A data-driven surrogate modeling approach for time-dependent incompressible Navier-Stokes equations with dynamic mode decomposition and manifold interpolation

This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition, and manifold interpolation, the proposed approach allows to accur...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 49; no. 2
Main Authors Hess, Martin W., Quaini, Annalisa, Rozza, Gianluigi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition, and manifold interpolation, the proposed approach allows to accurately recover field solutions from a few large-scale simulations. Numerical experiments for the Rayleigh-Bénard cavity problem show the effectiveness of such multi-step procedure in two parametric regimes, i.e., medium and high Grashof number. The latter regime is particularly challenging as it nears the onset of turbulent and chaotic behavior. A major advantage of the proposed method in the context of time-periodic solutions is the ability to recover frequencies that are not present in the sampled data.
AbstractList This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition, and manifold interpolation, the proposed approach allows to accurately recover field solutions from a few large-scale simulations. Numerical experiments for the Rayleigh-Bénard cavity problem show the effectiveness of such multi-step procedure in two parametric regimes, i.e., medium and high Grashof number. The latter regime is particularly challenging as it nears the onset of turbulent and chaotic behavior. A major advantage of the proposed method in the context of time-periodic solutions is the ability to recover frequencies that are not present in the sampled data.
ArticleNumber 22
Author Quaini, Annalisa
Hess, Martin W.
Rozza, Gianluigi
Author_xml – sequence: 1
  givenname: Martin W.
  surname: Hess
  fullname: Hess, Martin W.
  email: mhess@sissa.it
  organization: mathLab, SISSA
– sequence: 2
  givenname: Annalisa
  surname: Quaini
  fullname: Quaini, Annalisa
  email: quaini@math.uh.edu
  organization: Department of Mathematics, University of Houston
– sequence: 3
  givenname: Gianluigi
  orcidid: 0000-0002-0810-8812
  surname: Rozza
  fullname: Rozza, Gianluigi
  email: gianluigi.rozza@sissa.it
  organization: mathLab, SISSA
BookMark eNp9kU1uHCEQhVHkSLGdXCArpKxJoH-AXlpWEluykkWcNaqG6jFON7SBsTWXyVnNzESK5IVXgOp9r6p4Z-QkxICEfBT8s-BcfcmCd13HeNOy-haSdW_IqehVw4ZaOKl3LgamhNTvyFnO95zzQar-lPy9oA4KMJf8IwaatynFDRSkS3Q4-7ChsK4pgr2jU0y0-AWZwxWDw1CoDzYua8Kc_Tgj_QGPHhP7VeIfzBQftlB8DJk--XJH3S7A4u3BmDrcgzH7vYBCcHSB4Kc4u-pZMK1xPrDvydsJ5owf_p3n5Pe3r7eXV-zm5_fry4sbZlvZFtYLjqCkEop3oxywa_io9ChdOwlpB-jrx_TTxDk20GjUI9T9e2tR27534Npz8unoW3d92GIu5j5uU6gtTaO01nIYBlVV-qiyKeaccDLWl8OcJYGfjeBmn4Y5pmFqU3NIw3QVbV6ga_ILpN3rUHuEchWHDab_U71CPQPP5KMz
CitedBy_id crossref_primary_10_1016_j_jcp_2023_112354
crossref_primary_10_1016_j_finel_2023_104050
crossref_primary_10_1016_j_apm_2024_08_006
crossref_primary_10_3390_fluids9080178
crossref_primary_10_1016_j_jcp_2025_113728
crossref_primary_10_2478_ama_2024_0064
crossref_primary_10_5194_wes_10_559_2025
crossref_primary_10_1016_j_rinp_2023_106774
crossref_primary_10_1038_s41598_024_64985_7
crossref_primary_10_1137_22M1481658
crossref_primary_10_1016_j_jcp_2023_112621
crossref_primary_10_1115_1_4067522
Cites_doi 10.1137/15M104565X
10.21105/joss.00530
10.1515/9783110499001
10.1137/1.9781611977257.ch15
10.1186/s40323-020-00177-y
10.1137/100813051
10.1016/j.cma.2020.113269
10.1515/9783110498967
10.1137/15M1054924
10.1073/pnas.1517384113
10.1137/1.9781611974508
10.1007/978-3-319-10705-9_42
10.1063/1.4913868
10.1016/j.compfluid.2015.06.032
10.1016/j.jcp.2018.02.037
10.1007/s10915-019-01003-3
10.1524/auto.2010.0863
10.1016/j.jcp.2017.05.010
10.1553/etna_vol56s52
10.1115/1.3111075
10.1007/978-3-319-22470-1
10.1016/0045-7949(83)90148-7
10.1515/9783110671490
10.1017/S0022112099004796
10.1002/nme.1620191206
10.1137/20M1313106
10.1137/130949282
10.1137/17M1125236
10.1073/pnas.17.5.315
10.1016/j.jcp.2021.110907
10.1137/130942462
10.1016/0960-8974(94)00013-J
10.1017/S0022112010001217
10.1515/9783110671490-005
10.1515/9783110499001-009
10.1016/j.cma.2013.02.018
10.1137/130932715
10.1016/j.cma.2019.03.050
10.1515/9783110498967-007
10.1007/s10915-017-0419-6
10.1016/0021-9991(91)90007-8
10.1007/978-3-319-02090-7_9
10.1016/0045-7825(82)90096-2
10.1137/S0036142901395400
10.1002/fld.2089
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10444-023-10016-4
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_023_10016_4
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 681447
  funderid: https://doi.org/10.13039/100010663
– fundername: Scuola Internazionale Superiore di Studi Avanzati - SISSA
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-510ea7671704b69e420b78b6d3f16c9a50235ff00e2a28e8ba0095cce8c55dad3
IEDL.DBID U2A
ISSN 1019-7168
IngestDate Fri Jul 25 10:56:39 EDT 2025
Tue Jul 01 02:55:36 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Fri Feb 21 02:43:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 35Q35 65M22 76E30 76M22
Spectral element method
Model order reduction
Computational fluid dynamics
Manifold interpolation
Dynamic mode decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-510ea7671704b69e420b78b6d3f16c9a50235ff00e2a28e8ba0095cce8c55dad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0810-8812
OpenAccessLink https://link.springer.com/10.1007/s10444-023-10016-4
PQID 2788869997
PQPubID 2043875
ParticipantIDs proquest_journals_2788869997
crossref_citationtrail_10_1007_s10444_023_10016_4
crossref_primary_10_1007_s10444_023_10016_4
springer_journals_10_1007_s10444_023_10016_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GaoZLinYSunXZengXA reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest-neighbors regressionJ. Comput. Phys.2021452C110907436182510.1016/j.jcp.2021.11090707517736
KakimotoKFlow instability during crystal growth from the meltProg. Cryst. Growth Charact. Mater.199530219121510.1016/0960-8974(94)00013-J
BruntonSLTuJHBrightIKutzJNCompressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systemsSIAM J. Appl. Dyn. Syst.201413417161732328455810.1137/1309492821354.37078
Farhat, C., Grimberg, S., Manzoni, A., Quarteroni, A.: Computational Bottlenecks for PROMs: Precomputation and Hyperreduction. Volume 2: Snapshot-Based Methods and Algorithms, pp. 181–244. De Gruyter. https://doi.org/10.1515/9783110671490-005 (2021)
Pichi, F., Strazzullo, M., Ballarin, F., Rozza, G.: Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction. ArXiv preprint (2020)
PittonGRozzaGOn the application of reduced basis methods to bifurcation problems in incompressible fluid dynamicsJ. Sci. Comput.2017731157177370484810.1007/s10915-017-0419-61433.76122
PlaFHerreroHVegaJA flexible symmetry-preserving Galerkin/POD reduced order model applied to a convective instability problemComput. Fluids2015119162175338319210.1016/j.compfluid.2015.06.0321390.76348
ArbabiHMezićIErgodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operatorSIAM J. Appl. Dyn. Syst.201716420962126372036410.1137/17M11252361381.37096
Le ClaincheSVegaJMHigher order dynamic mode decompositionSIAM J. Appl. Dyn. Syst.2017162882925364806510.1137/15M10549241373.37169
Andreuzzi, F., Demo, N., Rozza, G.: A dynamic mode decomposition extension for the forecasting of parametric dynamical system. ArXiv preprint (2021)
Loiseau, J.-C., Brunton, S.L., Noack, B.R.: From the POD-Galerkin Method to Sparse Manifold Models. Volume 3: Applications, pp. 279–320. De Gruyter. https://doi.org/10.1515/9783110499001-009 (2021)
HessMWQuainiARozzaGA comparison of reduced-order modeling approaches using artificial neural networks for PDEs with bifurcating solutionsETNA - Electronic Transactions on Numerical Analysis2022565265435539410.1553/etna_vol56s521487.65195
HessMWAllaAQuainiARozzaGGunzburgerMA localized reduced-order modeling approach for PDEs with bifurcating solutionsComput. Methods Appl. Mech. Engrg.2019351379403393960510.1016/j.cma.2019.03.0501441.65082
Hesthaven, J., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations springer (2015)
Benner, P., Feng, L., Li, S., Zhang, Y.: Reduced-Order Modeling and Rom-Based Optimization of Batch Chromatography. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds.) Numerical Mathematics and Advanced Applications - ENUMATH 2013, pp. 427–435. Springer (2015)
GiovanisDGShieldsMDData-driven surrogates for high dimensional models using gaussian process regression on the Grassmann manifoldComput. Methods Appl. Mech. Eng.2020370113269412371510.1016/j.cma.2020.11326907337126
BruntonSLProctorJLKutzJNDiscovering governing equations from data by sparse identification of nonlinear dynamical systemsProc. Natl. Acad. Sci.20161131539323937349408110.1073/pnas.15173841131355.94013
KarniadakisGEOrszagSAIsraeliMHigh-order splitting methods for the incompressible Navier-Stokes equationsJ. Comput. Phys.199197414443113760710.1016/0021-9991(91)90007-80738.76050
ZimmermannRA locally parametrized reduced-order model for the linear frequency domain approach to time-accurate computational fluid dynamicsSIAM J. Sci. Comput.2014363508537321380510.1137/1309424621347.76032
Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 1: System- and Data-Driven Methods and Algorithms De Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110498967
Khamlich, M., Pichi, F., Rozza, G.: Model order reduction for bifurcating phenomena in fluid-structure interaction problems. ArXiv preprint (2021)
PichiFQuainiARozzaGA reduced order modeling technique to study bifurcating phenomena: application to the Gross–Pitaevskii equationSIAM J. Sci. Comput.202042511151135414341810.1137/20M13131061451.65227
PittonGQuainiARozzaGComputational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to Coanda effect in cardiologyJ. Comput. Phys.2017344534557365675510.1016/j.jcp.2017.05.010
KramerBGroverPBoufounosPNabiSBenosmanMSparse sensing and DMD-based identification of flow regimes and bifurcations in complex flowsSIAM J. Appl. Dyn. Syst.201716211641196366518510.1137/15M104565X1373.37185
SchmidPJDynamic mode decomposition of numerical and experimental dataJ. Fluid Mech.2010656528266994810.1017/S00221120100012171197.76091
Hesthaven, J., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys., 363. https://doi.org/10.1016/j.jcp.2018.02.037 (2018)
Pichi, F., Ballarin, F., Rozza, G., Hesthaven, J.S.: An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. ArXiv preprint (2021)
AmsallemDFarhatCAn online method for interpolating linear parametric reduced-order modelsSIAM J. Sci. Comput.201133521692198283752810.1137/1008130511269.65059
NoorARecent advances and applications of reduction methodsASME Appl. Mech. Rev.199454712514610.1115/1.3111075
GuermondJLShenJVelocity-correction projection methods for incompressible flowsSIAM J. Numer. Anal.2003411112134197449410.1137/S00361429013954001130.76395
NoorAPetersJRecent advances in reduction methods for instability analysis of structuresComput. Struct.1983161678010.1016/0045-7949(83)90148-70498.73094
SayadiTSchmidPJRichecoeurFDuroxDParametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systemsPhys. Fluids201527303710210.1063/1.4913868
Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic mode decomposition society for industrial and applied mathematics. https://doi.org/10.1137/1.9781611974508 (2016)
Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS’18, pp. 6572–6583. Curran Associates Inc. (2018)
KoopmanBOHamiltonian systems and transformation in Hilbert spaceProc. Natl. Acad. Sci. U.S.A.193117531531810.1073/pnas.17.5.3150002.05701
Tezzele, M., Demo, N., Stabile, G., Mola, A., Rozza, G.: Enhancing CFD predictions in shape design problems by model and parameter space reduction. Adv. Model. Simul. Eng. Sci. 7(40). https://doi.org/10.1186/s40323-020-00177-y (2020)
NoorAOn making large nonlinear problems smallComput. Methods Appl. Mech. Eng.198234195598567933710.1016/0045-7825(82)90096-20478.65031
DemoNTezzeleMRozzaGPydmd: python dynamic mode decompositionJ. Open Source Softw.201832253010.21105/joss.00530
Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms De Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110671490
HerreroHMadayYPlaFRB (reduced basis) for RB (Rayleigh-Bénard)Comput. Methods Appl. Mech. Eng.2013261-26213214110.1016/j.cma.2013.02.0181286.76084
NoorAPetersJMultiple-parameter reduced basis technique for bifurcation and post-buckling analyses of composite materialeInt. J. Numer. Methods Eng.1983191783180310.1002/nme.16201912060557.73070
PichiFRozzaGReduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equationsJ. Sci. Comput.201981112135400274010.1007/s10915-019-01003-31427.35275
Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model Order Reduction in Fluid Dynamics: Challenges and Perspectives. In: Quarteroni, A., Rozza, G (eds.) Reduced Order Methods for Modeling and Computational Reduction. Modeling, Simulation and Applications. Chap 9, vol. 9, pp 235–273. Springer, Milano (2014)
DegrooteJVierendeelsJWillcoxKInterpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysisInt. J. Numer. Methods Fluids2010632207230266237410.1002/fld.20891188.65110
PeuscherHMohringJEidRLohmannBParametric model order reduction by matrix interpolationAutomatisierungstechnik20105847548410.1524/auto.2010.0863
BennerPGugercinSWillcoxKA survey of projection-based model reduction methods for parametric dynamical systemsSIAM Rev.2015574483531341986810.1137/1309327151339.37089
Gelfgat, A.Y., Bar-Yoseph, P.Z., Yarin, A.L.: Stability of multiple steady states of convection in laterally heated cavities. J. Fluid Mech. 388, 315–334 (1999)
Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 3: Applications D Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110499001
Zimmermann, R.: Manifold Interpolation. Volume 1 System- and Data-Driven Methods and Algorithms, pp. 229–274. De Gruyter. https://doi.org/10.1515/9783110498967-007 (2021)
SL Brunton (10016_CR23) 2016; 113
10016_CR3
MW Hess (10016_CR19) 2019; 351
10016_CR2
10016_CR1
R Zimmermann (10016_CR49) 2014; 36
PJ Schmid (10016_CR26) 2010; 656
H Herrero (10016_CR8) 2013; 261-262
10016_CR29
F Pichi (10016_CR15) 2020; 42
10016_CR22
10016_CR25
F Pichi (10016_CR12) 2019; 81
J Degroote (10016_CR45) 2010; 63
10016_CR21
10016_CR20
T Sayadi (10016_CR28) 2015; 27
A Noor (10016_CR4) 1982; 34
SL Brunton (10016_CR16) 2014; 13
G Pitton (10016_CR11) 2017; 344
B Kramer (10016_CR17) 2017; 16
A Noor (10016_CR5) 1994; 5
P Benner (10016_CR44) 2015; 57
10016_CR14
10016_CR13
JL Guermond (10016_CR35) 2003; 41
Z Gao (10016_CR27) 2021; 452
A Noor (10016_CR7) 1983; 16
GE Karniadakis (10016_CR36) 1991; 97
BO Koopman (10016_CR24) 1931; 17
DG Giovanis (10016_CR50) 2020; 370
K Kakimoto (10016_CR34) 1995; 30
10016_CR47
10016_CR46
D Amsallem (10016_CR43) 2011; 33
S Le Clainche (10016_CR41) 2017; 16
F Pla (10016_CR9) 2015; 119
G Pitton (10016_CR10) 2017; 73
H Arbabi (10016_CR42) 2017; 16
MW Hess (10016_CR18) 2022; 56
10016_CR38
10016_CR37
10016_CR39
N Demo (10016_CR40) 2018; 3
10016_CR30
A Noor (10016_CR6) 1983; 19
H Peuscher (10016_CR48) 2010; 58
10016_CR32
10016_CR31
References_xml – reference: KakimotoKFlow instability during crystal growth from the meltProg. Cryst. Growth Charact. Mater.199530219121510.1016/0960-8974(94)00013-J
– reference: Pichi, F., Strazzullo, M., Ballarin, F., Rozza, G.: Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction. ArXiv preprint (2020)
– reference: HessMWAllaAQuainiARozzaGGunzburgerMA localized reduced-order modeling approach for PDEs with bifurcating solutionsComput. Methods Appl. Mech. Engrg.2019351379403393960510.1016/j.cma.2019.03.0501441.65082
– reference: PeuscherHMohringJEidRLohmannBParametric model order reduction by matrix interpolationAutomatisierungstechnik20105847548410.1524/auto.2010.0863
– reference: Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model Order Reduction in Fluid Dynamics: Challenges and Perspectives. In: Quarteroni, A., Rozza, G (eds.) Reduced Order Methods for Modeling and Computational Reduction. Modeling, Simulation and Applications. Chap 9, vol. 9, pp 235–273. Springer, Milano (2014)
– reference: Benner, P., Feng, L., Li, S., Zhang, Y.: Reduced-Order Modeling and Rom-Based Optimization of Batch Chromatography. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds.) Numerical Mathematics and Advanced Applications - ENUMATH 2013, pp. 427–435. Springer (2015)
– reference: Gelfgat, A.Y., Bar-Yoseph, P.Z., Yarin, A.L.: Stability of multiple steady states of convection in laterally heated cavities. J. Fluid Mech. 388, 315–334 (1999)
– reference: Farhat, C., Grimberg, S., Manzoni, A., Quarteroni, A.: Computational Bottlenecks for PROMs: Precomputation and Hyperreduction. Volume 2: Snapshot-Based Methods and Algorithms, pp. 181–244. De Gruyter. https://doi.org/10.1515/9783110671490-005 (2021)
– reference: Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms De Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110671490
– reference: SchmidPJDynamic mode decomposition of numerical and experimental dataJ. Fluid Mech.2010656528266994810.1017/S00221120100012171197.76091
– reference: HessMWQuainiARozzaGA comparison of reduced-order modeling approaches using artificial neural networks for PDEs with bifurcating solutionsETNA - Electronic Transactions on Numerical Analysis2022565265435539410.1553/etna_vol56s521487.65195
– reference: Le ClaincheSVegaJMHigher order dynamic mode decompositionSIAM J. Appl. Dyn. Syst.2017162882925364806510.1137/15M10549241373.37169
– reference: PichiFRozzaGReduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equationsJ. Sci. Comput.201981112135400274010.1007/s10915-019-01003-31427.35275
– reference: Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 3: Applications D Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110499001
– reference: ZimmermannRA locally parametrized reduced-order model for the linear frequency domain approach to time-accurate computational fluid dynamicsSIAM J. Sci. Comput.2014363508537321380510.1137/1309424621347.76032
– reference: ArbabiHMezićIErgodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operatorSIAM J. Appl. Dyn. Syst.201716420962126372036410.1137/17M11252361381.37096
– reference: PlaFHerreroHVegaJA flexible symmetry-preserving Galerkin/POD reduced order model applied to a convective instability problemComput. Fluids2015119162175338319210.1016/j.compfluid.2015.06.0321390.76348
– reference: Hesthaven, J., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys., 363. https://doi.org/10.1016/j.jcp.2018.02.037 (2018)
– reference: NoorAOn making large nonlinear problems smallComput. Methods Appl. Mech. Eng.198234195598567933710.1016/0045-7825(82)90096-20478.65031
– reference: KarniadakisGEOrszagSAIsraeliMHigh-order splitting methods for the incompressible Navier-Stokes equationsJ. Comput. Phys.199197414443113760710.1016/0021-9991(91)90007-80738.76050
– reference: AmsallemDFarhatCAn online method for interpolating linear parametric reduced-order modelsSIAM J. Sci. Comput.201133521692198283752810.1137/1008130511269.65059
– reference: Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS’18, pp. 6572–6583. Curran Associates Inc. (2018)
– reference: GuermondJLShenJVelocity-correction projection methods for incompressible flowsSIAM J. Numer. Anal.2003411112134197449410.1137/S00361429013954001130.76395
– reference: NoorARecent advances and applications of reduction methodsASME Appl. Mech. Rev.199454712514610.1115/1.3111075
– reference: BruntonSLProctorJLKutzJNDiscovering governing equations from data by sparse identification of nonlinear dynamical systemsProc. Natl. Acad. Sci.20161131539323937349408110.1073/pnas.15173841131355.94013
– reference: PittonGQuainiARozzaGComputational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to Coanda effect in cardiologyJ. Comput. Phys.2017344534557365675510.1016/j.jcp.2017.05.010
– reference: Loiseau, J.-C., Brunton, S.L., Noack, B.R.: From the POD-Galerkin Method to Sparse Manifold Models. Volume 3: Applications, pp. 279–320. De Gruyter. https://doi.org/10.1515/9783110499001-009 (2021)
– reference: PittonGRozzaGOn the application of reduced basis methods to bifurcation problems in incompressible fluid dynamicsJ. Sci. Comput.2017731157177370484810.1007/s10915-017-0419-61433.76122
– reference: Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic mode decomposition society for industrial and applied mathematics. https://doi.org/10.1137/1.9781611974508 (2016)
– reference: Andreuzzi, F., Demo, N., Rozza, G.: A dynamic mode decomposition extension for the forecasting of parametric dynamical system. ArXiv preprint (2021)
– reference: BennerPGugercinSWillcoxKA survey of projection-based model reduction methods for parametric dynamical systemsSIAM Rev.2015574483531341986810.1137/1309327151339.37089
– reference: PichiFQuainiARozzaGA reduced order modeling technique to study bifurcating phenomena: application to the Gross–Pitaevskii equationSIAM J. Sci. Comput.202042511151135414341810.1137/20M13131061451.65227
– reference: Pichi, F., Ballarin, F., Rozza, G., Hesthaven, J.S.: An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. ArXiv preprint (2021)
– reference: HerreroHMadayYPlaFRB (reduced basis) for RB (Rayleigh-Bénard)Comput. Methods Appl. Mech. Eng.2013261-26213214110.1016/j.cma.2013.02.0181286.76084
– reference: NoorAPetersJMultiple-parameter reduced basis technique for bifurcation and post-buckling analyses of composite materialeInt. J. Numer. Methods Eng.1983191783180310.1002/nme.16201912060557.73070
– reference: DemoNTezzeleMRozzaGPydmd: python dynamic mode decompositionJ. Open Source Softw.201832253010.21105/joss.00530
– reference: Zimmermann, R.: Manifold Interpolation. Volume 1 System- and Data-Driven Methods and Algorithms, pp. 229–274. De Gruyter. https://doi.org/10.1515/9783110498967-007 (2021)
– reference: KoopmanBOHamiltonian systems and transformation in Hilbert spaceProc. Natl. Acad. Sci. U.S.A.193117531531810.1073/pnas.17.5.3150002.05701
– reference: DegrooteJVierendeelsJWillcoxKInterpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysisInt. J. Numer. Methods Fluids2010632207230266237410.1002/fld.20891188.65110
– reference: Tezzele, M., Demo, N., Stabile, G., Mola, A., Rozza, G.: Enhancing CFD predictions in shape design problems by model and parameter space reduction. Adv. Model. Simul. Eng. Sci. 7(40). https://doi.org/10.1186/s40323-020-00177-y (2020)
– reference: Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 1: System- and Data-Driven Methods and Algorithms De Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110498967
– reference: SayadiTSchmidPJRichecoeurFDuroxDParametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systemsPhys. Fluids201527303710210.1063/1.4913868
– reference: GaoZLinYSunXZengXA reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest-neighbors regressionJ. Comput. Phys.2021452C110907436182510.1016/j.jcp.2021.11090707517736
– reference: GiovanisDGShieldsMDData-driven surrogates for high dimensional models using gaussian process regression on the Grassmann manifoldComput. Methods Appl. Mech. Eng.2020370113269412371510.1016/j.cma.2020.11326907337126
– reference: Khamlich, M., Pichi, F., Rozza, G.: Model order reduction for bifurcating phenomena in fluid-structure interaction problems. ArXiv preprint (2021)
– reference: NoorAPetersJRecent advances in reduction methods for instability analysis of structuresComput. Struct.1983161678010.1016/0045-7949(83)90148-70498.73094
– reference: BruntonSLTuJHBrightIKutzJNCompressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systemsSIAM J. Appl. Dyn. Syst.201413417161732328455810.1137/1309492821354.37078
– reference: Hesthaven, J., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations springer (2015)
– reference: KramerBGroverPBoufounosPNabiSBenosmanMSparse sensing and DMD-based identification of flow regimes and bifurcations in complex flowsSIAM J. Appl. Dyn. Syst.201716211641196366518510.1137/15M104565X1373.37185
– ident: 10016_CR22
– volume: 16
  start-page: 1164
  issue: 2
  year: 2017
  ident: 10016_CR17
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/15M104565X
– volume: 3
  start-page: 530
  issue: 22
  year: 2018
  ident: 10016_CR40
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00530
– ident: 10016_CR3
  doi: 10.1515/9783110499001
– ident: 10016_CR14
  doi: 10.1137/1.9781611977257.ch15
– ident: 10016_CR29
  doi: 10.1186/s40323-020-00177-y
– volume: 33
  start-page: 2169
  issue: 5
  year: 2011
  ident: 10016_CR43
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100813051
– volume: 370
  start-page: 113269
  year: 2020
  ident: 10016_CR50
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113269
– ident: 10016_CR1
  doi: 10.1515/9783110498967
– volume: 16
  start-page: 882
  issue: 2
  year: 2017
  ident: 10016_CR41
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/15M1054924
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 10016_CR23
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– ident: 10016_CR25
  doi: 10.1137/1.9781611974508
– ident: 10016_CR39
  doi: 10.1007/978-3-319-10705-9_42
– volume: 27
  start-page: 037102
  issue: 3
  year: 2015
  ident: 10016_CR28
  publication-title: Phys. Fluids
  doi: 10.1063/1.4913868
– volume: 119
  start-page: 162
  year: 2015
  ident: 10016_CR9
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.06.032
– ident: 10016_CR20
  doi: 10.1016/j.jcp.2018.02.037
– volume: 81
  start-page: 112
  year: 2019
  ident: 10016_CR12
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-019-01003-3
– volume: 58
  start-page: 475
  year: 2010
  ident: 10016_CR48
  publication-title: Automatisierungstechnik
  doi: 10.1524/auto.2010.0863
– volume: 344
  start-page: 534
  year: 2017
  ident: 10016_CR11
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.05.010
– volume: 56
  start-page: 52
  year: 2022
  ident: 10016_CR18
  publication-title: ETNA - Electronic Transactions on Numerical Analysis
  doi: 10.1553/etna_vol56s52
– volume: 5
  start-page: 125
  issue: 47
  year: 1994
  ident: 10016_CR5
  publication-title: ASME Appl. Mech. Rev.
  doi: 10.1115/1.3111075
– ident: 10016_CR37
  doi: 10.1007/978-3-319-22470-1
– ident: 10016_CR13
– volume: 16
  start-page: 67
  issue: 1
  year: 1983
  ident: 10016_CR7
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(83)90148-7
– ident: 10016_CR30
– ident: 10016_CR2
  doi: 10.1515/9783110671490
– ident: 10016_CR32
  doi: 10.1017/S0022112099004796
– volume: 19
  start-page: 1783
  year: 1983
  ident: 10016_CR6
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620191206
– volume: 42
  start-page: 1115
  issue: 5
  year: 2020
  ident: 10016_CR15
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1313106
– volume: 13
  start-page: 1716
  issue: 4
  year: 2014
  ident: 10016_CR16
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/130949282
– volume: 16
  start-page: 2096
  issue: 4
  year: 2017
  ident: 10016_CR42
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/17M1125236
– volume: 17
  start-page: 315
  issue: 5
  year: 1931
  ident: 10016_CR24
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.17.5.315
– volume: 452
  start-page: 110907
  issue: C
  year: 2021
  ident: 10016_CR27
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110907
– volume: 36
  start-page: 508
  issue: 3
  year: 2014
  ident: 10016_CR49
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130942462
– volume: 30
  start-page: 191
  issue: 2
  year: 1995
  ident: 10016_CR34
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/0960-8974(94)00013-J
– volume: 656
  start-page: 5
  year: 2010
  ident: 10016_CR26
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010001217
– ident: 10016_CR46
  doi: 10.1515/9783110671490-005
– ident: 10016_CR47
  doi: 10.1515/9783110499001-009
– volume: 261-262
  start-page: 132
  year: 2013
  ident: 10016_CR8
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2013.02.018
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  ident: 10016_CR44
  publication-title: SIAM Rev.
  doi: 10.1137/130932715
– volume: 351
  start-page: 379
  year: 2019
  ident: 10016_CR19
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.03.050
– ident: 10016_CR21
– ident: 10016_CR31
  doi: 10.1515/9783110498967-007
– volume: 73
  start-page: 157
  issue: 1
  year: 2017
  ident: 10016_CR10
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0419-6
– volume: 97
  start-page: 414
  year: 1991
  ident: 10016_CR36
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(91)90007-8
– ident: 10016_CR38
  doi: 10.1007/978-3-319-02090-7_9
– volume: 34
  start-page: 955
  issue: 1
  year: 1982
  ident: 10016_CR4
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(82)90096-2
– volume: 41
  start-page: 112
  issue: 1
  year: 2003
  ident: 10016_CR35
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901395400
– volume: 63
  start-page: 207
  issue: 2
  year: 2010
  ident: 10016_CR45
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2089
SSID ssj0009675
Score 2.4174008
Snippet This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Grashof number
Interpolation
Manifolds
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Model reduction
Navier-Stokes equations
Partial differential equations
Proper Orthogonal Decomposition
Time dependence
Visualization
Title A data-driven surrogate modeling approach for time-dependent incompressible Navier-Stokes equations with dynamic mode decomposition and manifold interpolation
URI https://link.springer.com/article/10.1007/s10444-023-10016-4
https://www.proquest.com/docview/2788869997
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VuMCh5ammhWgO3OhKfqzXzjFEpKiIXEokOFn7lBAhaWPn7_Bb2bHXpK0AqScfvI_DN7szuzvzfQCnuUe1iBLNIp5qxnOnmTJZzmxmlJOJNbGjauTribic8h-32W0oCqu6bPfuSbLZqf8oduOcM-9jGPEGCcY3YCujs7u34mkyXFPtioZe19vagPnTQBFKZV4f4293tI4x_3kWbbzNeBc-hjARhy2ue_DBzvfhUwgZMSzIah92rl9oV6sDeBoiZXwys6Q9DKvVcrmgazJs9G78RNhRiKOPVZF05Vmnglsj8TQ8tnmxamZxIsllsp_14sFWaH-3nOAV0s0tmlbIvhkYjaWOIfsL5dwgkWq4xczgfSvj1SbcHcJ0fHEzumRBgIHpVKQ18-vVylz4E1_ElRhYnkQqL5QwqYuFHsiMyHKciyKbyKSwhZIUsWltC51lRpr0CDbni7n9DBinsbKxiuXAcZ7pvBBCFio1TrhYKyF7EHc4lDqwk5NIxqxc8yoTdqWfsmywK3kPzl76_Gq5Od5tfdzBW4Z1WpUJ3QAIHyTnPfjWQb7-_fZoX_6v-VfYJp36NuXnGDbr5cqe-GimVn3YGo7Pzyf0_X53ddGHjZEY9RuTfgYJWvKt
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuNAEC0xcJjhAAyLCGsd5ja05KXddo4oAoUluQxI3KxepdGEBGLzO3wrXXabaBAgcXYvh9flququeg_gV-5RLaJEs4inmvHcaaZMljObGeVkYk3sqBt5NBbDW355l90FmhzqhXnzfk8tbpxz5j0LI7Ygwfg3WOE-U6byvYEYLAh2RUOq609Yn_kcoAgNMu-v8b8TWkSWbx5DGx9zvgFrITjE0xbNn7Bkp5uwHgJFDGZYbcLq6JVstdqC51OkOk9m5vTnwuppPp_R5Rg2Kjd-I-yIw9FHqEhq8qzTvq2R2Bnu22pYNbE4luQo2Z969s9WaB9bJvAK6b4WTStf3yyMxtLEUPOFcmqQqDTcbGLwbyve1ZbZbcPt-dnNYMiC7ALTqUhr5q3Uylz4PC_iSvQtTyKVF0qY1MVC92VGFDnORZFNZFLYQkmK07S2hc4yI026A8vT2dTuAsZprGysYtl3nGc6L4SQhUqNEy7WSsgexB0OpQ6c5CSNMSkXbMqEXem3LBvsSt6D369zHlpGjk9HH3TwlsE6qzKhvF_40DjvwUkH-eLzx6vtfW34MXwf3oyuy-uL8dU-_CCl-rbo5wCW6_mTPfTxTK2OmoP8AuoX7ZI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21VELlQAtt1YVtmQO31iIfjpM9oqUraGGFBEjcIn9KqNssbMLf6W-tJ052oaKVOMcfh2dnnu2Z9wD2c49qESWaRTzVjOdOM2WynNnMKCcTa2JH1chnU3F8xb9fZ9cPqvjbbPf-STLUNJBKU9Uc3Bp38KDwjXPOfLxhpCEkGH8Jr_xJpX2oHYvxSnZXtFK7ft2NmD8ZFF3ZzNNjPA5NK7751xNpG3kmb2Gzo4x4GDDeghe22oY3HX3EbnPW27BxtpRgrd_B70Ok7E9mFvQ_w_p-sZjTlRm23jd-IuzlxNHzViSPedY74jZImg2_Qo6smlmcSgqf7KKZ_7Q12rugD14j3eKiCab27cBoLHXsMsFQVgZJYMPNZwZvgqVXSL57D1eTb5fjY9aZMTCdirRhfu9amQt_-ou4EiPLk0jlhRImdbHQI5mRcI5zUWQTmRS2UJLYm9a20FlmpEk_wFo1r-xHwDiNlY1VLEeO80znhRCyUKlxwsVaCTmAuMeh1J1SORlmzMqVxjJhV_opyxa7kg_gy7LPbdDp-G_rYQ9v2e3ZukzoNkB4wpwP4GsP-erzv0fbeV7zPVg_P5qUpyfTH7vwmuzrQybQENaaxb395ElOoz636_gPYzP12Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+surrogate+modeling+approach+for+time-dependent+incompressible+Navier-Stokes+equations+with+dynamic+mode+decomposition+and+manifold+interpolation&rft.jtitle=Advances+in+computational+mathematics&rft.au=Hess%2C+Martin+W&rft.au=Quaini+Annalisa&rft.au=Rozza+Gianluigi&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=49&rft.issue=2&rft_id=info:doi/10.1007%2Fs10444-023-10016-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon