Conductive metal-organic frameworks for electrochemical energy conversion and storage
[Display omitted] •Conductive MOFs are of interest to electrochemical energy conversion and storage.•The mechanisms of electron and proton conductions in MOFs are summarised.•Design approaches and practical performance of conductive MOFs are discussed.•Challenges and prospects for future studies on...
Saved in:
Published in | Coordination chemistry reviews Vol. 446; p. 214119 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Conductive MOFs are of interest to electrochemical energy conversion and storage.•The mechanisms of electron and proton conductions in MOFs are summarised.•Design approaches and practical performance of conductive MOFs are discussed.•Challenges and prospects for future studies on conductive MOFs are proposed.
Metal-organic frameworks (MOFs) are porous crystalline materials intensively studied for electrochemical applications. However, low charge conductivity is the primary obstacle, which limits the utilization of pristine MOFs in practice. Over the last decade, researchers have shown great interests in breaking through this “bottleneck”, offering them enhanced performance in charge transportation while maintaining their structural and chemical superiorities. Therefore, the design and synthesis of electron- and proton-conductive MOFs become a straightforward strategy to achieve this goal. Herein, this review summaries the rich progress in the development of conductive MOFs for their applications in a wide range of electrochemical energy conversion and storage techniques, including fuel cells, water electrolysis, supercapacitors and batteries. Specifically, this review focuses on the origin of conductivities and its influence on the electrochemical performance of conductive MOFs, which are attributed to the strategic choice of metal–ligand combination and tuning of both physical and chemical structures. |
---|---|
AbstractList | [Display omitted]
•Conductive MOFs are of interest to electrochemical energy conversion and storage.•The mechanisms of electron and proton conductions in MOFs are summarised.•Design approaches and practical performance of conductive MOFs are discussed.•Challenges and prospects for future studies on conductive MOFs are proposed.
Metal-organic frameworks (MOFs) are porous crystalline materials intensively studied for electrochemical applications. However, low charge conductivity is the primary obstacle, which limits the utilization of pristine MOFs in practice. Over the last decade, researchers have shown great interests in breaking through this “bottleneck”, offering them enhanced performance in charge transportation while maintaining their structural and chemical superiorities. Therefore, the design and synthesis of electron- and proton-conductive MOFs become a straightforward strategy to achieve this goal. Herein, this review summaries the rich progress in the development of conductive MOFs for their applications in a wide range of electrochemical energy conversion and storage techniques, including fuel cells, water electrolysis, supercapacitors and batteries. Specifically, this review focuses on the origin of conductivities and its influence on the electrochemical performance of conductive MOFs, which are attributed to the strategic choice of metal–ligand combination and tuning of both physical and chemical structures. |
ArticleNumber | 214119 |
Author | Wen, Dongsheng Zhu, Bingjun Zou, Ruqiang Liang, Zibin |
Author_xml | – sequence: 1 givenname: Bingjun surname: Zhu fullname: Zhu, Bingjun email: zhubingjun@buaa.edu.cn organization: School of Aeronautic Science and Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, China – sequence: 2 givenname: Dongsheng surname: Wen fullname: Wen, Dongsheng organization: School of Aeronautic Science and Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, China – sequence: 3 givenname: Zibin surname: Liang fullname: Liang, Zibin organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China – sequence: 4 givenname: Ruqiang surname: Zou fullname: Zou, Ruqiang email: rzou@pku.edu.cn organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China |
BookMark | eNp9kMtOwzAURC1UJNrCB7DzDyTYSfyIWKGKl1SJDV1bt_ZNcUltZIei_j2pyopFV6NZnJHmzMgkxICE3HJWcsbl3ba0NpUVq3hZ8Ybz9oJMuVZ1UeuGTciUMc4KLRpxRWY5b8cq27aaktUiBvdtB79HusMB-iKmDQRvaZdghz8xfWbaxUSxRzukaD9w5y30FAOmzYHaGPaYso-BQnA0DzHBBq_JZQd9xpu_nJPV0-P74qVYvj2_Lh6Wha1lPRSi0WvRgJadUqKVGriTwJhTXSvXTEEltBBtJVB0IIWTmtdQraWSaJXTuqnnhJ92bYo5J-zMV_I7SAfDmTl6MVszejFHL-bkZWTUP8b6AYbxwZDA92fJ-xOJ46W9x2Sy9RgsOp9GOcZFf4b-BRyrf-Q |
CitedBy_id | crossref_primary_10_1002_smll_202308264 crossref_primary_10_1021_acsanm_3c04264 crossref_primary_10_1039_D4TC02970D crossref_primary_10_1007_s12209_022_00352_9 crossref_primary_10_1016_j_optmat_2021_111793 crossref_primary_10_1002_ange_202401679 crossref_primary_10_1021_acsomega_3c07911 crossref_primary_10_1021_acsami_4c12719 crossref_primary_10_1016_j_ccr_2023_215300 crossref_primary_10_1016_j_jallcom_2022_167354 crossref_primary_10_1007_s10934_022_01275_5 crossref_primary_10_1016_j_jpowsour_2024_235942 crossref_primary_10_1016_j_cej_2025_161555 crossref_primary_10_1002_adma_202305532 crossref_primary_10_1002_ange_202116282 crossref_primary_10_1002_ange_202212797 crossref_primary_10_1002_smll_202302600 crossref_primary_10_1007_s12274_022_5114_8 crossref_primary_10_1021_jacs_2c06216 crossref_primary_10_1002_smll_202207713 crossref_primary_10_1016_j_jcis_2022_01_018 crossref_primary_10_1002_smtd_202400432 crossref_primary_10_1016_j_electacta_2023_143210 crossref_primary_10_1002_anie_202410411 crossref_primary_10_1038_s41467_024_53786_1 crossref_primary_10_1063_5_0185031 crossref_primary_10_1007_s12274_023_5424_x crossref_primary_10_1016_j_ccr_2024_216021 crossref_primary_10_1016_j_surfin_2024_104708 crossref_primary_10_1002_sstr_202300293 crossref_primary_10_1016_j_solmat_2023_112434 crossref_primary_10_1021_acs_cgd_3c01162 crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1016_j_ijhydene_2021_12_087 crossref_primary_10_1016_j_apcatb_2022_121526 crossref_primary_10_1007_s40843_024_3109_5 crossref_primary_10_1002_anie_202401679 crossref_primary_10_1002_anie_202217744 crossref_primary_10_1016_j_jcis_2023_07_083 crossref_primary_10_1002_anie_202116282 crossref_primary_10_1016_j_colsurfa_2023_132639 crossref_primary_10_1039_D1FD00058F crossref_primary_10_1021_acscatal_2c02033 crossref_primary_10_1016_j_est_2023_106934 crossref_primary_10_1016_j_chempr_2023_02_016 crossref_primary_10_1002_smll_202207547 crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1016_j_colsurfa_2022_130001 crossref_primary_10_1016_j_icheatmasstransfer_2023_106712 crossref_primary_10_12677_JAPC_2023_124031 crossref_primary_10_1016_j_jcis_2023_08_074 crossref_primary_10_1021_acsanm_2c04674 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1016_j_solener_2023_04_046 crossref_primary_10_1021_acs_inorgchem_2c02866 crossref_primary_10_1002_ange_202217744 crossref_primary_10_1016_j_jcis_2022_10_088 crossref_primary_10_1039_D4CS00141A crossref_primary_10_1016_j_seppur_2023_124282 crossref_primary_10_1016_j_jelechem_2022_117096 crossref_primary_10_1016_j_jpowsour_2024_234679 crossref_primary_10_1039_D2SC04012C crossref_primary_10_1016_j_cej_2022_138434 crossref_primary_10_1016_j_coelec_2024_101464 crossref_primary_10_1002_smll_202203140 crossref_primary_10_1016_j_electacta_2022_141808 crossref_primary_10_1021_acsnano_4c14989 crossref_primary_10_1002_advs_202304149 crossref_primary_10_1021_acs_energyfuels_2c01489 crossref_primary_10_3390_batteries9020109 crossref_primary_10_1016_j_ccr_2024_215876 crossref_primary_10_1039_D3DT00876B crossref_primary_10_1016_j_desal_2024_117486 crossref_primary_10_1039_D3TA03753C crossref_primary_10_1021_acsnano_1c10544 crossref_primary_10_1016_j_ccr_2022_214667 crossref_primary_10_1016_j_jcis_2023_12_023 crossref_primary_10_1016_j_mtsust_2024_100899 crossref_primary_10_1039_D4TA03412K crossref_primary_10_1016_j_ccr_2023_215099 crossref_primary_10_1021_acs_chemrev_4c00565 crossref_primary_10_1002_anie_202212797 crossref_primary_10_1016_j_enchem_2024_100137 crossref_primary_10_1002_advs_202204715 crossref_primary_10_1002_ange_202410411 crossref_primary_10_1016_j_etran_2024_100311 crossref_primary_10_1002_adfm_202203224 crossref_primary_10_1016_j_cis_2025_103469 crossref_primary_10_1021_acscatal_3c05314 crossref_primary_10_1007_s40820_023_01124_3 crossref_primary_10_3390_molecules28135037 |
Cites_doi | 10.1039/C9QM00527G 10.1039/C9DT00917E 10.1039/C6MH00230G 10.1039/C6CS00426A 10.1016/j.electacta.2020.135638 10.1021/jacs.0c10482 10.1016/j.chempr.2016.12.002 10.1021/jacs.6b09345 10.1021/acsami.8b22564 10.1016/j.jpowsour.2010.06.060 10.1021/jacs.9b04822 10.1002/aenm.201900482 10.1039/C6GC01172A 10.1021/ja9040016 10.1021/cm102674u 10.1002/asia.201900026 10.1016/j.apcatb.2018.07.024 10.1021/acs.chemrev.9b00766 10.1038/nmat4766 10.1039/C6TA07761G 10.1039/C4TA00438H 10.1002/smtd.201800341 10.1002/anie.198202082 10.1002/sstr.202000078 10.1016/j.enconman.2010.06.031 10.1039/b802258p 10.1039/C4CS90059F 10.1016/j.memsci.2020.118194 10.1039/C9DT04210E 10.1039/C9QI00390H 10.1021/acs.chemrev.9b00842 10.1016/j.carbon.2019.09.029 10.1038/s41467-019-12857-4 10.1016/j.apcatb.2020.119295 10.1021/acsami.8b09070 10.1016/j.ccr.2019.213100 10.1039/C9TA08788E 10.1039/C9TA02169H 10.1039/c2ee02781j 10.1021/acs.chemrev.0c00080 10.1021/acscatal.7b02647 10.1021/ja3091438 10.1016/j.renene.2018.03.075 10.1016/j.electacta.2017.03.128 10.1007/s12274-020-2733-9 10.1039/b925751a 10.1002/adma.201502315 10.1021/acs.accounts.8b00240 10.1002/adfm.201702067 10.1021/acs.energyfuels.0c01703 10.1126/science.1230444 10.1002/smtd.201700187 10.1038/nnano.2011.13 10.1039/C9NR08038D 10.1002/anie.201510855 10.1021/ic802117q 10.1021/ja507634v 10.1007/s40843-017-9153-x 10.1016/j.jelechem.2019.113218 10.1039/C8MH00133B 10.1002/anie.201906134 10.1021/acs.inorgchem.8b00493 10.1021/acsnano.9b04670 10.1038/s41560-017-0044-5 10.1038/nmat3191 10.1002/aenm.201901892 10.1039/C4EE03192J 10.1002/aenm.201000010 10.1039/D0CC05569G 10.1039/c1ee01598b 10.1016/0009-2614(95)00905-J 10.1039/C7TA09608A 10.1002/chem.201900045 10.1016/j.ccr.2018.07.020 10.1002/cssc.202001914 10.1039/C6MH00344C 10.1016/j.ccr.2020.213214 10.1016/j.ccr.2019.05.006 10.1021/jacs.8b06020 10.1016/j.jpowsour.2019.04.087 10.1088/0953-8984/28/2/023001 10.1016/j.rser.2019.04.042 10.1021/cr100290v 10.1002/adma.201901125 10.1021/cr020711a 10.1021/ja512437u 10.1021/ja407115p 10.1023/A:1015388912729 10.1021/ja3059827 10.1021/acs.chemmater.6b01286 10.1038/nature11115 10.1038/ncomms10942 10.1002/cssc.201902194 10.1016/j.nanoen.2018.11.038 10.1002/aenm.201400696 10.1039/c1cs15228a 10.1016/j.joule.2018.09.019 10.1039/C2CC37045J 10.1016/j.nantod.2013.11.004 10.1039/D0CS01191F 10.1002/advs.202000012 10.1016/j.ensm.2019.05.022 10.1038/s41557-019-0372-0 10.1016/j.electacta.2019.03.175 10.1039/C5EE00762C 10.1016/j.ccr.2018.04.018 10.1016/j.pecs.2009.11.002 10.1021/cr068060w 10.1021/cm202554j 10.1039/C8TA01062E 10.1039/C4CS00266K 10.1126/science.1249625 10.1039/C6EE01871H 10.1063/1.5143590 10.1557/mrs.2016.241 10.1016/j.matt.2019.05.018 10.1021/cr020730k 10.1021/jacs.0c06474 10.1021/cr300014x 10.1021/acs.langmuir.8b03938 10.1246/bcsj.20150308 10.1039/D0SC04302H 10.1002/smll.201902605 10.1002/anie.201402950 10.1146/annurev.pc.15.100164.001103 10.1016/j.ccr.2019.02.030 10.1038/ncomms12647 10.1002/smll.201805232 10.1002/anie.201506219 10.1039/C8TA11704G 10.1021/ja309968u 10.1016/j.ccr.2017.03.027 10.1021/es0605016 10.1002/aenm.201801193 10.1039/b922650h 10.1002/adma.201704436 10.1146/annurev.matsci.33.022702.155102 10.1149/2.0171514jes 10.1002/anie.202004697 10.1039/C8TA12178H 10.1016/j.mattod.2016.10.003 10.1021/cm101238m 10.1016/j.ijhydene.2013.01.151 10.1021/acsami.8b00942 10.1039/C9SC03348C |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ccr.2021.214119 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3840 |
ExternalDocumentID | 10_1016_j_ccr_2021_214119 S0010854521003933 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- RIG SCB SEW SIC SSH UQL VH1 WUQ XJT ZKB ZY4 |
ID | FETCH-LOGICAL-c363t-548b54a86f775968a1d6a00d7f96b07a25855925e5fa65d6813a2b676ec7d8843 |
IEDL.DBID | .~1 |
ISSN | 0010-8545 |
IngestDate | Thu Apr 24 22:59:21 EDT 2025 Tue Jul 01 02:43:51 EDT 2025 Fri Feb 23 02:42:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitor Metal–organic framework Conductive Electrocatalysis Battery |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-548b54a86f775968a1d6a00d7f96b07a25855925e5fa65d6813a2b676ec7d8843 |
ParticipantIDs | crossref_primary_10_1016_j_ccr_2021_214119 crossref_citationtrail_10_1016_j_ccr_2021_214119 elsevier_sciencedirect_doi_10_1016_j_ccr_2021_214119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Okawa, Sadakiyo, Yamada, Maesato, Ohba, Kitagawa (b0405) 2013; 135 Sun, Campbell, Dinca (b0125) 2016; 55 Wang, Deng, Liang, Ju, Cheng, Kang (b0790) 2020; 450 Sun, Park, Sheberla, Dincă (b0330) 2016; 138 Ulgut, Abruña (b0275) 2008; 108 Kim, Sengodan, Kim, Kwon, Bu, Kim (b0250) 2019; 109 Sundriyal, Kaur, Bhardwaj, Mishra, Kim, Deep (b0040) 2018; 369 Sadakiyo, Yamada, Kitagawa (b0220) 2009; 131 Ji, Nazar (b0740) 2010; 20 Park, Lee, Feng, Huang, Hinckley, Yakoyenko, Zou, Cui, Bao (b0720) 2018; 140 Yu, Bai, Liang, Ma (b0155) 2021; 405 Du, Zhang, Wang, Huang, Guo, Zhao, Niu, Li, Wu, Liu (b0620) 2020; 4 Asensio, Sanchez, Gomez-Romero (b0280) 2010; 39 Miner, Gul, Ricke, Pastor, Yano, Yachandra, Van Voorhis, Dinca (b0460) 2017; 7 Xie, Park, Chmielewski, Liu, Kharod, Yang, Campbell, Dinca (b0225) 2020; 59 Wahiduzzaman, Wang, Schnee, Vimont, Ortiz, Yot, Retoux, Daturi, Lee, Chang, Serre, Maurin, Devautour-Vinot, Sustain (b0385) 2019; 7 Yamada, Sadakiyo, Shigematsu, Kitagawa (b0345) 2016; 89 Carmo, Fritz, Merge, Stolten (b0420) 2013; 38 Lang, Hirata, Fujita, Chen (b0270) 2011; 6 Zhang, Bai, Ren, Luo, Ren, Tian, Lu (b0775) 2018; 10 Wang, Farajollahi, Henke, Zhu, Bajpe, Sun, Barnard, Lee, Madden, Cheetham, Smoukov (b0190) 2017; 4 Calvo, Angel, So (b0295) 2020; 8 Ludueña, Kühne, Sebastiani (b0375) 2011; 23 Feng, Lei, Lukatskaya, Park, Huang, Lee, Shaw, Chen, Yakovenko, Kulkarni, Xiao, Fredrickson, Tok, Zou, Cui, Bao (b0605) 2018; 3 Nam, Park, Dos Reis, Dravid, Kim, Mirkin, Stoddart (b0695) 2019; 10 Yang, Li, Li, Zhu, Pang (b0130) 2019; 31 Wu, Hong, Xu, Nishiyama, Jiang, Zhu, Zhang, Kitagawa, Horike (b0820) 2020; 142 Li, Li, Ao, Sun, Wang, Yuen, Wang (b0500) 2020; 334 Logan, Hamelers, Rozendal, Schrorder, Keller, Freguia, Aelterman, Verstraete, Rabaey (b0415) 2006; 40 Deng, Li, Wang (b0165) 2016; 18 Zhou, Kitagawa (b0105) 2014; 43 Narayan, Miyakai, Seki, Dinca (b0320) 2012; 134 Miyake, Rolandi (b0365) 2016; 28 Marpaung, Kim, Khan, Konstantinov, Yamauchi, Hossain, Na, Kim (b0145) 2019; 14 Bruce, Freunberger, Hardwick, Tarascon (b0745) 2012; 11 Agmon (b0355) 1995; 244 Chen, Wang, Wu, Xiong, Xu, Yu, Jiang (b0470) 2015; 27 Hammes-Schiffer (b0260) 2018; 51 Wang, Zhu, Zou, Xu (b0015) 2017; 2 Zhao, Liang, Zou, Xu (b0055) 2018; 2 Borges, Devautour-Vinot, Jobic, Ollivier, Nouar, Semino, Devic, Serre, Paesani, Maurin (b0230) 2016; 55 Hou, Miao, Wang, Yue, Liu, Park, Qi, Xia (b0630) 2019; 10 Cai, Lu, Li, Cao, Chen, Tu, Li (b0755) 2019; 15 Sheberla, Bachman, Elias, Sun, Shao-Horn, Dinca (b0590) 2017; 16 Liu, Zhao, Lei (b0585) 2019; 3 Yang, He, Dinca (b0215) 2019; 141 Paul, Choi, Kim (b0800) 2020; 34 Simon, Gogotsi, Dunn (b0555) 2014; 343 Debe (b0410) 2012; 486 Li, Ding, Tian, Yao, Nath, Deng, Wang, Xu (b0595) 2017; 27 Zhou, Kong, Zheng, Huo, Stromme, Xu (b0635) 2019; 13 Hong, Mei, Wen, Tong, Vasileff, Wang, Liang, Sun, Dou (b0735) 2019; 31 Zhu, Zou, Xu (b0075) 2018; 8 Ren, Chia, Gao (b0025) 2013; 8 Lim, Kitagawa (b0255) 2020; 120 Wang, Shao, Mei, Lu, Zhang, Sun, Matyjaszewski, Antonietti, Yuan (b0160) 2020; 120 Pattengale, Freeze, Guberman-Pfeffer, Okabe, Ostresh, Chaudhuri, Batista, Schmuttenmaer (b0325) 2020; 11 Kang, Zhang, Zhang (b0575) 2017; 29 Sun, Guo, Sun, Zhang, Liu, Hou, Yuan (b0725) 2019; 7 Wen, Zhang, Guan (b0035) 2020; 409 Li, Xu, Jiao, Jiang (b0095) 2019; 1 Etacheri, Marom, Elazari, Salitra, Aurbach (b0655) 2011; 4 Kobayashi, Jacobs, Allendorf, Long (b0305) 2010; 22 Cheng, Chen (b0430) 2012; 41 Wang, Tan, Wang, Yang, Hu, Chen, Pan (b0805) 2018; 30 Lu, Ben, Xu, Qiu (b0235) 2014; 53 Hu, Xiong, Liu, Hu, Mao, Balogun, Tong (b0525) 2019; 25 Wang, Zhou, Jiang, Da, Peng, Tang, Kong, Cai, Yang, Zheng (b0530) 2014; 4 Wang, Hu, Han, Wang, Wang, Zhao, Liu, Pan (b0810) 2019; 56 Park, Zhang, Chung, Less, Sastry (b0240) 2010; 195 Zuo, Zhu, Zhao, Sun, Li, Liu, Lou (b0645) 2016; 9 Wang, Wang, Lin, Ballabio, Zhong, Bonn, Zhou, Heine, Cánovas, Dong, Feng (b0815) 2020; 142 Sadakiyo, Yamada, Kitagawa (b0380) 2016; 81 Baldan (b0705) 2002; 37 Dong, Li, Han, Duan, Li, Zang (b0785) 2017; 5 Li, Yang, Xue, Pang, Xu (b0100) 2020; 2 Wang, Kaneti, Bando, Lin, Liu, Li, Yamauchi (b0135) 2018; 5 Zhao, Wu, Li, Li, Zhou, Yu, Chen, Tao, Han (b0610) 2019; 6 Pauliukaite, Juodkazytė, Ramanauskas (b0350) 2017; 236 Marcus (b0245) 1964; 15 Miner, Fukushima, Sheberla, Sun, Surendranath, Dincă (b0455) 2016; 7 Du, Xing, Zhang, Sun (b0140) 2020; 156 Yoon, Lee, Oh, Park, Choi, Oh (b0480) 2019; 15 Park, Hontz, Sun, Hendon, Walsh, Van Voorhis, Dincă (b0340) 2015; 137 Wang, Jiao, Qian, Hu, Xu, Wang, Jiang (b0510) 2019; 58 Wang, Cohen (b0110) 2009; 38 Li, Lv, Li, Xie, Ogiwara, Huang, Jiang, Kitagawa, Xu, Wang (b0490) 2019; 7 Zheng, Xiang, Li, Zhang, Du, Zhuang, Li, Chen, Sustain (b0495) 2019; 7 Xie, Yang, Dou, Li, Li (b0115) 2020; 403 Yang, Kim, Im, Kim, Lee, Jung, Park (b0150) 2012; 24 Li, He, Wang, Lv, Gu, Dai, Liu, Zhao (b0090) 2019; 7 Song, Tan, Chao, Fan (b0670) 2018; 28 Takaishi, Hosoda, Kajiwara, Miyasaka, Yamashita, Nakanishi, Kitagawa, Yamaguchi, Kobayashi, Kitagawa (b0300) 2009; 48 Zeng, Zhang (b0425) 2010; 36 Yi, Zhang, Wang, Chen, Han, Jiang, Xu (b0020) 2017; 1 Skorupskii, Trump, Kasel, Brown, Hendon, Dinca (b0205) 2020; 12 Gu, Bai, Majumder, Huang, Chen (b0680) 2019; 429 Dubal, Ayyad, Ruiz, Gomez-Romero (b0710) 2015; 44 Liu, Sheng, Ager, Kraft, Xu (b0085) 2019; 1 Xie, Alexandrov, Skorupskii, Proserpio, Dincă (b0335) 2019; 10 Guo, Sun, Zhang, Hou, Liang, Liu, Yuan (b0685) 2019; 12 Zhao, Pachfule, Thomas (b0825) 2021 Pan, Zhang, Yang, Qiu, Li, Song, Zhang (b0505) 2020; 56 Zheng, Zhang, Gao, Du, Zhuang, Chen (b0520) 2019; 306 Lukatskaya, Dunn, Gogotsi (b0715) 2016; 7 Xu, Nie, Dou, Ding, Li, Zhang (b0045) 2017; 20 Sharma, Bhatti (b0580) 2010; 51 Huang, Zhao, Bai, Li, Zhang, Chen (b0515) 2020; 7 Wu, Lin, Ge, Wu, Xu (b0395) 2013; 49 Chen, Xu (b0185) 2019; 1 Zhang, Liu, Shi, Cheng (b0565) 2019; 388 Wang, Xun, Zhang (b0050) 2020; 2 Goodenough, Park (b0650) 2013; 135 Li, Zhang, Liu, Zhao, Appl (b0760) 2018; 10 Xue, Zheng, Xue, Pang (b0180) 2019; 7 Furukawa, Cordova, O'Keeffe, Yaghi (b0010) 2013; 341 Grancha, Ferrando-Soria, Cano, Amorós, Seoane, Gascon, Bazaga-García, Losilla, Cabeza, Armentano, Pardo (b0360) 2016; 28 Yu, Zeng, Zhang, Yu, Tong, Lu (b0675) 2019; 15 Shrivastav, Sundriyal, Goel, Kaur, Tuteja, Vikrant, Kim, Tiwari, Deep (b0560) 2019; 393 Chen, Xiao, Chen, Yang, Gao, Chen, Wu, Shen, Zhang, Li, Huo, Zheng, Appl (b0765) 2019; 11 Palomares, Serras, Villaluenga, Hueso, Carretero-Gonzalez, Rojo (b0660) 2012; 5 Zhu, Liang, Xia, Zou (b0060) 2019; 23 Xing, Wang, Zhou, Liu, Wang, Wang, Zheng, Cheng, Dai, Huang (b0465) 2020; 278 He, Zhang, Man, Zhou, Li, Li, Xie, Wang, Pang, Yao (b0700) 2019; 64 Zhang, Warren (b0265) 2021; 14 Sanati, Abazari, Albero, Morsali, Garcia, Liang, Zou (b0475) 2020 Pang, Liang, Kwok, Nazar (b0750) 2015; 162 Salcedo, Bazaga-García, Cuesta, Losilla, Demadis, Olivera-Pastor, Colodrero, Cabeza (b0390) 2020; 49 Li, Gao, Xu, Bu (b0120) 2017; 344 Paddison (b0285) 2003; 33 Cao, Tan, Sindoro, Zhang (b0445) 2017; 46 Winter, Brodd (b0550) 2004; 104 McCrory, Jung, Peters, Jaramillo (b0485) 2013; 135 Zhou, Long, Yaghi (b0005) 2012; 112 Yang, Wang, Yue, Bian (b0600) 2019; 847 Sadakiyo, Yamada, Kitagawa (b0400) 2014; 136 Shan, Chen, Pang, Xu (b0315) 2021; 2 Yang, Zhang, Kintner-Meyer, Lu, Choi, Lemmon, Liu (b0545) 2011; 111 Zhu, Xia, Zou (b0070) 2018; 376 Li, Zheng, Jin, Li, Geng, Xue, Pang, Xu (b0065) 2018; 8 Xia, Mahmood, Zou, Xu (b0440) 2015; 8 Nazir, Le, Min, Kasbe, Kim, Jin, Park (b0690) 2020; 12 Wu, Zhang, Kandambeth, Shekhah, Eddaoudi, Alshareef (b0625) 2019; 9 Ahmadian-Alam, Mahdavi (b0795) 2018; 126 Zhu, Zhang, Li, Xiong, Chen, Wan, Wang, Chen, Deng, Peng (b0540) 2018; 238 Zhu, Liu, Qu, Zhang, Guo, Liang, Chen, Zou (b0170) 2018; 6 Zhang, Ren, Xu, Wang, He, Wang, Yang, Du, Meng, Zhao (b0780) 2020; 607 Barkholtz, Liu (b0030) 2017; 4 Lee, Kim, Cao, Choi, Liu, Lee, Cho (b0435) 2011; 1 Hickner, Ghassemi, Kim, Einsla, McGrath (b0770) 2004; 104 Han, Gonzalo, Singh, Rojo (b0665) 2015; 8 Xiong, Cheng, Wang, Luo, Feng, Lu, Asiri, Li, Jiang, Sun (b0535) 2020; 13 Xie, Skorupskii, Dincă (b0290) 2020; 120 Guan, Yu, Wu, Lou (b0450) 2017; 29 Zhao, Liu, Horn, Motta, Hu, Li (b0570) 2018; 61 Leong, Usov, D'Alessandro (b0310) 2016; 41 Chung, Manthiram (b0730) 2019; 31 Li, Zhou, Wu, Chen, Tao, Yi, Han (b0615) 2018; 57 Chen, Lu, Su (b0210) 2018; 34 Zhu, Li, Liu, Liu, Sun, Snape, Guo (b0175) 2014; 2 Zhang, Zhang, Wang, Huang, Zhu, Wang, Dong, Li, Lan (b0195) 2018; 6 Zhang, Chen, Zhou, Liu (b0640) 2015; 5 Du, Li, Sun (b0080) 2021; 50 Salcedo-Abraira, Santiago-Portillo, Atienzar, Bordet, Salles, Guillou, Elkaim, Garcia, Navalon, Horcajada (b0200) 2019; 48 Kreuer, Rabenau, Weppner (b0370) 1982; 21 Lim (10.1016/j.ccr.2021.214119_b0255) 2020; 120 Zhang (10.1016/j.ccr.2021.214119_b0780) 2020; 607 Grancha (10.1016/j.ccr.2021.214119_b0360) 2016; 28 McCrory (10.1016/j.ccr.2021.214119_b0485) 2013; 135 Ren (10.1016/j.ccr.2021.214119_b0025) 2013; 8 Lu (10.1016/j.ccr.2021.214119_b0235) 2014; 53 Goodenough (10.1016/j.ccr.2021.214119_b0650) 2013; 135 Sun (10.1016/j.ccr.2021.214119_b0725) 2019; 7 Furukawa (10.1016/j.ccr.2021.214119_b0010) 2013; 341 Agmon (10.1016/j.ccr.2021.214119_b0355) 1995; 244 Zhao (10.1016/j.ccr.2021.214119_b0570) 2018; 61 Xing (10.1016/j.ccr.2021.214119_b0465) 2020; 278 Zhang (10.1016/j.ccr.2021.214119_b0640) 2015; 5 Yang (10.1016/j.ccr.2021.214119_b0215) 2019; 141 Song (10.1016/j.ccr.2021.214119_b0670) 2018; 28 Zhao (10.1016/j.ccr.2021.214119_b0610) 2019; 6 Zheng (10.1016/j.ccr.2021.214119_b0495) 2019; 7 Miner (10.1016/j.ccr.2021.214119_b0460) 2017; 7 Logan (10.1016/j.ccr.2021.214119_b0415) 2006; 40 Zhu (10.1016/j.ccr.2021.214119_b0075) 2018; 8 Cao (10.1016/j.ccr.2021.214119_b0445) 2017; 46 Cheng (10.1016/j.ccr.2021.214119_b0430) 2012; 41 Feng (10.1016/j.ccr.2021.214119_b0605) 2018; 3 Marpaung (10.1016/j.ccr.2021.214119_b0145) 2019; 14 Takaishi (10.1016/j.ccr.2021.214119_b0300) 2009; 48 Lang (10.1016/j.ccr.2021.214119_b0270) 2011; 6 Pattengale (10.1016/j.ccr.2021.214119_b0325) 2020; 11 Sharma (10.1016/j.ccr.2021.214119_b0580) 2010; 51 Du (10.1016/j.ccr.2021.214119_b0620) 2020; 4 Bruce (10.1016/j.ccr.2021.214119_b0745) 2012; 11 Zhu (10.1016/j.ccr.2021.214119_b0175) 2014; 2 Zhu (10.1016/j.ccr.2021.214119_b0070) 2018; 376 Li (10.1016/j.ccr.2021.214119_b0615) 2018; 57 Wahiduzzaman (10.1016/j.ccr.2021.214119_b0385) 2019; 7 Simon (10.1016/j.ccr.2021.214119_b0555) 2014; 343 Wang (10.1016/j.ccr.2021.214119_b0190) 2017; 4 Park (10.1016/j.ccr.2021.214119_b0340) 2015; 137 Park (10.1016/j.ccr.2021.214119_b0720) 2018; 140 Lee (10.1016/j.ccr.2021.214119_b0435) 2011; 1 Kreuer (10.1016/j.ccr.2021.214119_b0370) 1982; 21 Dong (10.1016/j.ccr.2021.214119_b0785) 2017; 5 Li (10.1016/j.ccr.2021.214119_b0065) 2018; 8 Wu (10.1016/j.ccr.2021.214119_b0395) 2013; 49 Zhao (10.1016/j.ccr.2021.214119_b0825) 2021 Sun (10.1016/j.ccr.2021.214119_b0125) 2016; 55 Baldan (10.1016/j.ccr.2021.214119_b0705) 2002; 37 Li (10.1016/j.ccr.2021.214119_b0490) 2019; 7 Liu (10.1016/j.ccr.2021.214119_b0585) 2019; 3 Zhou (10.1016/j.ccr.2021.214119_b0005) 2012; 112 Miyake (10.1016/j.ccr.2021.214119_b0365) 2016; 28 Ahmadian-Alam (10.1016/j.ccr.2021.214119_b0795) 2018; 126 Hammes-Schiffer (10.1016/j.ccr.2021.214119_b0260) 2018; 51 Guo (10.1016/j.ccr.2021.214119_b0685) 2019; 12 Sadakiyo (10.1016/j.ccr.2021.214119_b0380) 2016; 81 Borges (10.1016/j.ccr.2021.214119_b0230) 2016; 55 Yu (10.1016/j.ccr.2021.214119_b0155) 2021; 405 Zeng (10.1016/j.ccr.2021.214119_b0425) 2010; 36 He (10.1016/j.ccr.2021.214119_b0700) 2019; 64 Zheng (10.1016/j.ccr.2021.214119_b0520) 2019; 306 Chen (10.1016/j.ccr.2021.214119_b0185) 2019; 1 Yamada (10.1016/j.ccr.2021.214119_b0345) 2016; 89 Yu (10.1016/j.ccr.2021.214119_b0675) 2019; 15 Debe (10.1016/j.ccr.2021.214119_b0410) 2012; 486 Sanati (10.1016/j.ccr.2021.214119_b0475) 2020 Li (10.1016/j.ccr.2021.214119_b0100) 2020; 2 Yang (10.1016/j.ccr.2021.214119_b0150) 2012; 24 Dubal (10.1016/j.ccr.2021.214119_b0710) 2015; 44 Wang (10.1016/j.ccr.2021.214119_b0015) 2017; 2 Sadakiyo (10.1016/j.ccr.2021.214119_b0220) 2009; 131 Sundriyal (10.1016/j.ccr.2021.214119_b0040) 2018; 369 Ji (10.1016/j.ccr.2021.214119_b0740) 2010; 20 Yi (10.1016/j.ccr.2021.214119_b0020) 2017; 1 Chung (10.1016/j.ccr.2021.214119_b0730) 2019; 31 Sheberla (10.1016/j.ccr.2021.214119_b0590) 2017; 16 Wang (10.1016/j.ccr.2021.214119_b0160) 2020; 120 Zhang (10.1016/j.ccr.2021.214119_b0195) 2018; 6 Wen (10.1016/j.ccr.2021.214119_b0035) 2020; 409 Yang (10.1016/j.ccr.2021.214119_b0600) 2019; 847 Wang (10.1016/j.ccr.2021.214119_b0530) 2014; 4 Paul (10.1016/j.ccr.2021.214119_b0800) 2020; 34 Pauliukaite (10.1016/j.ccr.2021.214119_b0350) 2017; 236 Guan (10.1016/j.ccr.2021.214119_b0450) 2017; 29 Zhu (10.1016/j.ccr.2021.214119_b0540) 2018; 238 Salcedo-Abraira (10.1016/j.ccr.2021.214119_b0200) 2019; 48 Kim (10.1016/j.ccr.2021.214119_b0250) 2019; 109 Paddison (10.1016/j.ccr.2021.214119_b0285) 2003; 33 Salcedo (10.1016/j.ccr.2021.214119_b0390) 2020; 49 Gu (10.1016/j.ccr.2021.214119_b0680) 2019; 429 Shrivastav (10.1016/j.ccr.2021.214119_b0560) 2019; 393 Wang (10.1016/j.ccr.2021.214119_b0805) 2018; 30 Du (10.1016/j.ccr.2021.214119_b0140) 2020; 156 Wang (10.1016/j.ccr.2021.214119_b0110) 2009; 38 Zhou (10.1016/j.ccr.2021.214119_b0105) 2014; 43 Hong (10.1016/j.ccr.2021.214119_b0735) 2019; 31 Wang (10.1016/j.ccr.2021.214119_b0135) 2018; 5 Zhang (10.1016/j.ccr.2021.214119_b0565) 2019; 388 Kang (10.1016/j.ccr.2021.214119_b0575) 2017; 29 Wang (10.1016/j.ccr.2021.214119_b0815) 2020; 142 Asensio (10.1016/j.ccr.2021.214119_b0280) 2010; 39 Zuo (10.1016/j.ccr.2021.214119_b0645) 2016; 9 Palomares (10.1016/j.ccr.2021.214119_b0660) 2012; 5 Park (10.1016/j.ccr.2021.214119_b0240) 2010; 195 Calvo (10.1016/j.ccr.2021.214119_b0295) 2020; 8 Barkholtz (10.1016/j.ccr.2021.214119_b0030) 2017; 4 Deng (10.1016/j.ccr.2021.214119_b0165) 2016; 18 Zhu (10.1016/j.ccr.2021.214119_b0170) 2018; 6 Huang (10.1016/j.ccr.2021.214119_b0515) 2020; 7 Xia (10.1016/j.ccr.2021.214119_b0440) 2015; 8 Xie (10.1016/j.ccr.2021.214119_b0115) 2020; 403 Wu (10.1016/j.ccr.2021.214119_b0820) 2020; 142 Okawa (10.1016/j.ccr.2021.214119_b0405) 2013; 135 Chen (10.1016/j.ccr.2021.214119_b0470) 2015; 27 Li (10.1016/j.ccr.2021.214119_b0760) 2018; 10 Zhang (10.1016/j.ccr.2021.214119_b0775) 2018; 10 Du (10.1016/j.ccr.2021.214119_b0080) 2021; 50 Yang (10.1016/j.ccr.2021.214119_b0130) 2019; 31 Li (10.1016/j.ccr.2021.214119_b0500) 2020; 334 Lukatskaya (10.1016/j.ccr.2021.214119_b0715) 2016; 7 Xie (10.1016/j.ccr.2021.214119_b0335) 2019; 10 Pan (10.1016/j.ccr.2021.214119_b0505) 2020; 56 Kobayashi (10.1016/j.ccr.2021.214119_b0305) 2010; 22 Li (10.1016/j.ccr.2021.214119_b0595) 2017; 27 Wu (10.1016/j.ccr.2021.214119_b0625) 2019; 9 Cai (10.1016/j.ccr.2021.214119_b0755) 2019; 15 Ludueña (10.1016/j.ccr.2021.214119_b0375) 2011; 23 Pang (10.1016/j.ccr.2021.214119_b0750) 2015; 162 Marcus (10.1016/j.ccr.2021.214119_b0245) 1964; 15 Skorupskii (10.1016/j.ccr.2021.214119_b0205) 2020; 12 Han (10.1016/j.ccr.2021.214119_b0665) 2015; 8 Leong (10.1016/j.ccr.2021.214119_b0310) 2016; 41 Hickner (10.1016/j.ccr.2021.214119_b0770) 2004; 104 Zhao (10.1016/j.ccr.2021.214119_b0055) 2018; 2 Wang (10.1016/j.ccr.2021.214119_b0790) 2020; 450 Etacheri (10.1016/j.ccr.2021.214119_b0655) 2011; 4 Hu (10.1016/j.ccr.2021.214119_b0525) 2019; 25 Wang (10.1016/j.ccr.2021.214119_b0050) 2020; 2 Chen (10.1016/j.ccr.2021.214119_b0210) 2018; 34 Xiong (10.1016/j.ccr.2021.214119_b0535) 2020; 13 Xue (10.1016/j.ccr.2021.214119_b0180) 2019; 7 Hou (10.1016/j.ccr.2021.214119_b0630) 2019; 10 Nazir (10.1016/j.ccr.2021.214119_b0690) 2020; 12 Narayan (10.1016/j.ccr.2021.214119_b0320) 2012; 134 Yang (10.1016/j.ccr.2021.214119_b0545) 2011; 111 Shan (10.1016/j.ccr.2021.214119_b0315) 2021; 2 Yoon (10.1016/j.ccr.2021.214119_b0480) 2019; 15 Miner (10.1016/j.ccr.2021.214119_b0455) 2016; 7 Nam (10.1016/j.ccr.2021.214119_b0695) 2019; 10 Xie (10.1016/j.ccr.2021.214119_b0290) 2020; 120 Wang (10.1016/j.ccr.2021.214119_b0810) 2019; 56 Liu (10.1016/j.ccr.2021.214119_b0085) 2019; 1 Ulgut (10.1016/j.ccr.2021.214119_b0275) 2008; 108 Wang (10.1016/j.ccr.2021.214119_b0510) 2019; 58 Carmo (10.1016/j.ccr.2021.214119_b0420) 2013; 38 Li (10.1016/j.ccr.2021.214119_b0095) 2019; 1 Li (10.1016/j.ccr.2021.214119_b0120) 2017; 344 Sadakiyo (10.1016/j.ccr.2021.214119_b0400) 2014; 136 Xu (10.1016/j.ccr.2021.214119_b0045) 2017; 20 Zhu (10.1016/j.ccr.2021.214119_b0060) 2019; 23 Winter (10.1016/j.ccr.2021.214119_b0550) 2004; 104 Sun (10.1016/j.ccr.2021.214119_b0330) 2016; 138 Xie (10.1016/j.ccr.2021.214119_b0225) 2020; 59 Li (10.1016/j.ccr.2021.214119_b0090) 2019; 7 Zhang (10.1016/j.ccr.2021.214119_b0265) 2021; 14 Chen (10.1016/j.ccr.2021.214119_b0765) 2019; 11 Zhou (10.1016/j.ccr.2021.214119_b0635) 2019; 13 |
References_xml | – volume: 4 start-page: 3243 year: 2011 end-page: 3262 ident: b0655 publication-title: Energy Environ. Sci. – volume: 9 start-page: 1900482 year: 2019 ident: b0625 publication-title: Adv. Energy Mater. – volume: 31 start-page: 50 year: 2019 ident: b0730 publication-title: Adv. Mater. – volume: 14 start-page: 1331 year: 2019 end-page: 1343 ident: b0145 publication-title: Chem. Asian. J. – volume: 1 start-page: 57 year: 2019 end-page: 89 ident: b0185 publication-title: Matter – volume: 238 start-page: 339 year: 2018 end-page: 345 ident: b0540 publication-title: Appl. Catal. B – volume: 136 start-page: 13166 year: 2014 end-page: 13169 ident: b0400 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 8536 year: 2020 end-page: 8580 ident: b0290 publication-title: Chem. Rev. – volume: 12 start-page: 5051 year: 2019 end-page: 5058 ident: b0685 publication-title: Chem. Sus. Chem. – volume: 5 start-page: 394 year: 2018 end-page: 407 ident: b0135 publication-title: Mater. Horiz. – volume: 131 start-page: 9906 year: 2009 end-page: 9907 ident: b0220 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 14357 year: 2020 end-page: 14364 ident: b0820 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 220 year: 2017 end-page: 224 ident: b0590 publication-title: Nat. Mater. – volume: 104 start-page: 4245 year: 2004 end-page: 4269 ident: b0550 publication-title: Chem. Rev. – volume: 37 start-page: 2171 year: 2002 end-page: 2202 ident: b0705 publication-title: J. Mater. Sci. – volume: 7 start-page: 7301 year: 2019 end-page: 7327 ident: b0180 publication-title: J. Mater. Chem. A – volume: 7 start-page: 7726 year: 2017 end-page: 7731 ident: b0460 publication-title: Acs Catalysis – volume: 607 year: 2020 ident: b0780 publication-title: J. Membr. Sci. – volume: 20 start-page: 191 year: 2017 end-page: 209 ident: b0045 publication-title: Mater. Today – volume: 34 start-page: 10067 year: 2020 end-page: 10077 ident: b0800 publication-title: Energy Fuels – volume: 343 start-page: 1210 year: 2014 end-page: 1211 ident: b0555 publication-title: Science – volume: 31 start-page: 30 year: 2019 ident: b0735 publication-title: Adv. Mater. – volume: 53 start-page: 6454 year: 2014 end-page: 6458 ident: b0235 publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 4120 year: 2010 end-page: 4122 ident: b0305 publication-title: Chem. Mater. – volume: 120 start-page: 9363 year: 2020 end-page: 9419 ident: b0160 publication-title: Chem. Rev. – volume: 344 start-page: 54 year: 2017 end-page: 82 ident: b0120 publication-title: Coord. Chem. Rev. – volume: 486 start-page: 43 year: 2012 end-page: 51 ident: b0410 publication-title: Nature – volume: 18 start-page: 4824 year: 2016 end-page: 4854 ident: b0165 publication-title: Green Chem. – volume: 109 start-page: 606 year: 2019 end-page: 618 ident: b0250 publication-title: Renew. Sust. Energ. Rev. – volume: 56 start-page: 13615 year: 2020 end-page: 13618 ident: b0505 publication-title: Chem. Commun. – year: 2021 ident: b0825 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 2000012 year: 2020 ident: b0515 publication-title: Adv Sci (Weinh) – volume: 41 start-page: 858 year: 2016 end-page: 864 ident: b0310 publication-title: MRS Bull. – volume: 64 year: 2019 ident: b0700 publication-title: Nano Energy – volume: 20 start-page: 9821 year: 2010 end-page: 9826 ident: b0740 publication-title: J. Mater. Chem. – volume: 10 start-page: 28656 year: 2018 end-page: 28663 ident: b0775 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 2660 year: 2017 end-page: 2677 ident: b0445 publication-title: Chem. Soc. Rev. – volume: 847 year: 2019 ident: b0600 publication-title: J. Electroanal. Chem. – volume: 36 start-page: 307 year: 2010 end-page: 326 ident: b0425 publication-title: Prog. Energy Combust. Sci. – volume: 2 start-page: 2000078 year: 2021 ident: b0315 publication-title: Small Struct. – volume: 135 start-page: 2256 year: 2013 end-page: 2262 ident: b0405 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 1774 year: 2015 end-page: 1777 ident: b0340 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1315 year: 2009 end-page: 1329 ident: b0110 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 293 year: 2021 end-page: 302 ident: b0265 publication-title: Chem. Sus Chem. – volume: 450 year: 2020 ident: b0790 publication-title: J. Power Sources – volume: 51 start-page: 1975 year: 2018 end-page: 1983 ident: b0260 publication-title: Acc. Chem. Res. – volume: 49 start-page: 3981 year: 2020 end-page: 3988 ident: b0390 publication-title: Dalton Trans. – volume: 2 start-page: 52 year: 2017 end-page: 80 ident: b0015 publication-title: Chem – volume: 29 start-page: 20 year: 2017 ident: b0450 publication-title: Adv. Mater. – volume: 162 start-page: A2567 year: 2015 end-page: A2576 ident: b0750 publication-title: J. Electrochem. Soc. – volume: 1 year: 2019 ident: b0085 publication-title: Energy Chem. – volume: 48 start-page: 9807 year: 2019 end-page: 9817 ident: b0200 publication-title: Dalton Trans. – volume: 306 start-page: 627 year: 2019 end-page: 634 ident: b0520 publication-title: Electrochim. Acta – volume: 40 start-page: 5181 year: 2006 end-page: 5192 ident: b0415 publication-title: Environ. Sci. Technol. – volume: 1 year: 2019 ident: b0095 publication-title: Energy Chem. – volume: 8 start-page: 1801193 year: 2018 ident: b0075 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1400696 year: 2014 ident: b0530 publication-title: Adv. Energy Mater. – volume: 6 start-page: 232 year: 2011 end-page: 236 ident: b0270 publication-title: Nat. Nanotechnol. – volume: 108 start-page: 2721 year: 2008 end-page: 2736 ident: b0275 publication-title: Chem. Rev. – volume: 141 start-page: 10475 year: 2019 end-page: 10480 ident: b0215 publication-title: J. Am. Chem. Soc. – year: 2020 ident: b0475 publication-title: Angew. Chem. Int. Ed. – volume: 429 start-page: 22 year: 2019 end-page: 29 ident: b0680 publication-title: J. Power Sources – volume: 138 start-page: 14772 year: 2016 end-page: 14782 ident: b0330 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 6575 year: 2019 end-page: 6583 ident: b0525 publication-title: Chemistry – volume: 15 start-page: 27 year: 2019 ident: b0675 publication-title: Small – volume: 31 year: 2019 ident: b0130 publication-title: Adv. Mater. – volume: 334 year: 2020 ident: b0500 publication-title: Electrochim. Acta – volume: 11 start-page: 19 year: 2012 end-page: 29 ident: b0745 publication-title: Nat. Mater. – volume: 33 start-page: 289 year: 2003 end-page: 319 ident: b0285 publication-title: Ann. Rev. Mater. Res. – volume: 43 start-page: 5415 year: 2014 end-page: 5418 ident: b0105 publication-title: Chem. Soc. Rev. – volume: 195 start-page: 7904 year: 2010 end-page: 7929 ident: b0240 publication-title: J. Power Sources – volume: 12 start-page: 131 year: 2020 end-page: 136 ident: b0205 publication-title: Nat. Chem. – volume: 27 start-page: 5010 year: 2015 end-page: 5016 ident: b0470 publication-title: Adv. Mater. – volume: 11 start-page: 11459 year: 2019 end-page: 11465 ident: b0765 publication-title: Mater. Interfaces – volume: 28 start-page: 4608 year: 2016 end-page: 4615 ident: b0360 publication-title: Chem. Mater. – volume: 24 start-page: 464 year: 2012 end-page: 470 ident: b0150 publication-title: Chem. Mater. – volume: 13 start-page: 9578 year: 2019 end-page: 9586 ident: b0635 publication-title: Acs Nano – volume: 236 start-page: 28 year: 2017 end-page: 32 ident: b0350 publication-title: Electrochim. Acta – volume: 4 start-page: 20 year: 2017 end-page: 37 ident: b0030 publication-title: Mater. Horiz. – volume: 7 start-page: 13 year: 2016 ident: b0715 publication-title: Nat. Comm. – volume: 30 start-page: 1704436 year: 2018 ident: b0805 publication-title: Adv. Mater. – volume: 5 start-page: 5 year: 2015 ident: b0640 publication-title: Adv. Energy Mater. – volume: 112 start-page: 673 year: 2012 end-page: 674 ident: b0005 publication-title: Chem. Rev. – volume: 13 start-page: 1008 year: 2020 end-page: 1012 ident: b0535 publication-title: Nano Res. – volume: 10 start-page: 8558 year: 2019 end-page: 8565 ident: b0335 publication-title: Chem. Sci. – volume: 56 start-page: 92 year: 2019 end-page: 99 ident: b0810 publication-title: Nano Energy – volume: 142 start-page: 21622 year: 2020 end-page: 21627 ident: b0815 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1837 year: 2015 end-page: 1866 ident: b0440 publication-title: Energy Environ. Sci. – volume: 2 year: 2020 ident: b0100 publication-title: Energy Chem. – volume: 7 start-page: 9743 year: 2019 end-page: 9749 ident: b0495 publication-title: Chem. Eng. – volume: 89 start-page: 1 year: 2016 end-page: 10 ident: b0345 publication-title: Bull. Chem. Soc. Jpn. – volume: 2 start-page: 2235 year: 2018 end-page: 2259 ident: b0055 publication-title: Joule – volume: 15 start-page: 1805232 year: 2019 ident: b0480 publication-title: Small – volume: 10 start-page: 1901892 year: 2019 ident: b0630 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1523 year: 2018 end-page: 1530 ident: b0170 publication-title: J. Mater. Chem. A – volume: 104 start-page: 4587 year: 2004 end-page: 4611 ident: b0770 publication-title: Chem. Rev. – volume: 8 start-page: 577 year: 2013 end-page: 597 ident: b0025 publication-title: Nano Today – volume: 7 start-page: 24788 year: 2019 end-page: 24791 ident: b0725 publication-title: J. Mater. Chem. A – volume: 55 start-page: 3919 year: 2016 end-page: 3924 ident: b0230 publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 1424 year: 2011 end-page: 1429 ident: b0375 publication-title: Chem. Mater. – volume: 15 start-page: 1902605 year: 2019 ident: b0755 publication-title: Small – volume: 8 year: 2020 ident: b0295 publication-title: APL Mater. – volume: 8 start-page: 81 year: 2015 end-page: 102 ident: b0665 publication-title: Energy Environ. Sci. – volume: 51 start-page: 2901 year: 2010 end-page: 2912 ident: b0580 publication-title: Energy Convers. Manage. – volume: 1 start-page: 1700187 year: 2017 ident: b0020 publication-title: Small Methods – volume: 50 start-page: 2663 year: 2021 end-page: 2695 ident: b0080 publication-title: Chem. Soc. Rev. – volume: 28 start-page: 27 year: 2018 ident: b0670 publication-title: Adv. Funct. Mater. – volume: 58 start-page: 10713 year: 2019 end-page: 10717 ident: b0510 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2881 year: 2016 end-page: 2891 ident: b0645 publication-title: Energy Environ. Sci. – volume: 156 start-page: 77 year: 2020 end-page: 92 ident: b0140 publication-title: Carbon – volume: 34 start-page: 15754 year: 2018 end-page: 15762 ident: b0210 publication-title: Langmuir – volume: 3 start-page: 30 year: 2018 end-page: 36 ident: b0605 publication-title: Nat. Energy – volume: 6 start-page: 1824 year: 2019 end-page: 1830 ident: b0610 publication-title: Inorg. Chem. Front. – volume: 135 start-page: 1167 year: 2013 end-page: 1176 ident: b0650 publication-title: J. Am. Chem. Soc. – volume: 376 start-page: 430 year: 2018 end-page: 448 ident: b0070 publication-title: Coord. Chem. Rev. – volume: 59 start-page: 19623 year: 2020 end-page: 19626 ident: b0225 publication-title: Angew. Chem. Int. Ed. – volume: 39 start-page: 3210 year: 2010 end-page: 3239 ident: b0280 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 1702067 year: 2017 ident: b0595 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 5884 year: 2012 end-page: 5901 ident: b0660 publication-title: Energy Environ. Sci. – volume: 57 start-page: 6202 year: 2018 end-page: 6205 ident: b0615 publication-title: Inorg. Chem. – volume: 278 year: 2020 ident: b0465 publication-title: Appl. Catal. B: Environ. – volume: 111 start-page: 3577 year: 2011 end-page: 3613 ident: b0545 publication-title: Chem. Rev. – volume: 409 start-page: 50 year: 2020 ident: b0035 publication-title: Coord. Chem. Rev. – volume: 405 year: 2021 ident: b0155 publication-title: Chem. Eng. J. – volume: 48 start-page: 9048 year: 2009 end-page: 9050 ident: b0300 publication-title: Inorg. Chem. – volume: 8 start-page: 25 year: 2018 ident: b0065 publication-title: Adv. Energy Mater. – volume: 15 start-page: 155 year: 1964 end-page: 196 ident: b0245 publication-title: Annu. Rev. Phys. Chem. – volume: 388 start-page: 293 year: 2019 end-page: 309 ident: b0565 publication-title: Coord. Chem. Rev. – volume: 341 start-page: 1230444 year: 2013 ident: b0010 publication-title: Science – volume: 55 start-page: 3566 year: 2016 end-page: 3579 ident: b0125 publication-title: Angew. Chem. Int. Ed. – volume: 393 start-page: 48 year: 2019 end-page: 78 ident: b0560 publication-title: Coord. Chem. Rev. – volume: 244 start-page: 456 year: 1995 end-page: 462 ident: b0355 publication-title: Chem. Phys. Lett. – volume: 81 start-page: 691 year: 2016 end-page: 701 ident: b0380 publication-title: Chem Plus Chem. – volume: 38 start-page: 4901 year: 2013 end-page: 4934 ident: b0420 publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 1777 year: 2015 end-page: 1790 ident: b0710 publication-title: Chem. Soc. Rev. – volume: 61 start-page: 159 year: 2018 end-page: 184 ident: b0570 publication-title: Sci. China-Mater. – volume: 21 start-page: 208 year: 1982 end-page: 209 ident: b0370 publication-title: Angew. Chem. Int. Ed. – volume: 126 start-page: 630 year: 2018 end-page: 639 ident: b0795 publication-title: Renew. Energy – volume: 1 start-page: 34 year: 2011 end-page: 50 ident: b0435 publication-title: Adv. Energy Mater. – volume: 29 start-page: 12 year: 2017 ident: b0575 publication-title: Adv. Mater. – volume: 12 start-page: 1629 year: 2020 end-page: 1642 ident: b0690 publication-title: Nanoscale – volume: 10 start-page: 4948 year: 2019 ident: b0695 publication-title: Nat. Comm. – volume: 11 start-page: 9593 year: 2020 end-page: 9603 ident: b0325 publication-title: Chem. Sci. – volume: 5 start-page: 3464 year: 2017 end-page: 3474 ident: b0785 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1964 year: 2019 end-page: 1988 ident: b0090 publication-title: J. Mater. Chem. A – volume: 28 start-page: 11 year: 2016 ident: b0365 publication-title: J. Phys.-Condes. Matter – volume: 10 start-page: 15012 year: 2018 end-page: 15020 ident: b0760 publication-title: Mater. Interfaces – volume: 135 start-page: 16977 year: 2013 end-page: 16987 ident: b0485 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1800341 year: 2019 ident: b0585 publication-title: Small Methods – volume: 369 start-page: 15 year: 2018 end-page: 38 ident: b0040 publication-title: Coord. Chem. Rev. – volume: 403 year: 2020 ident: b0115 publication-title: Coord. Chem. Rev. – volume: 7 start-page: 5776 year: 2019 end-page: 5783 ident: b0385 publication-title: Chem. Eng. – volume: 7 start-page: 10942 year: 2016 ident: b0455 publication-title: Nat. Comm. – volume: 23 start-page: 757 year: 2019 end-page: 771 ident: b0060 publication-title: Energy Stor. Mater. – volume: 6 start-page: 8735 year: 2018 end-page: 8741 ident: b0195 publication-title: J. Mater. Chem. A – volume: 140 start-page: 10315 year: 2018 end-page: 10323 ident: b0720 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 2172 year: 2012 end-page: 2192 ident: b0430 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 143 year: 2013 end-page: 145 ident: b0395 publication-title: Chem. Commun. – volume: 2 year: 2020 ident: b0050 publication-title: Energy Chem. – volume: 134 start-page: 12932 year: 2012 end-page: 12935 ident: b0320 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 5481 year: 2014 end-page: 5489 ident: b0175 publication-title: J. Mater. Chem. A – volume: 4 start-page: 243 year: 2020 end-page: 251 ident: b0620 publication-title: Mater. Chem. Front. – volume: 4 start-page: 64 year: 2017 end-page: 71 ident: b0190 publication-title: Mater. Horiz. – volume: 120 start-page: 8416 year: 2020 end-page: 8467 ident: b0255 publication-title: Chem. Rev. – volume: 7 start-page: 10431 year: 2019 end-page: 10438 ident: b0490 publication-title: J. Mater. Chem. A – volume: 4 start-page: 243 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0620 publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00527G – volume: 48 start-page: 9807 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0200 publication-title: Dalton Trans. doi: 10.1039/C9DT00917E – volume: 4 start-page: 64 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0190 publication-title: Mater. Horiz. doi: 10.1039/C6MH00230G – volume: 46 start-page: 2660 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0445 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00426A – volume: 334 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0500 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135638 – volume: 142 start-page: 21622 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0815 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10482 – volume: 2 start-page: 52 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0015 publication-title: Chem doi: 10.1016/j.chempr.2016.12.002 – volume: 138 start-page: 14772 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0330 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09345 – volume: 11 start-page: 11459 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0765 publication-title: Mater. Interfaces doi: 10.1021/acsami.8b22564 – volume: 195 start-page: 7904 year: 2010 ident: 10.1016/j.ccr.2021.214119_b0240 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.060 – volume: 141 start-page: 10475 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0215 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04822 – volume: 9 start-page: 1900482 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0625 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900482 – volume: 18 start-page: 4824 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0165 publication-title: Green Chem. doi: 10.1039/C6GC01172A – volume: 131 start-page: 9906 year: 2009 ident: 10.1016/j.ccr.2021.214119_b0220 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9040016 – volume: 23 start-page: 1424 year: 2011 ident: 10.1016/j.ccr.2021.214119_b0375 publication-title: Chem. Mater. doi: 10.1021/cm102674u – volume: 28 start-page: 27 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0670 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 1331 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0145 publication-title: Chem. Asian. J. doi: 10.1002/asia.201900026 – volume: 238 start-page: 339 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0540 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.07.024 – volume: 120 start-page: 8536 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0290 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00766 – volume: 16 start-page: 220 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0590 publication-title: Nat. Mater. doi: 10.1038/nmat4766 – volume: 5 start-page: 3464 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0785 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07761G – volume: 2 start-page: 5481 year: 2014 ident: 10.1016/j.ccr.2021.214119_b0175 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00438H – volume: 3 start-page: 1800341 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0585 publication-title: Small Methods doi: 10.1002/smtd.201800341 – volume: 21 start-page: 208 year: 1982 ident: 10.1016/j.ccr.2021.214119_b0370 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.198202082 – volume: 2 start-page: 2000078 year: 2021 ident: 10.1016/j.ccr.2021.214119_b0315 publication-title: Small Struct. doi: 10.1002/sstr.202000078 – volume: 51 start-page: 2901 year: 2010 ident: 10.1016/j.ccr.2021.214119_b0580 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.06.031 – volume: 38 start-page: 1315 year: 2009 ident: 10.1016/j.ccr.2021.214119_b0110 publication-title: Chem. Soc. Rev. doi: 10.1039/b802258p – volume: 43 start-page: 5415 year: 2014 ident: 10.1016/j.ccr.2021.214119_b0105 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS90059F – volume: 607 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0780 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118194 – volume: 49 start-page: 3981 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0390 publication-title: Dalton Trans. doi: 10.1039/C9DT04210E – volume: 6 start-page: 1824 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0610 publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI00390H – volume: 31 start-page: 30 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0735 publication-title: Adv. Mater. – volume: 120 start-page: 8416 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0255 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00842 – volume: 156 start-page: 77 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0140 publication-title: Carbon doi: 10.1016/j.carbon.2019.09.029 – volume: 10 start-page: 4948 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0695 publication-title: Nat. Comm. doi: 10.1038/s41467-019-12857-4 – volume: 278 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0465 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119295 – volume: 10 start-page: 28656 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0775 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09070 – volume: 403 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0115 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213100 – volume: 7 start-page: 24788 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0725 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08788E – volume: 7 start-page: 10431 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0490 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02169H – volume: 5 start-page: 5884 year: 2012 ident: 10.1016/j.ccr.2021.214119_b0660 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02781j – volume: 64 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0700 publication-title: Nano Energy – volume: 120 start-page: 9363 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0160 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00080 – volume: 7 start-page: 7726 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0460 publication-title: Acs Catalysis doi: 10.1021/acscatal.7b02647 – volume: 135 start-page: 1167 year: 2013 ident: 10.1016/j.ccr.2021.214119_b0650 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 126 start-page: 630 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0795 publication-title: Renew. Energy doi: 10.1016/j.renene.2018.03.075 – volume: 236 start-page: 28 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0350 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.128 – volume: 13 start-page: 1008 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0535 publication-title: Nano Res. doi: 10.1007/s12274-020-2733-9 – volume: 20 start-page: 9821 year: 2010 ident: 10.1016/j.ccr.2021.214119_b0740 publication-title: J. Mater. Chem. doi: 10.1039/b925751a – volume: 27 start-page: 5010 year: 2015 ident: 10.1016/j.ccr.2021.214119_b0470 publication-title: Adv. Mater. doi: 10.1002/adma.201502315 – volume: 51 start-page: 1975 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0260 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00240 – volume: 31 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0130 publication-title: Adv. Mater. – volume: 450 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0790 publication-title: J. Power Sources – volume: 27 start-page: 1702067 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0595 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702067 – volume: 29 start-page: 12 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0575 publication-title: Adv. Mater. – volume: 34 start-page: 10067 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0800 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c01703 – year: 2021 ident: 10.1016/j.ccr.2021.214119_b0825 publication-title: Chem. Soc. Rev. – volume: 341 start-page: 1230444 year: 2013 ident: 10.1016/j.ccr.2021.214119_b0010 publication-title: Science doi: 10.1126/science.1230444 – volume: 1 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0095 publication-title: Energy Chem. – volume: 1 start-page: 1700187 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0020 publication-title: Small Methods doi: 10.1002/smtd.201700187 – volume: 6 start-page: 232 year: 2011 ident: 10.1016/j.ccr.2021.214119_b0270 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.13 – volume: 12 start-page: 1629 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0690 publication-title: Nanoscale doi: 10.1039/C9NR08038D – volume: 55 start-page: 3919 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0230 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510855 – volume: 48 start-page: 9048 year: 2009 ident: 10.1016/j.ccr.2021.214119_b0300 publication-title: Inorg. Chem. doi: 10.1021/ic802117q – volume: 136 start-page: 13166 year: 2014 ident: 10.1016/j.ccr.2021.214119_b0400 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507634v – volume: 61 start-page: 159 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0570 publication-title: Sci. China-Mater. doi: 10.1007/s40843-017-9153-x – volume: 847 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0600 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.113218 – year: 2020 ident: 10.1016/j.ccr.2021.214119_b0475 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 394 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0135 publication-title: Mater. Horiz. doi: 10.1039/C8MH00133B – volume: 58 start-page: 10713 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0510 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906134 – volume: 57 start-page: 6202 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0615 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00493 – volume: 13 start-page: 9578 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0635 publication-title: Acs Nano doi: 10.1021/acsnano.9b04670 – volume: 3 start-page: 30 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0605 publication-title: Nat. Energy doi: 10.1038/s41560-017-0044-5 – volume: 11 start-page: 19 year: 2012 ident: 10.1016/j.ccr.2021.214119_b0745 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 81 start-page: 691 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0380 publication-title: Chem Plus Chem. – volume: 10 start-page: 1901892 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0630 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901892 – volume: 8 start-page: 81 year: 2015 ident: 10.1016/j.ccr.2021.214119_b0665 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03192J – volume: 1 start-page: 34 year: 2011 ident: 10.1016/j.ccr.2021.214119_b0435 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201000010 – volume: 56 start-page: 13615 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0505 publication-title: Chem. Commun. doi: 10.1039/D0CC05569G – volume: 405 year: 2021 ident: 10.1016/j.ccr.2021.214119_b0155 publication-title: Chem. Eng. J. – volume: 2 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0050 publication-title: Energy Chem. – volume: 4 start-page: 3243 year: 2011 ident: 10.1016/j.ccr.2021.214119_b0655 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01598b – volume: 244 start-page: 456 year: 1995 ident: 10.1016/j.ccr.2021.214119_b0355 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)00905-J – volume: 6 start-page: 1523 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0170 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09608A – volume: 25 start-page: 6575 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0525 publication-title: Chemistry doi: 10.1002/chem.201900045 – volume: 376 start-page: 430 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0070 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.07.020 – volume: 14 start-page: 293 year: 2021 ident: 10.1016/j.ccr.2021.214119_b0265 publication-title: Chem. Sus Chem. doi: 10.1002/cssc.202001914 – volume: 4 start-page: 20 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0030 publication-title: Mater. Horiz. doi: 10.1039/C6MH00344C – volume: 409 start-page: 50 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0035 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213214 – volume: 393 start-page: 48 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0560 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.05.006 – volume: 140 start-page: 10315 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0720 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06020 – volume: 429 start-page: 22 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0680 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.087 – volume: 28 start-page: 11 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0365 publication-title: J. Phys.-Condes. Matter doi: 10.1088/0953-8984/28/2/023001 – volume: 109 start-page: 606 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0250 publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2019.04.042 – volume: 111 start-page: 3577 year: 2011 ident: 10.1016/j.ccr.2021.214119_b0545 publication-title: Chem. Rev. doi: 10.1021/cr100290v – volume: 31 start-page: 50 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0730 publication-title: Adv. Mater. doi: 10.1002/adma.201901125 – volume: 104 start-page: 4587 year: 2004 ident: 10.1016/j.ccr.2021.214119_b0770 publication-title: Chem. Rev. doi: 10.1021/cr020711a – volume: 137 start-page: 1774 year: 2015 ident: 10.1016/j.ccr.2021.214119_b0340 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512437u – volume: 135 start-page: 16977 year: 2013 ident: 10.1016/j.ccr.2021.214119_b0485 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 37 start-page: 2171 year: 2002 ident: 10.1016/j.ccr.2021.214119_b0705 publication-title: J. Mater. Sci. doi: 10.1023/A:1015388912729 – volume: 134 start-page: 12932 year: 2012 ident: 10.1016/j.ccr.2021.214119_b0320 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3059827 – volume: 5 start-page: 5 year: 2015 ident: 10.1016/j.ccr.2021.214119_b0640 publication-title: Adv. Energy Mater. – volume: 28 start-page: 4608 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0360 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01286 – volume: 486 start-page: 43 year: 2012 ident: 10.1016/j.ccr.2021.214119_b0410 publication-title: Nature doi: 10.1038/nature11115 – volume: 7 start-page: 10942 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0455 publication-title: Nat. Comm. doi: 10.1038/ncomms10942 – volume: 12 start-page: 5051 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0685 publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.201902194 – volume: 1 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0085 publication-title: Energy Chem. – volume: 56 start-page: 92 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0810 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.038 – volume: 4 start-page: 1400696 year: 2014 ident: 10.1016/j.ccr.2021.214119_b0530 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400696 – volume: 41 start-page: 2172 year: 2012 ident: 10.1016/j.ccr.2021.214119_b0430 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15228a – volume: 8 start-page: 25 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0065 publication-title: Adv. Energy Mater. – volume: 2 start-page: 2235 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0055 publication-title: Joule doi: 10.1016/j.joule.2018.09.019 – volume: 49 start-page: 143 year: 2013 ident: 10.1016/j.ccr.2021.214119_b0395 publication-title: Chem. Commun. doi: 10.1039/C2CC37045J – volume: 8 start-page: 577 year: 2013 ident: 10.1016/j.ccr.2021.214119_b0025 publication-title: Nano Today doi: 10.1016/j.nantod.2013.11.004 – volume: 50 start-page: 2663 year: 2021 ident: 10.1016/j.ccr.2021.214119_b0080 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01191F – volume: 7 start-page: 2000012 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0515 publication-title: Adv Sci (Weinh) doi: 10.1002/advs.202000012 – volume: 23 start-page: 757 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0060 publication-title: Energy Stor. Mater. doi: 10.1016/j.ensm.2019.05.022 – volume: 12 start-page: 131 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0205 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0372-0 – volume: 306 start-page: 627 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0520 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.175 – volume: 8 start-page: 1837 year: 2015 ident: 10.1016/j.ccr.2021.214119_b0440 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00762C – volume: 369 start-page: 15 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0040 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.04.018 – volume: 36 start-page: 307 year: 2010 ident: 10.1016/j.ccr.2021.214119_b0425 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2009.11.002 – volume: 7 start-page: 5776 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0385 publication-title: Chem. Eng. – volume: 108 start-page: 2721 year: 2008 ident: 10.1016/j.ccr.2021.214119_b0275 publication-title: Chem. Rev. doi: 10.1021/cr068060w – volume: 24 start-page: 464 year: 2012 ident: 10.1016/j.ccr.2021.214119_b0150 publication-title: Chem. Mater. doi: 10.1021/cm202554j – volume: 6 start-page: 8735 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0195 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01062E – volume: 44 start-page: 1777 year: 2015 ident: 10.1016/j.ccr.2021.214119_b0710 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00266K – volume: 343 start-page: 1210 year: 2014 ident: 10.1016/j.ccr.2021.214119_b0555 publication-title: Science doi: 10.1126/science.1249625 – volume: 9 start-page: 2881 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0645 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01871H – volume: 8 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0295 publication-title: APL Mater. doi: 10.1063/1.5143590 – volume: 41 start-page: 858 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0310 publication-title: MRS Bull. doi: 10.1557/mrs.2016.241 – volume: 15 start-page: 27 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0675 publication-title: Small – volume: 1 start-page: 57 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0185 publication-title: Matter doi: 10.1016/j.matt.2019.05.018 – volume: 104 start-page: 4245 year: 2004 ident: 10.1016/j.ccr.2021.214119_b0550 publication-title: Chem. Rev. doi: 10.1021/cr020730k – volume: 142 start-page: 14357 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0820 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06474 – volume: 29 start-page: 20 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0450 publication-title: Adv. Mater. – volume: 112 start-page: 673 year: 2012 ident: 10.1016/j.ccr.2021.214119_b0005 publication-title: Chem. Rev. doi: 10.1021/cr300014x – volume: 34 start-page: 15754 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0210 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03938 – volume: 89 start-page: 1 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0345 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20150308 – volume: 11 start-page: 9593 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0325 publication-title: Chem. Sci. doi: 10.1039/D0SC04302H – volume: 15 start-page: 1902605 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0755 publication-title: Small doi: 10.1002/smll.201902605 – volume: 53 start-page: 6454 year: 2014 ident: 10.1016/j.ccr.2021.214119_b0235 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402950 – volume: 15 start-page: 155 year: 1964 ident: 10.1016/j.ccr.2021.214119_b0245 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.15.100164.001103 – volume: 388 start-page: 293 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0565 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.02.030 – volume: 7 start-page: 13 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0715 publication-title: Nat. Comm. doi: 10.1038/ncomms12647 – volume: 15 start-page: 1805232 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0480 publication-title: Small doi: 10.1002/smll.201805232 – volume: 55 start-page: 3566 year: 2016 ident: 10.1016/j.ccr.2021.214119_b0125 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506219 – volume: 7 start-page: 1964 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0090 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11704G – volume: 135 start-page: 2256 year: 2013 ident: 10.1016/j.ccr.2021.214119_b0405 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309968u – volume: 7 start-page: 9743 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0495 publication-title: Chem. Eng. – volume: 344 start-page: 54 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0120 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.03.027 – volume: 40 start-page: 5181 year: 2006 ident: 10.1016/j.ccr.2021.214119_b0415 publication-title: Environ. Sci. Technol. doi: 10.1021/es0605016 – volume: 8 start-page: 1801193 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0075 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801193 – volume: 39 start-page: 3210 year: 2010 ident: 10.1016/j.ccr.2021.214119_b0280 publication-title: Chem. Soc. Rev. doi: 10.1039/b922650h – volume: 30 start-page: 1704436 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0805 publication-title: Adv. Mater. doi: 10.1002/adma.201704436 – volume: 33 start-page: 289 year: 2003 ident: 10.1016/j.ccr.2021.214119_b0285 publication-title: Ann. Rev. Mater. Res. doi: 10.1146/annurev.matsci.33.022702.155102 – volume: 162 start-page: A2567 year: 2015 ident: 10.1016/j.ccr.2021.214119_b0750 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0171514jes – volume: 2 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0100 publication-title: Energy Chem. – volume: 59 start-page: 19623 year: 2020 ident: 10.1016/j.ccr.2021.214119_b0225 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202004697 – volume: 7 start-page: 7301 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0180 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12178H – volume: 20 start-page: 191 year: 2017 ident: 10.1016/j.ccr.2021.214119_b0045 publication-title: Mater. Today doi: 10.1016/j.mattod.2016.10.003 – volume: 22 start-page: 4120 year: 2010 ident: 10.1016/j.ccr.2021.214119_b0305 publication-title: Chem. Mater. doi: 10.1021/cm101238m – volume: 38 start-page: 4901 year: 2013 ident: 10.1016/j.ccr.2021.214119_b0420 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.151 – volume: 10 start-page: 15012 year: 2018 ident: 10.1016/j.ccr.2021.214119_b0760 publication-title: Mater. Interfaces doi: 10.1021/acsami.8b00942 – volume: 10 start-page: 8558 year: 2019 ident: 10.1016/j.ccr.2021.214119_b0335 publication-title: Chem. Sci. doi: 10.1039/C9SC03348C |
SSID | ssj0016992 |
Score | 2.6347628 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Conductive MOFs are of interest to electrochemical energy conversion and storage.•The mechanisms of electron and proton conductions in MOFs... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 214119 |
SubjectTerms | Battery Conductive Electrocatalysis Metal–organic framework Supercapacitor |
Title | Conductive metal-organic frameworks for electrochemical energy conversion and storage |
URI | https://dx.doi.org/10.1016/j.ccr.2021.214119 |
Volume | 446 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHvQiPrE-yh48CbFJ9pljCZaq0JOF3sK-AhVNi9arv93ZzaYoqAePCbsQJsO33yTffIPQFTOk9jNtE5rlUKBo65ICaHZCGK8zaqxVOqgtpnwyo_dzNu-hsuuF8bLKiP0tpge0jneGMZrD1WLhe3y9cp7C-RMaTL3jJ6XCZ_nNx0bmkfGiaB3DAW_86u7PZtB4GeMtQXOoEzOaebOdn86mL-fNeB_tRaKIR-2zHKCeaw7RTtnNZztCs3LZeLNWgCv84oBDJ-2EJoPrTnD1hoGS4jjpxkRrAOxCux8OevPwsQyrxmKvkgRsOUaz8e1jOUnikITEEE7WCVQcmlEleS0EK7hUmeUqTa2oC65ToXKoB1iRM8dqxZnlMiMq11xwZ4SVkpITtNUsG3eKsILCmnjGoApJrXZSOniNmlDOjAB620dpF57KRAdxP8jiueqkYk8VRLTyEa3aiPbR9WbLqrXP-Gsx7WJefcuBCuD9921n_9t2jnb9VdtXeIG21q_v7hIIxloPQgYN0Pbo7mEy_QQpdM5V |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGcqCeIry9MCEFNrEjzgjiqgKlE6t1M3yK1IRpBWUlW_nOnEqkICBNbGl6Ma-Pjc59xyELpkhhfe0jWicQIGirYsygNkRYbyIqbFW6YptMebDKb2fsVkL5U0vjKdVhtxf5_QqW4crvRDN3nI-9z2-njlP4fypGkzJBtqksH29jcH1x5rnEfMsqyXDIeH44c2vzYrkZYzXBE2gUIxp7NV2fjqcvhw4gx20HZAivqkfZhe1XLmHOnlj0LaPpvmi9GqtkK_wiwMQHdUWTQYXDePqDQMmxcHqxgRtAOyqfj9cEc6rr2VYlRZ7miQklwM0HdxO8mEUXBIiQzhZRVByaEaV4EWasowLFVuu-n2bFhnX_VQlUBCwLGGOFYozy0VMVKJ5yp1JrRCUHKJ2uSjdEcIKKmviIYPKBLXaCeHgPWpCOTMp4Nsu6jfhkSZIiHsni2fZcMWeJERU-ojKOqJddLWesqz1M_4aTJuYy2-LQEJ-_33a8f-mXaDOcPI4kqO78cMJ2vJ36ibDU9Revb67M0AbK31eraZPERTP4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductive+metal-organic+frameworks+for+electrochemical+energy+conversion+and+storage&rft.jtitle=Coordination+chemistry+reviews&rft.au=Zhu%2C+Bingjun&rft.au=Wen%2C+Dongsheng&rft.au=Liang%2C+Zibin&rft.au=Zou%2C+Ruqiang&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=446&rft_id=info:doi/10.1016%2Fj.ccr.2021.214119&rft.externalDocID=S0010854521003933 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |