Robust and novel attention guided MultiResUnet model for 3D ground reaction force and moment prediction from foot kinematics
Ground reaction force and moment (GRF&M) measurements are vital for biomechanical analysis and significantly impact the clinical domain for early abnormality detection for different neurodegenerative diseases. Force platforms have become the de facto standard for measuring GRF&M signals in r...
Saved in:
Published in | Neural computing & applications Vol. 36; no. 3; pp. 1105 - 1121 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0941-0643 1433-3058 |
DOI | 10.1007/s00521-023-09081-z |
Cover
Loading…
Abstract | Ground reaction force and moment (GRF&M) measurements are vital for biomechanical analysis and significantly impact the clinical domain for early abnormality detection for different neurodegenerative diseases. Force platforms have become the de facto standard for measuring GRF&M signals in recent years. Although the signal quality achieved from these devices is unparalleled, they are expensive and require laboratory setup, making them unsuitable for many clinical applications. For these reasons, predicting GRF&M from cheaper and more feasible alternatives has become a topic of interest. Several works have been done on predicting GRF&M from kinematic data captured from the subject’s body with the help of motion capture cameras. The problem with these solutions is that they rely on markers placed on the whole body to capture the movements, which can be very infeasible in many practical scenarios. This paper proposes a novel deep learning-based approach to predict 3D GRF&M from only 5 markers placed on the shoe. The proposed network “Attention Guided MultiResUNet” can predict the force and moment signals accurately and reliably compared to the techniques relying on full-body markers. The proposed deep learning model is tested on two publicly available datasets containing data from 66 healthy subjects to validate the approach. The framework has achieved an average correlation coefficient of 0.96 for 3D ground reaction force prediction and 0.86 for 3D ground reaction momentum prediction in cross-dataset validation. The framework can provide a cheaper and more feasible alternative for predicting GRF&M in many practical applications. |
---|---|
AbstractList | Ground reaction force and moment (GRF&M) measurements are vital for biomechanical analysis and significantly impact the clinical domain for early abnormality detection for different neurodegenerative diseases. Force platforms have become the de facto standard for measuring GRF&M signals in recent years. Although the signal quality achieved from these devices is unparalleled, they are expensive and require laboratory setup, making them unsuitable for many clinical applications. For these reasons, predicting GRF&M from cheaper and more feasible alternatives has become a topic of interest. Several works have been done on predicting GRF&M from kinematic data captured from the subject’s body with the help of motion capture cameras. The problem with these solutions is that they rely on markers placed on the whole body to capture the movements, which can be very infeasible in many practical scenarios. This paper proposes a novel deep learning-based approach to predict 3D GRF&M from only 5 markers placed on the shoe. The proposed network “Attention Guided MultiResUNet” can predict the force and moment signals accurately and reliably compared to the techniques relying on full-body markers. The proposed deep learning model is tested on two publicly available datasets containing data from 66 healthy subjects to validate the approach. The framework has achieved an average correlation coefficient of 0.96 for 3D ground reaction force prediction and 0.86 for 3D ground reaction momentum prediction in cross-dataset validation. The framework can provide a cheaper and more feasible alternative for predicting GRF&M in many practical applications. |
Author | Chowdhury, Muhammad E. H. Khandakar, Amith Alhatou, Mohammed Faisal, Md. Ahasan Atick Mahmud, Sakib Ahmed, Mosabber Uddin Alqahtani, Abdulrahman |
Author_xml | – sequence: 1 givenname: Md. Ahasan Atick surname: Faisal fullname: Faisal, Md. Ahasan Atick organization: Department of Electrical Engineering, Qatar University – sequence: 2 givenname: Sakib surname: Mahmud fullname: Mahmud, Sakib organization: Department of Electrical Engineering, Qatar University – sequence: 3 givenname: Muhammad E. H. orcidid: 0000-0003-0744-8206 surname: Chowdhury fullname: Chowdhury, Muhammad E. H. email: mchowdhury@qu.edu.qa organization: Department of Electrical Engineering, Qatar University – sequence: 4 givenname: Amith surname: Khandakar fullname: Khandakar, Amith organization: Department of Electrical Engineering, Qatar University – sequence: 5 givenname: Mosabber Uddin surname: Ahmed fullname: Ahmed, Mosabber Uddin organization: Department of Electrical and Electronic Engineering, University of Dhaka – sequence: 6 givenname: Abdulrahman surname: Alqahtani fullname: Alqahtani, Abdulrahman organization: Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University – sequence: 7 givenname: Mohammed surname: Alhatou fullname: Alhatou, Mohammed organization: Neuromuscular Division, Hamad General Hospital, Department of Neurology, Al Khor Hospital |
BookMark | eNp9kE1LJDEQhoMoOH78AU8Bz71Wvno6R1FXBUUQPYd0p2aITidjkl5Y8ccbZ4SFPXhJSNX7vFV5D8huiAEJOWHwiwHMzzKA4qwBLhrQ0LHmfYfMmBSiEaC6XTIDLWu7lWKfHOT8AgCy7dSMfDzGfsqF2uBoiH9wRW0pGIqPgS4n79DR-2lV_CPm54CFjtFVzSImKi7pMsWpcgntsAFqecCN1RjHakLXCZ3_7qU4VkEs9NUHHG3xQz4iewu7ynj8fR-S599XTxc3zd3D9e3F-V0ziFaUpmUcpdZW1kPPVW-Zaq2cy6G-1YI7NiD00PbolBKtdoIzJriSuhWO964Th-R067tO8W3CXMxLnFKoIw3XDOYgmFZVxbeqIcWcEy7MOvnRpr-GgflK2WxTNjVls0nZvFeo-w8afLFfPy7J-tXPqNiiuc4JS0z_tvqB-gT7VJTz |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_108483 crossref_primary_10_1007_s11831_024_10100_y |
Cites_doi | 10.1038/s41597-021-00881-3 10.1016/j.jbiomech.2013.07.036 10.1016/j.ins.2015.04.047 10.1016/j.gaitpost.2016.11.021 10.1016/j.gaitpost.2018.03.017 10.1016/j.jbiomech.2010.10.045 10.1007/978-3-319-67437-7_1 10.1016/j.gaitpost.2009.04.008 10.1007/s00415-019-09378-x 10.3390/s17092085 10.1016/j.chaos.2014.06.004 10.1016/j.cmpb.2017.07.005 10.1016/j.humov.2017.08.005 10.1038/s41597-019-0124-4 10.1016/j.jbiomech.2010.06.005 10.3390/s18082564 10.1038/s41598-020-72941-4 10.1016/j.gaitpost.2017.02.029 10.1016/j.gaitpost.2014.07.003 10.1016/j.medengphy.2020.10.001 10.1109/TNSRE.2003.818185 10.1016/j.neunet.2019.08.025 10.1186/1743-0003-2-22 10.1016/S0021-9290(03)00108-8 10.1123/jab.14.1.93 10.1016/j.jbiomech.2008.05.007 10.1016/j.gaitpost.2006.07.017 10.1016/j.jbiomech.2014.04.030 10.1016/j.arth.2013.07.043 10.1016/j.medengphy.2017.10.004 10.1016/j.jbiomech.2016.10.033 10.1007/s11517-018-1802-7 10.3390/s120202255 10.1007/s12541-013-0064-4 10.48550/arXiv.1505.04597 10.1109/EMBC.2015.7318976 10.48550/arXiv.1409.4842 10.48550/arXiv.1505.02496 10.48550/arXiv.1804.03999 10.48550/arXiv.2005.01669 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00521-023-09081-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 1121 |
ExternalDocumentID | 10_1007_s00521_023_09081_z |
GrantInformation_xml | – fundername: Qatar University – fundername: Prince Sattam bin Abdulaziz University grantid: PSAU/2023/R/1444 funderid: http://dx.doi.org/10.13039/100009392 – fundername: Qatar National Research Fund grantid: NPRP12S-0227-190164 funderid: http://dx.doi.org/10.13039/100008982 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c363t-612e499a4499975ba156a474c4995f2d1ce0b06bed55369d32113254963d2bd83 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Sat Aug 23 13:12:51 EDT 2025 Tue Jul 01 03:04:45 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Fri Feb 21 02:40:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep learning Ground reaction forces Ground reaction moment Signal synthesis Foot kinematics Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-612e499a4499975ba156a474c4995f2d1ce0b06bed55369d32113254963d2bd83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0744-8206 |
OpenAccessLink | https://link.springer.com/10.1007/s00521-023-09081-z |
PQID | 2910703195 |
PQPubID | 2043988 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2910703195 crossref_primary_10_1007_s00521_023_09081_z crossref_citationtrail_10_1007_s00521_023_09081_z springer_journals_10_1007_s00521_023_09081_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240100 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Ancillao, Savastano, Galli, Albertini (CR12) 2017; 149 Senden, Grimm, Heyligers, Savelberg, Meijer (CR15) 2009; 30 Ibtehaz, Rahman (CR33) 2020; 121 CR39 CR38 CR37 Robert-Lachaine, Mecheri, Larue, Plamondon (CR6) 2017; 54 Davis, Perry, Neth, Waters (CR20) 1998; 14 CR34 Choi, Lee, Mun (CR28) 2013; 14 CR32 Oh, Choi, Mun (CR25) 2013; 46 CR30 Ancillao, Galli, Rigoldi, Albertini (CR10) 2014; 66 van Gelder, Booth, van de Port, Buizer, Harlaar, van der Krogt (CR14) 2017; 52 Kwon, Ku, Han, Lee, Kim, Ro (CR5) 2020 Eltoukhy, Kuenze, Andersen, Oh, Signorile (CR31) 2017; 50 Faber, Kingma, Martin Schepers, Veltink, van Dieën (CR22) 2010; 43 Schreiber, Moissenet (CR35) 2019 Zeng, Wang (CR4) 2015; 317 Fong, Chan, Hong, Yung, Fung, Chan (CR24) 2008; 41 Fluit, Andersen, Kolk, Verdonschot, Koopman (CR26) 2014; 47 Mundt, Koeppe, David, Bamer, Potthast, Markert (CR27) 2020; 86 Razian, Pepper (CR21) 2003; 11 Shahabpoor, Pavic (CR8) 2017 Chau, Young, Redekop (CR16) 2005; 2 Charbonnier, Chagué, Ponzoni, Bernardoni, Hoffmeyer, Christofilopoulos (CR11) 2014; 29 Ancillao, van der Krogt, Buizer, Witbreuk, Cappa, Harlaar (CR9) 2017; 55 Tao, Liu, Zheng, Feng (CR7) 2012 Liedtke, Fokkenrood, Menger, van der Kooij, Veltink (CR23) 2007; 26 Ancillao, Ancillao (CR2) 2018 CR41 CR40 Nüesch, Overberg, Schwameder, Pagenstert, Mündermann (CR1) 2018; 62 Owings, Grabiner (CR13) 2003; 36 Ancillao, Tedesco, Barton, O’Flynn (CR19) 2018 van der Krogt, Sloot, Harlaar (CR17) 2014; 40 Xiang, Arora, Abdel-Malek (CR18) 2011; 44 Ferber, Osis, Hicks, Delp (CR29) 2016; 49 Moreira, Figueiredo, Fonseca, Vilas-Boas, Santos (CR36) 2021 Johnson, Mian, Donnelly, Lloyd, Alderson (CR42) 2018; 56 Schniepp, Möhwald, Wuehr (CR3) 2019; 266 C Liedtke (9081_CR23) 2007; 26 SB Kwon (9081_CR5) 2020 MM van der Krogt (9081_CR17) 2014; 40 W Tao (9081_CR7) 2012 R Senden (9081_CR15) 2009; 30 R Schniepp (9081_CR3) 2019; 266 L Moreira (9081_CR36) 2021 C Nüesch (9081_CR1) 2018; 62 A Ancillao (9081_CR10) 2014; 66 C Charbonnier (9081_CR11) 2014; 29 MA Razian (9081_CR21) 2003; 11 C Schreiber (9081_CR35) 2019 Y Xiang (9081_CR18) 2011; 44 BL Davis (9081_CR20) 1998; 14 9081_CR30 9081_CR32 TM Owings (9081_CR13) 2003; 36 9081_CR34 DT-P Fong (9081_CR24) 2008; 41 A Ancillao (9081_CR12) 2017; 149 L van Gelder (9081_CR14) 2017; 52 SE Oh (9081_CR25) 2013; 46 A Ancillao (9081_CR19) 2018 R Ferber (9081_CR29) 2016; 49 A Ancillao (9081_CR9) 2017; 55 M Mundt (9081_CR27) 2020; 86 GS Faber (9081_CR22) 2010; 43 M Eltoukhy (9081_CR31) 2017; 50 9081_CR38 9081_CR37 9081_CR39 X Robert-Lachaine (9081_CR6) 2017; 54 A Choi (9081_CR28) 2013; 14 9081_CR41 T Chau (9081_CR16) 2005; 2 R Fluit (9081_CR26) 2014; 47 9081_CR40 N Ibtehaz (9081_CR33) 2020; 121 A Ancillao (9081_CR2) 2018 E Shahabpoor (9081_CR8) 2017 W Zeng (9081_CR4) 2015; 317 WR Johnson (9081_CR42) 2018; 56 |
References_xml | – year: 2021 ident: CR36 article-title: Lower limb kinematic, kinetic, and EMG data from young healthy humans during walking at controlled speeds publication-title: Sci Data doi: 10.1038/s41597-021-00881-3 – volume: 46 start-page: 2372 issue: 14 year: 2013 end-page: 2380 ident: CR25 article-title: Prediction of ground reaction forces during gait based on kinematics and a neural network model publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.07.036 – ident: CR39 – volume: 317 start-page: 246 year: 2015 end-page: 258 ident: CR4 article-title: Classification of neurodegenerative diseases using gait dynamics via deterministic learning publication-title: Inf Sci doi: 10.1016/j.ins.2015.04.047 – ident: CR37 – volume: 52 start-page: 76 year: 2017 end-page: 82 ident: CR14 article-title: Real-time feedback to improve gait in children with cerebral palsy publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.11.021 – volume: 62 start-page: 117 year: 2018 end-page: 123 ident: CR1 article-title: Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.03.017 – ident: CR30 – volume: 44 start-page: 683 issue: 4 year: 2011 end-page: 693 ident: CR18 article-title: Optimization-based prediction of asymmetric human gait publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.10.045 – start-page: 1 year: 2018 end-page: 29 ident: CR2 article-title: Stereophotogrammetry in functional evaluation: history and modern protocols publication-title: Modern functional evaluation methods for muscle strength and gait analysis doi: 10.1007/978-3-319-67437-7_1 – volume: 30 start-page: 192 issue: 2 year: 2009 end-page: 196 ident: CR15 article-title: Acceleration-based gait test for healthy subjects: reliability and reference data publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.04.008 – volume: 266 start-page: 118 issue: 1 year: 2019 end-page: 122 ident: CR3 article-title: Clinical and automated gait analysis in patients with vestibular, cerebellar, and functional gait disorders: perspectives and limitations publication-title: J Neurol doi: 10.1007/s00415-019-09378-x – year: 2017 ident: CR8 article-title: Measurement of walking ground reactions in real-life environments: a systematic review of techniques and technologies publication-title: Sensors doi: 10.3390/s17092085 – volume: 66 start-page: 120 year: 2014 end-page: 126 ident: CR10 article-title: Linear correlation between fractal dimension of surface EMG signal from Rectus Femoris and height of vertical jump publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2014.06.004 – volume: 149 start-page: 19 year: 2017 end-page: 27 ident: CR12 article-title: Three dimensional motion capture applied to violin playing: a study on feasibility and characterization of the motor strategy publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.07.005 – volume: 55 start-page: 145 year: 2017 end-page: 155 ident: CR9 article-title: Analysis of gait patterns pre- and post-single event multilevel surgery in children with cerebral palsy by means of offset-wise movement analysis profile and linear fit method publication-title: Hum Mov Sci doi: 10.1016/j.humov.2017.08.005 – ident: CR40 – year: 2019 ident: CR35 article-title: A multimodal dataset of human gait at different walking speeds established on injury-free adult participants publication-title: Sci Data doi: 10.1038/s41597-019-0124-4 – volume: 43 start-page: 2848 issue: 14 year: 2010 end-page: 2854 ident: CR22 article-title: Determination of joint moments with instrumented force shoes in a variety of tasks publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.06.005 – year: 2018 ident: CR19 article-title: Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review publication-title: Sensors doi: 10.3390/s18082564 – year: 2020 ident: CR5 article-title: A machine learning-based diagnostic model associated with knee osteoarthritis severity publication-title: Sci Rep doi: 10.1038/s41598-020-72941-4 – volume: 54 start-page: 80 year: 2017 end-page: 86 ident: CR6 article-title: Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.02.029 – volume: 40 start-page: 587 issue: 4 year: 2014 end-page: 593 ident: CR17 article-title: Overground versus self-paced treadmill walking in a virtual environment in children with cerebral palsy publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.07.003 – ident: CR38 – volume: 86 start-page: 29 year: 2020 end-page: 34 ident: CR27 article-title: Prediction of ground reaction force and joint moments based on optical motion capture data during gait publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2020.10.001 – volume: 11 start-page: 288 issue: 3 year: 2003 end-page: 293 ident: CR21 article-title: Design, development, and characteristics of an in-shoe triaxial pressure measurement transducer utilizing a single element of piezoelectric copolymer film publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2003.818185 – volume: 121 start-page: 74 year: 2020 end-page: 87 ident: CR33 article-title: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation publication-title: Neural Netw doi: 10.1016/j.neunet.2019.08.025 – volume: 2 start-page: 22 issue: 1 year: 2005 ident: CR16 article-title: Managing variability in the summary and comparison of gait data publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-2-22 – volume: 36 start-page: 1215 issue: 8 year: 2003 end-page: 1218 ident: CR13 article-title: Measuring step kinematic variability on an instrumented treadmill: how many steps are enough? publication-title: J Biomech doi: 10.1016/S0021-9290(03)00108-8 – volume: 14 start-page: 93 issue: 1 year: 1998 end-page: 104 ident: CR20 article-title: A device for simultaneous measurement of pressure and shear force distribution on the plantar surface of the foot publication-title: J Appl Biomech doi: 10.1123/jab.14.1.93 – volume: 41 start-page: 2597 issue: 11 year: 2008 end-page: 2601 ident: CR24 article-title: Estimating the complete ground reaction forces with pressure insoles in walking publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.05.007 – volume: 26 start-page: 39 issue: 1 year: 2007 end-page: 47 ident: CR23 article-title: Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.07.017 – ident: CR32 – ident: CR34 – volume: 47 start-page: 2321 issue: 10 year: 2014 end-page: 2329 ident: CR26 article-title: Prediction of ground reaction forces and moments during various activities of daily living publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.04.030 – volume: 29 start-page: 640 issue: 3 year: 2014 end-page: 647 ident: CR11 article-title: Sexual activity after total hip arthroplasty: a motion capture study publication-title: J Arthroplasty doi: 10.1016/j.arth.2013.07.043 – volume: 50 start-page: 75 year: 2017 end-page: 82 ident: CR31 article-title: Prediction of ground reaction forces for Parkinson’s disease patients using a kinect-driven musculoskeletal gait analysis model publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2017.10.004 – volume: 49 start-page: 3759 issue: 16 year: 2016 end-page: 3761 ident: CR29 article-title: Gait biomechanics in the era of data science publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.10.033 – ident: CR41 – volume: 56 start-page: 1781 issue: 10 year: 2018 end-page: 1792 ident: CR42 article-title: Predicting athlete ground reaction forces and moments from motion capture publication-title: Med Biol Eng Comput doi: 10.1007/s11517-018-1802-7 – year: 2012 ident: CR7 article-title: Gait analysis using wearable sensors publication-title: Sensors doi: 10.3390/s120202255 – volume: 14 start-page: 475 issue: 3 year: 2013 end-page: 483 ident: CR28 article-title: Ground reaction forces predicted by using artificial neural network during asymmetric movements publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-013-0064-4 – volume: 62 start-page: 117 year: 2018 ident: 9081_CR1 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.03.017 – year: 2017 ident: 9081_CR8 publication-title: Sensors doi: 10.3390/s17092085 – volume: 121 start-page: 74 year: 2020 ident: 9081_CR33 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.08.025 – volume: 43 start-page: 2848 issue: 14 year: 2010 ident: 9081_CR22 publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.06.005 – volume: 47 start-page: 2321 issue: 10 year: 2014 ident: 9081_CR26 publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.04.030 – volume: 2 start-page: 22 issue: 1 year: 2005 ident: 9081_CR16 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-2-22 – start-page: 1 volume-title: Modern functional evaluation methods for muscle strength and gait analysis year: 2018 ident: 9081_CR2 doi: 10.1007/978-3-319-67437-7_1 – volume: 41 start-page: 2597 issue: 11 year: 2008 ident: 9081_CR24 publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.05.007 – volume: 46 start-page: 2372 issue: 14 year: 2013 ident: 9081_CR25 publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.07.036 – volume: 36 start-page: 1215 issue: 8 year: 2003 ident: 9081_CR13 publication-title: J Biomech doi: 10.1016/S0021-9290(03)00108-8 – volume: 266 start-page: 118 issue: 1 year: 2019 ident: 9081_CR3 publication-title: J Neurol doi: 10.1007/s00415-019-09378-x – volume: 55 start-page: 145 year: 2017 ident: 9081_CR9 publication-title: Hum Mov Sci doi: 10.1016/j.humov.2017.08.005 – volume: 14 start-page: 475 issue: 3 year: 2013 ident: 9081_CR28 publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-013-0064-4 – volume: 29 start-page: 640 issue: 3 year: 2014 ident: 9081_CR11 publication-title: J Arthroplasty doi: 10.1016/j.arth.2013.07.043 – ident: 9081_CR32 doi: 10.48550/arXiv.1505.04597 – year: 2021 ident: 9081_CR36 publication-title: Sci Data doi: 10.1038/s41597-021-00881-3 – ident: 9081_CR39 – volume: 317 start-page: 246 year: 2015 ident: 9081_CR4 publication-title: Inf Sci doi: 10.1016/j.ins.2015.04.047 – volume: 149 start-page: 19 year: 2017 ident: 9081_CR12 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.07.005 – ident: 9081_CR30 doi: 10.1109/EMBC.2015.7318976 – volume: 66 start-page: 120 year: 2014 ident: 9081_CR10 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2014.06.004 – volume: 30 start-page: 192 issue: 2 year: 2009 ident: 9081_CR15 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.04.008 – year: 2018 ident: 9081_CR19 publication-title: Sensors doi: 10.3390/s18082564 – volume: 44 start-page: 683 issue: 4 year: 2011 ident: 9081_CR18 publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.10.045 – volume: 26 start-page: 39 issue: 1 year: 2007 ident: 9081_CR23 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.07.017 – volume: 11 start-page: 288 issue: 3 year: 2003 ident: 9081_CR21 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2003.818185 – year: 2012 ident: 9081_CR7 publication-title: Sensors doi: 10.3390/s120202255 – ident: 9081_CR38 doi: 10.48550/arXiv.1409.4842 – volume: 56 start-page: 1781 issue: 10 year: 2018 ident: 9081_CR42 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-018-1802-7 – volume: 49 start-page: 3759 issue: 16 year: 2016 ident: 9081_CR29 publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.10.033 – ident: 9081_CR40 – volume: 54 start-page: 80 year: 2017 ident: 9081_CR6 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.02.029 – year: 2019 ident: 9081_CR35 publication-title: Sci Data doi: 10.1038/s41597-019-0124-4 – volume: 14 start-page: 93 issue: 1 year: 1998 ident: 9081_CR20 publication-title: J Appl Biomech doi: 10.1123/jab.14.1.93 – ident: 9081_CR37 doi: 10.48550/arXiv.1505.02496 – year: 2020 ident: 9081_CR5 publication-title: Sci Rep doi: 10.1038/s41598-020-72941-4 – volume: 40 start-page: 587 issue: 4 year: 2014 ident: 9081_CR17 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.07.003 – ident: 9081_CR34 doi: 10.48550/arXiv.1804.03999 – ident: 9081_CR41 doi: 10.48550/arXiv.2005.01669 – volume: 86 start-page: 29 year: 2020 ident: 9081_CR27 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2020.10.001 – volume: 52 start-page: 76 year: 2017 ident: 9081_CR14 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.11.021 – volume: 50 start-page: 75 year: 2017 ident: 9081_CR31 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2017.10.004 |
SSID | ssj0004685 |
Score | 2.3722017 |
Snippet | Ground reaction force and moment (GRF&M) measurements are vital for biomechanical analysis and significantly impact the clinical domain for early abnormality... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1105 |
SubjectTerms | Artificial Intelligence Biomechanical engineering Biomechanics Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Correlation coefficients Data Mining and Knowledge Discovery Datasets Deep learning Force plates Image Processing and Computer Vision Impact analysis Kinematics Motion capture Original Article Probability and Statistics in Computer Science Signal quality Three dimensional models |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLCx8IwIFeWCDSI3tJM5YAVWFBENFpG6RHTsI0SZVkzJU_HjOTtICAiTGxB9Dzo7vne_eQ-gy5Jkns0C6lBPtMplpVyiu3FAxFkkjc2VD2Q-PwTBm92N_3BSFlW22e3slaf_Uq2I3E8EE6EuoiS1wz11uoi0fsLtJ5ItJ_1M1pBXiBNxicnoYbUplfp7j63G09jG_XYva02awh3YaNxH3a7vuow2dH6DdVoIBNzvyEL2PCrkoKyxyhfPiTU-w4cu0GYz4efGitMK2xHakyzjXFbbCNxgcVUxvsanogHHgNtriBvM61XaqqeFlqPBsbq5x6rZ5MYUORYVfwS-1PK_lEYoHd083Q7cRVHBTGtAKYCLRgHAEMzAn9KUA8CZYyFJ49jOivFT3ZC-QWvk-DSJFidGhBwQZUEWk4vQYdfIi1ycIm2AUoz2uQ08zxShXIuBR6rGQC09EqYO89rsmacM2bkQvJsmKJ9naIgFbJNYWydJBV6sxs5pr48_e3dZcSbPvyoSA92MY-SPfQdetCdfNv892-r_uZ2gbVh6rYzFd1KnmC30O3kklL-xi_ACXKdtp priority: 102 providerName: Springer Nature |
Title | Robust and novel attention guided MultiResUnet model for 3D ground reaction force and moment prediction from foot kinematics |
URI | https://link.springer.com/article/10.1007/s00521-023-09081-z https://www.proquest.com/docview/2910703195 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFH4a7WUXxn6JblD5wI1Fa2wncU5T6VoQCISqVWKnKI5dhFaSrkl3QPvjec916DZpXCLFdnzI84_vPft9H8BRouahnsc6EIrbQOq5DXKjTJAYKVNNMlculH15FZ_N5PlNdOMDbrW_VtmuiW6hNlVBMfLPHPc14lpPoy_LnwGpRtHpqpfQ2IEuLsEq6kD3ZHx1Pf0jM9KJcqIPQ_d7pPBpMy55jiKiWMoFxSpUGDz8vTVt8eY_R6Ru55nswa6HjGy4sfFreGHLN_CqlWNgfna-hd_TSq_rhuWlYWX1yy4YcWe624zsdn1nrGEu3XZq61lpG-ZEcBiCVia-MsruwO8QQrpEByourOvqnjgaGrZc0ZHOpm5V3WODqmE_EKM6ztf6Hcwm42-js8CLKwSFiEWDLiO36O3kklyeJNI5OnK5TGSB79Gcm7CwAz2ItTVRJOLUCE6a9OhNxsJwbZR4D52yKu0-MApMSTFQNgmtNFIok8cqLUKZqDzM06IHYftfs8Izj5MAxiJ74kx2tsjQFpmzRfbQg-Onb5Yb3o1nWx-05sr8HKyz7YjpwafWhNvq__f24fnePsJLjshmE4c5gE6zWttDRCaN7sOOmpz2oTs8_X4x7vvBiKWjeITPGR8-AtuT46I |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAu5VGqblnAB3pqIza2kzgHhIC22r5W1aor9ZbGsbdCtMmyyYJY8Zv4jcw4SReQ2luPcew5eMb2N2PPfABvIzX29TjUnlDcelKPrZcaZbzISBlrorlyoezTQdgfyaOL4GIJfre5MPSsst0T3UZtioxi5O84nmtUaz0OPky-ecQaRberLYVGbRbH9ucPdNnK94d7qN9tzg_2zz_3vYZVwMtEKCr0lbhFmJ9KwvpRoFP0YFIZyQy_gzE3fmZ7uhdqa4JAhLERnMjY0Y0KheHaKIFyH8EKwowYV9HKp_3B2fCvTExHAoo-E70nkqJJ03HJehSBxVYuKDaifG_-71G4wLf_Xcm6k-7gKaw1EJV9rG3qGSzZ_Dk8aekfWLMbrMOvYaFnZcXS3LC8-G6vGdXqdK8n2dXsi7GGufTeoS1Hua2YI91hCJKZ2GOUTYLjELK6xApqzqwTdUM1ISo2mdIVUv1vWtxgh6JiXxETuxqz5QsYPci0b8ByXuR2ExgFwqToKRv5VhoplElDFWe-jFTqp3HWAb-d1yRrKp0T4cZ1cluj2ekiQV0kThfJvAM7t2MmdZ2Pe3t3W3UlzZovk4WFdmC3VeHi993Stu6X9gZW--enJ8nJ4eD4JTzmiKrqGFAXlqvpzL5CVFTp140pMrh8aOv_AzY5GgQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAXyirK6gM3CDSxkzjHCig7QohKcIrs2EGokFSty6Hi47GdpCwCJMQx8aLEduI343lvALZDmro8DbiDqScdwlPpMEGFEwpCIm7SXFlX9uVVcNIhZ3f-3QcWv412r44kC06DUWnK1H5PpPtj4pvxZmoz2MPGz0BdZzQJU8SIs9dgqnV8f370gRtp03JqK8ZE-BBcEme-7-Xz5vSOOL8cktq9p10HVj11EXLS3RsqvpeMvgg6_ue15mC2BKaoVaykeZiQ2QLUq6QPqPwHLMLrTc6HA4VYJlCWv8gnZBQ6bcwkehg-CimQJfXeyEEnkwrZVDtIQ2OED5HhkOh2GqhaOoW5nUjb1bNRglCo1zcHR0VZP3_WFXKFuhoJW2XZwRJ02ke3BydOmcLBSXCAlTZMPaltKkaMYRX6nGlzkZGQJPraTz3hJrLJmwGXwvdxEAms7VFsbNYAC48LipehluWZXAFk3F8EN6kMXUkEwVSwgEaJS0LKXBYlDXCruYuTUt_cpNl4isfKzHZ4Yz28sR3eeNSAnXGbXqHu8Wvt9WpJxOWXPog9jbdMDoDIb8BuNcPvxT_3tvq36lswfX3Yji9Or87XYMbT0KpwBK1DTfWHckNDI8U3y9X_Bvv4BIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+novel+attention+guided+MultiResUnet+model+for+3D+ground+reaction+force+and+moment+prediction+from+foot+kinematics&rft.jtitle=Neural+computing+%26+applications&rft.au=Faisal%2C+Md.+Ahasan+Atick&rft.au=Mahmud%2C+Sakib&rft.au=Chowdhury%2C+Muhammad+E.+H&rft.au=Khandakar%2C+Amith&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=3&rft.spage=1105&rft.epage=1121&rft_id=info:doi/10.1007%2Fs00521-023-09081-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |