Direct Z-scheme construction of g-C3N4 quantum dots / TiO2 nanoflakes for efficient photocatalysis
[Display omitted] •TiO2 nanoflakes/g-C3N4 QDs were prepared by a facile calcination process.•g-C3N4 QDs were intimately hybridized with the giant TiO2 nanoflakes.•Mechanism of charge transfer and separation in Z-scheme heterojunction discussed.•High photocatalytic degradation and H2 evolution activi...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 430; p. 132861 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•TiO2 nanoflakes/g-C3N4 QDs were prepared by a facile calcination process.•g-C3N4 QDs were intimately hybridized with the giant TiO2 nanoflakes.•Mechanism of charge transfer and separation in Z-scheme heterojunction discussed.•High photocatalytic degradation and H2 evolution activity were realized.
The rapid recombination rate of photogenerated carriers in TiO2 has been limiting the photocatalytic performance. Herein, TiO2 thin flakes modified by g-C3N4 quantum dots (g-C3N4 QDs) were fabricated successfully through a facile thermal treatment of restacked single-layer nanosheets of Ti1.73O41.07- in the presence of urea as a source of g-C3N4 QDs. Characterizations showed that g-C3N4 QDs with a size of ~10 nm were homogeneously deposited on the surface of TiO2 thin flakes. Quenching experiments of •OH radicals and the detection of radicals by EPR certified the direct Z-scheme heterojunctions between g-C3N4 QDs and TiO2 flakes. The TiO2 nanoflakes/g-C3N4 QDs hybrid exhibited excellent activity for the photocatalytic hydrogen evolution from a methanol solution and the degradation of RhB due to the enhanced charge separation efficiency and improved light absorption in the direct Z-scheme heterojunctions. This study demonstrates that the rational design of heterojunction is effective for attaining the superior photocatalytic performance. |
---|---|
AbstractList | [Display omitted]
•TiO2 nanoflakes/g-C3N4 QDs were prepared by a facile calcination process.•g-C3N4 QDs were intimately hybridized with the giant TiO2 nanoflakes.•Mechanism of charge transfer and separation in Z-scheme heterojunction discussed.•High photocatalytic degradation and H2 evolution activity were realized.
The rapid recombination rate of photogenerated carriers in TiO2 has been limiting the photocatalytic performance. Herein, TiO2 thin flakes modified by g-C3N4 quantum dots (g-C3N4 QDs) were fabricated successfully through a facile thermal treatment of restacked single-layer nanosheets of Ti1.73O41.07- in the presence of urea as a source of g-C3N4 QDs. Characterizations showed that g-C3N4 QDs with a size of ~10 nm were homogeneously deposited on the surface of TiO2 thin flakes. Quenching experiments of •OH radicals and the detection of radicals by EPR certified the direct Z-scheme heterojunctions between g-C3N4 QDs and TiO2 flakes. The TiO2 nanoflakes/g-C3N4 QDs hybrid exhibited excellent activity for the photocatalytic hydrogen evolution from a methanol solution and the degradation of RhB due to the enhanced charge separation efficiency and improved light absorption in the direct Z-scheme heterojunctions. This study demonstrates that the rational design of heterojunction is effective for attaining the superior photocatalytic performance. |
ArticleNumber | 132861 |
Author | Xu, Chengqun Pan, Hui Liu, Xiaolu Yang, Yuchen Huang, Janjer Ma, Renzhi Sakai, Nobuyuki Sasaki, Takayoshi Lin, Shiyin Li, Dezhi Yang, Jiale |
Author_xml | – sequence: 1 givenname: Chengqun surname: Xu fullname: Xu, Chengqun organization: School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China – sequence: 2 givenname: Dezhi surname: Li fullname: Li, Dezhi organization: School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China – sequence: 3 givenname: Xiaolu surname: Liu fullname: Liu, Xiaolu organization: School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China – sequence: 4 givenname: Renzhi surname: Ma fullname: Ma, Renzhi organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan – sequence: 5 givenname: Nobuyuki surname: Sakai fullname: Sakai, Nobuyuki organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan – sequence: 6 givenname: Yuchen surname: Yang fullname: Yang, Yuchen organization: School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China – sequence: 7 givenname: Shiyin surname: Lin fullname: Lin, Shiyin organization: School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China – sequence: 8 givenname: Jiale surname: Yang fullname: Yang, Jiale organization: School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China – sequence: 9 givenname: Hui surname: Pan fullname: Pan, Hui email: huipan@um.edu.mo organization: Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, PR China – sequence: 10 givenname: Janjer surname: Huang fullname: Huang, Janjer organization: School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China – sequence: 11 givenname: Takayoshi surname: Sasaki fullname: Sasaki, Takayoshi email: SASAKI.Takayoshi@nims.go.jp organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan |
BookMark | eNp9kLtOwzAUQC1UJNrCB7D5B5L6kTiJmFB5SoguZWGxbMemDqldbBepf09CmRg63bucq3vODEycdxqAa4xyjDBbdLnSXU4QwTmmpGb4DExxXdGMEkwmw07rMquboroAsxg7hBBrcDMF8s4GrRJ8z6La6K2GyruYwl4l6x30Bn5kS_pawK-9cGm_ha1PES7g2q4IdMJ504tPHaHxAWpjrLLaJbjb-OSVSKI_RBsvwbkRfdRXf3MO3h7u18un7GX1-Ly8fckUZTRlJWFMtpUuZYklIjWRlOHhzaKWlDSiaglTsqxMWYiikC1DUjVMUqlNoU1VEDoH-HhXBR9j0Ibvgt2KcOAY8TES7_gQiY-R-DHSwFT_GGWTGN1TELY_Sd4cST0ofVsdeBzllW5_g_LW2xP0D5Kog0Y |
CitedBy_id | crossref_primary_10_1021_acs_iecr_2c04265 crossref_primary_10_1016_j_seppur_2023_123618 crossref_primary_10_1016_j_jece_2022_108077 crossref_primary_10_1016_j_materresbull_2024_112971 crossref_primary_10_1016_j_diamond_2022_108819 crossref_primary_10_1016_j_jece_2023_110477 crossref_primary_10_1039_D3NR04534J crossref_primary_10_1016_j_mtcomm_2023_107605 crossref_primary_10_1016_j_cej_2024_156640 crossref_primary_10_1016_j_mcat_2023_113309 crossref_primary_10_1016_j_mssp_2024_108595 crossref_primary_10_1039_D4TC02562H crossref_primary_10_1016_j_ceramint_2022_09_194 crossref_primary_10_1016_j_seppur_2023_126161 crossref_primary_10_1016_j_jece_2023_110869 crossref_primary_10_1016_j_colsurfa_2024_133411 crossref_primary_10_1016_j_colsurfa_2024_134467 crossref_primary_10_1016_j_jece_2023_109366 crossref_primary_10_1016_j_optmat_2025_116644 crossref_primary_10_1039_D4TA01886A crossref_primary_10_1016_j_catcom_2022_106528 crossref_primary_10_3390_en17133159 crossref_primary_10_1039_D4TA00434E crossref_primary_10_1016_j_envres_2023_115408 crossref_primary_10_1016_j_ijhydene_2023_05_066 crossref_primary_10_1016_j_jece_2022_109191 crossref_primary_10_1016_j_cej_2024_150304 crossref_primary_10_1016_j_jphotochem_2024_115933 crossref_primary_10_1007_s11664_022_09878_z crossref_primary_10_1016_j_fuel_2025_134306 crossref_primary_10_1016_j_cej_2022_138221 crossref_primary_10_1016_j_ijhydene_2024_12_181 crossref_primary_10_1016_j_jwpe_2023_103972 crossref_primary_10_1039_D2NJ05007B crossref_primary_10_1016_j_apsusc_2024_161994 crossref_primary_10_1016_j_ceramint_2022_08_224 crossref_primary_10_1016_j_nanoen_2024_110384 crossref_primary_10_1016_j_seppur_2024_129420 crossref_primary_10_1039_D3CP06333J crossref_primary_10_1016_j_cej_2023_147350 crossref_primary_10_1016_j_cogsc_2022_100749 crossref_primary_10_1016_j_jenvman_2023_118826 crossref_primary_10_1016_j_jhazmat_2023_132458 crossref_primary_10_1039_D4RE00151F crossref_primary_10_1016_j_jcis_2022_08_114 crossref_primary_10_1016_j_jcis_2023_03_015 crossref_primary_10_1021_acssensors_4c00137 crossref_primary_10_1016_j_seppur_2023_124807 crossref_primary_10_1016_j_matchemphys_2024_129112 crossref_primary_10_1016_j_cej_2024_153075 crossref_primary_10_1016_j_apsusc_2023_158270 crossref_primary_10_1016_j_diamond_2024_110918 crossref_primary_10_1039_D2CP05073K crossref_primary_10_1039_D2TA05482E crossref_primary_10_1016_j_seppur_2024_129177 crossref_primary_10_1016_j_seppur_2024_130166 crossref_primary_10_1016_j_ceramint_2024_07_009 crossref_primary_10_1007_s42114_023_00717_1 crossref_primary_10_1016_j_jcis_2024_02_210 crossref_primary_10_1016_j_jphotochem_2022_114194 crossref_primary_10_1016_j_cej_2022_140990 crossref_primary_10_1039_D3NJ00580A crossref_primary_10_1002_smll_202208232 crossref_primary_10_1016_j_cej_2023_147344 crossref_primary_10_1016_j_ceramint_2022_09_331 crossref_primary_10_1039_D2RA07289K crossref_primary_10_1021_acs_jpcc_2c06981 crossref_primary_10_1021_acs_inorgchem_3c02523 crossref_primary_10_1021_acsanm_3c03580 crossref_primary_10_3390_catal12111309 crossref_primary_10_1007_s10853_024_09501_y crossref_primary_10_3390_catal13020346 crossref_primary_10_1007_s00339_022_06055_1 crossref_primary_10_1016_j_rser_2023_113348 crossref_primary_10_1016_j_seppur_2022_121480 crossref_primary_10_1039_D3TA03692H crossref_primary_10_1021_acsanm_2c03508 crossref_primary_10_1016_j_jece_2024_114888 crossref_primary_10_1002_smll_202404696 crossref_primary_10_1016_j_mtcomm_2023_106969 crossref_primary_10_1016_j_jallcom_2023_170761 crossref_primary_10_1016_j_jallcom_2024_176205 crossref_primary_10_1016_j_jcis_2023_01_096 crossref_primary_10_1016_j_cej_2022_140722 crossref_primary_10_1016_j_cej_2024_154678 crossref_primary_10_1007_s10854_024_12805_z crossref_primary_10_1016_j_mtcomm_2024_111204 crossref_primary_10_3390_molecules28114350 crossref_primary_10_1016_j_jcis_2024_09_076 |
Cites_doi | 10.1016/j.apcatb.2016.03.075 10.1016/j.jpowsour.2011.05.014 10.1039/C6TA01928E 10.1002/solr.201900423 10.1016/j.jssc.2020.121347 10.1039/C4CC02543A 10.1002/advs.201903171 10.1021/ja0394582 10.1016/j.cej.2014.08.072 10.1038/s41563-018-0230-2 10.1021/am403653a 10.1038/s41467-020-18350-7 10.1016/S1872-2067(19)63347-4 10.1002/adfm.201505321 10.1016/j.ijhydene.2020.03.129 10.1016/S1872-2067(20)63705-6 10.1002/cssc.201900844 10.1038/nenergy.2017.89 10.1016/j.jhazmat.2019.121907 10.1002/anie.201916012 10.1016/j.ensm.2019.07.007 10.1016/j.apcatb.2020.118900 10.1021/acsami.1c02722 10.1016/j.apcatb.2016.09.055 10.1021/ja974262l 10.1021/cm9604322 10.1021/cr400627u 10.1021/cm401409s 10.1002/adma.201802722 10.1016/j.apcatb.2021.120104 10.1016/j.jmst.2020.04.032 10.1016/j.apcatb.2018.05.084 10.1002/adma.201400111 10.1016/j.watres.2015.05.053 10.1016/j.apsusc.2020.146208 10.1016/j.apcatb.2014.03.037 10.1016/j.chempr.2020.06.010 10.1016/j.apcatb.2018.09.079 10.1016/j.jallcom.2021.160437 10.1021/jacs.5b09138 10.1021/jp0552473 10.1021/ja501587y 10.1039/C9TA13513H 10.1016/j.nanoen.2015.10.011 10.1021/jp036158y 10.1038/238037a0 10.1016/S1872-2067(18)63182-1 10.1016/j.apcatb.2014.09.043 10.1002/anie.201902478 10.1039/D0TA08045D 10.1039/c2ee03396h 10.1021/acsami.5b02107 10.1039/c3cp53131g 10.1002/pssb.19660150224 10.1016/j.jpcs.2019.109164 10.1016/j.solmat.2016.07.007 10.1021/cm9805626 10.1021/acsanm.9b01348 10.1021/ja960073b 10.1039/C5CS00811E 10.1039/C4TA02082K 10.1021/ja072492m 10.1021/ja509970z |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.132861 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_132861 S1385894721044363 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c363t-5266bd7e5b51b0282b36100648b329a7d26cb57f54a44bd60bc96b3bef4ef7423 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 04:27:53 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Fri Feb 23 02:41:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photodegradation Photocatalytic hydrogen evolution g-C3N4 QDs TiO2 nanoflakes Direct Z-scheme |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-5266bd7e5b51b0282b36100648b329a7d26cb57f54a44bd60bc96b3bef4ef7423 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2021_132861 crossref_citationtrail_10_1016_j_cej_2021_132861 elsevier_sciencedirect_doi_10_1016_j_cej_2021_132861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhu, Zhang, Lu, Hua, Dong (b0010) 2019; 40 Zhang, Wang, Wang, Zhang, Xie, Tian, Wang, Xie (b0140) 2014; 26 Liang, Shen, Ng, Zhang, Xiang, Li (b0040) 2020; 56 Xu, Liu, Li, Chen, Yang, Huang, Pan (b0090) 2021; 13 Liu, Liu, Shi, Sun, Lin, Shi, Hong (b0125) 2021; 881 Nasir, Yang, Ayub, Wang, Yan (b0020) 2020; 519 Ida, Kim, Ertekin, Takenaka, Ishihara (b0080) 2015; 137 Wang, Yu, Shen, Chan, Gu (b0130) 2014; 50 Zhou, Liu, Li, Wang, Jiang, Zhao, Wang, Duan, Liu, Wei (b0225) 2014; 158 Wageh, Al-Ghamdi, Jafer, Li, Zhangc (b0180) 2021; 42 Zang, Li, Xu, Zuo, Li (b0155) 2014; 2 Zhou, Chen, Yang, Dong, Zhang, Qin (b0165) 2016; 157 Pomerantseva, Gogotsi (b0030) 2017; 2 Li, Lian, Wang, Zhang, Li (b0160) 2016; 19 Geng, Ma, Ebina, Yamauchi, Miyamoto, Sasaki (b0065) 2014; 136 Tauc, Grigorovici, Vancu (b0310) 1966; 15 Xibao, Jiyou, Juntong, Chaozheng, Zhijun, Zhi, Liying, Fang (b0190) 2021; 37 Zhou, Jiang, Zhao, Li, Ma, Sasaki, Geng (b0210) 2020; 24 Shen, He, Zhang, Li, Ng, Zhang, Hu, Li (b0105) 2021; 291 Sasaki, Nakano, Yamauchi, Watanabe (b0085) 1997; 9 Das, Pandey, Thomas, Roy (b0035) 2019; 31 Sun, Lv, Zhang, Li, Li (b0250) 2015; 164 Wang, Liu, Yang, Lin, Shi (b0110) 2020; 136 Maluangnont, Matsuba, Geng, Ma, Yamauchi, Sasaki (b0205) 2013; 25 Iida, Sasaki, Watanabe (b0220) 1998; 10 Dong, Zhao, Xiong, Ni, Zhang, Sun, Ho (b0260) 2013; 5 Tong, Yang, Xiao, Tian, Jiang (b0170) 2015; 260 Cai, Yin, Sakai, Liu, Teng, Ebina, Ma, Sasaki (b0270) 2019; 2 Nasir, Yang, Ayub, Wang, Wang, Yan (b0150) 2020; 45 Xia, Cao, Zhu, Liu, Shi, Yu, Zhang (b0300) 2020; 59 Xu, Zhang, Cheng, Fan, Yu (b0175) 2020; 6 Fujishima, Honda (b0005) 1972; 238 Yu, Yu, Cheng, Zhao, Yu, Ho (b0245) 2003; 107 Li, Lv, Ho, Dong, Wu, Xia (b0255) 2017; 202 Hu, Zhou, Zhang, Zhang, Wang, Jiang, Tian, Zhao, Fu (b0275) 2016; 4 Xu, Meng, Cheng, Wang, Xu, Yu (b0305) 2020; 11 Li, Liu, Wu, Li, Huo, Wang (b0315) 2019; 40 Nakhanivej, Yu, Park, Kim, Hong, Kim, Lee, Hwang, Yang, Wolverton, Kong, Chhowalla, Park (b0045) 2019; 18 Sasaki, Watanabe, Hashizume, Yamada, Nakazawa (b0050) 1996; 118 Shao, Chen, Ding, Lo, Zhong, Yao, Ip, Xu, Wang, Pan (b0100) 2019; 12 Chen, Liu, Wu, Du, Zhu, Dai, Yang (b0145) 2016; 26 Ren, Zhang, Ding, Shen, Jiang, Lu, Li (b0185) 2020; 4 Elahifard, Rahimnejad, Haghighi, Gholami (b0320) 2007; 129 Nasir, Yang, Ayub, Wang, Yan (b0015) 2020; 270 Zhang, Li, Feng, Chen, Li (b0230) 2006; 110 Yu, Wang, Low, Xiao (b0235) 2013; 15 Tong, Ng, Wang, Wang, Wang, Pan (b0025) 2020; 8 Yang, Xiao, Gong, Zhao, Li, Jiang, Ma, Rummeli, Li, Sasaki, Geng (b0265) 2019; 58 Xu, Zhang, Deguchi, Ohki, Shimizu, Ma, Sasaki (b0215) 2020; 8 Sakai, Ebina, Takada, Sasaki (b0060) 2004; 126 Cai, Sakai, Ozawa, Funatsu, Ma, Ebina, Sasaki (b0075) 2015; 7 Wang, Yuan, Wang, Chen, Wu, Jiang, Xiong, Zeng (b0135) 2016; 193 Sasaki, Watanabe (b0055) 1998; 120 Shi, Liu, Li, Lin, Guo, Shi (b0240) 2020; 389 Wang, Sun, Li, Chen (b0115) 2016; 45 Luo, Luo, Jiang, Zhou, Yang, Qi, Zhang, Fan, Yu, Li, Yu (b0280) 2012; 5 Li, Nie, Chen, Jiang, An, Wong, Zhang, Zhao, Yamashita (b0285) 2015; 86 Yu, Fan, Cheng (b0290) 2011; 196 Shao, Shao, Ding, Wang, Xu, Qu, Zhong, Chen, Ip, Wang (b0095) 2018; 237 Pan, Dong, Wang, Jiang, Zhao, Wang, Song, Zheng, Li (b0295) 2019; 242 Hou, Zheng, Su, Zhang, Hoshide, Xia, Jie, Li, Zhao, Ma, Sasaki, Geng (b0200) 2015; 137 Yang, Liu, Wang, Lin, Hong, Guo, Shi (b0120) 2020; 287 Wang, Sasaki (b0070) 2014; 114 Ng, Putri, Kong, Teh, Pasbakhsh, Chai (b0195) 2020; 7 Nakhanivej (10.1016/j.cej.2021.132861_b0045) 2019; 18 Yu (10.1016/j.cej.2021.132861_b0245) 2003; 107 Sakai (10.1016/j.cej.2021.132861_b0060) 2004; 126 Zhang (10.1016/j.cej.2021.132861_b0230) 2006; 110 Wang (10.1016/j.cej.2021.132861_b0130) 2014; 50 Hou (10.1016/j.cej.2021.132861_b0200) 2015; 137 Fujishima (10.1016/j.cej.2021.132861_b0005) 1972; 238 Zhou (10.1016/j.cej.2021.132861_b0210) 2020; 24 Nasir (10.1016/j.cej.2021.132861_b0020) 2020; 519 Wageh (10.1016/j.cej.2021.132861_b0180) 2021; 42 Dong (10.1016/j.cej.2021.132861_b0260) 2013; 5 Pomerantseva (10.1016/j.cej.2021.132861_b0030) 2017; 2 Cai (10.1016/j.cej.2021.132861_b0075) 2015; 7 Xia (10.1016/j.cej.2021.132861_b0300) 2020; 59 Sasaki (10.1016/j.cej.2021.132861_b0050) 1996; 118 Zang (10.1016/j.cej.2021.132861_b0155) 2014; 2 Xu (10.1016/j.cej.2021.132861_b0305) 2020; 11 Liang (10.1016/j.cej.2021.132861_b0040) 2020; 56 Sun (10.1016/j.cej.2021.132861_b0250) 2015; 164 Tauc (10.1016/j.cej.2021.132861_b0310) 1966; 15 Shao (10.1016/j.cej.2021.132861_b0095) 2018; 237 Liu (10.1016/j.cej.2021.132861_b0125) 2021; 881 Xu (10.1016/j.cej.2021.132861_b0215) 2020; 8 Yang (10.1016/j.cej.2021.132861_b0265) 2019; 58 Yu (10.1016/j.cej.2021.132861_b0290) 2011; 196 Iida (10.1016/j.cej.2021.132861_b0220) 1998; 10 Wang (10.1016/j.cej.2021.132861_b0070) 2014; 114 Shi (10.1016/j.cej.2021.132861_b0240) 2020; 389 Sasaki (10.1016/j.cej.2021.132861_b0055) 1998; 120 Li (10.1016/j.cej.2021.132861_b0160) 2016; 19 Maluangnont (10.1016/j.cej.2021.132861_b0205) 2013; 25 Sasaki (10.1016/j.cej.2021.132861_b0085) 1997; 9 Ng (10.1016/j.cej.2021.132861_b0195) 2020; 7 Elahifard (10.1016/j.cej.2021.132861_b0320) 2007; 129 Ren (10.1016/j.cej.2021.132861_b0185) 2020; 4 Li (10.1016/j.cej.2021.132861_b0315) 2019; 40 Nasir (10.1016/j.cej.2021.132861_b0150) 2020; 45 Wang (10.1016/j.cej.2021.132861_b0110) 2020; 136 Zhang (10.1016/j.cej.2021.132861_b0140) 2014; 26 Wang (10.1016/j.cej.2021.132861_b0115) 2016; 45 Zhou (10.1016/j.cej.2021.132861_b0165) 2016; 157 Xibao (10.1016/j.cej.2021.132861_b0190) 2021; 37 Pan (10.1016/j.cej.2021.132861_b0295) 2019; 242 Yu (10.1016/j.cej.2021.132861_b0235) 2013; 15 Das (10.1016/j.cej.2021.132861_b0035) 2019; 31 Nasir (10.1016/j.cej.2021.132861_b0015) 2020; 270 Cai (10.1016/j.cej.2021.132861_b0270) 2019; 2 Tong (10.1016/j.cej.2021.132861_b0170) 2015; 260 Li (10.1016/j.cej.2021.132861_b0255) 2017; 202 Luo (10.1016/j.cej.2021.132861_b0280) 2012; 5 Geng (10.1016/j.cej.2021.132861_b0065) 2014; 136 Tong (10.1016/j.cej.2021.132861_b0025) 2020; 8 Wang (10.1016/j.cej.2021.132861_b0135) 2016; 193 Xu (10.1016/j.cej.2021.132861_b0175) 2020; 6 Zhu (10.1016/j.cej.2021.132861_b0010) 2019; 40 Xu (10.1016/j.cej.2021.132861_b0090) 2021; 13 Hu (10.1016/j.cej.2021.132861_b0275) 2016; 4 Chen (10.1016/j.cej.2021.132861_b0145) 2016; 26 Shao (10.1016/j.cej.2021.132861_b0100) 2019; 12 Li (10.1016/j.cej.2021.132861_b0285) 2015; 86 Shen (10.1016/j.cej.2021.132861_b0105) 2021; 291 Yang (10.1016/j.cej.2021.132861_b0120) 2020; 287 Zhou (10.1016/j.cej.2021.132861_b0225) 2014; 158 Ida (10.1016/j.cej.2021.132861_b0080) 2015; 137 |
References_xml | – volume: 4 start-page: 7495 year: 2016 end-page: 7502 ident: b0275 article-title: Facile strategy for controllable synthesis of stable mesoporous black TiO publication-title: J. Mater. Chem. A – volume: 7 start-page: 1903171 year: 2020 ident: b0195 article-title: Z-scheme photocatalytic systems for solar water splitting publication-title: Adv. Sci. – volume: 58 start-page: 8740 year: 2019 end-page: 8745 ident: b0265 article-title: Size-Independent Fast Ion Intercalation in Two-Dimensional Titania Nanosheets for Alkali-Metal-Ion Batteries publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1543 year: 2020 end-page: 1559 ident: b0175 article-title: S-scheme heterojunction photocatalyst publication-title: Chem – volume: 15 start-page: 627 year: 1966 end-page: 637 ident: b0310 article-title: Optical properties and electronic structure of amorphous germanium publication-title: Phys. Status Solidi B – volume: 45 start-page: 2239 year: 2016 end-page: 2262 ident: b0115 article-title: Quantum dots derived from two-dimensional materials and their applications for catalysis and energy publication-title: Chem. Soc. Rev. – volume: 59 start-page: 5218 year: 2020 end-page: 5225 ident: b0300 article-title: Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria publication-title: Angew. Chem. Int. Ed. – volume: 137 start-page: 239 year: 2015 end-page: 244 ident: b0080 article-title: Photocatalytic reaction centers in two-dimensional titanium oxide crystals publication-title: J. Am. Chem. Soc. – volume: 196 start-page: 7891 year: 2011 end-page: 7898 ident: b0290 article-title: Dye-sensitized solar cells based on anatase TiO publication-title: J. Power Sources – volume: 107 start-page: 13871 year: 2003 end-page: 13879 ident: b0245 article-title: The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO publication-title: J. Phys. Chem. B – volume: 24 start-page: 504 year: 2020 end-page: 511 ident: b0210 article-title: Giant two-dimensional titania sheets for constructing a flexible fiber sodium-ion battery with long-term cycling stability publication-title: Energy Storage Mater. – volume: 5 start-page: 6559 year: 2012 ident: b0280 article-title: Seed-assisted synthesis of highly ordered TiO publication-title: Energy Environ. Sci. – volume: 2 start-page: 6378 year: 2019 end-page: 6386 ident: b0270 article-title: Photocharge Trapping in Two-Sheet Reduced Graphene Oxide-Ti publication-title: ACS Appl. Nano Mater. – volume: 260 start-page: 117 year: 2015 end-page: 125 ident: b0170 article-title: Biomimetic fabrication of g-C publication-title: Chem. Eng. J. – volume: 26 start-page: 1719 year: 2016 end-page: 1728 ident: b0145 article-title: Incorporating graphitic carbon nitride (g-C publication-title: Adv. Funct. Mater. – volume: 25 start-page: 3137 year: 2013 end-page: 3146 ident: b0205 article-title: Osmotic swelling of layered compounds as a route to producing high-quality two-dimensional materials. A comparative study of tetramethylammonium versus tetrabutylammonium cation in a lepidocrocite-type titanate publication-title: Chem. Mater. – volume: 12 start-page: 3355 year: 2019 end-page: 3362 ident: b0100 article-title: WX publication-title: ChemSusChem – volume: 4 start-page: 1900423 year: 2020 ident: b0185 article-title: In situ fabrication of robust cocatalyst-free CdS/g-C publication-title: Sol. RRL – volume: 136 year: 2020 ident: b0110 article-title: Fabrication of a ternary heterostructure BiVO publication-title: J. Phys. Chem. Solids – volume: 157 start-page: 399 year: 2016 end-page: 405 ident: b0165 article-title: In-situ construction of all-solid-state Z-scheme g-C publication-title: Sol. Energy Mater. Sol. Cells – volume: 136 start-page: 5491 year: 2014 end-page: 5500 ident: b0065 article-title: Gigantic swelling of inorganic layered materials: A bridge to molecularly thin two-dimensional nanosheets publication-title: J. Am. Chem. Soc. – volume: 202 start-page: 611 year: 2017 end-page: 619 ident: b0255 article-title: Hybridization of rutile TiO publication-title: Appl. Catal. B – volume: 8 start-page: 13299 year: 2020 end-page: 13310 ident: b0215 article-title: Construction of a push-pull system in g-C publication-title: J. Mater. Chem. A – volume: 86 start-page: 17 year: 2015 end-page: 24 ident: b0285 article-title: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C publication-title: Water. Res. – volume: 291 year: 2021 ident: b0105 article-title: In-situ construction of metallic Ni publication-title: Appl. Catal. B – volume: 287 start-page: 121347 year: 2020 ident: b0120 article-title: Enhanced photocatalytic activity of g-C publication-title: J. Solid. State. Chem. – volume: 40 start-page: 928 year: 2019 end-page: 939 ident: b0315 article-title: Improved charge transfer by size-dependent plasmonic Au on C publication-title: Chin. J. Catal. – volume: 2 start-page: 17089 year: 2017 ident: b0030 article-title: Two-dimensional heterostructures for energy storage publication-title: Nat. Energy – volume: 37 start-page: 2010030 year: 2021 ident: b0190 article-title: All Organic S-Scheme Heterojunction PDI-Ala/SC publication-title: Acta. Phys.-Chim. Sin. – volume: 389 year: 2020 ident: b0240 article-title: Fabrication of ternary Ag publication-title: J. Hazard. Mater. – volume: 18 start-page: 156 year: 2019 end-page: 162 ident: b0045 article-title: Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets publication-title: Nat. Mater. – volume: 7 start-page: 11436 year: 2015 end-page: 11443 ident: b0075 article-title: Efficient photoinduced charge accumulation in reduced graphene oxide coupled with titania nanosheets to show highly enhanced and persistent conductance publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 413 year: 2019 end-page: 423 ident: b0010 article-title: Prolonging charge-separation states by doping lanthanide-ions into {001}/{101} facets-coexposed TiO publication-title: Chin. J. Catal. – volume: 26 start-page: 4438 year: 2014 end-page: 4443 ident: b0140 article-title: Single-layered graphitic-C publication-title: Adv. Mater. – volume: 45 start-page: 13994 year: 2020 end-page: 14005 ident: b0150 article-title: Hybridization of g-C publication-title: Int. J. Hydrog. Energy – volume: 519 year: 2020 ident: b0020 article-title: In situ decoration of g-C publication-title: Appl. Surf. Sci. – volume: 120 start-page: 4682 year: 1998 end-page: 4689 ident: b0055 article-title: Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 5851 year: 2004 end-page: 5858 ident: b0060 article-title: Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies publication-title: J. Am. Chem. Soc. – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: b0005 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – volume: 13 start-page: 20114 year: 2021 end-page: 20124 ident: b0090 article-title: Coordination of π-Delocalization in g-C publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 11392 year: 2013 end-page: 11401 ident: b0260 article-title: In situ construction of g-C publication-title: ACS Appl. Mater. Interfaces – volume: 881 year: 2021 ident: b0125 article-title: Carbon-based quantum dots (QDs) modified ms/tz-BiVO publication-title: J. Alloys Compd. – volume: 50 start-page: 10148 year: 2014 end-page: 10150 ident: b0130 article-title: g-C publication-title: Chem. Commun. – volume: 114 start-page: 9455 year: 2014 end-page: 9486 ident: b0070 article-title: Titanium oxide nanosheets: graphene analogues with versatile functionalities publication-title: Chem. Rev. – volume: 19 start-page: 446 year: 2016 end-page: 454 ident: b0160 article-title: Nanotube-confinement induced size-controllable g-C publication-title: Nano Energy – volume: 158 start-page: 20 year: 2014 end-page: 29 ident: b0225 article-title: Facile in situ synthesis of graphitic carbon nitride (g-C publication-title: Appl. Catal. B – volume: 118 start-page: 8329 year: 1996 end-page: 8335 ident: b0050 article-title: Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 13200 year: 2015 end-page: 13208 ident: b0200 article-title: Macroscopic and strong ribbons of functionality-rich metal oxides from highly ordered assembly of unilamellar sheets publication-title: J. Am. Chem. Soc. – volume: 242 start-page: 92 year: 2019 end-page: 99 ident: b0295 article-title: The enhancement of photocatalytic hydrogen production via Ti publication-title: Appl. Catal. B – volume: 129 start-page: 9552 year: 2007 end-page: 9553 ident: b0320 article-title: Apatite-coated Ag/AgBr/TiO publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1802722 year: 2019 ident: b0035 article-title: The role of graphene and other 2D materials in solar photovoltaics publication-title: Adv. Mater. – volume: 56 start-page: 89 year: 2020 end-page: 121 ident: b0040 article-title: A review on 2D MoS publication-title: J. Mater. Sci. Technol. – volume: 110 start-page: 927 year: 2006 end-page: 935 ident: b0230 article-title: UV Raman spectroscopic study on TiO publication-title: J. Phys. Chem. B – volume: 270 year: 2020 ident: b0015 article-title: Tin diselinide a stable co-catalyst coupled with branched TiO publication-title: Appl. Catal. B – volume: 10 start-page: 3780 year: 1998 end-page: 3782 ident: b0220 article-title: Titanium dioxide hollow microspheres with an extremely thin shell publication-title: Chem. Mater. – volume: 8 start-page: 23202 year: 2020 end-page: 23230 ident: b0025 article-title: Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production publication-title: J. Mater. Chem. A – volume: 2 start-page: 15774 year: 2014 end-page: 15780 ident: b0155 article-title: Hybridization of brookite TiO publication-title: J. Mater. Chem. A – volume: 164 start-page: 420 year: 2015 end-page: 427 ident: b0250 article-title: Effect of contact interface between TiO publication-title: Appl. Catal. B – volume: 15 start-page: 16883 year: 2013 ident: b0235 article-title: Enhanced photocatalytic performance of direct Z-scheme g-C publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 4613 year: 2020 ident: b0305 article-title: Unique S-scheme heterojunctions in self-assembled TiO publication-title: Nat. Commun. – volume: 237 start-page: 295 year: 2018 end-page: 301 ident: b0095 article-title: Vanadium disulfide decorated graphitic carbon nitride for super-efficient solar-driven hydrogen evolution publication-title: Appl. Catal. B – volume: 193 start-page: 36 year: 2016 end-page: 46 ident: b0135 article-title: Facile synthesis of Sb publication-title: Appl. Catal. B – volume: 9 start-page: 602 year: 1997 end-page: 608 ident: b0085 article-title: Fabrication of titanium dioxide thin flakes and their porous aggregate publication-title: Chem. Mater. – volume: 42 start-page: 667 year: 2021 end-page: 669 ident: b0180 article-title: A new heterojunction in photocatalysis: S-scheme heterojunction publication-title: Chin. J. Catal. – volume: 193 start-page: 36 year: 2016 ident: 10.1016/j.cej.2021.132861_b0135 article-title: Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.03.075 – volume: 196 start-page: 7891 issue: 18 year: 2011 ident: 10.1016/j.cej.2021.132861_b0290 article-title: Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.05.014 – volume: 4 start-page: 7495 issue: 19 year: 2016 ident: 10.1016/j.cej.2021.132861_b0275 article-title: Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01928E – volume: 4 start-page: 1900423 year: 2020 ident: 10.1016/j.cej.2021.132861_b0185 article-title: In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D–2D step-scheme heterojunctions for highly active H2 evolution publication-title: Sol. RRL doi: 10.1002/solr.201900423 – volume: 287 start-page: 121347 year: 2020 ident: 10.1016/j.cej.2021.132861_b0120 article-title: Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3. 64Mo0. 36O6. 55 nanospheres composites publication-title: J. Solid. State. Chem. doi: 10.1016/j.jssc.2020.121347 – volume: 50 start-page: 10148 year: 2014 ident: 10.1016/j.cej.2021.132861_b0130 article-title: g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application publication-title: Chem. Commun. doi: 10.1039/C4CC02543A – volume: 7 start-page: 1903171 year: 2020 ident: 10.1016/j.cej.2021.132861_b0195 article-title: Z-scheme photocatalytic systems for solar water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201903171 – volume: 126 start-page: 5851 issue: 18 year: 2004 ident: 10.1016/j.cej.2021.132861_b0060 article-title: Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0394582 – volume: 260 start-page: 117 year: 2015 ident: 10.1016/j.cej.2021.132861_b0170 article-title: Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.08.072 – volume: 18 start-page: 156 issue: 2 year: 2019 ident: 10.1016/j.cej.2021.132861_b0045 article-title: Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets publication-title: Nat. Mater. doi: 10.1038/s41563-018-0230-2 – volume: 5 start-page: 11392 issue: 21 year: 2013 ident: 10.1016/j.cej.2021.132861_b0260 article-title: In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403653a – volume: 11 start-page: 4613 year: 2020 ident: 10.1016/j.cej.2021.132861_b0305 article-title: Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction publication-title: Nat. Commun. doi: 10.1038/s41467-020-18350-7 – volume: 40 start-page: 928 issue: 6 year: 2019 ident: 10.1016/j.cej.2021.132861_b0315 article-title: Improved charge transfer by size-dependent plasmonic Au on C3N4 for efficient photocatalytic oxidation of RhB and CO2 reduction publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63347-4 – volume: 26 start-page: 1719 issue: 11 year: 2016 ident: 10.1016/j.cej.2021.132861_b0145 article-title: Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505321 – volume: 45 start-page: 13994 issue: 27 year: 2020 ident: 10.1016/j.cej.2021.132861_b0150 article-title: Hybridization of g-C3N4 quantum dots with 1D branched TiO2 fiber for efficient visible light-driven photocatalytic hydrogen generation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.03.129 – volume: 42 start-page: 667 issue: 5 year: 2021 ident: 10.1016/j.cej.2021.132861_b0180 article-title: A new heterojunction in photocatalysis: S-scheme heterojunction publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63705-6 – volume: 12 start-page: 3355 issue: 14 year: 2019 ident: 10.1016/j.cej.2021.132861_b0100 article-title: WXy/g-C3N4 (WXy= W2C, WS2, or W2N) Composites for Highly Efficient Photocatalytic Water Splitting publication-title: ChemSusChem doi: 10.1002/cssc.201900844 – volume: 37 start-page: 2010030 year: 2021 ident: 10.1016/j.cej.2021.132861_b0190 article-title: All Organic S-Scheme Heterojunction PDI-Ala/SC3N4 Photocatalyst with Enhanced Photocatalytic Performance publication-title: Acta. Phys.-Chim. Sin. – volume: 2 start-page: 17089 year: 2017 ident: 10.1016/j.cej.2021.132861_b0030 article-title: Two-dimensional heterostructures for energy storage publication-title: Nat. Energy doi: 10.1038/nenergy.2017.89 – volume: 389 year: 2020 ident: 10.1016/j.cej.2021.132861_b0240 article-title: Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121907 – volume: 59 start-page: 5218 issue: 13 year: 2020 ident: 10.1016/j.cej.2021.132861_b0300 article-title: Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916012 – volume: 24 start-page: 504 year: 2020 ident: 10.1016/j.cej.2021.132861_b0210 article-title: Giant two-dimensional titania sheets for constructing a flexible fiber sodium-ion battery with long-term cycling stability publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.07.007 – volume: 270 year: 2020 ident: 10.1016/j.cej.2021.132861_b0015 article-title: Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118900 – volume: 13 start-page: 20114 issue: 17 year: 2021 ident: 10.1016/j.cej.2021.132861_b0090 article-title: Coordination of π-Delocalization in g-C3N4 for Efficient Photocatalytic Hydrogen Evolution under Visible Light publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02722 – volume: 202 start-page: 611 year: 2017 ident: 10.1016/j.cej.2021.132861_b0255 article-title: Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.09.055 – volume: 120 start-page: 4682 issue: 19 year: 1998 ident: 10.1016/j.cej.2021.132861_b0055 article-title: Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate publication-title: J. Am. Chem. Soc. doi: 10.1021/ja974262l – volume: 9 start-page: 602 issue: 2 year: 1997 ident: 10.1016/j.cej.2021.132861_b0085 article-title: Fabrication of titanium dioxide thin flakes and their porous aggregate publication-title: Chem. Mater. doi: 10.1021/cm9604322 – volume: 114 start-page: 9455 year: 2014 ident: 10.1016/j.cej.2021.132861_b0070 article-title: Titanium oxide nanosheets: graphene analogues with versatile functionalities publication-title: Chem. Rev. doi: 10.1021/cr400627u – volume: 25 start-page: 3137 issue: 15 year: 2013 ident: 10.1016/j.cej.2021.132861_b0205 article-title: Osmotic swelling of layered compounds as a route to producing high-quality two-dimensional materials. A comparative study of tetramethylammonium versus tetrabutylammonium cation in a lepidocrocite-type titanate publication-title: Chem. Mater. doi: 10.1021/cm401409s – volume: 31 start-page: 1802722 year: 2019 ident: 10.1016/j.cej.2021.132861_b0035 article-title: The role of graphene and other 2D materials in solar photovoltaics publication-title: Adv. Mater. doi: 10.1002/adma.201802722 – volume: 291 year: 2021 ident: 10.1016/j.cej.2021.132861_b0105 article-title: In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120104 – volume: 56 start-page: 89 year: 2020 ident: 10.1016/j.cej.2021.132861_b0040 article-title: A review on 2D MoS2 cocatalysts in photocatalytic H2 production publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.04.032 – volume: 237 start-page: 295 year: 2018 ident: 10.1016/j.cej.2021.132861_b0095 article-title: Vanadium disulfide decorated graphitic carbon nitride for super-efficient solar-driven hydrogen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.05.084 – volume: 26 start-page: 4438 issue: 26 year: 2014 ident: 10.1016/j.cej.2021.132861_b0140 article-title: Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus publication-title: Adv. Mater. doi: 10.1002/adma.201400111 – volume: 86 start-page: 17 year: 2015 ident: 10.1016/j.cej.2021.132861_b0285 article-title: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach publication-title: Water. Res. doi: 10.1016/j.watres.2015.05.053 – volume: 519 year: 2020 ident: 10.1016/j.cej.2021.132861_b0020 article-title: In situ decoration of g-C3N4 quantum dots on 1D branched TiO2 loaded with plasmonic Au nanoparticles and improved the photocatalytic hydrogen evolution activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146208 – volume: 158 start-page: 20 year: 2014 ident: 10.1016/j.cej.2021.132861_b0225 article-title: Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.03.037 – volume: 6 start-page: 1543 issue: 7 year: 2020 ident: 10.1016/j.cej.2021.132861_b0175 article-title: S-scheme heterojunction photocatalyst publication-title: Chem doi: 10.1016/j.chempr.2020.06.010 – volume: 242 start-page: 92 year: 2019 ident: 10.1016/j.cej.2021.132861_b0295 article-title: The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.09.079 – volume: 881 year: 2021 ident: 10.1016/j.cej.2021.132861_b0125 article-title: Carbon-based quantum dots (QDs) modified ms/tz-BiVO4 heterojunction with enhanced photocatalytic performance for water purification publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160437 – volume: 137 start-page: 13200 issue: 40 year: 2015 ident: 10.1016/j.cej.2021.132861_b0200 article-title: Macroscopic and strong ribbons of functionality-rich metal oxides from highly ordered assembly of unilamellar sheets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09138 – volume: 110 start-page: 927 issue: 2 year: 2006 ident: 10.1016/j.cej.2021.132861_b0230 article-title: UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk publication-title: J. Phys. Chem. B doi: 10.1021/jp0552473 – volume: 136 start-page: 5491 year: 2014 ident: 10.1016/j.cej.2021.132861_b0065 article-title: Gigantic swelling of inorganic layered materials: A bridge to molecularly thin two-dimensional nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501587y – volume: 8 start-page: 13299 issue: 26 year: 2020 ident: 10.1016/j.cej.2021.132861_b0215 article-title: Construction of a push-pull system in g-C3N4 for efficient photocatalytic hydrogen evolution under visible light publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13513H – volume: 19 start-page: 446 year: 2016 ident: 10.1016/j.cej.2021.132861_b0160 article-title: Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.10.011 – volume: 107 start-page: 13871 issue: 50 year: 2003 ident: 10.1016/j.cej.2021.132861_b0245 article-title: The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition publication-title: J. Phys. Chem. B doi: 10.1021/jp036158y – volume: 238 start-page: 37 issue: 5358 year: 1972 ident: 10.1016/j.cej.2021.132861_b0005 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 40 start-page: 413 issue: 3 year: 2019 ident: 10.1016/j.cej.2021.132861_b0010 article-title: Prolonging charge-separation states by doping lanthanide-ions into {001}/{101} facets-coexposed TiO2 nanosheets for enhancing photocatalytic H2 evolution publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(18)63182-1 – volume: 164 start-page: 420 year: 2015 ident: 10.1016/j.cej.2021.132861_b0250 article-title: Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.09.043 – volume: 58 start-page: 8740 issue: 26 year: 2019 ident: 10.1016/j.cej.2021.132861_b0265 article-title: Size-Independent Fast Ion Intercalation in Two-Dimensional Titania Nanosheets for Alkali-Metal-Ion Batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902478 – volume: 8 start-page: 23202 issue: 44 year: 2020 ident: 10.1016/j.cej.2021.132861_b0025 article-title: Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08045D – volume: 5 start-page: 6559 issue: 4 year: 2012 ident: 10.1016/j.cej.2021.132861_b0280 article-title: Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03396h – volume: 7 start-page: 11436 issue: 21 year: 2015 ident: 10.1016/j.cej.2021.132861_b0075 article-title: Efficient photoinduced charge accumulation in reduced graphene oxide coupled with titania nanosheets to show highly enhanced and persistent conductance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02107 – volume: 15 start-page: 16883 issue: 39 year: 2013 ident: 10.1016/j.cej.2021.132861_b0235 article-title: Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53131g – volume: 15 start-page: 627 issue: 2 year: 1966 ident: 10.1016/j.cej.2021.132861_b0310 article-title: Optical properties and electronic structure of amorphous germanium publication-title: Phys. Status Solidi B doi: 10.1002/pssb.19660150224 – volume: 136 year: 2020 ident: 10.1016/j.cej.2021.132861_b0110 article-title: Fabrication of a ternary heterostructure BiVO4 quantum dots/C60/g-C3N4 photocatalyst with enhanced photocatalytic activity publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2019.109164 – volume: 157 start-page: 399 year: 2016 ident: 10.1016/j.cej.2021.132861_b0165 article-title: In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.07.007 – volume: 10 start-page: 3780 issue: 12 year: 1998 ident: 10.1016/j.cej.2021.132861_b0220 article-title: Titanium dioxide hollow microspheres with an extremely thin shell publication-title: Chem. Mater. doi: 10.1021/cm9805626 – volume: 2 start-page: 6378 issue: 10 year: 2019 ident: 10.1016/j.cej.2021.132861_b0270 article-title: Photocharge Trapping in Two-Sheet Reduced Graphene Oxide-Ti0.87O2 Heterostructures and Their Photoreduction and Photomemory Applications publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01348 – volume: 118 start-page: 8329 issue: 35 year: 1996 ident: 10.1016/j.cej.2021.132861_b0050 article-title: Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960073b – volume: 45 start-page: 2239 issue: 8 year: 2016 ident: 10.1016/j.cej.2021.132861_b0115 article-title: Quantum dots derived from two-dimensional materials and their applications for catalysis and energy publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00811E – volume: 2 start-page: 15774 year: 2014 ident: 10.1016/j.cej.2021.132861_b0155 article-title: Hybridization of brookite TiO2 with g-C3N4: a visible-light-driven photocatalyst for As3+ oxidation, MO degradation and water splitting for hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02082K – volume: 129 start-page: 9552 issue: 31 year: 2007 ident: 10.1016/j.cej.2021.132861_b0320 article-title: Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria publication-title: J. Am. Chem. Soc. doi: 10.1021/ja072492m – volume: 137 start-page: 239 issue: 1 year: 2015 ident: 10.1016/j.cej.2021.132861_b0080 article-title: Photocatalytic reaction centers in two-dimensional titanium oxide crystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509970z |
SSID | ssj0006919 |
Score | 2.639693 |
Snippet | [Display omitted]
•TiO2 nanoflakes/g-C3N4 QDs were prepared by a facile calcination process.•g-C3N4 QDs were intimately hybridized with the giant TiO2... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 132861 |
SubjectTerms | Direct Z-scheme g-C3N4 QDs Photocatalytic hydrogen evolution Photodegradation TiO2 nanoflakes |
Title | Direct Z-scheme construction of g-C3N4 quantum dots / TiO2 nanoflakes for efficient photocatalysis |
URI | https://dx.doi.org/10.1016/j.cej.2021.132861 |
Volume | 430 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGTkD72leYoRakWK2iL4iVkNrvaqkml7dXf7mwetoJ68BQIuxC-WWbmy8x-Q8iJsEpp7iwQS-kJycADjCyeD9YEvsEAErkLztd91R2Kqwf5UCGd8i6Ma6ssfH_u0zNvXbxpFGg2JqNR467lalqBQArTFIIrp_gphO9Oef1j0eahgmy4h1vsudVlZTPr8dJmjBSRterIydqq9XNsWoo3FxtkvUgU6Vn-LZukYpItsrYkH7hNIPdX9NFDimreDNXpQg-WppY-eR3eF_R9jvDN3ygS0Clt0MHohtEkSlL7Gr2YKcW0lZpMSQIDEJ08p7M0-6njtEp2yPDifNDpesXMBE8jBDPklUpB7BsJsgWOTwHHBAnzjjZwFkR-zJQG6VspIiEgVk3QgQIOxgpjXdV2l1STNDF7hArLmdXNmGtuBGMGLFIzGQWqLcHGgdwnzRKtUBeC4m6uxWtYdo6NQwQ4dACHOcD75PRryyRX0_hrsShNEH47EiF6-9-3Hfxv2yFZZe5mg5v1Io9IFa1ljjHfmEEtO1A1snJ22ev23bN3e9_7BPQH1Kk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCp2fOCEFNp6S3NEFahs5UCREJco49jQAkkR5f8ZZ2GRgAPXyCNZb6yZeRn7DcC-dFob4T2QKhVIxTFAyixBiM5GoaUEkvgHzpd93buRZ7fqdgq69VsYf62yiv1lTC-idfWlWaHZHA-Hzeu272lFkihMS0qhxTTMeHUq1YCZo9PzXv8jIOuomO_h1wfeoG5uFte8jB0RS-TtQ6JlHd3-OT19STkni7BQ1YrsqNzOEkzZbBnmvygIrgCWIYvdBcRS7bNlJv-UhGW5Y_dBV_Qle3kjBN-eGXHQV9Zkg-EVZ1mS5e4pebSvjCpXZgsxCcpBbPyQT_Liv46XK1mFm5PjQbcXVGMTAkMoTIhaao1paBWqNnpKhYJqJCo9Oih4lIQp1wZV6JRMpMRUt9BEGgVaJ63zjds1aGR5ZteBSSe4M61UGGEl5xYdsTOVRLqj0KWR2oBWjVZsKk1xP9riKa4vj41iAjj2AMclwBtw8GEyLgU1_losaxfE305FTAH_d7PN_5ntwWxvcHkRX5z2z7dgjvuHDn70i9qGBnnO7lD5McHd6ni9A6S_1bc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Z-scheme+construction+of+g-C3N4+quantum+dots+%2F+TiO2+nanoflakes+for+efficient+photocatalysis&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Xu%2C+Chengqun&rft.au=Li%2C+Dezhi&rft.au=Liu%2C+Xiaolu&rft.au=Ma%2C+Renzhi&rft.date=2022-02-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=430&rft_id=info:doi/10.1016%2Fj.cej.2021.132861&rft.externalDocID=S1385894721044363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |