Sparse Clustering Algorithm Based on Multi-Domain Dimensionality Reduction Autoencoder
The key to high-dimensional clustering lies in discovering the intrinsic structures and patterns in data to provide valuable information. However, high-dimensional clustering faces enormous challenges such as dimensionality disaster, increased data sparsity, and reduced reliability of the clustering...
Saved in:
Published in | Mathematics (Basel) Vol. 12; no. 10; p. 1526 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The key to high-dimensional clustering lies in discovering the intrinsic structures and patterns in data to provide valuable information. However, high-dimensional clustering faces enormous challenges such as dimensionality disaster, increased data sparsity, and reduced reliability of the clustering results. In order to address these issues, we propose a sparse clustering algorithm based on a multi-domain dimensionality reduction model. This method achieves high-dimensional clustering by integrating the sparse reconstruction process and sparse L1 regularization into a deep autoencoder model. A sparse reconstruction module is designed based on the L1 sparse reconstruction of features under different domains to reconstruct the data. The proposed method mainly contributes in two aspects. Firstly, the spatial and frequency domains are combined by taking into account the spatial distribution and frequency characteristics of the data to provide multiple perspectives and choices for data analysis and processing. Then, a neural network-based clustering model with sparsity is conducted by projecting data points onto multi-domains and implementing adaptive regularization penalty terms to the weight matrix. The experimental results demonstrate superior performance of the proposed method in handling clustering problems on high-dimensional datasets. |
---|---|
AbstractList | The key to high-dimensional clustering lies in discovering the intrinsic structures and patterns in data to provide valuable information. However, high-dimensional clustering faces enormous challenges such as dimensionality disaster, increased data sparsity, and reduced reliability of the clustering results. In order to address these issues, we propose a sparse clustering algorithm based on a multi-domain dimensionality reduction model. This method achieves high-dimensional clustering by integrating the sparse reconstruction process and sparse L1 regularization into a deep autoencoder model. A sparse reconstruction module is designed based on the L1 sparse reconstruction of features under different domains to reconstruct the data. The proposed method mainly contributes in two aspects. Firstly, the spatial and frequency domains are combined by taking into account the spatial distribution and frequency characteristics of the data to provide multiple perspectives and choices for data analysis and processing. Then, a neural network-based clustering model with sparsity is conducted by projecting data points onto multi-domains and implementing adaptive regularization penalty terms to the weight matrix. The experimental results demonstrate superior performance of the proposed method in handling clustering problems on high-dimensional datasets. |
Audience | Academic |
Author | Zou, Kaichi Liu, Erwei Zhang, Huaqing Kang, Yu Wang, Xiuyun |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0009-0007-4258-5712 surname: Kang fullname: Kang, Yu – sequence: 2 givenname: Erwei surname: Liu fullname: Liu, Erwei – sequence: 3 givenname: Kaichi surname: Zou fullname: Zou, Kaichi – sequence: 4 givenname: Xiuyun surname: Wang fullname: Wang, Xiuyun – sequence: 5 givenname: Huaqing surname: Zhang fullname: Zhang, Huaqing |
BookMark | eNpNUUtr3DAQFiWBbJPc8gMMvdaJpLFs-bjdNOlCSiCvq9DLu1psaSvJh_z7Kt1QdoZh3h8zfF_RiQ_eInRF8DVAj28mmbeEEkwYbb-gBaW0q7vSODmKz9BlSjtcpCfAm36B3p73MiZbrcY5ZRud31TLcROiy9up-iGTNVXw1e95zK6-DZN0vrp1k_XJBS9Hl9-rJ2tmnUtaLeccrNfB2HiBTgc5Jnv56c_R693Pl9Wv-uHxfr1aPtQaWsg1A9I1Wg2atZgz2ZoegHLFNeC2UQ0Drc1ANKh-4EDwQAFs26nOWG7KTgPnaH3ANUHuxD66ScZ3EaQT_wohboSM2enRCkaMklxLKplqDLdKK0IV7RhvOmBGFaxvB6x9DH9mm7LYhTmWL5MAzPoWA2e4TF0fpjaygDo_hBylLmrs5HShZHClvux61hTDHyd-PyzoGFKKdvh_JsHigzlxzBz8BbDVjSc |
Cites_doi | 10.1007/978-3-642-33786-4_26 10.1109/TKDE.2004.25 10.1109/TKDE.2023.3266451 10.1109/8.841899 10.1109/TKDE.2018.2842191 10.1109/TNNLS.2021.3097748 10.1109/TNNLS.2021.3105822 10.1109/TPAMI.2012.88 10.3390/math11173785 10.1109/TPAMI.2022.3216454 10.1109/TCYB.2021.3049633 10.1109/TNNLS.2022.3185638 10.1109/TNNLS.2021.3085891 10.1109/TKDE.2005.75 10.1109/ICCV.2015.123 10.1109/TKDE.2007.1048 10.3390/math12030453 10.1109/TNNLS.2015.2490080 10.1109/TNNLS.2017.2728138 10.1109/TKDE.2015.2460735 10.3390/math12040508 10.1109/TNNLS.2022.3151498 10.1109/TNNLS.2014.2337335 10.1109/TNNLS.2021.3071275 10.1109/TNNLS.2020.3029033 10.1109/TKDE.2003.1198398 10.1109/TNNLS.2020.2978389 10.1109/TKDE.2020.3028943 10.1109/TKDE.2022.3193569 10.1109/TCYB.2014.2358564 10.1109/TPAMI.2018.2889949 10.1109/TNNLS.2021.3135460 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math12101526 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Databases Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_51dba8ca2a5b4d8ebcb12b27584735db A795479504 10_3390_math12101526 |
GroupedDBID | -~X 3V. 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABJNI ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M0N M7S MODMG M~E OK1 PIMPY PQQKQ PROAC PTHSS RNS 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-53174cbfc56085a6d93328b8c3064b453ccdf1c3b9f8310f233e67b7de8dc5643 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Tue Oct 22 15:04:29 EDT 2024 Thu Oct 10 18:16:37 EDT 2024 Tue Nov 12 23:49:02 EST 2024 Fri Dec 06 06:40:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-53174cbfc56085a6d93328b8c3064b453ccdf1c3b9f8310f233e67b7de8dc5643 |
ORCID | 0009-0007-4258-5712 |
OpenAccessLink | https://doaj.org/article/51dba8ca2a5b4d8ebcb12b27584735db |
PQID | 3059603850 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_51dba8ca2a5b4d8ebcb12b27584735db proquest_journals_3059603850 gale_infotracacademiconefile_A795479504 crossref_primary_10_3390_math12101526 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wu (ref_27) 2023; 34 ref_33 Jia (ref_5) 2018; 29 ref_32 Wang (ref_22) 2023; 35 Ordonez (ref_11) 2004; 16 Xu (ref_16) 2023; 35 Ji (ref_24) 2022; 33 (ref_30) 2005; 17 Hou (ref_6) 2015; 26 Li (ref_19) 2024; 35 Jing (ref_8) 2007; 19 Yang (ref_15) 2023; 34 ref_39 Li (ref_25) 2021; 32 ref_38 Ng (ref_36) 2001; 14 Liu (ref_37) 2013; 35 Guan (ref_13) 2023; 35 Zhao (ref_14) 2023; 35 Cai (ref_35) 2015; 45 Yang (ref_26) 2023; 34 Peng (ref_34) 2016; 27 Peng (ref_7) 2018; 23 Castelli (ref_9) 2003; 15 Zhao (ref_17) 2023; 34 Almalawi (ref_10) 2016; 28 Werner (ref_31) 2000; 48 Guan (ref_18) 2022; 34 ref_1 Chang (ref_23) 2020; 42 ref_3 ref_2 Huang (ref_20) 2023; 45 Wang (ref_29) 2022; 44 Wu (ref_28) 2022; 33 Rathore (ref_12) 2019; 31 Wang (ref_21) 2022; 33 Huang (ref_4) 2022; 52 |
References_xml | – ident: ref_38 doi: 10.1007/978-3-642-33786-4_26 – volume: 16 start-page: 909 year: 2004 ident: ref_11 article-title: Efficient disk-based k-means clustering for relational databases publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2004.25 contributor: fullname: Ordonez – volume: 35 start-page: 10814 year: 2023 ident: ref_13 article-title: DEMOS: Clustering by pruning a density-boosting cluster tree of density mounts publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3266451 contributor: fullname: Guan – volume: 48 start-page: 383 year: 2000 ident: ref_31 article-title: The simultaneous interpolation of antenna radiation patterns in both the spatial and frequency domains using model-based parameter estimation publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.841899 contributor: fullname: Werner – volume: 31 start-page: 641 year: 2019 ident: ref_12 article-title: A rapid hybrid clustering algorithm for large volumes of high dimensional data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2842191 contributor: fullname: Rathore – volume: 34 start-page: 516 year: 2023 ident: ref_15 article-title: Deep multiview collaborative clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3097748 contributor: fullname: Yang – volume: 34 start-page: 2068 year: 2023 ident: ref_17 article-title: Spectral clustering with adaptive neighbors for deep learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3105822 contributor: fullname: Zhao – volume: 14 start-page: 849 year: 2001 ident: ref_36 article-title: On spectral clustering: Analysis and an algorithm publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Ng – volume: 35 start-page: 171 year: 2013 ident: ref_37 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.88 contributor: fullname: Liu – ident: ref_1 doi: 10.3390/math11173785 – volume: 45 start-page: 7509 year: 2023 ident: ref_20 article-title: Learning representation for clustering via prototype scattering and positive sampling publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3216454 contributor: fullname: Huang – volume: 52 start-page: 12231 year: 2022 ident: ref_4 article-title: Toward multidiversified ensemble clustering of high-dimensional data: From subspaces to metrics and beyond publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3049633 contributor: fullname: Huang – volume: 35 start-page: 1857 year: 2024 ident: ref_19 article-title: Self-supervised self-organizing clustering network: A novel unsupervised representation learning method publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3185638 contributor: fullname: Li – volume: 33 start-page: 7610 year: 2022 ident: ref_21 article-title: DNB: A joint learning framework for deep bayesian nonparametric clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3085891 contributor: fullname: Wang – ident: ref_39 – volume: 17 start-page: 628 year: 2005 ident: ref_30 article-title: Dual clustering: Integrating data clustering over optimization and constraint domains publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.75 – ident: ref_32 doi: 10.1109/ICCV.2015.123 – volume: 19 start-page: 1026 year: 2007 ident: ref_8 article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.1048 contributor: fullname: Jing – ident: ref_2 doi: 10.3390/math12030453 – volume: 23 start-page: 227 year: 2018 ident: ref_7 article-title: XAI beyond classification: Interpretable neural clustering publication-title: J. Mach. Learn. Res. contributor: fullname: Peng – volume: 27 start-page: 2499 year: 2016 ident: ref_34 article-title: A unified framework for representation-based subspace clustering of out-of-sample and large-scale data publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2490080 contributor: fullname: Peng – volume: 35 start-page: 3001 year: 2023 ident: ref_14 article-title: Robust fuzzy k-means clustering with shrunk patterns learning publication-title: IEEE Trans. Knowl. Data Eng. contributor: fullname: Zhao – volume: 29 start-page: 3308 year: 2018 ident: ref_5 article-title: Subspace clustering of categorical and numerical data with an unknown number of clusters publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2728138 contributor: fullname: Jia – volume: 28 start-page: 68 year: 2016 ident: ref_10 article-title: k NNVWC: An efficient k -nearest neighbors approach based on various-widths clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2460735 contributor: fullname: Almalawi – ident: ref_33 – ident: ref_3 doi: 10.3390/math12040508 – volume: 34 start-page: 8543 year: 2023 ident: ref_27 article-title: Deep clustering and visualization for end-to-end high-dimensional data analysis publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3151498 contributor: fullname: Wu – volume: 35 start-page: 5035 year: 2023 ident: ref_22 article-title: Local-to-global deep clustering on approximate uniform manifold publication-title: IEEE Trans. Knowl. Data Eng. contributor: fullname: Wang – volume: 44 start-page: 5042 year: 2022 ident: ref_29 article-title: Learning deep sparse regularizers with applications to multi-view clustering and semi-supervised classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Wang – volume: 26 start-page: 1287 year: 2015 ident: ref_6 article-title: Discriminative embedded clustering: A framework for grouping high-dimensional data publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2337335 contributor: fullname: Hou – volume: 33 start-page: 5681 year: 2022 ident: ref_24 article-title: A decoder-free variational deep embedding for unsupervised clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3071275 contributor: fullname: Ji – volume: 33 start-page: 774 year: 2022 ident: ref_28 article-title: Semisupervised feature learning by deep entropy-sparsity subspace clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3029033 contributor: fullname: Wu – volume: 15 start-page: 671 year: 2003 ident: ref_9 article-title: CSVD: Clustering and singular value decomposition for approximate similarity search in high-dimensional spaces publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2003.1198398 contributor: fullname: Castelli – volume: 32 start-page: 443 year: 2021 ident: ref_25 article-title: Autoencoder constrained clustering with adaptive neighbors publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978389 contributor: fullname: Li – volume: 34 start-page: 3669 year: 2022 ident: ref_18 article-title: Deep feature-based text clustering and its explanation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.3028943 contributor: fullname: Guan – volume: 35 start-page: 7470 year: 2023 ident: ref_16 article-title: Self-supervised discriminative feature learning for deep multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2022.3193569 contributor: fullname: Xu – volume: 45 start-page: 1669 year: 2015 ident: ref_35 article-title: Large scale spectral clustering via landmark-based sparse representation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2358564 contributor: fullname: Cai – volume: 42 start-page: 809 year: 2020 ident: ref_23 article-title: Deep self-evolution clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2889949 contributor: fullname: Chang – volume: 34 start-page: 6303 year: 2023 ident: ref_26 article-title: Deep clustering analysis via dual variational autoencoder with spherical latent embeddings publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3135460 contributor: fullname: Yang |
SSID | ssj0000913849 |
Score | 2.3127992 |
Snippet | The key to high-dimensional clustering lies in discovering the intrinsic structures and patterns in data to provide valuable information. However,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1526 |
SubjectTerms | Algorithms Analysis Clustering Data analysis Data points Decomposition Deep learning high dimensional Information management Methods multi-domain Neural networks Reconstruction Regularization Sparsity Spatial distribution |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4LDAgnqK85AHEZNHYTuJMqDwKQoKBl9isnO3AAE1p0__PXZIWGGDIkjiSdefzfec7f8fYofNZnnR1EA7dkdDBaJEFVQgoED4j3M-8p7vDt3fJ9ZO-eYlf2gO3cVtWOd0T643al47OyE8U9YmhNFb3dPgpqGsUZVfbFhrzbDGSaUIlfaZ_NTtjIc5Lo7Om3l1hdH-CKPCNKLPQayW_PFFN2P_Xtlz7mv4qW2lBIu81Wl1jc2GwzpZvZwyr4w32_DDEkDTw8_cJUR2gA-K991eccPX2wc_QNXleDnh9vVZclB8Y__MLIvJvSDgQevN7Im0ltfDepCqJz9KH0SZ76l8-nl-LtkeCcCpRlUATSrWDwiFyMXGe-EwpacA4iixAx8o5X0ROQVZQS7FCKhWSFFIfjMd_tNpiC4NyELYZNwSttNQFGKMhlpCoyBO9moRUuTTvsKOpvOywocKwGEKQXO1PuXbYGQlzNoYIrOsX5ejVtvZg48hDblwu8xi0NwEcRBJkSllbFXvosGNShSUzq0a5y9vbAjhVIqyyvTSLNT5d3WF7U23Z1v7G9nu17Pz_eZctSYQpTQnjHluoRpOwjzCjgoN6LX0BNGnSRw priority: 102 providerName: ProQuest |
Title | Sparse Clustering Algorithm Based on Multi-Domain Dimensionality Reduction Autoencoder |
URI | https://www.proquest.com/docview/3059603850 https://doaj.org/article/51dba8ca2a5b4d8ebcb12b27584735db |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT-MwEIZHfFzgsGL5EIVu5QOIU0RjO4lzbAtdhARCsKy4WRnbgQM0qKT_f2eSgLoHxIVDLlEiWTOx530V-xmAI-fzIh3qEDkqR5EORkd5UGWEJclnkvu593x2-Oo6vbjXlw_Jw1KrL94T1uKB28CdJrHHwrhCFglqbwI6jCXKjH_vqcRjs_oO5ZKZatbgPFZG5-1Od0W-_pT03xPDsqhepf_VoAbV_9mC3FSZ6Rb86OShGLXD-gkrYbYNm1cfbNW3Hfh790pmNIjJ84IhB1R6xOj5sSKT__QixlSUvKhmojlYG51VL-T8xRkj_Fv8Boluccu4Vk6IGC3qikmWPsx34X56_mdyEXXdESKnUlVHNHky7bB0pFlMUqQ-V0oaNI49BepEOefL2CnMS24mVkqlQpph5oPx9I5We7A2q2ZhH4RhUaWlLtEYjYnEVMWewWoSM-WyogfH7_Gyry0Ew5J54Lja5bj2YMzB_HiG0dXNDUqo7RJqv0poD044FZYnWD0vXNGdE6ChMqrKjrI80XQNdQ_679my3cx7s4r7CfHvzuHBd4zmEDYkyZh2i2Mf1ur5IvwiGVLjAFbN9PcA1sfn1ze3g-b7-weW595i |
link.rule.ids | 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NU9swEN0pcCgcOlDaIS1QHdrhpCGRZFs-dQI0TVvCoYUON41XkuEAcZo4_7-7tpO2h3LwxR8znl2t3ltJ-xbgvQ95kfZNlJ7gSJpojcyjLiWWRJ-J7uchcO3w5Cod35ivt8ltt-C26I5VrubEZqIOlec18lPNfWJ4G6v_cfZLctco3l3tWmhswJbRBN1cKT76vF5jYc1La_L2vLum7P6UWOA9S2YRaqX_IFEj2P-_abnBmtEuvOhIohi2Xt2DZ3H6EnYma4XVxT78_DGjlDSK84clSx0QAInhwx39cH3_KM4ImoKopqIpr5UX1SPl_-KChfxbEQ6i3uI7i7ayW8RwWVesZxni_BXcjD5dn49l1yNBep3qWlIIZcZj6Ym52KRIQ661smg9ZxZoEu19KAdeY15yS7FSaR3TDLMQbaBvjH4Nm9NqGg9AWKZWRpkSrTWYKEz1ILC8msJM-6zowYeVvdyslcJwlEKwXd3fdu3BGRtz_Q4LWDc3qvmd6-LBJYOAhfWFKhI0wUb0OFCoMt611UnAHpywKxyHWT0vfNFVC9CvsmCVG2Z5Yujqmx4crrzluvhbuD-j5c3Tj9_B8_H15NJdfrn69ha2FVGW9jjjIWzW82U8IspR43Ezrn4DH2DVKQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa2FBjWw7Anmq7bdNiwk5FEkm35NCRNg-7RoOjWoTdBL7cFWjtNnP8_0lbS9bAdfPEDEEhR30eL-gjw0fnCZEMZEodwlMigZFIEUSa2RPqMdL_wns4On8yz43P57SK9iPVPq1hWuVkT24Xa147-kQ8E9YmhbazhoIxlEafT2ZfFXUIdpGinNbbTeAw7iIpD3oOdydH89Gz7x4UUMJUsuup3gbn-ADnhFQloIYZlD3Cple__1yLdIs_sOTyLlJGNOx-_gEehegm7J1u91dUr-P1zgQlqYIc3axI-QDhi45tLHHJzdcsmCFSe1RVrD9sm0_rWXFdsSrL-nSQHEnF2RhKu5CQ2Xjc1qVv6sHwN57OjX4fHSeyYkDiRiSbBgMqls6VDHqNSk_lCCK6scpRnWJkK53w5csIWJTUYK7kQIctt7oPy-I0Ub6BX1VXYA6aIaEkuS6uUtCm3mRh5ElvjNhcuN334tLGXXnTCGBoTCrKr_tuufZiQMbfvkJx1e6NeXuoYHTodeWuUM9ykVnoVrLMjbnlOe7gi9bYPn8kVmoKuWRpn4tkBHCrJV-lxXqQSr6Hsw8HGWzpG40rfz539_z_-AE9wUukfX-ff38JTjvylq208gF6zXId3yD8a-z5OrD-jadrF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Clustering+Algorithm+Based+on+Multi-Domain+Dimensionality+Reduction+Autoencoder&rft.jtitle=Mathematics+%28Basel%29&rft.au=Kang%2C+Yu&rft.au=Liu%2C+Erwei&rft.au=Zou%2C+Kaichi&rft.au=Wang%2C+Xiuyun&rft.date=2024-05-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=10&rft.spage=1526&rft_id=info:doi/10.3390%2Fmath12101526&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math12101526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |