Mass spectrometric quantification of microRNAs in biological samples based on multistage signal amplification
This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA...
Saved in:
Published in | Analyst (London) Vol. 145; no. 5; pp. 1783 - 1788 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by
ca.
50%, and the decrease was dose-dependent.
Quantification of miRNAs based on multistage signal amplification and LC-ESI-MS/MS. |
---|---|
AbstractList | This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent. This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent. This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent.This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent. This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The multistage signal amplification involves hybridization enrichment of miRNA targets with a DNA probe-magnetic bead conjugate, target recycling amplification with a duplex-specific nuclease, and acid hydrolysis of the reporter molecules producing free nucleobases. Nucleobases thus generated are quantified by LC-ESI-MS/MS with specificity and repeatability. Taking miR-21 as the model target, biological samples such as serum and cell cultures were analyzed by using the present protocol. The analytical results indicate that facile and cost-effective quantifications of miRNA targets can be achieved by using the popular LC-ESI-MS/MS technique, and very importantly, without an isolation of total RNAs from the sample prior to the quantitative assay. The assay for miR-21 detection had a linear calibration curve in the range from 0.2 pM to 0.25 nM with a limit of detection of 60 fM. Analysis of MCF-7 cells treated with toremifene (a potent inhibitor of breast cancer cell growth) revealed that the content of miRNA-21 decreased by ca. 50%, and the decrease was dose-dependent. Quantification of miRNAs based on multistage signal amplification and LC-ESI-MS/MS. |
Author | Xu, Rui Li, Xiangtang Zhao, Jingjin Pan, Li Liu, Yi-Ming |
AuthorAffiliation | Department of Chemistry and Biochemistry Ministry of Education Jackson State University Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University) |
AuthorAffiliation_xml | – name: Ministry of Education – name: Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University) – name: Jackson State University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Xiangtang surname: Li fullname: Li, Xiangtang – sequence: 2 givenname: Jingjin surname: Zhao fullname: Zhao, Jingjin – sequence: 3 givenname: Rui surname: Xu fullname: Xu, Rui – sequence: 4 givenname: Li surname: Pan fullname: Pan, Li – sequence: 5 givenname: Yi-Ming surname: Liu fullname: Liu, Yi-Ming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31942587$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1r3DAQBmBREppN2kvvLSq5lIIbfdiydVyWpCn5gtCejTyWF6W25WjkQ_99tNlkA6HkJCQ9GjTvHJK90Y-WkE-c_eBM6hPQZmSCqfzvO7LgUuVZUYhqjywYYzITqsgPyCHiXdpyVrD35EBynYuiKhdkuDKIFCcLMfjBxuCA3s9mjK5zYKLzI_UdHRwEf3u9ROpG2jjf-3W67SmaYeot0sagbWmyw9xHh9GsLUW3HhPZiF2tD2S_Mz3aj0_rEflzdvp7dZ5d3vz8tVpeZiCVjFkBRpS6VG1hLatayVqQHKwCDXkLwrASuBKpiabVHQcFkLoXTVNqsOlEyiPybVt3Cv5-thjrwSHYvjej9TPWQkpdVpXIy0SPX9E7P4f0841SOmciJZXUlyc1N4Nt6ym4wYR_9XOQCXzfghQUYrDdjnBWb6ZUr_Ty-nFKFwmzVxhcfAwoBuP6_z_5un0SEHalXwZfT22XzOe3jHwA-KWqhA |
CitedBy_id | crossref_primary_10_1016_j_microc_2022_107849 crossref_primary_10_1016_j_aca_2022_340461 crossref_primary_10_1016_j_talanta_2022_123314 crossref_primary_10_1016_j_ijbiomac_2021_04_101 crossref_primary_10_1016_j_microc_2022_107510 crossref_primary_10_3390_bios12121172 crossref_primary_10_1039_D0TB02165B crossref_primary_10_1021_acsomega_3c06045 crossref_primary_10_1016_j_talanta_2020_121899 crossref_primary_10_1021_acs_analchem_3c05437 crossref_primary_10_1016_j_bios_2020_112449 crossref_primary_10_1016_j_heliyon_2023_e22809 crossref_primary_10_1021_acs_analchem_1c00065 crossref_primary_10_1186_s12951_022_01595_3 crossref_primary_10_1134_S1061934822040050 |
Cites_doi | 10.2174/156652409787847236 10.1016/j.ymeth.2010.01.026 10.1093/nar/gnh171 10.1021/acs.analchem.8b01111 10.1021/ja412152x 10.1021/ac504378s 10.1016/j.jbiosc.2012.10.006 10.2144/000114002 10.1021/acs.analchem.8b02251 10.1002/anie.201309388 10.1002/anie.200601332 10.1021/ja300721s 10.1016/j.bios.2016.04.053 10.1038/nmeth704 10.1021/jacs.7b00610 10.1016/j.bios.2017.02.044 10.1007/s13361-013-0759-x 10.1039/C6CC06160E 10.1007/BF01625428 10.1126/science.1064921 10.1021/acs.chemrev.5b00428 10.1021/acs.analchem.8b04008 10.1021/acs.analchem.5b03670 10.1039/C6CC08334J 10.1038/nprot.2007.528 10.1007/s00216-008-2570-2 10.1016/j.bios.2015.04.057 10.1038/s41598-017-05495-7 10.1021/ac200096b 10.1021/acs.accounts.7b00040 10.1038/nmeth1010-795 10.1371/journal.pone.0153201 10.1021/jacs.6b02232 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c9an02064k |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 1788 |
ExternalDocumentID | 31942587 10_1039_C9AN02064K c9an02064k |
Genre | Journal Article |
GroupedDBID | - 0-7 02 0R 1TJ 23M 4.4 5RE 70 705 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABOCM ABPTK ABRYZ ACGFS ACHRU ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- F5P GNO HR HZ H~N IDZ J3I JG M4U N9A O9- P2P R7B R7E RCNCU RIG RPMJG RRA RRC RSCEA SKM SKR SKZ SLC SLF TN5 UPT VH6 WH7 X --- -~X .HR 0R~ 2WC 70~ AAJAE AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKMSF ANUXI APEMP CITATION COF GGIMP H13 HZ~ R56 RAOCF ~02 -JG NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c363t-5ca27976d5ee08d30dc31ce6c9c4dc2a07c162319bd9f1c6cc2062bb79ced9f33 |
ISSN | 0003-2654 1364-5528 |
IngestDate | Fri Jul 11 07:11:34 EDT 2025 Mon Jun 30 06:03:02 EDT 2025 Wed Feb 19 02:31:35 EST 2025 Tue Jul 01 01:56:59 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Sat Jan 08 04:36:15 EST 2022 Wed Nov 11 00:25:27 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c363t-5ca27976d5ee08d30dc31ce6c9c4dc2a07c162319bd9f1c6cc2062bb79ced9f33 |
Notes | 10.1039/c9an02064k Electronic supplementary information (ESI) available: Supplementary figures. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1194-7665 0000-0002-7760-9565 |
PMID | 31942587 |
PQID | 2369402425 |
PQPubID | 2047505 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2369402425 crossref_citationtrail_10_1039_C9AN02064K proquest_miscellaneous_2339788247 crossref_primary_10_1039_C9AN02064K rsc_primary_c9an02064k pubmed_primary_31942587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-07 |
PublicationDateYYYYMMDD | 2020-03-07 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Analyst (London) |
PublicationTitleAlternate | Analyst |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Benes (C9AN02064K-(cit6)/*[position()=1]) 2010; 50 Davies (C9AN02064K-(cit2)/*[position()=1]) 2006; 45 Lagos-Quintana (C9AN02064K-(cit3)/*[position()=1]) 2001; 294 Yan (C9AN02064K-(cit21)/*[position()=1]) 2017; 139 Degliangeli (C9AN02064K-(cit19)/*[position()=1]) 2014; 136 Várallyay (C9AN02064K-(cit5)/*[position()=1]) 2008; 3 Deng (C9AN02064K-(cit11)/*[position()=1]) 2014; 53 Feng (C9AN02064K-(cit18)/*[position()=1]) 2016; 88 Yin (C9AN02064K-(cit13)/*[position()=1]) 2012; 134 Du (C9AN02064K-(cit12)/*[position()=1]) 2016; 52 Kullolli (C9AN02064K-(cit24)/*[position()=1]) 2014; 25 Takebayashi (C9AN02064K-(cit25)/*[position()=1]) 2013; 115 Dong (C9AN02064K-(cit10)/*[position()=1]) 2018; 90 Thomson (C9AN02064K-(cit8)/*[position()=1]) 2004; 1 Shah (C9AN02064K-(cit1)/*[position()=1]) 2009; 9 Li (C9AN02064K-(cit9)/*[position()=1]) 2009; 394 Wei (C9AN02064K-(cit32)/*[position()=1]) 2017; 94 Redshaw (C9AN02064K-(cit7)/*[position()=1]) 2013; 54 Li (C9AN02064K-(cit30)/*[position()=1]) 2018; 90 Shen (C9AN02064K-(cit15)/*[position()=1]) 2015; 71 Liu (C9AN02064K-(cit28)/*[position()=1]) 2017; 7 Grenman (C9AN02064K-(cit31)/*[position()=1]) 1991; 117 Bi (C9AN02064K-(cit17)/*[position()=1]) 2011; 83 Nakayama (C9AN02064K-(cit23)/*[position()=1]) 2015; 87 Zhao (C9AN02064K-(cit14)/*[position()=1]) 2015; 115 Zhang (C9AN02064K-(cit29)/*[position()=1]) 2016; 52 Deng (C9AN02064K-(cit16)/*[position()=1]) 2017; 50 Válóczi (C9AN02064K-(cit4)/*[position()=1]) 2004; 32 Kim (C9AN02064K-(cit26)/*[position()=1]) 2016; 11 Grimson (C9AN02064K-(cit27)/*[position()=1]) 2010; 7 Zhang (C9AN02064K-(cit33)/*[position()=1]) 2018; 90 Lv (C9AN02064K-(cit20)/*[position()=1]) 2016; 83 Chen (C9AN02064K-(cit22)/*[position()=1]) 2016; 138 |
References_xml | – volume: 9 start-page: 336 year: 2009 ident: C9AN02064K-(cit1)/*[position()=1] publication-title: Curr. Mol. Med. doi: 10.2174/156652409787847236 – volume: 50 start-page: 244 year: 2010 ident: C9AN02064K-(cit6)/*[position()=1] publication-title: Methods doi: 10.1016/j.ymeth.2010.01.026 – volume: 32 start-page: e175 year: 2004 ident: C9AN02064K-(cit4)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gnh171 – volume: 90 start-page: 7107 year: 2018 ident: C9AN02064K-(cit10)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01111 – volume: 136 start-page: 2264 year: 2014 ident: C9AN02064K-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412152x – volume: 87 start-page: 2884 year: 2015 ident: C9AN02064K-(cit23)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac504378s – volume: 115 start-page: 332 year: 2013 ident: C9AN02064K-(cit25)/*[position()=1] publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2012.10.006 – volume: 54 start-page: 155 year: 2013 ident: C9AN02064K-(cit7)/*[position()=1] publication-title: BioTechniques doi: 10.2144/000114002 – volume: 90 start-page: 9538 year: 2018 ident: C9AN02064K-(cit33)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02251 – volume: 53 start-page: 2389 year: 2014 ident: C9AN02064K-(cit11)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201309388 – volume: 45 start-page: 5550 year: 2006 ident: C9AN02064K-(cit2)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200601332 – volume: 134 start-page: 5064 year: 2012 ident: C9AN02064K-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300721s – volume: 83 start-page: 250 year: 2016 ident: C9AN02064K-(cit20)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.04.053 – volume: 1 start-page: 47 year: 2004 ident: C9AN02064K-(cit8)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth704 – volume: 139 start-page: 4987 year: 2017 ident: C9AN02064K-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00610 – volume: 94 start-page: 56 year: 2017 ident: C9AN02064K-(cit32)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.02.044 – volume: 25 start-page: 80 year: 2014 ident: C9AN02064K-(cit24)/*[position()=1] publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-013-0759-x – volume: 52 start-page: 12721 year: 2016 ident: C9AN02064K-(cit12)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC06160E – volume: 117 start-page: 223 year: 1991 ident: C9AN02064K-(cit31)/*[position()=1] publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/BF01625428 – volume: 294 start-page: 853 year: 2001 ident: C9AN02064K-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1064921 – volume: 115 start-page: 12491 year: 2015 ident: C9AN02064K-(cit14)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00428 – volume: 90 start-page: 13663 year: 2018 ident: C9AN02064K-(cit30)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04008 – volume: 88 start-page: 937 year: 2016 ident: C9AN02064K-(cit18)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b03670 – volume: 52 start-page: 14310 year: 2016 ident: C9AN02064K-(cit29)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC08334J – volume: 3 start-page: 190 year: 2008 ident: C9AN02064K-(cit5)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.528 – volume: 394 start-page: 1117 year: 2009 ident: C9AN02064K-(cit9)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-008-2570-2 – volume: 71 start-page: 322 year: 2015 ident: C9AN02064K-(cit15)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.04.057 – volume: 7 start-page: 5669 year: 2017 ident: C9AN02064K-(cit28)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-05495-7 – volume: 83 start-page: 3696 year: 2011 ident: C9AN02064K-(cit17)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac200096b – volume: 50 start-page: 1059 year: 2017 ident: C9AN02064K-(cit16)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00040 – volume: 7 start-page: 795 year: 2010 ident: C9AN02064K-(cit27)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth1010-795 – volume: 11 start-page: e0153201 year: 2016 ident: C9AN02064K-(cit26)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0153201 – volume: 138 start-page: 6356 year: 2016 ident: C9AN02064K-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02232 |
SSID | ssj0001050 |
Score | 2.3996265 |
Snippet | This work describes a novel method for quantification of miRNAs based on multistage signal amplification (MSA) and liquid chromatography-electrospray... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1783 |
SubjectTerms | Amplification Biological properties Cost analysis Ions Liquid chromatography Mass spectrometry MicroRNAs Multistage Nuclease |
Title | Mass spectrometric quantification of microRNAs in biological samples based on multistage signal amplification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31942587 https://www.proquest.com/docview/2369402425 https://www.proquest.com/docview/2339788247 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgO8AF8TXIGMgILqgKuPFHlmNVdRrQFQmlUm5RYjtVB0unLb3w1_NsJ06q9TC4RJXtxq3fz_bv2e8DoY-S8ooIpUIRqyhkvGRhoRkJOedS0YJH0kbnv1iI8yX7lvGsd1e03iVN-Vn-2etX8j9ShTKQq_GS_QfJ-pdCAXwG-cITJAzPe8n4ApjvyPpKmqADJta-cZJ05j-eCl4Zk7ufi4k1fHUxl5wrZGECA9-OzD6mzJ2BtS0EsrjSI2PVYYIIGHPz7l1DGutCmTTDfCD-QGFu7QMygN0KiOdqcDLtLnlgr7xce0hmWyvk7bq_y3LOEOvheQQon8YgKx4soVQwEHXr8q33lHXrrosj2QKMD1bRceyS29xZ3gk10VFlUtTQsWC_-k2su7hf_MjPlvN5ns6y9CE6jEB5gNXvcDJLv879Dg2c0nmPt7-qC1tLky_9u3eJyh3tA7jITZcjxnKR9Cl60ioReOIQ8Qw90PVz9Gja5e57ga4MMvAOMvAuMvCmwh4ZeF3jHhm4RQa2yMDQtkcGdsjAO8h4iZZns3R6HraJNUJJBW1CLosoBh6quNbkVFGiJB1LLWQimZJRQWKYoUD8k1Il1Vga03oiorKME6mhhNIjdFBvav0aYU0U8JlYmONMNi5FoUhUxAzGveI0ojRAn7pRzGUbdd4kP_mdW-sHmuTTZLKwI_49QB9822sXa2Vvq5NOGHk7F2_ziIqEWfU5QO99NQy6uf4qar3ZmjbAvUGhZHGAXjkh-m7gv8J3T6HmCKTqi3s0BOh4f0V-rarje_T5Bj3uZ8sJOmhutvot8NmmfNfC8y_u-aMG |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+spectrometric+quantification+of+microRNAs+in+biological+samples+based+on+multistage+signal+amplification&rft.jtitle=Analyst+%28London%29&rft.au=Li%2C+Xiangtang&rft.au=Zhao%2C+Jingjin&rft.au=Xu%2C+Rui&rft.au=Pan%2C+Li&rft.date=2020-03-07&rft.issn=1364-5528&rft.eissn=1364-5528&rft.volume=145&rft.issue=5&rft.spage=1783&rft_id=info:doi/10.1039%2Fc9an02064k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |