A data-driven surrogate modeling approach for time-dependent incompressible Navier-Stokes equations with dynamic mode decomposition and manifold interpolation
This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition, and manifold interpolation, the proposed approach allows to accur...
Saved in:
Published in | Advances in computational mathematics Vol. 49; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition, and manifold interpolation, the proposed approach allows to accurately recover field solutions from a few large-scale simulations. Numerical experiments for the Rayleigh-Bénard cavity problem show the effectiveness of such multi-step procedure in two parametric regimes, i.e., medium and high Grashof number. The latter regime is particularly challenging as it nears the onset of turbulent and chaotic behavior. A major advantage of the proposed method in the context of time-periodic solutions is the ability to recover frequencies that are not present in the sampled data. |
---|---|
AbstractList | This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition, and manifold interpolation, the proposed approach allows to accurately recover field solutions from a few large-scale simulations. Numerical experiments for the Rayleigh-Bénard cavity problem show the effectiveness of such multi-step procedure in two parametric regimes, i.e., medium and high Grashof number. The latter regime is particularly challenging as it nears the onset of turbulent and chaotic behavior. A major advantage of the proposed method in the context of time-periodic solutions is the ability to recover frequencies that are not present in the sampled data. |
ArticleNumber | 22 |
Author | Quaini, Annalisa Hess, Martin W. Rozza, Gianluigi |
Author_xml | – sequence: 1 givenname: Martin W. surname: Hess fullname: Hess, Martin W. email: mhess@sissa.it organization: mathLab, SISSA – sequence: 2 givenname: Annalisa surname: Quaini fullname: Quaini, Annalisa email: quaini@math.uh.edu organization: Department of Mathematics, University of Houston – sequence: 3 givenname: Gianluigi orcidid: 0000-0002-0810-8812 surname: Rozza fullname: Rozza, Gianluigi email: gianluigi.rozza@sissa.it organization: mathLab, SISSA |
BookMark | eNp9kU1uHCEQhVHkSLGdXCArpKxJoH-AXlpWEluykkWcNaqG6jFON7SBsTWXyVnNzESK5IVXgOp9r6p4Z-QkxICEfBT8s-BcfcmCd13HeNOy-haSdW_IqehVw4ZaOKl3LgamhNTvyFnO95zzQar-lPy9oA4KMJf8IwaatynFDRSkS3Q4-7ChsK4pgr2jU0y0-AWZwxWDw1CoDzYua8Kc_Tgj_QGPHhP7VeIfzBQftlB8DJk--XJH3S7A4u3BmDrcgzH7vYBCcHSB4Kc4u-pZMK1xPrDvydsJ5owf_p3n5Pe3r7eXV-zm5_fry4sbZlvZFtYLjqCkEop3oxywa_io9ChdOwlpB-jrx_TTxDk20GjUI9T9e2tR27534Npz8unoW3d92GIu5j5uU6gtTaO01nIYBlVV-qiyKeaccDLWl8OcJYGfjeBmn4Y5pmFqU3NIw3QVbV6ga_ILpN3rUHuEchWHDab_U71CPQPP5KMz |
CitedBy_id | crossref_primary_10_1016_j_jcp_2023_112354 crossref_primary_10_1016_j_finel_2023_104050 crossref_primary_10_1016_j_apm_2024_08_006 crossref_primary_10_3390_fluids9080178 crossref_primary_10_1016_j_jcp_2025_113728 crossref_primary_10_2478_ama_2024_0064 crossref_primary_10_5194_wes_10_559_2025 crossref_primary_10_1016_j_rinp_2023_106774 crossref_primary_10_1038_s41598_024_64985_7 crossref_primary_10_1137_22M1481658 crossref_primary_10_1016_j_jcp_2023_112621 crossref_primary_10_1115_1_4067522 |
Cites_doi | 10.1137/15M104565X 10.21105/joss.00530 10.1515/9783110499001 10.1137/1.9781611977257.ch15 10.1186/s40323-020-00177-y 10.1137/100813051 10.1016/j.cma.2020.113269 10.1515/9783110498967 10.1137/15M1054924 10.1073/pnas.1517384113 10.1137/1.9781611974508 10.1007/978-3-319-10705-9_42 10.1063/1.4913868 10.1016/j.compfluid.2015.06.032 10.1016/j.jcp.2018.02.037 10.1007/s10915-019-01003-3 10.1524/auto.2010.0863 10.1016/j.jcp.2017.05.010 10.1553/etna_vol56s52 10.1115/1.3111075 10.1007/978-3-319-22470-1 10.1016/0045-7949(83)90148-7 10.1515/9783110671490 10.1017/S0022112099004796 10.1002/nme.1620191206 10.1137/20M1313106 10.1137/130949282 10.1137/17M1125236 10.1073/pnas.17.5.315 10.1016/j.jcp.2021.110907 10.1137/130942462 10.1016/0960-8974(94)00013-J 10.1017/S0022112010001217 10.1515/9783110671490-005 10.1515/9783110499001-009 10.1016/j.cma.2013.02.018 10.1137/130932715 10.1016/j.cma.2019.03.050 10.1515/9783110498967-007 10.1007/s10915-017-0419-6 10.1016/0021-9991(91)90007-8 10.1007/978-3-319-02090-7_9 10.1016/0045-7825(82)90096-2 10.1137/S0036142901395400 10.1002/fld.2089 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10444-023-10016-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_023_10016_4 |
GrantInformation_xml | – fundername: H2020 European Research Council grantid: 681447 funderid: https://doi.org/10.13039/100010663 – fundername: Scuola Internazionale Superiore di Studi Avanzati - SISSA |
GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-510ea7671704b69e420b78b6d3f16c9a50235ff00e2a28e8ba0095cce8c55dad3 |
IEDL.DBID | U2A |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 10:56:39 EDT 2025 Tue Jul 01 02:55:36 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Fri Feb 21 02:43:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 35Q35 65M22 76E30 76M22 Spectral element method Model order reduction Computational fluid dynamics Manifold interpolation Dynamic mode decomposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-510ea7671704b69e420b78b6d3f16c9a50235ff00e2a28e8ba0095cce8c55dad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0810-8812 |
OpenAccessLink | https://link.springer.com/10.1007/s10444-023-10016-4 |
PQID | 2788869997 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_2788869997 crossref_citationtrail_10_1007_s10444_023_10016_4 crossref_primary_10_1007_s10444_023_10016_4 springer_journals_10_1007_s10444_023_10016_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | GaoZLinYSunXZengXA reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest-neighbors regressionJ. Comput. Phys.2021452C110907436182510.1016/j.jcp.2021.11090707517736 KakimotoKFlow instability during crystal growth from the meltProg. Cryst. Growth Charact. Mater.199530219121510.1016/0960-8974(94)00013-J BruntonSLTuJHBrightIKutzJNCompressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systemsSIAM J. Appl. Dyn. Syst.201413417161732328455810.1137/1309492821354.37078 Farhat, C., Grimberg, S., Manzoni, A., Quarteroni, A.: Computational Bottlenecks for PROMs: Precomputation and Hyperreduction. Volume 2: Snapshot-Based Methods and Algorithms, pp. 181–244. De Gruyter. https://doi.org/10.1515/9783110671490-005 (2021) Pichi, F., Strazzullo, M., Ballarin, F., Rozza, G.: Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction. ArXiv preprint (2020) PittonGRozzaGOn the application of reduced basis methods to bifurcation problems in incompressible fluid dynamicsJ. Sci. Comput.2017731157177370484810.1007/s10915-017-0419-61433.76122 PlaFHerreroHVegaJA flexible symmetry-preserving Galerkin/POD reduced order model applied to a convective instability problemComput. Fluids2015119162175338319210.1016/j.compfluid.2015.06.0321390.76348 ArbabiHMezićIErgodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operatorSIAM J. Appl. Dyn. Syst.201716420962126372036410.1137/17M11252361381.37096 Le ClaincheSVegaJMHigher order dynamic mode decompositionSIAM J. Appl. Dyn. Syst.2017162882925364806510.1137/15M10549241373.37169 Andreuzzi, F., Demo, N., Rozza, G.: A dynamic mode decomposition extension for the forecasting of parametric dynamical system. ArXiv preprint (2021) Loiseau, J.-C., Brunton, S.L., Noack, B.R.: From the POD-Galerkin Method to Sparse Manifold Models. Volume 3: Applications, pp. 279–320. De Gruyter. https://doi.org/10.1515/9783110499001-009 (2021) HessMWQuainiARozzaGA comparison of reduced-order modeling approaches using artificial neural networks for PDEs with bifurcating solutionsETNA - Electronic Transactions on Numerical Analysis2022565265435539410.1553/etna_vol56s521487.65195 HessMWAllaAQuainiARozzaGGunzburgerMA localized reduced-order modeling approach for PDEs with bifurcating solutionsComput. Methods Appl. Mech. Engrg.2019351379403393960510.1016/j.cma.2019.03.0501441.65082 Hesthaven, J., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations springer (2015) Benner, P., Feng, L., Li, S., Zhang, Y.: Reduced-Order Modeling and Rom-Based Optimization of Batch Chromatography. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds.) Numerical Mathematics and Advanced Applications - ENUMATH 2013, pp. 427–435. Springer (2015) GiovanisDGShieldsMDData-driven surrogates for high dimensional models using gaussian process regression on the Grassmann manifoldComput. Methods Appl. Mech. Eng.2020370113269412371510.1016/j.cma.2020.11326907337126 BruntonSLProctorJLKutzJNDiscovering governing equations from data by sparse identification of nonlinear dynamical systemsProc. Natl. Acad. Sci.20161131539323937349408110.1073/pnas.15173841131355.94013 KarniadakisGEOrszagSAIsraeliMHigh-order splitting methods for the incompressible Navier-Stokes equationsJ. Comput. Phys.199197414443113760710.1016/0021-9991(91)90007-80738.76050 ZimmermannRA locally parametrized reduced-order model for the linear frequency domain approach to time-accurate computational fluid dynamicsSIAM J. Sci. Comput.2014363508537321380510.1137/1309424621347.76032 Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 1: System- and Data-Driven Methods and Algorithms De Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110498967 Khamlich, M., Pichi, F., Rozza, G.: Model order reduction for bifurcating phenomena in fluid-structure interaction problems. ArXiv preprint (2021) PichiFQuainiARozzaGA reduced order modeling technique to study bifurcating phenomena: application to the Gross–Pitaevskii equationSIAM J. Sci. Comput.202042511151135414341810.1137/20M13131061451.65227 PittonGQuainiARozzaGComputational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to Coanda effect in cardiologyJ. Comput. Phys.2017344534557365675510.1016/j.jcp.2017.05.010 KramerBGroverPBoufounosPNabiSBenosmanMSparse sensing and DMD-based identification of flow regimes and bifurcations in complex flowsSIAM J. Appl. Dyn. Syst.201716211641196366518510.1137/15M104565X1373.37185 SchmidPJDynamic mode decomposition of numerical and experimental dataJ. Fluid Mech.2010656528266994810.1017/S00221120100012171197.76091 Hesthaven, J., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys., 363. https://doi.org/10.1016/j.jcp.2018.02.037 (2018) Pichi, F., Ballarin, F., Rozza, G., Hesthaven, J.S.: An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. ArXiv preprint (2021) AmsallemDFarhatCAn online method for interpolating linear parametric reduced-order modelsSIAM J. Sci. Comput.201133521692198283752810.1137/1008130511269.65059 NoorARecent advances and applications of reduction methodsASME Appl. Mech. Rev.199454712514610.1115/1.3111075 GuermondJLShenJVelocity-correction projection methods for incompressible flowsSIAM J. Numer. Anal.2003411112134197449410.1137/S00361429013954001130.76395 NoorAPetersJRecent advances in reduction methods for instability analysis of structuresComput. Struct.1983161678010.1016/0045-7949(83)90148-70498.73094 SayadiTSchmidPJRichecoeurFDuroxDParametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systemsPhys. Fluids201527303710210.1063/1.4913868 Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic mode decomposition society for industrial and applied mathematics. https://doi.org/10.1137/1.9781611974508 (2016) Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS’18, pp. 6572–6583. Curran Associates Inc. (2018) KoopmanBOHamiltonian systems and transformation in Hilbert spaceProc. Natl. Acad. Sci. U.S.A.193117531531810.1073/pnas.17.5.3150002.05701 Tezzele, M., Demo, N., Stabile, G., Mola, A., Rozza, G.: Enhancing CFD predictions in shape design problems by model and parameter space reduction. Adv. Model. Simul. Eng. Sci. 7(40). https://doi.org/10.1186/s40323-020-00177-y (2020) NoorAOn making large nonlinear problems smallComput. Methods Appl. Mech. Eng.198234195598567933710.1016/0045-7825(82)90096-20478.65031 DemoNTezzeleMRozzaGPydmd: python dynamic mode decompositionJ. Open Source Softw.201832253010.21105/joss.00530 Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms De Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110671490 HerreroHMadayYPlaFRB (reduced basis) for RB (Rayleigh-Bénard)Comput. Methods Appl. Mech. Eng.2013261-26213214110.1016/j.cma.2013.02.0181286.76084 NoorAPetersJMultiple-parameter reduced basis technique for bifurcation and post-buckling analyses of composite materialeInt. J. Numer. Methods Eng.1983191783180310.1002/nme.16201912060557.73070 PichiFRozzaGReduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equationsJ. Sci. Comput.201981112135400274010.1007/s10915-019-01003-31427.35275 Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model Order Reduction in Fluid Dynamics: Challenges and Perspectives. In: Quarteroni, A., Rozza, G (eds.) Reduced Order Methods for Modeling and Computational Reduction. Modeling, Simulation and Applications. Chap 9, vol. 9, pp 235–273. Springer, Milano (2014) DegrooteJVierendeelsJWillcoxKInterpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysisInt. J. Numer. Methods Fluids2010632207230266237410.1002/fld.20891188.65110 PeuscherHMohringJEidRLohmannBParametric model order reduction by matrix interpolationAutomatisierungstechnik20105847548410.1524/auto.2010.0863 BennerPGugercinSWillcoxKA survey of projection-based model reduction methods for parametric dynamical systemsSIAM Rev.2015574483531341986810.1137/1309327151339.37089 Gelfgat, A.Y., Bar-Yoseph, P.Z., Yarin, A.L.: Stability of multiple steady states of convection in laterally heated cavities. J. Fluid Mech. 388, 315–334 (1999) Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 3: Applications D Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110499001 Zimmermann, R.: Manifold Interpolation. Volume 1 System- and Data-Driven Methods and Algorithms, pp. 229–274. De Gruyter. https://doi.org/10.1515/9783110498967-007 (2021) SL Brunton (10016_CR23) 2016; 113 10016_CR3 MW Hess (10016_CR19) 2019; 351 10016_CR2 10016_CR1 R Zimmermann (10016_CR49) 2014; 36 PJ Schmid (10016_CR26) 2010; 656 H Herrero (10016_CR8) 2013; 261-262 10016_CR29 F Pichi (10016_CR15) 2020; 42 10016_CR22 10016_CR25 F Pichi (10016_CR12) 2019; 81 J Degroote (10016_CR45) 2010; 63 10016_CR21 10016_CR20 T Sayadi (10016_CR28) 2015; 27 A Noor (10016_CR4) 1982; 34 SL Brunton (10016_CR16) 2014; 13 G Pitton (10016_CR11) 2017; 344 B Kramer (10016_CR17) 2017; 16 A Noor (10016_CR5) 1994; 5 P Benner (10016_CR44) 2015; 57 10016_CR14 10016_CR13 JL Guermond (10016_CR35) 2003; 41 Z Gao (10016_CR27) 2021; 452 A Noor (10016_CR7) 1983; 16 GE Karniadakis (10016_CR36) 1991; 97 BO Koopman (10016_CR24) 1931; 17 DG Giovanis (10016_CR50) 2020; 370 K Kakimoto (10016_CR34) 1995; 30 10016_CR47 10016_CR46 D Amsallem (10016_CR43) 2011; 33 S Le Clainche (10016_CR41) 2017; 16 F Pla (10016_CR9) 2015; 119 G Pitton (10016_CR10) 2017; 73 H Arbabi (10016_CR42) 2017; 16 MW Hess (10016_CR18) 2022; 56 10016_CR38 10016_CR37 10016_CR39 N Demo (10016_CR40) 2018; 3 10016_CR30 A Noor (10016_CR6) 1983; 19 H Peuscher (10016_CR48) 2010; 58 10016_CR32 10016_CR31 |
References_xml | – reference: KakimotoKFlow instability during crystal growth from the meltProg. Cryst. Growth Charact. Mater.199530219121510.1016/0960-8974(94)00013-J – reference: Pichi, F., Strazzullo, M., Ballarin, F., Rozza, G.: Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction. ArXiv preprint (2020) – reference: HessMWAllaAQuainiARozzaGGunzburgerMA localized reduced-order modeling approach for PDEs with bifurcating solutionsComput. Methods Appl. Mech. Engrg.2019351379403393960510.1016/j.cma.2019.03.0501441.65082 – reference: PeuscherHMohringJEidRLohmannBParametric model order reduction by matrix interpolationAutomatisierungstechnik20105847548410.1524/auto.2010.0863 – reference: Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model Order Reduction in Fluid Dynamics: Challenges and Perspectives. In: Quarteroni, A., Rozza, G (eds.) Reduced Order Methods for Modeling and Computational Reduction. Modeling, Simulation and Applications. Chap 9, vol. 9, pp 235–273. Springer, Milano (2014) – reference: Benner, P., Feng, L., Li, S., Zhang, Y.: Reduced-Order Modeling and Rom-Based Optimization of Batch Chromatography. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds.) Numerical Mathematics and Advanced Applications - ENUMATH 2013, pp. 427–435. Springer (2015) – reference: Gelfgat, A.Y., Bar-Yoseph, P.Z., Yarin, A.L.: Stability of multiple steady states of convection in laterally heated cavities. J. Fluid Mech. 388, 315–334 (1999) – reference: Farhat, C., Grimberg, S., Manzoni, A., Quarteroni, A.: Computational Bottlenecks for PROMs: Precomputation and Hyperreduction. Volume 2: Snapshot-Based Methods and Algorithms, pp. 181–244. De Gruyter. https://doi.org/10.1515/9783110671490-005 (2021) – reference: Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms De Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110671490 – reference: SchmidPJDynamic mode decomposition of numerical and experimental dataJ. Fluid Mech.2010656528266994810.1017/S00221120100012171197.76091 – reference: HessMWQuainiARozzaGA comparison of reduced-order modeling approaches using artificial neural networks for PDEs with bifurcating solutionsETNA - Electronic Transactions on Numerical Analysis2022565265435539410.1553/etna_vol56s521487.65195 – reference: Le ClaincheSVegaJMHigher order dynamic mode decompositionSIAM J. Appl. Dyn. Syst.2017162882925364806510.1137/15M10549241373.37169 – reference: PichiFRozzaGReduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equationsJ. Sci. Comput.201981112135400274010.1007/s10915-019-01003-31427.35275 – reference: Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 3: Applications D Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110499001 – reference: ZimmermannRA locally parametrized reduced-order model for the linear frequency domain approach to time-accurate computational fluid dynamicsSIAM J. Sci. Comput.2014363508537321380510.1137/1309424621347.76032 – reference: ArbabiHMezićIErgodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operatorSIAM J. Appl. Dyn. Syst.201716420962126372036410.1137/17M11252361381.37096 – reference: PlaFHerreroHVegaJA flexible symmetry-preserving Galerkin/POD reduced order model applied to a convective instability problemComput. Fluids2015119162175338319210.1016/j.compfluid.2015.06.0321390.76348 – reference: Hesthaven, J., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys., 363. https://doi.org/10.1016/j.jcp.2018.02.037 (2018) – reference: NoorAOn making large nonlinear problems smallComput. Methods Appl. Mech. Eng.198234195598567933710.1016/0045-7825(82)90096-20478.65031 – reference: KarniadakisGEOrszagSAIsraeliMHigh-order splitting methods for the incompressible Navier-Stokes equationsJ. Comput. Phys.199197414443113760710.1016/0021-9991(91)90007-80738.76050 – reference: AmsallemDFarhatCAn online method for interpolating linear parametric reduced-order modelsSIAM J. Sci. Comput.201133521692198283752810.1137/1008130511269.65059 – reference: Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS’18, pp. 6572–6583. Curran Associates Inc. (2018) – reference: GuermondJLShenJVelocity-correction projection methods for incompressible flowsSIAM J. Numer. Anal.2003411112134197449410.1137/S00361429013954001130.76395 – reference: NoorARecent advances and applications of reduction methodsASME Appl. Mech. Rev.199454712514610.1115/1.3111075 – reference: BruntonSLProctorJLKutzJNDiscovering governing equations from data by sparse identification of nonlinear dynamical systemsProc. Natl. Acad. Sci.20161131539323937349408110.1073/pnas.15173841131355.94013 – reference: PittonGQuainiARozzaGComputational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to Coanda effect in cardiologyJ. Comput. Phys.2017344534557365675510.1016/j.jcp.2017.05.010 – reference: Loiseau, J.-C., Brunton, S.L., Noack, B.R.: From the POD-Galerkin Method to Sparse Manifold Models. Volume 3: Applications, pp. 279–320. De Gruyter. https://doi.org/10.1515/9783110499001-009 (2021) – reference: PittonGRozzaGOn the application of reduced basis methods to bifurcation problems in incompressible fluid dynamicsJ. Sci. Comput.2017731157177370484810.1007/s10915-017-0419-61433.76122 – reference: Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic mode decomposition society for industrial and applied mathematics. https://doi.org/10.1137/1.9781611974508 (2016) – reference: Andreuzzi, F., Demo, N., Rozza, G.: A dynamic mode decomposition extension for the forecasting of parametric dynamical system. ArXiv preprint (2021) – reference: BennerPGugercinSWillcoxKA survey of projection-based model reduction methods for parametric dynamical systemsSIAM Rev.2015574483531341986810.1137/1309327151339.37089 – reference: PichiFQuainiARozzaGA reduced order modeling technique to study bifurcating phenomena: application to the Gross–Pitaevskii equationSIAM J. Sci. Comput.202042511151135414341810.1137/20M13131061451.65227 – reference: Pichi, F., Ballarin, F., Rozza, G., Hesthaven, J.S.: An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. ArXiv preprint (2021) – reference: HerreroHMadayYPlaFRB (reduced basis) for RB (Rayleigh-Bénard)Comput. Methods Appl. Mech. Eng.2013261-26213214110.1016/j.cma.2013.02.0181286.76084 – reference: NoorAPetersJMultiple-parameter reduced basis technique for bifurcation and post-buckling analyses of composite materialeInt. J. Numer. Methods Eng.1983191783180310.1002/nme.16201912060557.73070 – reference: DemoNTezzeleMRozzaGPydmd: python dynamic mode decompositionJ. Open Source Softw.201832253010.21105/joss.00530 – reference: Zimmermann, R.: Manifold Interpolation. Volume 1 System- and Data-Driven Methods and Algorithms, pp. 229–274. De Gruyter. https://doi.org/10.1515/9783110498967-007 (2021) – reference: KoopmanBOHamiltonian systems and transformation in Hilbert spaceProc. Natl. Acad. Sci. U.S.A.193117531531810.1073/pnas.17.5.3150002.05701 – reference: DegrooteJVierendeelsJWillcoxKInterpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysisInt. J. Numer. Methods Fluids2010632207230266237410.1002/fld.20891188.65110 – reference: Tezzele, M., Demo, N., Stabile, G., Mola, A., Rozza, G.: Enhancing CFD predictions in shape design problems by model and parameter space reduction. Adv. Model. Simul. Eng. Sci. 7(40). https://doi.org/10.1186/s40323-020-00177-y (2020) – reference: Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W., Silveira, L.M. (eds.): Model Order Reduction: Volume 1: System- and Data-Driven Methods and Algorithms De Gruyter. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110498967 – reference: SayadiTSchmidPJRichecoeurFDuroxDParametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systemsPhys. Fluids201527303710210.1063/1.4913868 – reference: GaoZLinYSunXZengXA reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest-neighbors regressionJ. Comput. Phys.2021452C110907436182510.1016/j.jcp.2021.11090707517736 – reference: GiovanisDGShieldsMDData-driven surrogates for high dimensional models using gaussian process regression on the Grassmann manifoldComput. Methods Appl. Mech. Eng.2020370113269412371510.1016/j.cma.2020.11326907337126 – reference: Khamlich, M., Pichi, F., Rozza, G.: Model order reduction for bifurcating phenomena in fluid-structure interaction problems. ArXiv preprint (2021) – reference: NoorAPetersJRecent advances in reduction methods for instability analysis of structuresComput. Struct.1983161678010.1016/0045-7949(83)90148-70498.73094 – reference: BruntonSLTuJHBrightIKutzJNCompressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systemsSIAM J. Appl. Dyn. Syst.201413417161732328455810.1137/1309492821354.37078 – reference: Hesthaven, J., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations springer (2015) – reference: KramerBGroverPBoufounosPNabiSBenosmanMSparse sensing and DMD-based identification of flow regimes and bifurcations in complex flowsSIAM J. Appl. Dyn. Syst.201716211641196366518510.1137/15M104565X1373.37185 – ident: 10016_CR22 – volume: 16 start-page: 1164 issue: 2 year: 2017 ident: 10016_CR17 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/15M104565X – volume: 3 start-page: 530 issue: 22 year: 2018 ident: 10016_CR40 publication-title: J. Open Source Softw. doi: 10.21105/joss.00530 – ident: 10016_CR3 doi: 10.1515/9783110499001 – ident: 10016_CR14 doi: 10.1137/1.9781611977257.ch15 – ident: 10016_CR29 doi: 10.1186/s40323-020-00177-y – volume: 33 start-page: 2169 issue: 5 year: 2011 ident: 10016_CR43 publication-title: SIAM J. Sci. Comput. doi: 10.1137/100813051 – volume: 370 start-page: 113269 year: 2020 ident: 10016_CR50 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113269 – ident: 10016_CR1 doi: 10.1515/9783110498967 – volume: 16 start-page: 882 issue: 2 year: 2017 ident: 10016_CR41 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/15M1054924 – volume: 113 start-page: 3932 issue: 15 year: 2016 ident: 10016_CR23 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517384113 – ident: 10016_CR25 doi: 10.1137/1.9781611974508 – ident: 10016_CR39 doi: 10.1007/978-3-319-10705-9_42 – volume: 27 start-page: 037102 issue: 3 year: 2015 ident: 10016_CR28 publication-title: Phys. Fluids doi: 10.1063/1.4913868 – volume: 119 start-page: 162 year: 2015 ident: 10016_CR9 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.06.032 – ident: 10016_CR20 doi: 10.1016/j.jcp.2018.02.037 – volume: 81 start-page: 112 year: 2019 ident: 10016_CR12 publication-title: J. Sci. Comput. doi: 10.1007/s10915-019-01003-3 – volume: 58 start-page: 475 year: 2010 ident: 10016_CR48 publication-title: Automatisierungstechnik doi: 10.1524/auto.2010.0863 – volume: 344 start-page: 534 year: 2017 ident: 10016_CR11 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.05.010 – volume: 56 start-page: 52 year: 2022 ident: 10016_CR18 publication-title: ETNA - Electronic Transactions on Numerical Analysis doi: 10.1553/etna_vol56s52 – volume: 5 start-page: 125 issue: 47 year: 1994 ident: 10016_CR5 publication-title: ASME Appl. Mech. Rev. doi: 10.1115/1.3111075 – ident: 10016_CR37 doi: 10.1007/978-3-319-22470-1 – ident: 10016_CR13 – volume: 16 start-page: 67 issue: 1 year: 1983 ident: 10016_CR7 publication-title: Comput. Struct. doi: 10.1016/0045-7949(83)90148-7 – ident: 10016_CR30 – ident: 10016_CR2 doi: 10.1515/9783110671490 – ident: 10016_CR32 doi: 10.1017/S0022112099004796 – volume: 19 start-page: 1783 year: 1983 ident: 10016_CR6 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620191206 – volume: 42 start-page: 1115 issue: 5 year: 2020 ident: 10016_CR15 publication-title: SIAM J. Sci. Comput. doi: 10.1137/20M1313106 – volume: 13 start-page: 1716 issue: 4 year: 2014 ident: 10016_CR16 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/130949282 – volume: 16 start-page: 2096 issue: 4 year: 2017 ident: 10016_CR42 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/17M1125236 – volume: 17 start-page: 315 issue: 5 year: 1931 ident: 10016_CR24 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.17.5.315 – volume: 452 start-page: 110907 issue: C year: 2021 ident: 10016_CR27 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110907 – volume: 36 start-page: 508 issue: 3 year: 2014 ident: 10016_CR49 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130942462 – volume: 30 start-page: 191 issue: 2 year: 1995 ident: 10016_CR34 publication-title: Prog. Cryst. Growth Charact. Mater. doi: 10.1016/0960-8974(94)00013-J – volume: 656 start-page: 5 year: 2010 ident: 10016_CR26 publication-title: J. Fluid Mech. doi: 10.1017/S0022112010001217 – ident: 10016_CR46 doi: 10.1515/9783110671490-005 – ident: 10016_CR47 doi: 10.1515/9783110499001-009 – volume: 261-262 start-page: 132 year: 2013 ident: 10016_CR8 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2013.02.018 – volume: 57 start-page: 483 issue: 4 year: 2015 ident: 10016_CR44 publication-title: SIAM Rev. doi: 10.1137/130932715 – volume: 351 start-page: 379 year: 2019 ident: 10016_CR19 publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.03.050 – ident: 10016_CR21 – ident: 10016_CR31 doi: 10.1515/9783110498967-007 – volume: 73 start-page: 157 issue: 1 year: 2017 ident: 10016_CR10 publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0419-6 – volume: 97 start-page: 414 year: 1991 ident: 10016_CR36 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(91)90007-8 – ident: 10016_CR38 doi: 10.1007/978-3-319-02090-7_9 – volume: 34 start-page: 955 issue: 1 year: 1982 ident: 10016_CR4 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(82)90096-2 – volume: 41 start-page: 112 issue: 1 year: 2003 ident: 10016_CR35 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901395400 – volume: 63 start-page: 207 issue: 2 year: 2010 ident: 10016_CR45 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.2089 |
SSID | ssj0009675 |
Score | 2.4174008 |
Snippet | This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Grashof number Interpolation Manifolds Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Model reduction Navier-Stokes equations Partial differential equations Proper Orthogonal Decomposition Time dependence Visualization |
Title | A data-driven surrogate modeling approach for time-dependent incompressible Navier-Stokes equations with dynamic mode decomposition and manifold interpolation |
URI | https://link.springer.com/article/10.1007/s10444-023-10016-4 https://www.proquest.com/docview/2788869997 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VuMCh5ammhWgO3OhKfqzXzjFEpKiIXEokOFn7lBAhaWPn7_Bb2bHXpK0AqScfvI_DN7szuzvzfQCnuUe1iBLNIp5qxnOnmTJZzmxmlJOJNbGjauTribic8h-32W0oCqu6bPfuSbLZqf8oduOcM-9jGPEGCcY3YCujs7u34mkyXFPtioZe19vagPnTQBFKZV4f4293tI4x_3kWbbzNeBc-hjARhy2ue_DBzvfhUwgZMSzIah92rl9oV6sDeBoiZXwys6Q9DKvVcrmgazJs9G78RNhRiKOPVZF05Vmnglsj8TQ8tnmxamZxIsllsp_14sFWaH-3nOAV0s0tmlbIvhkYjaWOIfsL5dwgkWq4xczgfSvj1SbcHcJ0fHEzumRBgIHpVKQ18-vVylz4E1_ElRhYnkQqL5QwqYuFHsiMyHKciyKbyKSwhZIUsWltC51lRpr0CDbni7n9DBinsbKxiuXAcZ7pvBBCFio1TrhYKyF7EHc4lDqwk5NIxqxc8yoTdqWfsmywK3kPzl76_Gq5Od5tfdzBW4Z1WpUJ3QAIHyTnPfjWQb7-_fZoX_6v-VfYJp36NuXnGDbr5cqe-GimVn3YGo7Pzyf0_X53ddGHjZEY9RuTfgYJWvKt |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuNAEC0xcJjhAAyLCGsd5ja05KXddo4oAoUluQxI3KxepdGEBGLzO3wrXXabaBAgcXYvh9flququeg_gV-5RLaJEs4inmvHcaaZMljObGeVkYk3sqBt5NBbDW355l90FmhzqhXnzfk8tbpxz5j0LI7Ygwfg3WOE-U6byvYEYLAh2RUOq609Yn_kcoAgNMu-v8b8TWkSWbx5DGx9zvgFrITjE0xbNn7Bkp5uwHgJFDGZYbcLq6JVstdqC51OkOk9m5vTnwuppPp_R5Rg2Kjd-I-yIw9FHqEhq8qzTvq2R2Bnu22pYNbE4luQo2Z969s9WaB9bJvAK6b4WTStf3yyMxtLEUPOFcmqQqDTcbGLwbyve1ZbZbcPt-dnNYMiC7ALTqUhr5q3Uylz4PC_iSvQtTyKVF0qY1MVC92VGFDnORZFNZFLYQkmK07S2hc4yI026A8vT2dTuAsZprGysYtl3nGc6L4SQhUqNEy7WSsgexB0OpQ6c5CSNMSkXbMqEXem3LBvsSt6D369zHlpGjk9HH3TwlsE6qzKhvF_40DjvwUkH-eLzx6vtfW34MXwf3oyuy-uL8dU-_CCl-rbo5wCW6_mTPfTxTK2OmoP8AuoX7ZI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21VELlQAtt1YVtmQO31iIfjpM9oqUraGGFBEjcIn9KqNssbMLf6W-tJ052oaKVOMcfh2dnnu2Z9wD2c49qESWaRTzVjOdOM2WynNnMKCcTa2JH1chnU3F8xb9fZ9cPqvjbbPf-STLUNJBKU9Uc3Bp38KDwjXPOfLxhpCEkGH8Jr_xJpX2oHYvxSnZXtFK7ft2NmD8ZFF3ZzNNjPA5NK7751xNpG3kmb2Gzo4x4GDDeghe22oY3HX3EbnPW27BxtpRgrd_B70Ok7E9mFvQ_w_p-sZjTlRm23jd-IuzlxNHzViSPedY74jZImg2_Qo6smlmcSgqf7KKZ_7Q12rugD14j3eKiCab27cBoLHXsMsFQVgZJYMPNZwZvgqVXSL57D1eTb5fjY9aZMTCdirRhfu9amQt_-ou4EiPLk0jlhRImdbHQI5mRcI5zUWQTmRS2UJLYm9a20FlmpEk_wFo1r-xHwDiNlY1VLEeO80znhRCyUKlxwsVaCTmAuMeh1J1SORlmzMqVxjJhV_opyxa7kg_gy7LPbdDp-G_rYQ9v2e3ZukzoNkB4wpwP4GsP-erzv0fbeV7zPVg_P5qUpyfTH7vwmuzrQybQENaaxb395ElOoz636_gPYzP12Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+surrogate+modeling+approach+for+time-dependent+incompressible+Navier-Stokes+equations+with+dynamic+mode+decomposition+and+manifold+interpolation&rft.jtitle=Advances+in+computational+mathematics&rft.au=Hess%2C+Martin+W&rft.au=Quaini+Annalisa&rft.au=Rozza+Gianluigi&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=49&rft.issue=2&rft_id=info:doi/10.1007%2Fs10444-023-10016-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |