Mass spectrometric quantification of microRNAs in biological samples based on multistage signal amplification

This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 145; no. 5; pp. 1783 - 1788
Main Authors Li, Xiangtang, Zhao, Jingjin, Xu, Rui, Pan, Li, Liu, Yi-Ming
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent. Quantification of miRNAs based on multistage signal amplification and LC-ESI-MS/MS.
AbstractList This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent.
This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent.
This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent.This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent.
This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent. Quantification of miRNAs based on multistage signal amplification and LC-ESI-MS/MS.
Author Xu, Rui
Li, Xiangtang
Zhao, Jingjin
Pan, Li
Liu, Yi-Ming
AuthorAffiliation Department of Chemistry and Biochemistry
Ministry of Education
Jackson State University
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)
AuthorAffiliation_xml – name: Ministry of Education
– name: Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)
– name: Jackson State University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Xiangtang
  surname: Li
  fullname: Li, Xiangtang
– sequence: 2
  givenname: Jingjin
  surname: Zhao
  fullname: Zhao, Jingjin
– sequence: 3
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
– sequence: 4
  givenname: Li
  surname: Pan
  fullname: Pan, Li
– sequence: 5
  givenname: Yi-Ming
  surname: Liu
  fullname: Liu, Yi-Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31942587$$D View this record in MEDLINE/PubMed
BookMark eNp90U1r3DAQBmBREppN2kvvLSq5lIIbfdiydVyWpCn5gtCejTyWF6W25WjkQ_99tNlkA6HkJCQ9GjTvHJK90Y-WkE-c_eBM6hPQZmSCqfzvO7LgUuVZUYhqjywYYzITqsgPyCHiXdpyVrD35EBynYuiKhdkuDKIFCcLMfjBxuCA3s9mjK5zYKLzI_UdHRwEf3u9ROpG2jjf-3W67SmaYeot0sagbWmyw9xHh9GsLUW3HhPZiF2tD2S_Mz3aj0_rEflzdvp7dZ5d3vz8tVpeZiCVjFkBRpS6VG1hLatayVqQHKwCDXkLwrASuBKpiabVHQcFkLoXTVNqsOlEyiPybVt3Cv5-thjrwSHYvjej9TPWQkpdVpXIy0SPX9E7P4f0841SOmciJZXUlyc1N4Nt6ym4wYR_9XOQCXzfghQUYrDdjnBWb6ZUr_Ty-nFKFwmzVxhcfAwoBuP6_z_5un0SEHalXwZfT22XzOe3jHwA-KWqhA
CitedBy_id crossref_primary_10_1016_j_microc_2022_107849
crossref_primary_10_1016_j_aca_2022_340461
crossref_primary_10_1016_j_talanta_2022_123314
crossref_primary_10_1016_j_ijbiomac_2021_04_101
crossref_primary_10_1016_j_microc_2022_107510
crossref_primary_10_3390_bios12121172
crossref_primary_10_1039_D0TB02165B
crossref_primary_10_1021_acsomega_3c06045
crossref_primary_10_1016_j_talanta_2020_121899
crossref_primary_10_1021_acs_analchem_3c05437
crossref_primary_10_1016_j_bios_2020_112449
crossref_primary_10_1016_j_heliyon_2023_e22809
crossref_primary_10_1021_acs_analchem_1c00065
crossref_primary_10_1186_s12951_022_01595_3
crossref_primary_10_1134_S1061934822040050
Cites_doi 10.2174/156652409787847236
10.1016/j.ymeth.2010.01.026
10.1093/nar/gnh171
10.1021/acs.analchem.8b01111
10.1021/ja412152x
10.1021/ac504378s
10.1016/j.jbiosc.2012.10.006
10.2144/000114002
10.1021/acs.analchem.8b02251
10.1002/anie.201309388
10.1002/anie.200601332
10.1021/ja300721s
10.1016/j.bios.2016.04.053
10.1038/nmeth704
10.1021/jacs.7b00610
10.1016/j.bios.2017.02.044
10.1007/s13361-013-0759-x
10.1039/C6CC06160E
10.1007/BF01625428
10.1126/science.1064921
10.1021/acs.chemrev.5b00428
10.1021/acs.analchem.8b04008
10.1021/acs.analchem.5b03670
10.1039/C6CC08334J
10.1038/nprot.2007.528
10.1007/s00216-008-2570-2
10.1016/j.bios.2015.04.057
10.1038/s41598-017-05495-7
10.1021/ac200096b
10.1021/acs.accounts.7b00040
10.1038/nmeth1010-795
10.1371/journal.pone.0153201
10.1021/jacs.6b02232
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c9an02064k
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 1788
ExternalDocumentID 31942587
10_1039_C9AN02064K
c9an02064k
Genre Journal Article
GroupedDBID -
0-7
02
0R
1TJ
23M
4.4
5RE
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABOCM
ABPTK
ABRYZ
ACGFS
ACHRU
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
F5P
GNO
HR
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
P2P
R7B
R7E
RCNCU
RIG
RPMJG
RRA
RRC
RSCEA
SKM
SKR
SKZ
SLC
SLF
TN5
UPT
VH6
WH7
X
---
-~X
.HR
0R~
2WC
70~
AAJAE
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ANUXI
APEMP
CITATION
COF
GGIMP
H13
HZ~
R56
RAOCF
~02
-JG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c363t-5ca27976d5ee08d30dc31ce6c9c4dc2a07c162319bd9f1c6cc2062bb79ced9f33
ISSN 0003-2654
1364-5528
IngestDate Fri Jul 11 07:11:34 EDT 2025
Mon Jun 30 06:03:02 EDT 2025
Wed Feb 19 02:31:35 EST 2025
Tue Jul 01 01:56:59 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Sat Jan 08 04:36:15 EST 2022
Wed Nov 11 00:25:27 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-5ca27976d5ee08d30dc31ce6c9c4dc2a07c162319bd9f1c6cc2062bb79ced9f33
Notes 10.1039/c9an02064k
Electronic supplementary information (ESI) available: Supplementary figures. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1194-7665
0000-0002-7760-9565
PMID 31942587
PQID 2369402425
PQPubID 2047505
PageCount 6
ParticipantIDs proquest_journals_2369402425
crossref_citationtrail_10_1039_C9AN02064K
proquest_miscellaneous_2339788247
crossref_primary_10_1039_C9AN02064K
rsc_primary_c9an02064k
pubmed_primary_31942587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-07
PublicationDateYYYYMMDD 2020-03-07
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Benes (C9AN02064K-(cit6)/*[position()=1]) 2010; 50
Davies (C9AN02064K-(cit2)/*[position()=1]) 2006; 45
Lagos-Quintana (C9AN02064K-(cit3)/*[position()=1]) 2001; 294
Yan (C9AN02064K-(cit21)/*[position()=1]) 2017; 139
Degliangeli (C9AN02064K-(cit19)/*[position()=1]) 2014; 136
Várallyay (C9AN02064K-(cit5)/*[position()=1]) 2008; 3
Deng (C9AN02064K-(cit11)/*[position()=1]) 2014; 53
Feng (C9AN02064K-(cit18)/*[position()=1]) 2016; 88
Yin (C9AN02064K-(cit13)/*[position()=1]) 2012; 134
Du (C9AN02064K-(cit12)/*[position()=1]) 2016; 52
Kullolli (C9AN02064K-(cit24)/*[position()=1]) 2014; 25
Takebayashi (C9AN02064K-(cit25)/*[position()=1]) 2013; 115
Dong (C9AN02064K-(cit10)/*[position()=1]) 2018; 90
Thomson (C9AN02064K-(cit8)/*[position()=1]) 2004; 1
Shah (C9AN02064K-(cit1)/*[position()=1]) 2009; 9
Li (C9AN02064K-(cit9)/*[position()=1]) 2009; 394
Wei (C9AN02064K-(cit32)/*[position()=1]) 2017; 94
Redshaw (C9AN02064K-(cit7)/*[position()=1]) 2013; 54
Li (C9AN02064K-(cit30)/*[position()=1]) 2018; 90
Shen (C9AN02064K-(cit15)/*[position()=1]) 2015; 71
Liu (C9AN02064K-(cit28)/*[position()=1]) 2017; 7
Grenman (C9AN02064K-(cit31)/*[position()=1]) 1991; 117
Bi (C9AN02064K-(cit17)/*[position()=1]) 2011; 83
Nakayama (C9AN02064K-(cit23)/*[position()=1]) 2015; 87
Zhao (C9AN02064K-(cit14)/*[position()=1]) 2015; 115
Zhang (C9AN02064K-(cit29)/*[position()=1]) 2016; 52
Deng (C9AN02064K-(cit16)/*[position()=1]) 2017; 50
Válóczi (C9AN02064K-(cit4)/*[position()=1]) 2004; 32
Kim (C9AN02064K-(cit26)/*[position()=1]) 2016; 11
Grimson (C9AN02064K-(cit27)/*[position()=1]) 2010; 7
Zhang (C9AN02064K-(cit33)/*[position()=1]) 2018; 90
Lv (C9AN02064K-(cit20)/*[position()=1]) 2016; 83
Chen (C9AN02064K-(cit22)/*[position()=1]) 2016; 138
References_xml – volume: 9
  start-page: 336
  year: 2009
  ident: C9AN02064K-(cit1)/*[position()=1]
  publication-title: Curr. Mol. Med.
  doi: 10.2174/156652409787847236
– volume: 50
  start-page: 244
  year: 2010
  ident: C9AN02064K-(cit6)/*[position()=1]
  publication-title: Methods
  doi: 10.1016/j.ymeth.2010.01.026
– volume: 32
  start-page: e175
  year: 2004
  ident: C9AN02064K-(cit4)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnh171
– volume: 90
  start-page: 7107
  year: 2018
  ident: C9AN02064K-(cit10)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b01111
– volume: 136
  start-page: 2264
  year: 2014
  ident: C9AN02064K-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja412152x
– volume: 87
  start-page: 2884
  year: 2015
  ident: C9AN02064K-(cit23)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac504378s
– volume: 115
  start-page: 332
  year: 2013
  ident: C9AN02064K-(cit25)/*[position()=1]
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2012.10.006
– volume: 54
  start-page: 155
  year: 2013
  ident: C9AN02064K-(cit7)/*[position()=1]
  publication-title: BioTechniques
  doi: 10.2144/000114002
– volume: 90
  start-page: 9538
  year: 2018
  ident: C9AN02064K-(cit33)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b02251
– volume: 53
  start-page: 2389
  year: 2014
  ident: C9AN02064K-(cit11)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201309388
– volume: 45
  start-page: 5550
  year: 2006
  ident: C9AN02064K-(cit2)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200601332
– volume: 134
  start-page: 5064
  year: 2012
  ident: C9AN02064K-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300721s
– volume: 83
  start-page: 250
  year: 2016
  ident: C9AN02064K-(cit20)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.04.053
– volume: 1
  start-page: 47
  year: 2004
  ident: C9AN02064K-(cit8)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth704
– volume: 139
  start-page: 4987
  year: 2017
  ident: C9AN02064K-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00610
– volume: 94
  start-page: 56
  year: 2017
  ident: C9AN02064K-(cit32)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.02.044
– volume: 25
  start-page: 80
  year: 2014
  ident: C9AN02064K-(cit24)/*[position()=1]
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-013-0759-x
– volume: 52
  start-page: 12721
  year: 2016
  ident: C9AN02064K-(cit12)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06160E
– volume: 117
  start-page: 223
  year: 1991
  ident: C9AN02064K-(cit31)/*[position()=1]
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/BF01625428
– volume: 294
  start-page: 853
  year: 2001
  ident: C9AN02064K-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1064921
– volume: 115
  start-page: 12491
  year: 2015
  ident: C9AN02064K-(cit14)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00428
– volume: 90
  start-page: 13663
  year: 2018
  ident: C9AN02064K-(cit30)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b04008
– volume: 88
  start-page: 937
  year: 2016
  ident: C9AN02064K-(cit18)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b03670
– volume: 52
  start-page: 14310
  year: 2016
  ident: C9AN02064K-(cit29)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08334J
– volume: 3
  start-page: 190
  year: 2008
  ident: C9AN02064K-(cit5)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.528
– volume: 394
  start-page: 1117
  year: 2009
  ident: C9AN02064K-(cit9)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-008-2570-2
– volume: 71
  start-page: 322
  year: 2015
  ident: C9AN02064K-(cit15)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.04.057
– volume: 7
  start-page: 5669
  year: 2017
  ident: C9AN02064K-(cit28)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05495-7
– volume: 83
  start-page: 3696
  year: 2011
  ident: C9AN02064K-(cit17)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac200096b
– volume: 50
  start-page: 1059
  year: 2017
  ident: C9AN02064K-(cit16)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00040
– volume: 7
  start-page: 795
  year: 2010
  ident: C9AN02064K-(cit27)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1010-795
– volume: 11
  start-page: e0153201
  year: 2016
  ident: C9AN02064K-(cit26)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0153201
– volume: 138
  start-page: 6356
  year: 2016
  ident: C9AN02064K-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02232
SSID ssj0001050
Score 2.3996265
Snippet This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1783
SubjectTerms Amplification
Biological properties
Cost analysis
Ions
Liquid chromatography
Mass spectrometry
MicroRNAs
Multistage
Nuclease
Title Mass spectrometric quantification of microRNAs in biological samples based on multistage signal amplification
URI https://www.ncbi.nlm.nih.gov/pubmed/31942587
https://www.proquest.com/docview/2369402425
https://www.proquest.com/docview/2339788247
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgO8AF8TXIGMgILqgKuPFHlmNVdRrQFQmlUm5RYjtVB0unLb3w1_NsJ06q9TC4RJXtxq3fz_bv2e8DoY-S8ooIpUIRqyhkvGRhoRkJOedS0YJH0kbnv1iI8yX7lvGsd1e03iVN-Vn-2etX8j9ShTKQq_GS_QfJ-pdCAXwG-cITJAzPe8n4ApjvyPpKmqADJta-cZJ05j-eCl4Zk7ufi4k1fHUxl5wrZGECA9-OzD6mzJ2BtS0EsrjSI2PVYYIIGHPz7l1DGutCmTTDfCD-QGFu7QMygN0KiOdqcDLtLnlgr7xce0hmWyvk7bq_y3LOEOvheQQon8YgKx4soVQwEHXr8q33lHXrrosj2QKMD1bRceyS29xZ3gk10VFlUtTQsWC_-k2su7hf_MjPlvN5ns6y9CE6jEB5gNXvcDJLv879Dg2c0nmPt7-qC1tLky_9u3eJyh3tA7jITZcjxnKR9Cl60ioReOIQ8Qw90PVz9Gja5e57ga4MMvAOMvAuMvCmwh4ZeF3jHhm4RQa2yMDQtkcGdsjAO8h4iZZns3R6HraJNUJJBW1CLosoBh6quNbkVFGiJB1LLWQimZJRQWKYoUD8k1Il1Vga03oiorKME6mhhNIjdFBvav0aYU0U8JlYmONMNi5FoUhUxAzGveI0ojRAn7pRzGUbdd4kP_mdW-sHmuTTZLKwI_49QB9822sXa2Vvq5NOGHk7F2_ziIqEWfU5QO99NQy6uf4qar3ZmjbAvUGhZHGAXjkh-m7gv8J3T6HmCKTqi3s0BOh4f0V-rarje_T5Bj3uZ8sJOmhutvot8NmmfNfC8y_u-aMG
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+spectrometric+quantification+of+microRNAs+in+biological+samples+based+on+multistage+signal+amplification&rft.jtitle=Analyst+%28London%29&rft.au=Li%2C+Xiangtang&rft.au=Zhao%2C+Jingjin&rft.au=Xu%2C+Rui&rft.au=Pan%2C+Li&rft.date=2020-03-07&rft.issn=1364-5528&rft.eissn=1364-5528&rft.volume=145&rft.issue=5&rft.spage=1783&rft_id=info:doi/10.1039%2Fc9an02064k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon