Stochastic dominance-based rough set model for ordinal classification

In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, dominance-based rough set approach (DRSA) has been introduced to deal with the problem of ordinal classification with monotonicity constraints (also referred to as mu...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 178; no. 21; pp. 4019 - 4037
Main Authors Kotłowski, Wojciech, Dembczyński, Krzysztof, Greco, Salvatore, Słowiński, Roman
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, dominance-based rough set approach (DRSA) has been introduced to deal with the problem of ordinal classification with monotonicity constraints (also referred to as multicriteria classification in decision analysis). However, in real-life problems, in the presence of noise, the notions of rough approximations were found to be excessively restrictive. In this paper, we introduce a probabilistic model for ordinal classification problems with monotonicity constraints. Then, we generalize the notion of lower approximations to the stochastic case. We estimate the probabilities with the maximum likelihood method which leads to the isotonic regression problem for a two-class (binary) case. The approach is easily generalized to a multi-class case. Finally, we show the equivalence of the variable consistency rough sets to the specific empirical risk-minimizing decision rule in the statistical decision theory.
AbstractList In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, dominance-based rough set approach (DRSA) has been introduced to deal with the problem of ordinal classification with monotonicity constraints (also referred to as multicriteria classification in decision analysis). However, in real-life problems, in the presence of noise, the notions of rough approximations were found to be excessively restrictive. In this paper, we introduce a probabilistic model for ordinal classification problems with monotonicity constraints. Then, we generalize the notion of lower approximations to the stochastic case. We estimate the probabilities with the maximum likelihood method which leads to the isotonic regression problem for a two-class (binary) case. The approach is easily generalized to a multi-class case. Finally, we show the equivalence of the variable consistency rough sets to the specific empirical risk-minimizing decision rule in the statistical decision theory.
Author Greco, Salvatore
Kotłowski, Wojciech
Słowiński, Roman
Dembczyński, Krzysztof
Author_xml – sequence: 1
  givenname: Wojciech
  surname: Kotłowski
  fullname: Kotłowski, Wojciech
  email: wkotlowski@cs.put.poznan.pl
  organization: Institute of Computing Science, Poznań University of Technology, Piotrowo 2, Poznań 60-965, Poland
– sequence: 2
  givenname: Krzysztof
  surname: Dembczyński
  fullname: Dembczyński, Krzysztof
  email: kdembczynski@cs.put.poznan.pl
  organization: Institute of Computing Science, Poznań University of Technology, Piotrowo 2, Poznań 60-965, Poland
– sequence: 3
  givenname: Salvatore
  surname: Greco
  fullname: Greco, Salvatore
  email: salgreco@unict.it
  organization: Faculty of Economics, University of Catania, 95129 Catania, Italy
– sequence: 4
  givenname: Roman
  surname: Słowiński
  fullname: Słowiński, Roman
  email: rslowinski@cs.put.poznan.pl
  organization: Institute of Computing Science, Poznań University of Technology, Piotrowo 2, Poznań 60-965, Poland
BookMark eNp9kM1OAyEUhYmpiW31AdzxAjNeYIA2rkxTf5ImLtQ1YeCOpZkOBtDEt3dqXbno6mzud3PONyOTIQ5IyDWDmgFTN7s6DLnmAIsaVA1MnJEpW2heKb5kEzIF4FABl_KCzHLeAUCjlZqS9UuJbmtzCY76uA-DHRxWrc3oaYqf71uasdB99NjTLiYakx9veup6m3PogrMlxOGSnHe2z3j1l3Pydr9-XT1Wm-eHp9XdpnJCiVLJxtuF8K0cO3EmNSJT2jkHS94K1rZayaUVXjZKoO6E70RrvQDfWOUlKCnmhB3_uhRzTtiZjxT2Nn0bBubgwezM6MEcPBhQZvQwMvof40L5bV2SDf1J8vZI4jjpK2Ay2QUc_fiQ0BXjYzhB_wDv4nq_
CitedBy_id crossref_primary_10_1016_j_ins_2023_01_119
crossref_primary_10_1007_s13042_015_0477_8
crossref_primary_10_1016_j_csda_2010_12_007
crossref_primary_10_4304_jsw_7_3_551_563
crossref_primary_10_1016_j_ijar_2020_05_002
crossref_primary_10_1007_s00180_021_01112_4
crossref_primary_10_1016_j_ins_2015_03_061
crossref_primary_10_1016_j_ins_2014_02_138
crossref_primary_10_1016_j_ejor_2009_11_019
crossref_primary_10_1016_j_ins_2016_08_044
crossref_primary_10_1016_j_engappai_2022_105285
crossref_primary_10_1016_j_knosys_2011_04_012
crossref_primary_10_1016_j_ins_2022_08_065
crossref_primary_10_1016_j_ins_2019_08_046
crossref_primary_10_1080_0013791X_2022_2047851
crossref_primary_10_1109_ACCESS_2020_3015813
crossref_primary_10_1155_2015_936340
crossref_primary_10_4028_www_scientific_net_AMM_48_49_357
crossref_primary_10_1016_j_ejor_2010_05_029
crossref_primary_10_1002_int_21599
crossref_primary_10_3923_itj_2009_388_392
crossref_primary_10_3233_JIFS_190684
crossref_primary_10_1016_j_ejor_2008_09_020
crossref_primary_10_1016_j_asoc_2011_03_002
crossref_primary_10_1007_s10489_024_05411_3
crossref_primary_10_1111_exsy_12506
crossref_primary_10_3233_JIFS_18757
crossref_primary_10_1080_00207543_2015_1078012
crossref_primary_10_1016_j_ins_2016_10_041
crossref_primary_10_1007_s10994_015_5541_9
crossref_primary_10_1109_TFUZZ_2014_2387877
crossref_primary_10_1038_s41598_022_20982_2
crossref_primary_10_1109_TKDE_2015_2457911
crossref_primary_10_1016_j_ins_2008_08_003
crossref_primary_10_3233_JIFS_181502
crossref_primary_10_1016_j_apm_2012_12_009
crossref_primary_10_1016_j_ins_2014_02_070
crossref_primary_10_1016_j_datak_2009_07_007
crossref_primary_10_1007_s13042_012_0105_9
crossref_primary_10_1016_j_ins_2018_11_014
crossref_primary_10_1109_TFUZZ_2019_2955883
crossref_primary_10_1002_int_20482
crossref_primary_10_1142_S0219622014500436
crossref_primary_10_1017_S0269888910000263
crossref_primary_10_1109_TFUZZ_2023_3272316
crossref_primary_10_1016_j_knosys_2012_03_001
crossref_primary_10_3233_JIFS_16511
crossref_primary_10_3923_itj_2009_610_614
crossref_primary_10_1016_j_inffus_2012_01_003
crossref_primary_10_1007_s00500_011_0693_4
crossref_primary_10_1016_j_ejor_2015_08_053
crossref_primary_10_1016_j_ejor_2024_07_038
crossref_primary_10_1016_j_knosys_2012_11_002
crossref_primary_10_1109_TAI_2023_3319301
crossref_primary_10_1016_j_ejor_2008_12_017
crossref_primary_10_1109_TKDE_2012_204
crossref_primary_10_1016_j_ejor_2023_09_026
crossref_primary_10_1016_j_knosys_2020_106583
crossref_primary_10_1080_09720502_2018_1456824
crossref_primary_10_1016_j_ins_2010_01_025
crossref_primary_10_1109_ACCESS_2018_2841876
crossref_primary_10_3923_rjit_2009_51_56
crossref_primary_10_4018_ijrsda_2014010101
crossref_primary_10_1016_j_ins_2014_02_100
crossref_primary_10_1007_s10288_023_00560_6
crossref_primary_10_3233_JIFS_169349
crossref_primary_10_1007_s10462_020_09843_4
crossref_primary_10_1016_j_asoc_2023_110926
crossref_primary_10_1016_j_ejor_2011_10_033
crossref_primary_10_1016_j_neucom_2019_02_024
crossref_primary_10_1016_j_eswa_2023_120480
crossref_primary_10_1109_TKDE_2015_2429133
crossref_primary_10_1016_j_csda_2011_06_036
crossref_primary_10_1007_s13042_015_0438_2
crossref_primary_10_1016_j_fss_2017_07_010
crossref_primary_10_1109_TFUZZ_2011_2167235
crossref_primary_10_1007_s10489_023_04655_9
crossref_primary_10_1016_j_ins_2011_05_013
crossref_primary_10_1007_s10462_023_10639_5
crossref_primary_10_1007_s40070_013_0004_7
crossref_primary_10_1016_j_ejor_2009_10_023
crossref_primary_10_1109_ACCESS_2021_3125622
crossref_primary_10_1016_j_asoc_2017_01_042
crossref_primary_10_1590_S0101_74382012000200001
crossref_primary_10_1016_j_ijar_2019_06_009
crossref_primary_10_1109_TNNLS_2022_3184120
crossref_primary_10_1016_j_knosys_2023_110947
crossref_primary_10_1007_s00500_022_07598_4
crossref_primary_10_1109_ACCESS_2023_3321134
crossref_primary_10_3233_JIFS_191197
crossref_primary_10_1016_j_ins_2014_09_056
crossref_primary_10_1016_j_ins_2012_09_010
crossref_primary_10_1016_j_ejor_2017_03_029
crossref_primary_10_1016_j_fss_2014_06_012
crossref_primary_10_1016_j_ijar_2011_12_006
crossref_primary_10_1016_j_knosys_2011_12_008
crossref_primary_10_1016_j_engappai_2024_108080
crossref_primary_10_1587_transfun_E99_A_2266
crossref_primary_10_1016_j_ejor_2020_03_024
Cites_doi 10.1016/j.ins.2007.09.019
10.1016/0020-7373(92)90069-W
10.1287/ijoc.1030.0061
10.1016/S0020-0255(02)00197-4
10.1016/S0377-2217(01)00029-7
10.1016/j.ejor.2006.06.031
10.1007/978-3-540-72458-2_16
10.1007/978-3-540-72458-2_15
10.1016/j.ijar.2004.11.004
10.1007/11908029_31
10.1007/s10614-005-6412-4
10.1145/568574.568577
10.1016/S0377-2217(00)00167-3
10.1016/j.ins.2006.06.006
10.1111/1468-0394.00253
10.1007/978-3-540-72458-2_14
10.1007/BF02032132
10.1007/BF01001956
10.1016/S0377-2217(98)00127-1
ContentType Journal Article
Copyright 2008 Elsevier Inc.
Copyright_xml – notice: 2008 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2008.06.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 4037
ExternalDocumentID 10_1016_j_ins_2008_06_013
S0020025508002053
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c363t-54da83db52912157ee167ccc092b31bb7659a3d5463e7f3df3bad30d4a6d50653
IEDL.DBID AIKHN
ISSN 0020-0255
IngestDate Thu Apr 24 22:56:48 EDT 2025
Tue Jul 01 04:16:14 EDT 2025
Fri Feb 23 02:32:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Maximum likelihood estimation
Variable consistency models
Empirical risk minimization
Isotonic regression
Multiple criteria decision analysis
Dominance-based rough set approach
Ordinal classification
Statistical decision theory
Monotonicity constraints
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-54da83db52912157ee167ccc092b31bb7659a3d5463e7f3df3bad30d4a6d50653
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_ins_2008_06_013
crossref_citationtrail_10_1016_j_ins_2008_06_013
elsevier_sciencedirect_doi_10_1016_j_ins_2008_06_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationTitle Information sciences
PublicationYear 2008
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yao (bib30) 2003; 20
J. Sill, Monotonicity and connectedness in learning systems. Ph.D. dissertation, California Institute of Technology, 1997.
Ziarko (bib32) 2005; 3641
Yang, Yang, Wu, Yu (bib28) 2008; 178
Bellman (bib1) 1961
Pawlak (bib20) 2002; 147
Robertson, Wright, Dykstra (bib24) 1998
Greco, Matarazzo, Słowiński (bib11) 1998
Dembczyński, Greco, Kotłowski, Słowiński (bib7) 2006; 4259
Pawlak (bib19) 1982; 11
Pawlak, Skowron (bib22) 2007; 177
Pawlak (bib21) 2002; 136
Dembczyński, Greco, Kotłowski, Słowiński (bib8) 2007; 4481
Potharst, Feelders (bib23) 2002; 4
Boros, Hammer, Hooker (bib4) 1995; 58
Greco, Matarazzo, Słowiński (bib15) 2006; 4259
Błaszczyński, Greco, Słowiński, Szeląg (bib3) 2007; 4481
Hastie, Tibshirani, Friedman (bib17) 2003
Chandrasekaran, Ryu, Jacob, Hong (bib5) 2005; 17
Doumpos, Pasiouras (bib9) 2005; 25
Greco, Słowiński, Yao (bib16) 2007; 4481
Ślezak, Ziarko (bib27) 2005; 40
Yao, Wong (bib29) 1992; 37
Dembczyński, Greco, Słowinski (bib6) 2005; 3641
Greco, Matarazzo, Słowiński (bib13) 2001; 129
Berger (bib2) 1993
Ziarko (bib31) 2001
Duda, Hart (bib10) 2000
Greco, Matarazzo, Słowiński, Stefanowski (bib14) 2001; vol. 2005
Papadimitriou, Steiglitz (bib18) 1998
Ryu, Chandrasekaran, Jacob (bib25) 2007; 181
Greco, Matarazzo, Słowiński (bib12) 1999; 117
Dembczyński (10.1016/j.ins.2008.06.013_bib7) 2006; 4259
Hastie (10.1016/j.ins.2008.06.013_bib17) 2003
Pawlak (10.1016/j.ins.2008.06.013_bib20) 2002; 147
Berger (10.1016/j.ins.2008.06.013_bib2) 1993
Greco (10.1016/j.ins.2008.06.013_bib12) 1999; 117
Doumpos (10.1016/j.ins.2008.06.013_bib9) 2005; 25
Duda (10.1016/j.ins.2008.06.013_bib10) 2000
Yang (10.1016/j.ins.2008.06.013_bib28) 2008; 178
Dembczyński (10.1016/j.ins.2008.06.013_bib8) 2007; 4481
10.1016/j.ins.2008.06.013_bib26
Pawlak (10.1016/j.ins.2008.06.013_bib22) 2007; 177
Ziarko (10.1016/j.ins.2008.06.013_bib31) 2001
Greco (10.1016/j.ins.2008.06.013_bib11) 1998
Błaszczyński (10.1016/j.ins.2008.06.013_bib3) 2007; 4481
Pawlak (10.1016/j.ins.2008.06.013_bib19) 1982; 11
Greco (10.1016/j.ins.2008.06.013_bib13) 2001; 129
Chandrasekaran (10.1016/j.ins.2008.06.013_bib5) 2005; 17
Greco (10.1016/j.ins.2008.06.013_bib14) 2001; vol. 2005
Ślezak (10.1016/j.ins.2008.06.013_bib27) 2005; 40
Boros (10.1016/j.ins.2008.06.013_bib4) 1995; 58
Dembczyński (10.1016/j.ins.2008.06.013_bib6) 2005; 3641
Bellman (10.1016/j.ins.2008.06.013_bib1) 1961
Potharst (10.1016/j.ins.2008.06.013_bib23) 2002; 4
Yao (10.1016/j.ins.2008.06.013_bib29) 1992; 37
Pawlak (10.1016/j.ins.2008.06.013_bib21) 2002; 136
Ryu (10.1016/j.ins.2008.06.013_bib25) 2007; 181
Ziarko (10.1016/j.ins.2008.06.013_bib32) 2005; 3641
Papadimitriou (10.1016/j.ins.2008.06.013_bib18) 1998
Robertson (10.1016/j.ins.2008.06.013_bib24) 1998
Greco (10.1016/j.ins.2008.06.013_bib15) 2006; 4259
Greco (10.1016/j.ins.2008.06.013_bib16) 2007; 4481
Yao (10.1016/j.ins.2008.06.013_bib30) 2003; 20
References_xml – volume: 11
  start-page: 341
  year: 1982
  end-page: 356
  ident: bib19
  article-title: Rough sets
  publication-title: International Journal of Information and Computer Sciences
– volume: 4
  start-page: 1
  year: 2002
  end-page: 10
  ident: bib23
  article-title: Classification trees for problems with monotonicity constraints
  publication-title: SIGKDD Explorations
– volume: vol. 2005
  start-page: 170
  year: 2001
  end-page: 181
  ident: bib14
  article-title: Variable consistency model of dominance-based rough set approach
  publication-title: Rough Sets and Current Trends in Computing
– volume: 147
  start-page: 1
  year: 2002
  end-page: 12
  ident: bib20
  article-title: Rough sets and intelligent data analysis
  publication-title: Information Sciences
– volume: 178
  start-page: 1219
  year: 2008
  end-page: 1234
  ident: bib28
  article-title: Dominance-based rough set approach and knowledge reductions in incomplete ordered information system
  publication-title: Information Sciences
– volume: 40
  start-page: 81
  year: 2005
  end-page: 91
  ident: bib27
  article-title: The investigation of the Bayesian rough set model
  publication-title: International Journal of Approximate Reasoning
– volume: 3641
  year: 2005
  ident: bib32
  publication-title: Probabilistic Rough Sets
– volume: 37
  start-page: 793
  year: 1992
  end-page: 809
  ident: bib29
  article-title: A decision theoretic framework for approximating concepts
  publication-title: International Journal of Man–Machine Studies
– year: 2001
  ident: bib31
  article-title: Set approximation quality measures in the variable precision rough set model
  publication-title: Soft Computing Systems, Management and Applications
– volume: 58
  start-page: 3
  year: 1995
  ident: bib4
  article-title: Boolean regression
  publication-title: Annals of Operations Research
– year: 1961
  ident: bib1
  article-title: Adaptive Control Processes: A Guided Tour
– volume: 17
  start-page: 462
  year: 2005
  end-page: 474
  ident: bib5
  article-title: Isotonic separation
  publication-title: INFORMS Journal of Computational
– volume: 20
  start-page: 287
  year: 2003
  end-page: 297
  ident: bib30
  article-title: Probabilistic approaches to rough sets
  publication-title: Expert Systems
– volume: 4481
  start-page: 126
  year: 2007
  end-page: 133
  ident: bib3
  article-title: Monotonic variable consistency rough set approaches
  publication-title: Lecture Notes in Computer Science
– year: 1998
  ident: bib18
  article-title: Combinatorial Optimization
– volume: 4481
  start-page: 118
  year: 2007
  end-page: 125
  ident: bib8
  article-title: Optimized generalized decision in dominance-based rough set approach
  publication-title: Lecture Notes in Computer Science
– volume: 117
  start-page: 63
  year: 1999
  end-page: 83
  ident: bib12
  article-title: Rough approximation of a preference relation by dominance relations
  publication-title: European Journal of Operational Research
– volume: 129
  start-page: 1
  year: 2001
  end-page: 47
  ident: bib13
  article-title: Rough sets theory for multicriteria decision analysis
  publication-title: European Journal of Operational Research
– volume: 177
  start-page: 341
  year: 2007
  end-page: 356
  ident: bib22
  article-title: Rough sets. Some extensions
  publication-title: Information Sciences
– start-page: 121
  year: 1998
  end-page: 136
  ident: bib11
  article-title: A new rough set approach to evaluation of bankruptcy risk
  publication-title: Operational Tools in the Management of Financial Risks
– volume: 4259
  year: 2006
  ident: bib7
  publication-title: Quality of Rough Approximation in Multi-Criteria Classification Problems
– volume: 4259
  start-page: 284
  year: 2006
  end-page: 295
  ident: bib15
  article-title: Rough set approach to customer satisfaction analysis
  publication-title: Lecture Notes in Computer Science
– year: 1998
  ident: bib24
  article-title: Order Restricted Statistical Inference
– volume: 4481
  start-page: 134
  year: 2007
  end-page: 141
  ident: bib16
  article-title: Bayesian decision theory for dominance-based rough set approach
  publication-title: Lecture Notes in Computer Science
– year: 2000
  ident: bib10
  article-title: Pattern Classification
– year: 2003
  ident: bib17
  article-title: The Elements of Statistical Learning
– year: 1993
  ident: bib2
  article-title: Statistical Decision Theory and Bayesian Analysis
– volume: 181
  start-page: 842
  year: 2007
  end-page: 854
  ident: bib25
  article-title: Data classification using the isotonic seeparation technique: application to breast cancer prediction
  publication-title: European Journal of Operational Research
– volume: 25
  start-page: 327
  year: 2005
  end-page: 341
  ident: bib9
  article-title: Developing and testing models for replicating credit ratings: a multicriteria approach
  publication-title: Computational Economics
– volume: 136
  start-page: 181
  year: 2002
  end-page: 189
  ident: bib21
  article-title: Rough sets, decision algorithms and Bayes’ theorem
  publication-title: European Journal of Operational Research
– reference: J. Sill, Monotonicity and connectedness in learning systems. Ph.D. dissertation, California Institute of Technology, 1997.
– volume: 3641
  start-page: 54
  year: 2005
  end-page: 63
  ident: bib6
  article-title: Second-order rough approximations in multi-criteria classification with imprecise evaluations and assignments
  publication-title: Lecture Notes in Artificial Intelligence
– volume: 178
  start-page: 1219
  issue: 4
  year: 2008
  ident: 10.1016/j.ins.2008.06.013_bib28
  article-title: Dominance-based rough set approach and knowledge reductions in incomplete ordered information system
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2007.09.019
– volume: 37
  start-page: 793
  issue: 6
  year: 1992
  ident: 10.1016/j.ins.2008.06.013_bib29
  article-title: A decision theoretic framework for approximating concepts
  publication-title: International Journal of Man–Machine Studies
  doi: 10.1016/0020-7373(92)90069-W
– year: 2001
  ident: 10.1016/j.ins.2008.06.013_bib31
  article-title: Set approximation quality measures in the variable precision rough set model
– volume: 17
  start-page: 462
  year: 2005
  ident: 10.1016/j.ins.2008.06.013_bib5
  article-title: Isotonic separation
  publication-title: INFORMS Journal of Computational
  doi: 10.1287/ijoc.1030.0061
– ident: 10.1016/j.ins.2008.06.013_bib26
– volume: 3641
  start-page: 54
  year: 2005
  ident: 10.1016/j.ins.2008.06.013_bib6
  article-title: Second-order rough approximations in multi-criteria classification with imprecise evaluations and assignments
  publication-title: Lecture Notes in Artificial Intelligence
– volume: 147
  start-page: 1
  issue: 1–4
  year: 2002
  ident: 10.1016/j.ins.2008.06.013_bib20
  article-title: Rough sets and intelligent data analysis
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(02)00197-4
– year: 1993
  ident: 10.1016/j.ins.2008.06.013_bib2
– volume: 136
  start-page: 181
  issue: 1
  year: 2002
  ident: 10.1016/j.ins.2008.06.013_bib21
  article-title: Rough sets, decision algorithms and Bayes’ theorem
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(01)00029-7
– volume: 181
  start-page: 842
  issue: 2
  year: 2007
  ident: 10.1016/j.ins.2008.06.013_bib25
  article-title: Data classification using the isotonic seeparation technique: application to breast cancer prediction
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.06.031
– start-page: 121
  year: 1998
  ident: 10.1016/j.ins.2008.06.013_bib11
  article-title: A new rough set approach to evaluation of bankruptcy risk
– year: 2000
  ident: 10.1016/j.ins.2008.06.013_bib10
– volume: 4481
  start-page: 134
  year: 2007
  ident: 10.1016/j.ins.2008.06.013_bib16
  article-title: Bayesian decision theory for dominance-based rough set approach
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-72458-2_16
– volume: 4481
  start-page: 126
  year: 2007
  ident: 10.1016/j.ins.2008.06.013_bib3
  article-title: Monotonic variable consistency rough set approaches
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-72458-2_15
– volume: 40
  start-page: 81
  issue: 1–2
  year: 2005
  ident: 10.1016/j.ins.2008.06.013_bib27
  article-title: The investigation of the Bayesian rough set model
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2004.11.004
– year: 1998
  ident: 10.1016/j.ins.2008.06.013_bib24
– year: 1998
  ident: 10.1016/j.ins.2008.06.013_bib18
– volume: 4259
  start-page: 284
  year: 2006
  ident: 10.1016/j.ins.2008.06.013_bib15
  article-title: Rough set approach to customer satisfaction analysis
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11908029_31
– volume: 4259
  year: 2006
  ident: 10.1016/j.ins.2008.06.013_bib7
– volume: 25
  start-page: 327
  issue: 4
  year: 2005
  ident: 10.1016/j.ins.2008.06.013_bib9
  article-title: Developing and testing models for replicating credit ratings: a multicriteria approach
  publication-title: Computational Economics
  doi: 10.1007/s10614-005-6412-4
– year: 1961
  ident: 10.1016/j.ins.2008.06.013_bib1
– volume: 4
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.ins.2008.06.013_bib23
  article-title: Classification trees for problems with monotonicity constraints
  publication-title: SIGKDD Explorations
  doi: 10.1145/568574.568577
– volume: vol. 2005
  start-page: 170
  year: 2001
  ident: 10.1016/j.ins.2008.06.013_bib14
  article-title: Variable consistency model of dominance-based rough set approach
– volume: 129
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.ins.2008.06.013_bib13
  article-title: Rough sets theory for multicriteria decision analysis
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(00)00167-3
– volume: 177
  start-page: 341
  issue: 1
  year: 2007
  ident: 10.1016/j.ins.2008.06.013_bib22
  article-title: Rough sets. Some extensions
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2006.06.006
– volume: 20
  start-page: 287
  issue: 5
  year: 2003
  ident: 10.1016/j.ins.2008.06.013_bib30
  article-title: Probabilistic approaches to rough sets
  publication-title: Expert Systems
  doi: 10.1111/1468-0394.00253
– volume: 4481
  start-page: 118
  year: 2007
  ident: 10.1016/j.ins.2008.06.013_bib8
  article-title: Optimized generalized decision in dominance-based rough set approach
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-72458-2_14
– year: 2003
  ident: 10.1016/j.ins.2008.06.013_bib17
– volume: 58
  start-page: 3
  year: 1995
  ident: 10.1016/j.ins.2008.06.013_bib4
  article-title: Boolean regression
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02032132
– volume: 11
  start-page: 341
  year: 1982
  ident: 10.1016/j.ins.2008.06.013_bib19
  article-title: Rough sets
  publication-title: International Journal of Information and Computer Sciences
  doi: 10.1007/BF01001956
– volume: 117
  start-page: 63
  year: 1999
  ident: 10.1016/j.ins.2008.06.013_bib12
  article-title: Rough approximation of a preference relation by dominance relations
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(98)00127-1
– volume: 3641
  year: 2005
  ident: 10.1016/j.ins.2008.06.013_bib32
SSID ssj0004766
Score 2.325215
Snippet In order to discover interesting patterns and dependencies in data, an approach based on rough set theory can be used. In particular, dominance-based rough set...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 4019
SubjectTerms Dominance-based rough set approach
Empirical risk minimization
Isotonic regression
Maximum likelihood estimation
Monotonicity constraints
Multiple criteria decision analysis
Ordinal classification
Statistical decision theory
Variable consistency models
Title Stochastic dominance-based rough set model for ordinal classification
URI https://dx.doi.org/10.1016/j.ins.2008.06.013
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB36cdGDaFWs2rIH8SCkTbKbTXIs0lIVe9FCb2G_ghVJi41Xf7u7m41WUA_eQsiEMDuZmWXfewNwkbDQFyykHo1ypTcoMvESQlIvl76iRBGOU8NGvp_R6ZzcLqJFA65rLoyBVbrcX-V0m63dnaHz5nC9XBqOb2g74qrniXAT2iFOqQ7t9ujmbjr7okfG1ZGl2SkZg_pw08K8lsXGISrpwA_wz-Vpq-RM9mHP9YpoVH3OATRU0YHdLQXBDvQc7wBdIkcsMo5G7o89hPFDuRJPzIgxI7mysBehPFO6JLIDetBGlciOw0HaHOmtqBmThYRpqg2KyL7vCOaT8eP11HOTEzyBKS69iEiWYMmjMDXqEbFSAY2FEH4achxwHtMoZVgaKXwV51jmmDOJfUkYlZFRqz2GVrEq1AkgouKEU-yzIMwJ1teEpZT7BrWa5pLjLvi1wzLhZMXNdIuXrMaPPWfax27cJc20j7tw9WmyrjQ1_nqY1KuQfQuMTOf8381O_2d2BjsWEGLJhufQKl_fVE93HSXvQ3PwHvRdbH0A8p3VtA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8YlVq3sQD0I0zW42yVGKUrX1Ygu9hX0FK5KKxqu_3Z3NxgeoB28h7IQwu_Niv_kG4CgVUahExAMeF8YWKDoNUsayoNCh4cwwSTPsRh7d8sGEXU_jaQv6TS8Mwiq97699uvPW_s2Z1-bZ02yGPb6Ry4jrnCemC7DIrPmidZ6-feI8WFJfWGKdhMubq00H8pqVLx5PyU_DHv05OH0JOJdrsOozRXJe_8w6tEy5AStf-AM3oOu7Dsgx8W1FqGbi7XUTLu6quboXSMVM9NyBXpQJMHBp4sbzkBdTETcMh1hxYgtRHJJFFKbUiCFy39uCyeXFuD8I_NyEQFFOqyBmWqRUyzjKkDsiMabHE6VUmEWS9qRMeJwJqpEI3yQF1QWVQtNQM8F1jFy129Au56XZAcJMkkpOQ9GLCkbtMxMZlyFiVrNCS9qBsFFYrjypOM62eMwb9NhDbnXsh13y3Oq4AycfIk81o8Zfi1mzC_m3Y5Fbj_-72O7_xA5haTAeDfPh1e3NHiw7aIhrO9yHdvX8aro2_6jkgTtf76r81ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+dominance-based+rough+set+model+for+ordinal+classification&rft.jtitle=Information+sciences&rft.au=Kot%C5%82owski%2C+Wojciech&rft.au=Dembczy%C5%84ski%2C+Krzysztof&rft.au=Greco%2C+Salvatore&rft.au=S%C5%82owi%C5%84ski%2C+Roman&rft.date=2008-11-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=178&rft.issue=21&rft.spage=4019&rft.epage=4037&rft_id=info:doi/10.1016%2Fj.ins.2008.06.013&rft.externalDocID=S0020025508002053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon