Stochastic dominance-based rough set model for ordinal classification
In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, dominance-based rough set approach (DRSA) has been introduced to deal with the problem of ordinal classification with monotonicity constraints (also referred to as mu...
Saved in:
Published in | Information sciences Vol. 178; no. 21; pp. 4019 - 4037 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, dominance-based rough set approach (DRSA) has been introduced to deal with the problem of ordinal classification with monotonicity constraints (also referred to as multicriteria classification in decision analysis). However, in real-life problems, in the presence of noise, the notions of rough approximations were found to be excessively restrictive. In this paper, we introduce a probabilistic model for ordinal classification problems with monotonicity constraints. Then, we generalize the notion of lower approximations to the stochastic case. We estimate the probabilities with the maximum likelihood method which leads to the isotonic regression problem for a two-class (binary) case. The approach is easily generalized to a multi-class case. Finally, we show the equivalence of the variable consistency rough sets to the specific empirical risk-minimizing decision rule in the statistical decision theory. |
---|---|
AbstractList | In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, dominance-based rough set approach (DRSA) has been introduced to deal with the problem of ordinal classification with monotonicity constraints (also referred to as multicriteria classification in decision analysis). However, in real-life problems, in the presence of noise, the notions of rough approximations were found to be excessively restrictive. In this paper, we introduce a probabilistic model for ordinal classification problems with monotonicity constraints. Then, we generalize the notion of lower approximations to the stochastic case. We estimate the probabilities with the maximum likelihood method which leads to the isotonic regression problem for a two-class (binary) case. The approach is easily generalized to a multi-class case. Finally, we show the equivalence of the variable consistency rough sets to the specific empirical risk-minimizing decision rule in the statistical decision theory. |
Author | Greco, Salvatore Kotłowski, Wojciech Słowiński, Roman Dembczyński, Krzysztof |
Author_xml | – sequence: 1 givenname: Wojciech surname: Kotłowski fullname: Kotłowski, Wojciech email: wkotlowski@cs.put.poznan.pl organization: Institute of Computing Science, Poznań University of Technology, Piotrowo 2, Poznań 60-965, Poland – sequence: 2 givenname: Krzysztof surname: Dembczyński fullname: Dembczyński, Krzysztof email: kdembczynski@cs.put.poznan.pl organization: Institute of Computing Science, Poznań University of Technology, Piotrowo 2, Poznań 60-965, Poland – sequence: 3 givenname: Salvatore surname: Greco fullname: Greco, Salvatore email: salgreco@unict.it organization: Faculty of Economics, University of Catania, 95129 Catania, Italy – sequence: 4 givenname: Roman surname: Słowiński fullname: Słowiński, Roman email: rslowinski@cs.put.poznan.pl organization: Institute of Computing Science, Poznań University of Technology, Piotrowo 2, Poznań 60-965, Poland |
BookMark | eNp9kM1OAyEUhYmpiW31AdzxAjNeYIA2rkxTf5ImLtQ1YeCOpZkOBtDEt3dqXbno6mzud3PONyOTIQ5IyDWDmgFTN7s6DLnmAIsaVA1MnJEpW2heKb5kEzIF4FABl_KCzHLeAUCjlZqS9UuJbmtzCY76uA-DHRxWrc3oaYqf71uasdB99NjTLiYakx9veup6m3PogrMlxOGSnHe2z3j1l3Pydr9-XT1Wm-eHp9XdpnJCiVLJxtuF8K0cO3EmNSJT2jkHS94K1rZayaUVXjZKoO6E70RrvQDfWOUlKCnmhB3_uhRzTtiZjxT2Nn0bBubgwezM6MEcPBhQZvQwMvof40L5bV2SDf1J8vZI4jjpK2Ay2QUc_fiQ0BXjYzhB_wDv4nq_ |
CitedBy_id | crossref_primary_10_1016_j_ins_2023_01_119 crossref_primary_10_1007_s13042_015_0477_8 crossref_primary_10_1016_j_csda_2010_12_007 crossref_primary_10_4304_jsw_7_3_551_563 crossref_primary_10_1016_j_ijar_2020_05_002 crossref_primary_10_1007_s00180_021_01112_4 crossref_primary_10_1016_j_ins_2015_03_061 crossref_primary_10_1016_j_ins_2014_02_138 crossref_primary_10_1016_j_ejor_2009_11_019 crossref_primary_10_1016_j_ins_2016_08_044 crossref_primary_10_1016_j_engappai_2022_105285 crossref_primary_10_1016_j_knosys_2011_04_012 crossref_primary_10_1016_j_ins_2022_08_065 crossref_primary_10_1016_j_ins_2019_08_046 crossref_primary_10_1080_0013791X_2022_2047851 crossref_primary_10_1109_ACCESS_2020_3015813 crossref_primary_10_1155_2015_936340 crossref_primary_10_4028_www_scientific_net_AMM_48_49_357 crossref_primary_10_1016_j_ejor_2010_05_029 crossref_primary_10_1002_int_21599 crossref_primary_10_3923_itj_2009_388_392 crossref_primary_10_3233_JIFS_190684 crossref_primary_10_1016_j_ejor_2008_09_020 crossref_primary_10_1016_j_asoc_2011_03_002 crossref_primary_10_1007_s10489_024_05411_3 crossref_primary_10_1111_exsy_12506 crossref_primary_10_3233_JIFS_18757 crossref_primary_10_1080_00207543_2015_1078012 crossref_primary_10_1016_j_ins_2016_10_041 crossref_primary_10_1007_s10994_015_5541_9 crossref_primary_10_1109_TFUZZ_2014_2387877 crossref_primary_10_1038_s41598_022_20982_2 crossref_primary_10_1109_TKDE_2015_2457911 crossref_primary_10_1016_j_ins_2008_08_003 crossref_primary_10_3233_JIFS_181502 crossref_primary_10_1016_j_apm_2012_12_009 crossref_primary_10_1016_j_ins_2014_02_070 crossref_primary_10_1016_j_datak_2009_07_007 crossref_primary_10_1007_s13042_012_0105_9 crossref_primary_10_1016_j_ins_2018_11_014 crossref_primary_10_1109_TFUZZ_2019_2955883 crossref_primary_10_1002_int_20482 crossref_primary_10_1142_S0219622014500436 crossref_primary_10_1017_S0269888910000263 crossref_primary_10_1109_TFUZZ_2023_3272316 crossref_primary_10_1016_j_knosys_2012_03_001 crossref_primary_10_3233_JIFS_16511 crossref_primary_10_3923_itj_2009_610_614 crossref_primary_10_1016_j_inffus_2012_01_003 crossref_primary_10_1007_s00500_011_0693_4 crossref_primary_10_1016_j_ejor_2015_08_053 crossref_primary_10_1016_j_ejor_2024_07_038 crossref_primary_10_1016_j_knosys_2012_11_002 crossref_primary_10_1109_TAI_2023_3319301 crossref_primary_10_1016_j_ejor_2008_12_017 crossref_primary_10_1109_TKDE_2012_204 crossref_primary_10_1016_j_ejor_2023_09_026 crossref_primary_10_1016_j_knosys_2020_106583 crossref_primary_10_1080_09720502_2018_1456824 crossref_primary_10_1016_j_ins_2010_01_025 crossref_primary_10_1109_ACCESS_2018_2841876 crossref_primary_10_3923_rjit_2009_51_56 crossref_primary_10_4018_ijrsda_2014010101 crossref_primary_10_1016_j_ins_2014_02_100 crossref_primary_10_1007_s10288_023_00560_6 crossref_primary_10_3233_JIFS_169349 crossref_primary_10_1007_s10462_020_09843_4 crossref_primary_10_1016_j_asoc_2023_110926 crossref_primary_10_1016_j_ejor_2011_10_033 crossref_primary_10_1016_j_neucom_2019_02_024 crossref_primary_10_1016_j_eswa_2023_120480 crossref_primary_10_1109_TKDE_2015_2429133 crossref_primary_10_1016_j_csda_2011_06_036 crossref_primary_10_1007_s13042_015_0438_2 crossref_primary_10_1016_j_fss_2017_07_010 crossref_primary_10_1109_TFUZZ_2011_2167235 crossref_primary_10_1007_s10489_023_04655_9 crossref_primary_10_1016_j_ins_2011_05_013 crossref_primary_10_1007_s10462_023_10639_5 crossref_primary_10_1007_s40070_013_0004_7 crossref_primary_10_1016_j_ejor_2009_10_023 crossref_primary_10_1109_ACCESS_2021_3125622 crossref_primary_10_1016_j_asoc_2017_01_042 crossref_primary_10_1590_S0101_74382012000200001 crossref_primary_10_1016_j_ijar_2019_06_009 crossref_primary_10_1109_TNNLS_2022_3184120 crossref_primary_10_1016_j_knosys_2023_110947 crossref_primary_10_1007_s00500_022_07598_4 crossref_primary_10_1109_ACCESS_2023_3321134 crossref_primary_10_3233_JIFS_191197 crossref_primary_10_1016_j_ins_2014_09_056 crossref_primary_10_1016_j_ins_2012_09_010 crossref_primary_10_1016_j_ejor_2017_03_029 crossref_primary_10_1016_j_fss_2014_06_012 crossref_primary_10_1016_j_ijar_2011_12_006 crossref_primary_10_1016_j_knosys_2011_12_008 crossref_primary_10_1016_j_engappai_2024_108080 crossref_primary_10_1587_transfun_E99_A_2266 crossref_primary_10_1016_j_ejor_2020_03_024 |
Cites_doi | 10.1016/j.ins.2007.09.019 10.1016/0020-7373(92)90069-W 10.1287/ijoc.1030.0061 10.1016/S0020-0255(02)00197-4 10.1016/S0377-2217(01)00029-7 10.1016/j.ejor.2006.06.031 10.1007/978-3-540-72458-2_16 10.1007/978-3-540-72458-2_15 10.1016/j.ijar.2004.11.004 10.1007/11908029_31 10.1007/s10614-005-6412-4 10.1145/568574.568577 10.1016/S0377-2217(00)00167-3 10.1016/j.ins.2006.06.006 10.1111/1468-0394.00253 10.1007/978-3-540-72458-2_14 10.1007/BF02032132 10.1007/BF01001956 10.1016/S0377-2217(98)00127-1 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Inc. |
Copyright_xml | – notice: 2008 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2008.06.013 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 4037 |
ExternalDocumentID | 10_1016_j_ins_2008_06_013 S0020025508002053 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c363t-54da83db52912157ee167ccc092b31bb7659a3d5463e7f3df3bad30d4a6d50653 |
IEDL.DBID | AIKHN |
ISSN | 0020-0255 |
IngestDate | Thu Apr 24 22:56:48 EDT 2025 Tue Jul 01 04:16:14 EDT 2025 Fri Feb 23 02:32:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Maximum likelihood estimation Variable consistency models Empirical risk minimization Isotonic regression Multiple criteria decision analysis Dominance-based rough set approach Ordinal classification Statistical decision theory Monotonicity constraints |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-54da83db52912157ee167ccc092b31bb7659a3d5463e7f3df3bad30d4a6d50653 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1016_j_ins_2008_06_013 crossref_citationtrail_10_1016_j_ins_2008_06_013 elsevier_sciencedirect_doi_10_1016_j_ins_2008_06_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-11-01 |
PublicationDateYYYYMMDD | 2008-11-01 |
PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Information sciences |
PublicationYear | 2008 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Yao (bib30) 2003; 20 J. Sill, Monotonicity and connectedness in learning systems. Ph.D. dissertation, California Institute of Technology, 1997. Ziarko (bib32) 2005; 3641 Yang, Yang, Wu, Yu (bib28) 2008; 178 Bellman (bib1) 1961 Pawlak (bib20) 2002; 147 Robertson, Wright, Dykstra (bib24) 1998 Greco, Matarazzo, Słowiński (bib11) 1998 Dembczyński, Greco, Kotłowski, Słowiński (bib7) 2006; 4259 Pawlak (bib19) 1982; 11 Pawlak, Skowron (bib22) 2007; 177 Pawlak (bib21) 2002; 136 Dembczyński, Greco, Kotłowski, Słowiński (bib8) 2007; 4481 Potharst, Feelders (bib23) 2002; 4 Boros, Hammer, Hooker (bib4) 1995; 58 Greco, Matarazzo, Słowiński (bib15) 2006; 4259 Błaszczyński, Greco, Słowiński, Szeląg (bib3) 2007; 4481 Hastie, Tibshirani, Friedman (bib17) 2003 Chandrasekaran, Ryu, Jacob, Hong (bib5) 2005; 17 Doumpos, Pasiouras (bib9) 2005; 25 Greco, Słowiński, Yao (bib16) 2007; 4481 Ślezak, Ziarko (bib27) 2005; 40 Yao, Wong (bib29) 1992; 37 Dembczyński, Greco, Słowinski (bib6) 2005; 3641 Greco, Matarazzo, Słowiński (bib13) 2001; 129 Berger (bib2) 1993 Ziarko (bib31) 2001 Duda, Hart (bib10) 2000 Greco, Matarazzo, Słowiński, Stefanowski (bib14) 2001; vol. 2005 Papadimitriou, Steiglitz (bib18) 1998 Ryu, Chandrasekaran, Jacob (bib25) 2007; 181 Greco, Matarazzo, Słowiński (bib12) 1999; 117 Dembczyński (10.1016/j.ins.2008.06.013_bib7) 2006; 4259 Hastie (10.1016/j.ins.2008.06.013_bib17) 2003 Pawlak (10.1016/j.ins.2008.06.013_bib20) 2002; 147 Berger (10.1016/j.ins.2008.06.013_bib2) 1993 Greco (10.1016/j.ins.2008.06.013_bib12) 1999; 117 Doumpos (10.1016/j.ins.2008.06.013_bib9) 2005; 25 Duda (10.1016/j.ins.2008.06.013_bib10) 2000 Yang (10.1016/j.ins.2008.06.013_bib28) 2008; 178 Dembczyński (10.1016/j.ins.2008.06.013_bib8) 2007; 4481 10.1016/j.ins.2008.06.013_bib26 Pawlak (10.1016/j.ins.2008.06.013_bib22) 2007; 177 Ziarko (10.1016/j.ins.2008.06.013_bib31) 2001 Greco (10.1016/j.ins.2008.06.013_bib11) 1998 Błaszczyński (10.1016/j.ins.2008.06.013_bib3) 2007; 4481 Pawlak (10.1016/j.ins.2008.06.013_bib19) 1982; 11 Greco (10.1016/j.ins.2008.06.013_bib13) 2001; 129 Chandrasekaran (10.1016/j.ins.2008.06.013_bib5) 2005; 17 Greco (10.1016/j.ins.2008.06.013_bib14) 2001; vol. 2005 Ślezak (10.1016/j.ins.2008.06.013_bib27) 2005; 40 Boros (10.1016/j.ins.2008.06.013_bib4) 1995; 58 Dembczyński (10.1016/j.ins.2008.06.013_bib6) 2005; 3641 Bellman (10.1016/j.ins.2008.06.013_bib1) 1961 Potharst (10.1016/j.ins.2008.06.013_bib23) 2002; 4 Yao (10.1016/j.ins.2008.06.013_bib29) 1992; 37 Pawlak (10.1016/j.ins.2008.06.013_bib21) 2002; 136 Ryu (10.1016/j.ins.2008.06.013_bib25) 2007; 181 Ziarko (10.1016/j.ins.2008.06.013_bib32) 2005; 3641 Papadimitriou (10.1016/j.ins.2008.06.013_bib18) 1998 Robertson (10.1016/j.ins.2008.06.013_bib24) 1998 Greco (10.1016/j.ins.2008.06.013_bib15) 2006; 4259 Greco (10.1016/j.ins.2008.06.013_bib16) 2007; 4481 Yao (10.1016/j.ins.2008.06.013_bib30) 2003; 20 |
References_xml | – volume: 11 start-page: 341 year: 1982 end-page: 356 ident: bib19 article-title: Rough sets publication-title: International Journal of Information and Computer Sciences – volume: 4 start-page: 1 year: 2002 end-page: 10 ident: bib23 article-title: Classification trees for problems with monotonicity constraints publication-title: SIGKDD Explorations – volume: vol. 2005 start-page: 170 year: 2001 end-page: 181 ident: bib14 article-title: Variable consistency model of dominance-based rough set approach publication-title: Rough Sets and Current Trends in Computing – volume: 147 start-page: 1 year: 2002 end-page: 12 ident: bib20 article-title: Rough sets and intelligent data analysis publication-title: Information Sciences – volume: 178 start-page: 1219 year: 2008 end-page: 1234 ident: bib28 article-title: Dominance-based rough set approach and knowledge reductions in incomplete ordered information system publication-title: Information Sciences – volume: 40 start-page: 81 year: 2005 end-page: 91 ident: bib27 article-title: The investigation of the Bayesian rough set model publication-title: International Journal of Approximate Reasoning – volume: 3641 year: 2005 ident: bib32 publication-title: Probabilistic Rough Sets – volume: 37 start-page: 793 year: 1992 end-page: 809 ident: bib29 article-title: A decision theoretic framework for approximating concepts publication-title: International Journal of Man–Machine Studies – year: 2001 ident: bib31 article-title: Set approximation quality measures in the variable precision rough set model publication-title: Soft Computing Systems, Management and Applications – volume: 58 start-page: 3 year: 1995 ident: bib4 article-title: Boolean regression publication-title: Annals of Operations Research – year: 1961 ident: bib1 article-title: Adaptive Control Processes: A Guided Tour – volume: 17 start-page: 462 year: 2005 end-page: 474 ident: bib5 article-title: Isotonic separation publication-title: INFORMS Journal of Computational – volume: 20 start-page: 287 year: 2003 end-page: 297 ident: bib30 article-title: Probabilistic approaches to rough sets publication-title: Expert Systems – volume: 4481 start-page: 126 year: 2007 end-page: 133 ident: bib3 article-title: Monotonic variable consistency rough set approaches publication-title: Lecture Notes in Computer Science – year: 1998 ident: bib18 article-title: Combinatorial Optimization – volume: 4481 start-page: 118 year: 2007 end-page: 125 ident: bib8 article-title: Optimized generalized decision in dominance-based rough set approach publication-title: Lecture Notes in Computer Science – volume: 117 start-page: 63 year: 1999 end-page: 83 ident: bib12 article-title: Rough approximation of a preference relation by dominance relations publication-title: European Journal of Operational Research – volume: 129 start-page: 1 year: 2001 end-page: 47 ident: bib13 article-title: Rough sets theory for multicriteria decision analysis publication-title: European Journal of Operational Research – volume: 177 start-page: 341 year: 2007 end-page: 356 ident: bib22 article-title: Rough sets. Some extensions publication-title: Information Sciences – start-page: 121 year: 1998 end-page: 136 ident: bib11 article-title: A new rough set approach to evaluation of bankruptcy risk publication-title: Operational Tools in the Management of Financial Risks – volume: 4259 year: 2006 ident: bib7 publication-title: Quality of Rough Approximation in Multi-Criteria Classification Problems – volume: 4259 start-page: 284 year: 2006 end-page: 295 ident: bib15 article-title: Rough set approach to customer satisfaction analysis publication-title: Lecture Notes in Computer Science – year: 1998 ident: bib24 article-title: Order Restricted Statistical Inference – volume: 4481 start-page: 134 year: 2007 end-page: 141 ident: bib16 article-title: Bayesian decision theory for dominance-based rough set approach publication-title: Lecture Notes in Computer Science – year: 2000 ident: bib10 article-title: Pattern Classification – year: 2003 ident: bib17 article-title: The Elements of Statistical Learning – year: 1993 ident: bib2 article-title: Statistical Decision Theory and Bayesian Analysis – volume: 181 start-page: 842 year: 2007 end-page: 854 ident: bib25 article-title: Data classification using the isotonic seeparation technique: application to breast cancer prediction publication-title: European Journal of Operational Research – volume: 25 start-page: 327 year: 2005 end-page: 341 ident: bib9 article-title: Developing and testing models for replicating credit ratings: a multicriteria approach publication-title: Computational Economics – volume: 136 start-page: 181 year: 2002 end-page: 189 ident: bib21 article-title: Rough sets, decision algorithms and Bayes’ theorem publication-title: European Journal of Operational Research – reference: J. Sill, Monotonicity and connectedness in learning systems. Ph.D. dissertation, California Institute of Technology, 1997. – volume: 3641 start-page: 54 year: 2005 end-page: 63 ident: bib6 article-title: Second-order rough approximations in multi-criteria classification with imprecise evaluations and assignments publication-title: Lecture Notes in Artificial Intelligence – volume: 178 start-page: 1219 issue: 4 year: 2008 ident: 10.1016/j.ins.2008.06.013_bib28 article-title: Dominance-based rough set approach and knowledge reductions in incomplete ordered information system publication-title: Information Sciences doi: 10.1016/j.ins.2007.09.019 – volume: 37 start-page: 793 issue: 6 year: 1992 ident: 10.1016/j.ins.2008.06.013_bib29 article-title: A decision theoretic framework for approximating concepts publication-title: International Journal of Man–Machine Studies doi: 10.1016/0020-7373(92)90069-W – year: 2001 ident: 10.1016/j.ins.2008.06.013_bib31 article-title: Set approximation quality measures in the variable precision rough set model – volume: 17 start-page: 462 year: 2005 ident: 10.1016/j.ins.2008.06.013_bib5 article-title: Isotonic separation publication-title: INFORMS Journal of Computational doi: 10.1287/ijoc.1030.0061 – ident: 10.1016/j.ins.2008.06.013_bib26 – volume: 3641 start-page: 54 year: 2005 ident: 10.1016/j.ins.2008.06.013_bib6 article-title: Second-order rough approximations in multi-criteria classification with imprecise evaluations and assignments publication-title: Lecture Notes in Artificial Intelligence – volume: 147 start-page: 1 issue: 1–4 year: 2002 ident: 10.1016/j.ins.2008.06.013_bib20 article-title: Rough sets and intelligent data analysis publication-title: Information Sciences doi: 10.1016/S0020-0255(02)00197-4 – year: 1993 ident: 10.1016/j.ins.2008.06.013_bib2 – volume: 136 start-page: 181 issue: 1 year: 2002 ident: 10.1016/j.ins.2008.06.013_bib21 article-title: Rough sets, decision algorithms and Bayes’ theorem publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(01)00029-7 – volume: 181 start-page: 842 issue: 2 year: 2007 ident: 10.1016/j.ins.2008.06.013_bib25 article-title: Data classification using the isotonic seeparation technique: application to breast cancer prediction publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.06.031 – start-page: 121 year: 1998 ident: 10.1016/j.ins.2008.06.013_bib11 article-title: A new rough set approach to evaluation of bankruptcy risk – year: 2000 ident: 10.1016/j.ins.2008.06.013_bib10 – volume: 4481 start-page: 134 year: 2007 ident: 10.1016/j.ins.2008.06.013_bib16 article-title: Bayesian decision theory for dominance-based rough set approach publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-540-72458-2_16 – volume: 4481 start-page: 126 year: 2007 ident: 10.1016/j.ins.2008.06.013_bib3 article-title: Monotonic variable consistency rough set approaches publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-540-72458-2_15 – volume: 40 start-page: 81 issue: 1–2 year: 2005 ident: 10.1016/j.ins.2008.06.013_bib27 article-title: The investigation of the Bayesian rough set model publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2004.11.004 – year: 1998 ident: 10.1016/j.ins.2008.06.013_bib24 – year: 1998 ident: 10.1016/j.ins.2008.06.013_bib18 – volume: 4259 start-page: 284 year: 2006 ident: 10.1016/j.ins.2008.06.013_bib15 article-title: Rough set approach to customer satisfaction analysis publication-title: Lecture Notes in Computer Science doi: 10.1007/11908029_31 – volume: 4259 year: 2006 ident: 10.1016/j.ins.2008.06.013_bib7 – volume: 25 start-page: 327 issue: 4 year: 2005 ident: 10.1016/j.ins.2008.06.013_bib9 article-title: Developing and testing models for replicating credit ratings: a multicriteria approach publication-title: Computational Economics doi: 10.1007/s10614-005-6412-4 – year: 1961 ident: 10.1016/j.ins.2008.06.013_bib1 – volume: 4 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.ins.2008.06.013_bib23 article-title: Classification trees for problems with monotonicity constraints publication-title: SIGKDD Explorations doi: 10.1145/568574.568577 – volume: vol. 2005 start-page: 170 year: 2001 ident: 10.1016/j.ins.2008.06.013_bib14 article-title: Variable consistency model of dominance-based rough set approach – volume: 129 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.ins.2008.06.013_bib13 article-title: Rough sets theory for multicriteria decision analysis publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(00)00167-3 – volume: 177 start-page: 341 issue: 1 year: 2007 ident: 10.1016/j.ins.2008.06.013_bib22 article-title: Rough sets. Some extensions publication-title: Information Sciences doi: 10.1016/j.ins.2006.06.006 – volume: 20 start-page: 287 issue: 5 year: 2003 ident: 10.1016/j.ins.2008.06.013_bib30 article-title: Probabilistic approaches to rough sets publication-title: Expert Systems doi: 10.1111/1468-0394.00253 – volume: 4481 start-page: 118 year: 2007 ident: 10.1016/j.ins.2008.06.013_bib8 article-title: Optimized generalized decision in dominance-based rough set approach publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-540-72458-2_14 – year: 2003 ident: 10.1016/j.ins.2008.06.013_bib17 – volume: 58 start-page: 3 year: 1995 ident: 10.1016/j.ins.2008.06.013_bib4 article-title: Boolean regression publication-title: Annals of Operations Research doi: 10.1007/BF02032132 – volume: 11 start-page: 341 year: 1982 ident: 10.1016/j.ins.2008.06.013_bib19 article-title: Rough sets publication-title: International Journal of Information and Computer Sciences doi: 10.1007/BF01001956 – volume: 117 start-page: 63 year: 1999 ident: 10.1016/j.ins.2008.06.013_bib12 article-title: Rough approximation of a preference relation by dominance relations publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(98)00127-1 – volume: 3641 year: 2005 ident: 10.1016/j.ins.2008.06.013_bib32 |
SSID | ssj0004766 |
Score | 2.325215 |
Snippet | In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, dominance-based rough set... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4019 |
SubjectTerms | Dominance-based rough set approach Empirical risk minimization Isotonic regression Maximum likelihood estimation Monotonicity constraints Multiple criteria decision analysis Ordinal classification Statistical decision theory Variable consistency models |
Title | Stochastic dominance-based rough set model for ordinal classification |
URI | https://dx.doi.org/10.1016/j.ins.2008.06.013 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB36cdGDaFWs2rIH8SCkTbKbTXIs0lIVe9FCb2G_ghVJi41Xf7u7m41WUA_eQsiEMDuZmWXfewNwkbDQFyykHo1ypTcoMvESQlIvl76iRBGOU8NGvp_R6ZzcLqJFA65rLoyBVbrcX-V0m63dnaHz5nC9XBqOb2g74qrniXAT2iFOqQ7t9ujmbjr7okfG1ZGl2SkZg_pw08K8lsXGISrpwA_wz-Vpq-RM9mHP9YpoVH3OATRU0YHdLQXBDvQc7wBdIkcsMo5G7o89hPFDuRJPzIgxI7mysBehPFO6JLIDetBGlciOw0HaHOmtqBmThYRpqg2KyL7vCOaT8eP11HOTEzyBKS69iEiWYMmjMDXqEbFSAY2FEH4achxwHtMoZVgaKXwV51jmmDOJfUkYlZFRqz2GVrEq1AkgouKEU-yzIMwJ1teEpZT7BrWa5pLjLvi1wzLhZMXNdIuXrMaPPWfax27cJc20j7tw9WmyrjQ1_nqY1KuQfQuMTOf8381O_2d2BjsWEGLJhufQKl_fVE93HSXvQ3PwHvRdbH0A8p3VtA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8YlVq3sQD0I0zW42yVGKUrX1Ygu9hX0FK5KKxqu_3Z3NxgeoB28h7IQwu_Niv_kG4CgVUahExAMeF8YWKDoNUsayoNCh4cwwSTPsRh7d8sGEXU_jaQv6TS8Mwiq97699uvPW_s2Z1-bZ02yGPb6Ry4jrnCemC7DIrPmidZ6-feI8WFJfWGKdhMubq00H8pqVLx5PyU_DHv05OH0JOJdrsOozRXJe_8w6tEy5AStf-AM3oOu7Dsgx8W1FqGbi7XUTLu6quboXSMVM9NyBXpQJMHBp4sbzkBdTETcMh1hxYgtRHJJFFKbUiCFy39uCyeXFuD8I_NyEQFFOqyBmWqRUyzjKkDsiMabHE6VUmEWS9qRMeJwJqpEI3yQF1QWVQtNQM8F1jFy129Au56XZAcJMkkpOQ9GLCkbtMxMZlyFiVrNCS9qBsFFYrjypOM62eMwb9NhDbnXsh13y3Oq4AycfIk81o8Zfi1mzC_m3Y5Fbj_-72O7_xA5haTAeDfPh1e3NHiw7aIhrO9yHdvX8aro2_6jkgTtf76r81ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+dominance-based+rough+set+model+for+ordinal+classification&rft.jtitle=Information+sciences&rft.au=Kot%C5%82owski%2C+Wojciech&rft.au=Dembczy%C5%84ski%2C+Krzysztof&rft.au=Greco%2C+Salvatore&rft.au=S%C5%82owi%C5%84ski%2C+Roman&rft.date=2008-11-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=178&rft.issue=21&rft.spage=4019&rft.epage=4037&rft_id=info:doi/10.1016%2Fj.ins.2008.06.013&rft.externalDocID=S0020025508002053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |