Guided MultiResUNet” can predict the force and moment signals accurately and reliably compared to the techniques relying on full-body markers. The proposed deep learning model is tested on two publicly available datasets containing data from 66 healthy subjects to validate the approach. The framework has achieved an average correlation coefficient of 0.96 for 3D ground reaction force prediction and 0.86 for 3D ground reaction momentum prediction in cross-dataset validation. The framework can provide a cheaper and more feasible alternative for predicting GRF&M in many practical applications.
AbstractList Ground reaction force and moment (GRF&M) measurements are vital for biomechanical analysis and significantly impact the clinical domain for early abnormality detection for different neurodegenerative diseases. Force platforms have become the de facto standard for measuring GRF&M signals in recent years. Although the signal quality achieved from these devices is unparalleled, they are expensive and require laboratory setup, making them unsuitable for many clinical applications. For these reasons, predicting GRF&M from cheaper and more feasible alternatives has become a topic of interest. Several works have been done on predicting GRF&M from kinematic data captured from the subject’s body with the help of motion capture cameras. The problem with these solutions is that they rely on markers placed on the whole body to capture the movements, which can be very infeasible in many practical scenarios. This paper proposes a novel deep learning-based approach to predict 3D GRF&M from only 5 markers placed on the shoe. The proposed network “Attention Guided MultiResUNet” can predict the force and moment signals accurately and reliably compared to the techniques relying on full-body markers. The proposed deep learning model is tested on two publicly available datasets containing data from 66 healthy subjects to validate the approach. The framework has achieved an average correlation coefficient of 0.96 for 3D ground reaction force prediction and 0.86 for 3D ground reaction momentum prediction in cross-dataset validation. The framework can provide a cheaper and more feasible alternative for predicting GRF&M in many practical applications.
Author Chowdhury, Muhammad E. H.
Khandakar, Amith
Alhatou, Mohammed
Faisal, Md. Ahasan Atick
Mahmud, Sakib
Ahmed, Mosabber Uddin
Alqahtani, Abdulrahman
Author_xml – sequence: 1
  givenname: Md. Ahasan Atick
  surname: Faisal
  fullname: Faisal, Md. Ahasan Atick
  organization: Department of Electrical Engineering, Qatar University
– sequence: 2
  givenname: Sakib
  surname: Mahmud
  fullname: Mahmud, Sakib
  organization: Department of Electrical Engineering, Qatar University
– sequence: 3
  givenname: Muhammad E. H.
  orcidid: 0000-0003-0744-8206
  surname: Chowdhury
  fullname: Chowdhury, Muhammad E. H.
  email: mchowdhury@qu.edu.qa
  organization: Department of Electrical Engineering, Qatar University
– sequence: 4
  givenname: Amith
  surname: Khandakar
  fullname: Khandakar, Amith
  organization: Department of Electrical Engineering, Qatar University
– sequence: 5
  givenname: Mosabber Uddin
  surname: Ahmed
  fullname: Ahmed, Mosabber Uddin
  organization: Department of Electrical and Electronic Engineering, University of Dhaka
– sequence: 6
  givenname: Abdulrahman
  surname: Alqahtani
  fullname: Alqahtani, Abdulrahman
  organization: Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University
– sequence: 7
  givenname: Mohammed
  surname: Alhatou
  fullname: Alhatou, Mohammed
  organization: Neuromuscular Division, Hamad General Hospital, Department of Neurology, Al Khor Hospital
BookMark eNp9kE1LJDEQhoMoOH78AU8Bz71Wvno6R1FXBUUQPYd0p2aITidjkl5Y8ccbZ4SFPXhJSNX7vFV5D8huiAEJOWHwiwHMzzKA4qwBLhrQ0LHmfYfMmBSiEaC6XTIDLWu7lWKfHOT8AgCy7dSMfDzGfsqF2uBoiH9wRW0pGIqPgS4n79DR-2lV_CPm54CFjtFVzSImKi7pMsWpcgntsAFqecCN1RjHakLXCZ3_7qU4VkEs9NUHHG3xQz4iewu7ynj8fR-S599XTxc3zd3D9e3F-V0ziFaUpmUcpdZW1kPPVW-Zaq2cy6G-1YI7NiD00PbolBKtdoIzJriSuhWO964Th-R067tO8W3CXMxLnFKoIw3XDOYgmFZVxbeqIcWcEy7MOvnRpr-GgflK2WxTNjVls0nZvFeo-w8afLFfPy7J-tXPqNiiuc4JS0z_tvqB-gT7VJTz
CitedBy_id crossref_primary_10_1016_j_engappai_2024_108483
crossref_primary_10_1007_s11831_024_10100_y
Cites_doi 10.1038/s41597-021-00881-3
10.1016/j.jbiomech.2013.07.036
10.1016/j.ins.2015.04.047
10.1016/j.gaitpost.2016.11.021
10.1016/j.gaitpost.2018.03.017
10.1016/j.jbiomech.2010.10.045
10.1007/978-3-319-67437-7_1
10.1016/j.gaitpost.2009.04.008
10.1007/s00415-019-09378-x
10.3390/s17092085
10.1016/j.chaos.2014.06.004
10.1016/j.cmpb.2017.07.005
10.1016/j.humov.2017.08.005
10.1038/s41597-019-0124-4
10.1016/j.jbiomech.2010.06.005
10.3390/s18082564
10.1038/s41598-020-72941-4
10.1016/j.gaitpost.2017.02.029
10.1016/j.gaitpost.2014.07.003
10.1016/j.medengphy.2020.10.001
10.1109/TNSRE.2003.818185
10.1016/j.neunet.2019.08.025
10.1186/1743-0003-2-22
10.1016/S0021-9290(03)00108-8
10.1123/jab.14.1.93
10.1016/j.jbiomech.2008.05.007
10.1016/j.gaitpost.2006.07.017
10.1016/j.jbiomech.2014.04.030
10.1016/j.arth.2013.07.043
10.1016/j.medengphy.2017.10.004
10.1016/j.jbiomech.2016.10.033
10.1007/s11517-018-1802-7
10.3390/s120202255
10.1007/s12541-013-0064-4
10.48550/arXiv.1505.04597
10.1109/EMBC.2015.7318976
10.48550/arXiv.1409.4842
10.48550/arXiv.1505.02496
10.48550/arXiv.1804.03999
10.48550/arXiv.2005.01669
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-09081-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1121
ExternalDocumentID 10_1007_s00521_023_09081_z
GrantInformation_xml – fundername: Qatar University
– fundername: Prince Sattam bin Abdulaziz University
  grantid: PSAU/2023/R/1444
  funderid: http://dx.doi.org/10.13039/100009392
– fundername: Qatar National Research Fund
  grantid: NPRP12S-0227-190164
  funderid: http://dx.doi.org/10.13039/100008982
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c363t-612e499a4499975ba156a474c4995f2d1ce0b06bed55369d32113254963d2bd83
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Sat Aug 23 13:12:51 EDT 2025
Tue Jul 01 03:04:45 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Fri Feb 21 02:40:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Ground reaction forces
Ground reaction moment
Signal synthesis
Foot kinematics
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-612e499a4499975ba156a474c4995f2d1ce0b06bed55369d32113254963d2bd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0744-8206
OpenAccessLink https://link.springer.com/10.1007/s00521-023-09081-z
PQID 2910703195
PQPubID 2043988
PageCount 17
ParticipantIDs proquest_journals_2910703195
crossref_primary_10_1007_s00521_023_09081_z
crossref_citationtrail_10_1007_s00521_023_09081_z
springer_journals_10_1007_s00521_023_09081_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Ancillao, Savastano, Galli, Albertini (CR12) 2017; 149
Senden, Grimm, Heyligers, Savelberg, Meijer (CR15) 2009; 30
Ibtehaz, Rahman (CR33) 2020; 121
CR39
CR38
CR37
Robert-Lachaine, Mecheri, Larue, Plamondon (CR6) 2017; 54
Davis, Perry, Neth, Waters (CR20) 1998; 14
CR34
Choi, Lee, Mun (CR28) 2013; 14
CR32
Oh, Choi, Mun (CR25) 2013; 46
CR30
Ancillao, Galli, Rigoldi, Albertini (CR10) 2014; 66
van Gelder, Booth, van de Port, Buizer, Harlaar, van der Krogt (CR14) 2017; 52
Kwon, Ku, Han, Lee, Kim, Ro (CR5) 2020
Eltoukhy, Kuenze, Andersen, Oh, Signorile (CR31) 2017; 50
Faber, Kingma, Martin Schepers, Veltink, van Dieën (CR22) 2010; 43
Schreiber, Moissenet (CR35) 2019
Zeng, Wang (CR4) 2015; 317
Fong, Chan, Hong, Yung, Fung, Chan (CR24) 2008; 41
Fluit, Andersen, Kolk, Verdonschot, Koopman (CR26) 2014; 47
Mundt, Koeppe, David, Bamer, Potthast, Markert (CR27) 2020; 86
Razian, Pepper (CR21) 2003; 11
Shahabpoor, Pavic (CR8) 2017
Chau, Young, Redekop (CR16) 2005; 2
Charbonnier, Chagué, Ponzoni, Bernardoni, Hoffmeyer, Christofilopoulos (CR11) 2014; 29
Ancillao, van der Krogt, Buizer, Witbreuk, Cappa, Harlaar (CR9) 2017; 55
Tao, Liu, Zheng, Feng (CR7) 2012
Liedtke, Fokkenrood, Menger, van der Kooij, Veltink (CR23) 2007; 26
Ancillao, Ancillao (CR2) 2018
CR41
CR40
Nüesch, Overberg, Schwameder, Pagenstert, Mündermann (CR1) 2018; 62
Owings, Grabiner (CR13) 2003; 36
Ancillao, Tedesco, Barton, O’Flynn (CR19) 2018
van der Krogt, Sloot, Harlaar (CR17) 2014; 40
Xiang, Arora, Abdel-Malek (CR18) 2011; 44
Ferber, Osis, Hicks, Delp (CR29) 2016; 49
Moreira, Figueiredo, Fonseca, Vilas-Boas, Santos (CR36) 2021
Johnson, Mian, Donnelly, Lloyd, Alderson (CR42) 2018; 56
Schniepp, Möhwald, Wuehr (CR3) 2019; 266
C Liedtke (9081_CR23) 2007; 26
SB Kwon (9081_CR5) 2020
MM van der Krogt (9081_CR17) 2014; 40
W Tao (9081_CR7) 2012
R Senden (9081_CR15) 2009; 30
R Schniepp (9081_CR3) 2019; 266
L Moreira (9081_CR36) 2021
C Nüesch (9081_CR1) 2018; 62
A Ancillao (9081_CR10) 2014; 66
C Charbonnier (9081_CR11) 2014; 29
MA Razian (9081_CR21) 2003; 11
C Schreiber (9081_CR35) 2019
Y Xiang (9081_CR18) 2011; 44
BL Davis (9081_CR20) 1998; 14
9081_CR30
9081_CR32
TM Owings (9081_CR13) 2003; 36
9081_CR34
DT-P Fong (9081_CR24) 2008; 41
A Ancillao (9081_CR12) 2017; 149
L van Gelder (9081_CR14) 2017; 52
SE Oh (9081_CR25) 2013; 46
A Ancillao (9081_CR19) 2018
R Ferber (9081_CR29) 2016; 49
A Ancillao (9081_CR9) 2017; 55
M Mundt (9081_CR27) 2020; 86
GS Faber (9081_CR22) 2010; 43
M Eltoukhy (9081_CR31) 2017; 50
9081_CR38
9081_CR37
9081_CR39
X Robert-Lachaine (9081_CR6) 2017; 54
A Choi (9081_CR28) 2013; 14
9081_CR41
T Chau (9081_CR16) 2005; 2
R Fluit (9081_CR26) 2014; 47
9081_CR40
N Ibtehaz (9081_CR33) 2020; 121
A Ancillao (9081_CR2) 2018
E Shahabpoor (9081_CR8) 2017
W Zeng (9081_CR4) 2015; 317
WR Johnson (9081_CR42) 2018; 56
References_xml – year: 2021
  ident: CR36
  article-title: Lower limb kinematic, kinetic, and EMG data from young healthy humans during walking at controlled speeds
  publication-title: Sci Data
  doi: 10.1038/s41597-021-00881-3
– volume: 46
  start-page: 2372
  issue: 14
  year: 2013
  end-page: 2380
  ident: CR25
  article-title: Prediction of ground reaction forces during gait based on kinematics and a neural network model
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.07.036
– ident: CR39
– volume: 317
  start-page: 246
  year: 2015
  end-page: 258
  ident: CR4
  article-title: Classification of neurodegenerative diseases using gait dynamics via deterministic learning
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.04.047
– ident: CR37
– volume: 52
  start-page: 76
  year: 2017
  end-page: 82
  ident: CR14
  article-title: Real-time feedback to improve gait in children with cerebral palsy
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.11.021
– volume: 62
  start-page: 117
  year: 2018
  end-page: 123
  ident: CR1
  article-title: Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.03.017
– ident: CR30
– volume: 44
  start-page: 683
  issue: 4
  year: 2011
  end-page: 693
  ident: CR18
  article-title: Optimization-based prediction of asymmetric human gait
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.10.045
– start-page: 1
  year: 2018
  end-page: 29
  ident: CR2
  article-title: Stereophotogrammetry in functional evaluation: history and modern protocols
  publication-title: Modern functional evaluation methods for muscle strength and gait analysis
  doi: 10.1007/978-3-319-67437-7_1
– volume: 30
  start-page: 192
  issue: 2
  year: 2009
  end-page: 196
  ident: CR15
  article-title: Acceleration-based gait test for healthy subjects: reliability and reference data
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.04.008
– volume: 266
  start-page: 118
  issue: 1
  year: 2019
  end-page: 122
  ident: CR3
  article-title: Clinical and automated gait analysis in patients with vestibular, cerebellar, and functional gait disorders: perspectives and limitations
  publication-title: J Neurol
  doi: 10.1007/s00415-019-09378-x
– year: 2017
  ident: CR8
  article-title: Measurement of walking ground reactions in real-life environments: a systematic review of techniques and technologies
  publication-title: Sensors
  doi: 10.3390/s17092085
– volume: 66
  start-page: 120
  year: 2014
  end-page: 126
  ident: CR10
  article-title: Linear correlation between fractal dimension of surface EMG signal from Rectus Femoris and height of vertical jump
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2014.06.004
– volume: 149
  start-page: 19
  year: 2017
  end-page: 27
  ident: CR12
  article-title: Three dimensional motion capture applied to violin playing: a study on feasibility and characterization of the motor strategy
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.07.005
– volume: 55
  start-page: 145
  year: 2017
  end-page: 155
  ident: CR9
  article-title: Analysis of gait patterns pre- and post-single event multilevel surgery in children with cerebral palsy by means of offset-wise movement analysis profile and linear fit method
  publication-title: Hum Mov Sci
  doi: 10.1016/j.humov.2017.08.005
– ident: CR40
– year: 2019
  ident: CR35
  article-title: A multimodal dataset of human gait at different walking speeds established on injury-free adult participants
  publication-title: Sci Data
  doi: 10.1038/s41597-019-0124-4
– volume: 43
  start-page: 2848
  issue: 14
  year: 2010
  end-page: 2854
  ident: CR22
  article-title: Determination of joint moments with instrumented force shoes in a variety of tasks
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.06.005
– year: 2018
  ident: CR19
  article-title: Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review
  publication-title: Sensors
  doi: 10.3390/s18082564
– year: 2020
  ident: CR5
  article-title: A machine learning-based diagnostic model associated with knee osteoarthritis severity
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-72941-4
– volume: 54
  start-page: 80
  year: 2017
  end-page: 86
  ident: CR6
  article-title: Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.02.029
– volume: 40
  start-page: 587
  issue: 4
  year: 2014
  end-page: 593
  ident: CR17
  article-title: Overground versus self-paced treadmill walking in a virtual environment in children with cerebral palsy
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.07.003
– ident: CR38
– volume: 86
  start-page: 29
  year: 2020
  end-page: 34
  ident: CR27
  article-title: Prediction of ground reaction force and joint moments based on optical motion capture data during gait
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2020.10.001
– volume: 11
  start-page: 288
  issue: 3
  year: 2003
  end-page: 293
  ident: CR21
  article-title: Design, development, and characteristics of an in-shoe triaxial pressure measurement transducer utilizing a single element of piezoelectric copolymer film
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2003.818185
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  ident: CR33
  article-title: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.08.025
– volume: 2
  start-page: 22
  issue: 1
  year: 2005
  ident: CR16
  article-title: Managing variability in the summary and comparison of gait data
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-2-22
– volume: 36
  start-page: 1215
  issue: 8
  year: 2003
  end-page: 1218
  ident: CR13
  article-title: Measuring step kinematic variability on an instrumented treadmill: how many steps are enough?
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00108-8
– volume: 14
  start-page: 93
  issue: 1
  year: 1998
  end-page: 104
  ident: CR20
  article-title: A device for simultaneous measurement of pressure and shear force distribution on the plantar surface of the foot
  publication-title: J Appl Biomech
  doi: 10.1123/jab.14.1.93
– volume: 41
  start-page: 2597
  issue: 11
  year: 2008
  end-page: 2601
  ident: CR24
  article-title: Estimating the complete ground reaction forces with pressure insoles in walking
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.05.007
– volume: 26
  start-page: 39
  issue: 1
  year: 2007
  end-page: 47
  ident: CR23
  article-title: Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.07.017
– ident: CR32
– ident: CR34
– volume: 47
  start-page: 2321
  issue: 10
  year: 2014
  end-page: 2329
  ident: CR26
  article-title: Prediction of ground reaction forces and moments during various activities of daily living
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.04.030
– volume: 29
  start-page: 640
  issue: 3
  year: 2014
  end-page: 647
  ident: CR11
  article-title: Sexual activity after total hip arthroplasty: a motion capture study
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2013.07.043
– volume: 50
  start-page: 75
  year: 2017
  end-page: 82
  ident: CR31
  article-title: Prediction of ground reaction forces for Parkinson’s disease patients using a kinect-driven musculoskeletal gait analysis model
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2017.10.004
– volume: 49
  start-page: 3759
  issue: 16
  year: 2016
  end-page: 3761
  ident: CR29
  article-title: Gait biomechanics in the era of data science
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2016.10.033
– ident: CR41
– volume: 56
  start-page: 1781
  issue: 10
  year: 2018
  end-page: 1792
  ident: CR42
  article-title: Predicting athlete ground reaction forces and moments from motion capture
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-018-1802-7
– year: 2012
  ident: CR7
  article-title: Gait analysis using wearable sensors
  publication-title: Sensors
  doi: 10.3390/s120202255
– volume: 14
  start-page: 475
  issue: 3
  year: 2013
  end-page: 483
  ident: CR28
  article-title: Ground reaction forces predicted by using artificial neural network during asymmetric movements
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-013-0064-4
– volume: 62
  start-page: 117
  year: 2018
  ident: 9081_CR1
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.03.017
– year: 2017
  ident: 9081_CR8
  publication-title: Sensors
  doi: 10.3390/s17092085
– volume: 121
  start-page: 74
  year: 2020
  ident: 9081_CR33
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.08.025
– volume: 43
  start-page: 2848
  issue: 14
  year: 2010
  ident: 9081_CR22
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.06.005
– volume: 47
  start-page: 2321
  issue: 10
  year: 2014
  ident: 9081_CR26
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.04.030
– volume: 2
  start-page: 22
  issue: 1
  year: 2005
  ident: 9081_CR16
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-2-22
– start-page: 1
  volume-title: Modern functional evaluation methods for muscle strength and gait analysis
  year: 2018
  ident: 9081_CR2
  doi: 10.1007/978-3-319-67437-7_1
– volume: 41
  start-page: 2597
  issue: 11
  year: 2008
  ident: 9081_CR24
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.05.007
– volume: 46
  start-page: 2372
  issue: 14
  year: 2013
  ident: 9081_CR25
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.07.036
– volume: 36
  start-page: 1215
  issue: 8
  year: 2003
  ident: 9081_CR13
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00108-8
– volume: 266
  start-page: 118
  issue: 1
  year: 2019
  ident: 9081_CR3
  publication-title: J Neurol
  doi: 10.1007/s00415-019-09378-x
– volume: 55
  start-page: 145
  year: 2017
  ident: 9081_CR9
  publication-title: Hum Mov Sci
  doi: 10.1016/j.humov.2017.08.005
– volume: 14
  start-page: 475
  issue: 3
  year: 2013
  ident: 9081_CR28
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-013-0064-4
– volume: 29
  start-page: 640
  issue: 3
  year: 2014
  ident: 9081_CR11
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2013.07.043
– ident: 9081_CR32
  doi: 10.48550/arXiv.1505.04597
– year: 2021
  ident: 9081_CR36
  publication-title: Sci Data
  doi: 10.1038/s41597-021-00881-3
– ident: 9081_CR39
– volume: 317
  start-page: 246
  year: 2015
  ident: 9081_CR4
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.04.047
– volume: 149
  start-page: 19
  year: 2017
  ident: 9081_CR12
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.07.005
– ident: 9081_CR30
  doi: 10.1109/EMBC.2015.7318976
– volume: 66
  start-page: 120
  year: 2014
  ident: 9081_CR10
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2014.06.004
– volume: 30
  start-page: 192
  issue: 2
  year: 2009
  ident: 9081_CR15
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.04.008
– year: 2018
  ident: 9081_CR19
  publication-title: Sensors
  doi: 10.3390/s18082564
– volume: 44
  start-page: 683
  issue: 4
  year: 2011
  ident: 9081_CR18
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.10.045
– volume: 26
  start-page: 39
  issue: 1
  year: 2007
  ident: 9081_CR23
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.07.017
– volume: 11
  start-page: 288
  issue: 3
  year: 2003
  ident: 9081_CR21
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2003.818185
– year: 2012
  ident: 9081_CR7
  publication-title: Sensors
  doi: 10.3390/s120202255
– ident: 9081_CR38
  doi: 10.48550/arXiv.1409.4842
– volume: 56
  start-page: 1781
  issue: 10
  year: 2018
  ident: 9081_CR42
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-018-1802-7
– volume: 49
  start-page: 3759
  issue: 16
  year: 2016
  ident: 9081_CR29
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2016.10.033
– ident: 9081_CR40
– volume: 54
  start-page: 80
  year: 2017
  ident: 9081_CR6
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.02.029
– year: 2019
  ident: 9081_CR35
  publication-title: Sci Data
  doi: 10.1038/s41597-019-0124-4
– volume: 14
  start-page: 93
  issue: 1
  year: 1998
  ident: 9081_CR20
  publication-title: J Appl Biomech
  doi: 10.1123/jab.14.1.93
– ident: 9081_CR37
  doi: 10.48550/arXiv.1505.02496
– year: 2020
  ident: 9081_CR5
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-72941-4
– volume: 40
  start-page: 587
  issue: 4
  year: 2014
  ident: 9081_CR17
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.07.003
– ident: 9081_CR34
  doi: 10.48550/arXiv.1804.03999
– ident: 9081_CR41
  doi: 10.48550/arXiv.2005.01669
– volume: 86
  start-page: 29
  year: 2020
  ident: 9081_CR27
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2020.10.001
– volume: 52
  start-page: 76
  year: 2017
  ident: 9081_CR14
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.11.021
– volume: 50
  start-page: 75
  year: 2017
  ident: 9081_CR31
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2017.10.004
SSID ssj0004685
Score 2.3722017
Snippet Ground reaction force and moment (GRF&M) measurements are vital for biomechanical analysis and significantly impact the clinical domain for early abnormality...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1105
SubjectTerms Artificial Intelligence
Biomechanical engineering
Biomechanics
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Correlation coefficients
Data Mining and Knowledge Discovery
Datasets
Deep learning
Force plates
Image Processing and Computer Vision
Impact analysis
Kinematics
Motion capture
Original Article
Probability and Statistics in Computer Science
Signal quality
Three dimensional models
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLCx8IwIFeWCDSI3tJM5YAVWFBENFpG6RHTsI0SZVkzJU_HjOTtICAiTGxB9Dzo7vne_eQ-gy5Jkns0C6lBPtMplpVyiu3FAxFkkjc2VD2Q-PwTBm92N_3BSFlW22e3slaf_Uq2I3E8EE6EuoiS1wz11uoi0fsLtJ5ItJ_1M1pBXiBNxicnoYbUplfp7j63G09jG_XYva02awh3YaNxH3a7vuow2dH6DdVoIBNzvyEL2PCrkoKyxyhfPiTU-w4cu0GYz4efGitMK2xHakyzjXFbbCNxgcVUxvsanogHHgNtriBvM61XaqqeFlqPBsbq5x6rZ5MYUORYVfwS-1PK_lEYoHd083Q7cRVHBTGtAKYCLRgHAEMzAn9KUA8CZYyFJ49jOivFT3ZC-QWvk-DSJFidGhBwQZUEWk4vQYdfIi1ycIm2AUoz2uQ08zxShXIuBR6rGQC09EqYO89rsmacM2bkQvJsmKJ9naIgFbJNYWydJBV6sxs5pr48_e3dZcSbPvyoSA92MY-SPfQdetCdfNv892-r_uZ2gbVh6rYzFd1KnmC30O3kklL-xi_ACXKdtp
  priority: 102
  providerName: Springer Nature
Title Robust and novel attention guided MultiResUnet model for 3D ground reaction force and moment prediction from foot kinematics
URI https://link.springer.com/article/10.1007/s00521-023-09081-z
https://www.proquest.com/docview/2910703195
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFH4a7WUXxn6JblD5wI1Fa2wncU5T6VoQCISqVWKnKI5dhFaSrkl3QPvjec916DZpXCLFdnzI84_vPft9H8BRouahnsc6EIrbQOq5DXKjTJAYKVNNMlculH15FZ_N5PlNdOMDbrW_VtmuiW6hNlVBMfLPHPc14lpPoy_LnwGpRtHpqpfQ2IEuLsEq6kD3ZHx1Pf0jM9KJcqIPQ_d7pPBpMy55jiKiWMoFxSpUGDz8vTVt8eY_R6Ru55nswa6HjGy4sfFreGHLN_CqlWNgfna-hd_TSq_rhuWlYWX1yy4YcWe624zsdn1nrGEu3XZq61lpG-ZEcBiCVia-MsruwO8QQrpEByourOvqnjgaGrZc0ZHOpm5V3WODqmE_EKM6ztf6Hcwm42-js8CLKwSFiEWDLiO36O3kklyeJNI5OnK5TGSB79Gcm7CwAz2ItTVRJOLUCE6a9OhNxsJwbZR4D52yKu0-MApMSTFQNgmtNFIok8cqLUKZqDzM06IHYftfs8Izj5MAxiJ74kx2tsjQFpmzRfbQg-Onb5Yb3o1nWx-05sr8HKyz7YjpwafWhNvq__f24fnePsJLjshmE4c5gE6zWttDRCaN7sOOmpz2oTs8_X4x7vvBiKWjeITPGR8-AtuT46I
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAu5VGqblnAB3pqIza2kzgHhIC22r5W1aor9ZbGsbdCtMmyyYJY8Zv4jcw4SReQ2luPcew5eMb2N2PPfABvIzX29TjUnlDcelKPrZcaZbzISBlrorlyoezTQdgfyaOL4GIJfre5MPSsst0T3UZtioxi5O84nmtUaz0OPky-ecQaRberLYVGbRbH9ucPdNnK94d7qN9tzg_2zz_3vYZVwMtEKCr0lbhFmJ9KwvpRoFP0YFIZyQy_gzE3fmZ7uhdqa4JAhLERnMjY0Y0KheHaKIFyH8EKwowYV9HKp_3B2fCvTExHAoo-E70nkqJJ03HJehSBxVYuKDaifG_-71G4wLf_Xcm6k-7gKaw1EJV9rG3qGSzZ_Dk8aekfWLMbrMOvYaFnZcXS3LC8-G6vGdXqdK8n2dXsi7GGufTeoS1Hua2YI91hCJKZ2GOUTYLjELK6xApqzqwTdUM1ISo2mdIVUv1vWtxgh6JiXxETuxqz5QsYPci0b8ByXuR2ExgFwqToKRv5VhoplElDFWe-jFTqp3HWAb-d1yRrKp0T4cZ1cluj2ekiQV0kThfJvAM7t2MmdZ2Pe3t3W3UlzZovk4WFdmC3VeHi993Stu6X9gZW--enJ8nJ4eD4JTzmiKrqGFAXlqvpzL5CVFTp140pMrh8aOv_AzY5GgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAXyirK6gM3CDSxkzjHCig7QohKcIrs2EGokFSty6Hi47GdpCwCJMQx8aLEduI343lvALZDmro8DbiDqScdwlPpMEGFEwpCIm7SXFlX9uVVcNIhZ3f-3QcWv412r44kC06DUWnK1H5PpPtj4pvxZmoz2MPGz0BdZzQJU8SIs9dgqnV8f370gRtp03JqK8ZE-BBcEme-7-Xz5vSOOL8cktq9p10HVj11EXLS3RsqvpeMvgg6_ue15mC2BKaoVaykeZiQ2QLUq6QPqPwHLMLrTc6HA4VYJlCWv8gnZBQ6bcwkehg-CimQJfXeyEEnkwrZVDtIQ2OED5HhkOh2GqhaOoW5nUjb1bNRglCo1zcHR0VZP3_WFXKFuhoJW2XZwRJ02ke3BydOmcLBSXCAlTZMPaltKkaMYRX6nGlzkZGQJPraTz3hJrLJmwGXwvdxEAms7VFsbNYAC48LipehluWZXAFk3F8EN6kMXUkEwVSwgEaJS0LKXBYlDXCruYuTUt_cpNl4isfKzHZ4Yz28sR3eeNSAnXGbXqHu8Wvt9WpJxOWXPog9jbdMDoDIb8BuNcPvxT_3tvq36lswfX3Yji9Or87XYMbT0KpwBK1DTfWHckNDI8U3y9X_Bvv4BIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+novel+attention+guided+MultiResUnet+model+for+3D+ground+reaction+force+and+moment+prediction+from+foot+kinematics&rft.jtitle=Neural+computing+%26+applications&rft.au=Faisal%2C+Md.+Ahasan+Atick&rft.au=Mahmud%2C+Sakib&rft.au=Chowdhury%2C+Muhammad+E.+H&rft.au=Khandakar%2C+Amith&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=3&rft.spage=1105&rft.epage=1121&rft_id=info:doi/10.1007%2Fs00521-023-09081-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon