Efficient set-valued prediction in multi-class classification
In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an optimal balance between the correctness (the true class is among the candidates) and t...
Saved in:
Published in | Data mining and knowledge discovery Vol. 35; no. 4; pp. 1435 - 1469 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-021-00751-x |
Cover
Loading…
Abstract | In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an optimal balance between the correctness (the true class is among the candidates) and the precision (the candidates are not too many) of its prediction. We formalize this problem within a general decision-theoretic framework that unifies most of the existing work in this area. In this framework, uncertainty is quantified in terms of conditional class probabilities, and the quality of a predicted set is measured in terms of a utility function. We then address the problem of finding the Bayes-optimal prediction, i.e., the subset of class labels with the highest expected utility. For this problem, which is computationally challenging as there are exponentially (in the number of classes) many predictions to choose from, we propose efficient algorithms that can be applied to a broad family of utility functions. Our theoretical results are complemented by experimental studies, in which we analyze the proposed algorithms in terms of predictive accuracy and runtime efficiency. |
---|---|
AbstractList | In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an optimal balance between the correctness (the true class is among the candidates) and the precision (the candidates are not too many) of its prediction. We formalize this problem within a general decision-theoretic framework that unifies most of the existing work in this area. In this framework, uncertainty is quantified in terms of conditional class probabilities, and the quality of a predicted set is measured in terms of a utility function. We then address the problem of finding the Bayes-optimal prediction, i.e., the subset of class labels with the highest expected utility. For this problem, which is computationally challenging as there are exponentially (in the number of classes) many predictions to choose from, we propose efficient algorithms that can be applied to a broad family of utility functions. Our theoretical results are complemented by experimental studies, in which we analyze the proposed algorithms in terms of predictive accuracy and runtime efficiency. |
Author | Hüllermeier, Eyke Mortier, Thomas Dembczyński, Krzysztof Waegeman, Willem Wydmuch, Marek |
Author_xml | – sequence: 1 givenname: Thomas orcidid: 0000-0001-9650-9263 surname: Mortier fullname: Mortier, Thomas email: thomasf.mortier@ugent.be organization: Department of Data Analysis and Mathematical Modelling, Ghent University – sequence: 2 givenname: Marek surname: Wydmuch fullname: Wydmuch, Marek organization: Institute of Computing Science, Poznań Unversity of Technology – sequence: 3 givenname: Krzysztof surname: Dembczyński fullname: Dembczyński, Krzysztof organization: Institute of Computing Science, Poznań Unversity of Technology, Yahoo! Research – sequence: 4 givenname: Eyke surname: Hüllermeier fullname: Hüllermeier, Eyke organization: Institute of Informatics, LMU Munich – sequence: 5 givenname: Willem surname: Waegeman fullname: Waegeman, Willem organization: Department of Data Analysis and Mathematical Modelling, Ghent University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqP53t2DBym1CgUvCt5Ckk0kZbtbk6zUf2_aFQQPvcwH8z4zwzsDk67vLADXGN1ihMq7iJHAFUQEw9xyDPdnYIp5SWHJxfsk17RikFcYXYBZjBuEECcUTcH90jlvvO1SEW2CX6odbFPsgm28Sb7vCt8V26FNHppWxVgco8-IOkwvwblTbbRXv3kO3h6Xr4snuH5ZPS8e1tBQQRNkTmurNRasdKbSije1Ehgx6wTjpTGOO1OX2AlKcs9rw7ihVZ5oTUijFZ2Dm3HvLvSfg41JbvohdPmkJJwxSiir6qyqRpUJfYzBOml8Ov6ZgvKtxEgezJKjWTKbJY9myX1GyT90F_xWhe_TEB2hmMXdhw1_X52gfgAzmn_G |
CitedBy_id | crossref_primary_10_1016_j_csbj_2021_11_004 crossref_primary_10_1016_j_ecoinf_2024_102627 crossref_primary_10_1016_j_ijar_2024_109328 crossref_primary_10_1117_1_JEI_33_3_031210 crossref_primary_10_1007_s10462_024_10845_9 crossref_primary_10_1007_s00357_023_09455_x crossref_primary_10_1038_s41746_024_01395_z crossref_primary_10_1093_jrsssc_qlad036 crossref_primary_10_51387_22_NEJSDS8 crossref_primary_10_1007_s10994_024_06703_y crossref_primary_10_1093_bioinformatics_btae128 crossref_primary_10_1186_s12911_021_01655_y |
Cites_doi | 10.4018/978-1-59904-271-8.ch007 10.1145/3018661.3018741 10.1007/s10994-016-5593-5 10.1145/3178876.3185998 10.1007/s10994-018-5733-1 10.1007/s007780200060 10.1186/s12859-018-2083-8 10.1007/978-3-319-46227-1_32 10.1145/2623330.2623651 10.1007/s11263-014-0733-5 10.1109/ICCV.2011.6126527 10.1145/2556195.2556208 10.24963/ijcai.2018/706 10.1007/s00500-016-2287-7 10.1145/1610555.1610560 10.1609/aaai.v31i1.10813 10.1109/TKDE.2015.2441707 10.1016/B978-0-12-398537-8.00009-2 10.1109/TCYB.2016.2607237 10.1023/B:VISI.0000042993.50813.60 10.1016/j.ijar.2012.06.022 10.1007/s10618-016-0456-z 10.1145/1015330.1015363 10.1093/bioinformatics/btx680 10.1016/j.ins.2013.07.030 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10618-021-00751-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1469 |
ExternalDocumentID | 10_1007_s10618_021_00751_x |
GrantInformation_xml | – fundername: Vlaamse Overheid funderid: http://dx.doi.org/10.13039/501100002913 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c363t-4fbbebb1647fc8ba5d9a6104ef6457ccf5fc971f63245759c45c3857cbb22dba3 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Sat Aug 23 15:00:09 EDT 2025 Thu Apr 24 22:58:25 EDT 2025 Tue Jul 01 00:40:32 EDT 2025 Fri Feb 21 02:48:38 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Multi-class classification Set-valued prediction Expected utility maximization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-4fbbebb1647fc8ba5d9a6104ef6457ccf5fc971f63245759c45c3857cbb22dba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9650-9263 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10618-021-00751-x.pdf |
PQID | 2544323489 |
PQPubID | 43030 |
PageCount | 35 |
ParticipantIDs | proquest_journals_2544323489 crossref_citationtrail_10_1007_s10618_021_00751_x crossref_primary_10_1007_s10618_021_00751_x springer_journals_10_1007_s10618_021_00751_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210700 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | WaegemanWDembczyńskiKJachnikAChengWHüllermeierEOn the Bayes-optimality of F-measure maximizersJ Mach Learn Res2014153333338832914051311.62011 Fox J (1997) Applied regression analysis, linear models, and related methods. Sage BiWKwokJBayes-optimal hierarchical multilabel classificationIEEE Trans Knowl Data Eng2015271110.1109/TKDE.2015.2441707 Oh S (2017) Top-k hierarchical classification. In: AAAI, AAAI Press, pp 2450–2456 StockMDembczynskiKBaetsBDWaegemanWExact and efficient top-k inference for multi-target prediction by querying separable linear relational modelsData Min Knowl Discov201630513701394353998510.1007/s10618-016-0456-z1416.62541 NavarroGSearching in metric spaces by spatial approximationVLDB J2002111284610.1007/s007780200060 Yagnik J, Strelow D, Ross DA, sung Lin R (2011) The power of comparative reasoning. In: 2011 International Conference on Computer Vision, pp 2431–2438 Johnson J, Douze M, Jégou H (2017) Billion-scale similarity search with gpus. arXiv preprint arXiv:1702.08734 Dembczyński K, Waegeman W, Cheng W, Hüllermeier E (2012) An analysis of chaining in multi-label classification. In: Proceedings of the European Conference on Artificial Intelligence Jansche M (2007) A maximum expected utility framework for binary sequence labeling. In: Association for Computational Linguistics, pp 736–743 Ziyin L, Wang Z, Liang PP, Salakhutdinov R, Morency LP, Ueda M (2019) Deep gamblers: Learning to abstain with portfolio theory. arXiv:1907.00208 Hüllermeier E, Waegeman W (2019) Aleatoric and epistemic uncertainty in machine learning: A tutorial introduction. arXiv:1910.09457 RahimiARechtBRandom features for large-scale kernel machinesAdv Neural Inform Process Syst20082011771184 Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. Tech Rep 7694, California Institute of Technology MelnikovVHüllermeierEOn the effectiveness of heuristics for learning nested dichotomies: an empirical analysisMach Learn20181078–1015371560383527810.1007/s10994-018-5733-1 DepewegSHernández-LobatoJMDoshi-VelezFUdluftSDecomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learningICML, PMLR, Proceedings of Machine Learning Research20188011921201 Freitas A (2007) A tutorial on hierarchical classification with applications in bioinformatics. In: Research and Trends in Data Mining Technologies and Applications,, pp 175–208 LiFFAndreettoMRanzatoMACaltech101 image dataset2003California Institute of TechnologyTech. rep Nguyen V, Destercke S, Masson M, Hüllermeier E (2018) Reliable multi-class classification based on pairwise epistemic and aleatoric uncertainty. In: IJCAI, ijcai.org, pp 5089–5095 MenaDMontañésEQuevedoJRdel CozJJA family of admissible heuristics for A* to perform inference in probabilistic classifier chainsMach Learn20171061143169359215310.1007/s10994-016-5593-5 Malkov YA, Yashunin DA (2018) Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence pp 1–1 Prabhu Y, Varma M (2014) Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In: KDD GeusebroekJMBurghoutsGSmeuldersAThe amsterdam library of object imagesInt J Comput Vision200561110311210.1023/B:VISI.0000042993.50813.60 Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in Neural Information Processing Systems 26, Curran Associates, Inc., pp 3111–3119 Vondrak J (2019) Optimization of submodular functions tutorial. https://theory.stanford.edu/~jvondrak/data/submod-tutorial-1.pdf LeCun Y, Cortes C (2010) MNIST handwritten digit database. Tech rep Courant Institute, Google Labs, http://yann.lecun.com/exdb/mnist FiannacaAPagliaLLRosaMLBoscoGLRendaGRizzoRGaglioSUrsoADeep learning models for bacteria taxonomic classification of metagenomic dataBMC Bioinformat201819617610.1186/s12859-018-2083-8 Babbar R, Dembczyński K (2018) Extreme classification for information retrieval. Tutorial at ECIR 2018, http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/xmlc4ir-2018.pdf Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: NIPS-W LiYWangSUmarovRXieBFanMLiLGaoXDeepre: sequence-based enzyme EC number prediction by deep learningBioinformatics201834576076910.1093/bioinformatics/btx680 YangGDesterckeSMassonMHCautious classification with nested dichotomies and imprecise probabilitiesSoft Comput2017217447746210.1007/s00500-016-2287-7 Prabhu Y, Kag A, Harsola S, Agrawal R, Varma M (2018) Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising. In: Proceedings of the International World Wide Web Conference YangGDesterckeSMassonMHThe costs of indeterminacy: how to determine them?IEEE Transact Cybernet2017474316432710.1109/TCYB.2016.2607237 Babbar R, Schölkopf B (2017) Dismec: Distributed sparse machines for extreme multi-label classification. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, DOI 10(1145/3018661):3018741 Corani G, Zaffalon M (2009) Lazy naive credal classifier. In: Proceedings of the 1st ACM SIGKDD Workshop on Knowledge Discovery from Uncertain Data, ACM, pp 30–37 Del CozJJDíezJBahamondeALearning nondeterministic classifiersJ Mach Learn Res2009102273229325639821235.68144 Rangwala H, Naik A (2017) Large scale hierarchical classification: foundations, algorithms and applications. In: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Morin F, Bengio Y (2005) Hierarchical probabilistic neural network language model. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, Society for Artificial Intelligence and Statistics, pp 246–252 SengeRBösnerSDembczyénskiKHaasenritterJHirschODonner-BanzhoffNHüllermeierEReliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertaintyInf Sci20142551629311712710.1016/j.ins.2013.07.030 Dembczyński K, Kotłowski W, Waegeman W, Busa-Fekete R, Hüllermeier E (2016) Consistency of probabilistic classifier trees. In: ECML/PKDD Frank E, Kramer S (2004) Ensembles of nested dichotomies for multi-class problems. In: Proceedings of the Twenty-first International Conference on Machine Learning, ACM, New York, NY, USA, ICML ’04, pp 39 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Ofer D (2019) Dbpedia classes. https://www.kaggle.com/danofer/dbpedia-classes/metadata Balasubramanian V, Ho S, Vovk V (eds) (2014) Conformal Prediction for Reliable Machine Learning: Theory. Morgan Kaufmann, Adaptations and Applications Shafer G, Vovk V (2008) A tutorial on conformal prediction. J Mach Learn Res 9:371–421 FanREChangKWHsiehCJWangXRLinCJLIBLINEAR: a library for large linear classificationJ Mach Learn Res20089187118741225.68175 ZaffalonMGiorgioCMauáDDEvaluating credal classifiers by utility-discounted predictive accuracyInt J Approx Reasoning20125312821301297187210.1016/j.ijar.2012.06.022 Shrivastava A, Li P (2014) Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips). In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, MIT Press, Cambridge, MA, USA, NIPS’14, pp 2321–2329 Ramaswamy HG, Tewari A, Agarwal S (2015) Consistent algorithms for multiclass classification with a reject option. CoRR arXiv:5050.4137 Kendall A, Gal Y (2017) What uncertainties do we need in Bayesian deep learning for computer vision? Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017. Long Beach, CA, USA, pp 5580–5590 RIKEN (2013) Genomic-based 16s ribosomal rna database. https://metasystems.riken.jp/grd/download.html EveringhamMEslamiASMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes challenge 2006 (VOC2006) resultsInt J comput vision200611119813610.1007/s11263-014-0733-5 Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2007) The PASCAL visual object classes challenge 2007 (VOC2007) results PapadopoulosHInductive conformal prediction: theory and application to neural networksTools Artif Intel2008182315330 Ye N, Chai K, Lee WS, Chieu HL (2012) Optimizing f-measures: a tale of two approaches. In: Proceedings of the International Conference on Machine Learning Naidan B, Boytsov L (2015) Non-metric space library manual. CoRR arXiv:1508.05470 Partalas I, Kosmopoulos A, Baskiotis N, Artières T, Paliouras G, Gaussier É, Androutsopoulos I, Amini M, Gallinari P (2015) LSHTC: A benchmark for large-scale text classification. CoRR arXiv:1503.08581 DenisCHebiriMConfidence sets with expected sizes for multiclass classificationJ Mach Learn Res20171810212837254411441.62166 Syed S (2016) Submodularity in machine learning. MLRG Summer School, https://www.stat.ubc.ca/~saif.syed/papers/mlrg_submodularity.pdf Vovk V, Gammerman A, Shafer G (2003) Algorithmic Learning in a Random World. Springer-Verlag Beygelzimer A, Langford J, Lifshits Y, Sorkin G, Strehl A (2009) Conditional probability tree estimation analysis and algorithms. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, AUAI Press, Arlington, Virginia, United States, UAI ’09, pp 51–58 CoraniGZaffalonMLearning reliable classifiers from small or incomplete data sets: the naive credal classifier 2J Mach Learn Res2008958162124172481225.62082 751_CR18 751_CR19 751_CR17 RE Fan (751_CR15) 2008; 9 H Papadopoulos (751_CR39) 2008; 18 G Navarro (751_CR35) 2002; 11 M Everingham (751_CR13) 2006; 111 751_CR62 FF Li (751_CR27) 2003 JJ Del Coz (751_CR8) 2009; 10 751_CR60 751_CR21 751_CR22 751_CR25 751_CR26 751_CR23 751_CR24 751_CR29 V Melnikov (751_CR30) 2018; 107 R Senge (751_CR48) 2014; 255 W Waegeman (751_CR56) 2014; 15 G Yang (751_CR59) 2017; 47 M Zaffalon (751_CR61) 2012; 53 751_CR1 751_CR2 A Rahimi (751_CR44) 2008; 20 751_CR9 751_CR32 751_CR33 751_CR7 751_CR36 G Yang (751_CR58) 2017; 21 751_CR37 751_CR3 751_CR34 751_CR4 751_CR38 C Denis (751_CR11) 2017; 18 G Corani (751_CR6) 2008; 9 D Mena (751_CR31) 2017; 106 751_CR40 751_CR43 751_CR41 751_CR42 M Stock (751_CR52) 2016; 30 751_CR47 751_CR45 751_CR46 S Depeweg (751_CR12) 2018; 80 A Fiannaca (751_CR16) 2018; 19 751_CR49 Y Li (751_CR28) 2018; 34 JM Geusebroek (751_CR20) 2005; 61 751_CR50 751_CR51 751_CR10 751_CR54 751_CR55 W Bi (751_CR5) 2015; 27 751_CR53 751_CR14 751_CR57 |
References_xml | – reference: LeCun Y, Cortes C (2010) MNIST handwritten digit database. Tech rep Courant Institute, Google Labs, http://yann.lecun.com/exdb/mnist/ – reference: Vovk V, Gammerman A, Shafer G (2003) Algorithmic Learning in a Random World. Springer-Verlag, – reference: Partalas I, Kosmopoulos A, Baskiotis N, Artières T, Paliouras G, Gaussier É, Androutsopoulos I, Amini M, Gallinari P (2015) LSHTC: A benchmark for large-scale text classification. CoRR arXiv:1503.08581 – reference: SengeRBösnerSDembczyénskiKHaasenritterJHirschODonner-BanzhoffNHüllermeierEReliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertaintyInf Sci20142551629311712710.1016/j.ins.2013.07.030 – reference: Ye N, Chai K, Lee WS, Chieu HL (2012) Optimizing f-measures: a tale of two approaches. In: Proceedings of the International Conference on Machine Learning – reference: Ofer D (2019) Dbpedia classes. https://www.kaggle.com/danofer/dbpedia-classes/metadata – reference: Balasubramanian V, Ho S, Vovk V (eds) (2014) Conformal Prediction for Reliable Machine Learning: Theory. Morgan Kaufmann, Adaptations and Applications – reference: WaegemanWDembczyńskiKJachnikAChengWHüllermeierEOn the Bayes-optimality of F-measure maximizersJ Mach Learn Res2014153333338832914051311.62011 – reference: Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: NIPS-W – reference: Prabhu Y, Kag A, Harsola S, Agrawal R, Varma M (2018) Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising. In: Proceedings of the International World Wide Web Conference – reference: Syed S (2016) Submodularity in machine learning. MLRG Summer School, https://www.stat.ubc.ca/~saif.syed/papers/mlrg_submodularity.pdf – reference: StockMDembczynskiKBaetsBDWaegemanWExact and efficient top-k inference for multi-target prediction by querying separable linear relational modelsData Min Knowl Discov201630513701394353998510.1007/s10618-016-0456-z1416.62541 – reference: Dembczyński K, Kotłowski W, Waegeman W, Busa-Fekete R, Hüllermeier E (2016) Consistency of probabilistic classifier trees. In: ECML/PKDD – reference: GeusebroekJMBurghoutsGSmeuldersAThe amsterdam library of object imagesInt J Comput Vision200561110311210.1023/B:VISI.0000042993.50813.60 – reference: Yagnik J, Strelow D, Ross DA, sung Lin R (2011) The power of comparative reasoning. In: 2011 International Conference on Computer Vision, pp 2431–2438 – reference: MenaDMontañésEQuevedoJRdel CozJJA family of admissible heuristics for A* to perform inference in probabilistic classifier chainsMach Learn20171061143169359215310.1007/s10994-016-5593-5 – reference: Freitas A (2007) A tutorial on hierarchical classification with applications in bioinformatics. In: Research and Trends in Data Mining Technologies and Applications,, pp 175–208 – reference: Hüllermeier E, Waegeman W (2019) Aleatoric and epistemic uncertainty in machine learning: A tutorial introduction. arXiv:1910.09457 – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 – reference: RIKEN (2013) Genomic-based 16s ribosomal rna database. https://metasystems.riken.jp/grd/download.html – reference: Malkov YA, Yashunin DA (2018) Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence pp 1–1 – reference: NavarroGSearching in metric spaces by spatial approximationVLDB J2002111284610.1007/s007780200060 – reference: YangGDesterckeSMassonMHThe costs of indeterminacy: how to determine them?IEEE Transact Cybernet2017474316432710.1109/TCYB.2016.2607237 – reference: Dembczyński K, Waegeman W, Cheng W, Hüllermeier E (2012) An analysis of chaining in multi-label classification. In: Proceedings of the European Conference on Artificial Intelligence – reference: PapadopoulosHInductive conformal prediction: theory and application to neural networksTools Artif Intel2008182315330 – reference: Prabhu Y, Varma M (2014) Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In: KDD – reference: RahimiARechtBRandom features for large-scale kernel machinesAdv Neural Inform Process Syst20082011771184 – reference: CoraniGZaffalonMLearning reliable classifiers from small or incomplete data sets: the naive credal classifier 2J Mach Learn Res2008958162124172481225.62082 – reference: Kendall A, Gal Y (2017) What uncertainties do we need in Bayesian deep learning for computer vision? Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017. Long Beach, CA, USA, pp 5580–5590 – reference: MelnikovVHüllermeierEOn the effectiveness of heuristics for learning nested dichotomies: an empirical analysisMach Learn20181078–1015371560383527810.1007/s10994-018-5733-1 – reference: Morin F, Bengio Y (2005) Hierarchical probabilistic neural network language model. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, Society for Artificial Intelligence and Statistics, pp 246–252 – reference: Naidan B, Boytsov L (2015) Non-metric space library manual. CoRR arXiv:1508.05470 – reference: Ziyin L, Wang Z, Liang PP, Salakhutdinov R, Morency LP, Ueda M (2019) Deep gamblers: Learning to abstain with portfolio theory. arXiv:1907.00208 – reference: BiWKwokJBayes-optimal hierarchical multilabel classificationIEEE Trans Knowl Data Eng2015271110.1109/TKDE.2015.2441707 – reference: Fox J (1997) Applied regression analysis, linear models, and related methods. Sage, – reference: YangGDesterckeSMassonMHCautious classification with nested dichotomies and imprecise probabilitiesSoft Comput2017217447746210.1007/s00500-016-2287-7 – reference: ZaffalonMGiorgioCMauáDDEvaluating credal classifiers by utility-discounted predictive accuracyInt J Approx Reasoning20125312821301297187210.1016/j.ijar.2012.06.022 – reference: Beygelzimer A, Langford J, Lifshits Y, Sorkin G, Strehl A (2009) Conditional probability tree estimation analysis and algorithms. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, AUAI Press, Arlington, Virginia, United States, UAI ’09, pp 51–58 – reference: Nguyen V, Destercke S, Masson M, Hüllermeier E (2018) Reliable multi-class classification based on pairwise epistemic and aleatoric uncertainty. In: IJCAI, ijcai.org, pp 5089–5095 – reference: Ramaswamy HG, Tewari A, Agarwal S (2015) Consistent algorithms for multiclass classification with a reject option. CoRR arXiv:5050.4137 – reference: Rangwala H, Naik A (2017) Large scale hierarchical classification: foundations, algorithms and applications. In: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases – reference: Babbar R, Dembczyński K (2018) Extreme classification for information retrieval. Tutorial at ECIR 2018, http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/xmlc4ir-2018.pdf – reference: FanREChangKWHsiehCJWangXRLinCJLIBLINEAR: a library for large linear classificationJ Mach Learn Res20089187118741225.68175 – reference: Babbar R, Schölkopf B (2017) Dismec: Distributed sparse machines for extreme multi-label classification. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, DOI 10(1145/3018661):3018741 – reference: Del CozJJDíezJBahamondeALearning nondeterministic classifiersJ Mach Learn Res2009102273229325639821235.68144 – reference: DenisCHebiriMConfidence sets with expected sizes for multiclass classificationJ Mach Learn Res20171810212837254411441.62166 – reference: LiYWangSUmarovRXieBFanMLiLGaoXDeepre: sequence-based enzyme EC number prediction by deep learningBioinformatics201834576076910.1093/bioinformatics/btx680 – reference: EveringhamMEslamiASMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes challenge 2006 (VOC2006) resultsInt J comput vision200611119813610.1007/s11263-014-0733-5 – reference: Corani G, Zaffalon M (2009) Lazy naive credal classifier. In: Proceedings of the 1st ACM SIGKDD Workshop on Knowledge Discovery from Uncertain Data, ACM, pp 30–37 – reference: Oh S (2017) Top-k hierarchical classification. In: AAAI, AAAI Press, pp 2450–2456 – reference: Jansche M (2007) A maximum expected utility framework for binary sequence labeling. In: Association for Computational Linguistics, pp 736–743 – reference: Frank E, Kramer S (2004) Ensembles of nested dichotomies for multi-class problems. In: Proceedings of the Twenty-first International Conference on Machine Learning, ACM, New York, NY, USA, ICML ’04, pp 39 – reference: Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in Neural Information Processing Systems 26, Curran Associates, Inc., pp 3111–3119 – reference: LiFFAndreettoMRanzatoMACaltech101 image dataset2003California Institute of TechnologyTech. rep – reference: Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. Tech Rep 7694, California Institute of Technology – reference: Johnson J, Douze M, Jégou H (2017) Billion-scale similarity search with gpus. arXiv preprint arXiv:1702.08734 – reference: DepewegSHernández-LobatoJMDoshi-VelezFUdluftSDecomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learningICML, PMLR, Proceedings of Machine Learning Research20188011921201 – reference: Vondrak J (2019) Optimization of submodular functions tutorial. https://theory.stanford.edu/~jvondrak/data/submod-tutorial-1.pdf – reference: Shafer G, Vovk V (2008) A tutorial on conformal prediction. J Mach Learn Res 9:371–421 – reference: Shrivastava A, Li P (2014) Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips). In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, MIT Press, Cambridge, MA, USA, NIPS’14, pp 2321–2329 – reference: Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2007) The PASCAL visual object classes challenge 2007 (VOC2007) results – reference: FiannacaAPagliaLLRosaMLBoscoGLRendaGRizzoRGaglioSUrsoADeep learning models for bacteria taxonomic classification of metagenomic dataBMC Bioinformat201819617610.1186/s12859-018-2083-8 – ident: 751_CR21 – volume: 18 start-page: 102 year: 2017 ident: 751_CR11 publication-title: J Mach Learn Res – ident: 751_CR19 doi: 10.4018/978-1-59904-271-8.ch007 – volume-title: Caltech101 image dataset year: 2003 ident: 751_CR27 – ident: 751_CR2 doi: 10.1145/3018661.3018741 – ident: 751_CR4 – ident: 751_CR50 – volume: 106 start-page: 143 issue: 1 year: 2017 ident: 751_CR31 publication-title: Mach Learn doi: 10.1007/s10994-016-5593-5 – ident: 751_CR54 – ident: 751_CR43 doi: 10.1145/3178876.3185998 – volume: 9 start-page: 1871 year: 2008 ident: 751_CR15 publication-title: J Mach Learn Res – volume: 107 start-page: 1537 issue: 8–10 year: 2018 ident: 751_CR30 publication-title: Mach Learn doi: 10.1007/s10994-018-5733-1 – volume: 11 start-page: 28 issue: 1 year: 2002 ident: 751_CR35 publication-title: VLDB J doi: 10.1007/s007780200060 – ident: 751_CR25 – volume: 19 start-page: 61 year: 2018 ident: 751_CR16 publication-title: BMC Bioinformat doi: 10.1186/s12859-018-2083-8 – ident: 751_CR10 doi: 10.1007/978-3-319-46227-1_32 – ident: 751_CR29 – ident: 751_CR42 doi: 10.1145/2623330.2623651 – volume: 111 start-page: 98 issue: 1 year: 2006 ident: 751_CR13 publication-title: Int J comput vision doi: 10.1007/s11263-014-0733-5 – volume: 15 start-page: 3333 year: 2014 ident: 751_CR56 publication-title: J Mach Learn Res – ident: 751_CR24 – ident: 751_CR57 doi: 10.1109/ICCV.2011.6126527 – ident: 751_CR14 – ident: 751_CR51 – volume: 10 start-page: 2273 year: 2009 ident: 751_CR8 publication-title: J Mach Learn Res – ident: 751_CR34 – ident: 751_CR55 – ident: 751_CR40 doi: 10.1145/2556195.2556208 – ident: 751_CR41 – ident: 751_CR49 – ident: 751_CR45 – ident: 751_CR62 – ident: 751_CR23 – ident: 751_CR36 doi: 10.24963/ijcai.2018/706 – volume: 21 start-page: 7447 year: 2017 ident: 751_CR58 publication-title: Soft Comput doi: 10.1007/s00500-016-2287-7 – ident: 751_CR7 doi: 10.1145/1610555.1610560 – ident: 751_CR17 – ident: 751_CR33 – volume: 9 start-page: 581 year: 2008 ident: 751_CR6 publication-title: J Mach Learn Res – volume: 80 start-page: 1192 year: 2018 ident: 751_CR12 publication-title: ICML, PMLR, Proceedings of Machine Learning Research – volume: 18 start-page: 315 issue: 2 year: 2008 ident: 751_CR39 publication-title: Tools Artif Intel – ident: 751_CR38 doi: 10.1609/aaai.v31i1.10813 – volume: 27 start-page: 1 year: 2015 ident: 751_CR5 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2441707 – ident: 751_CR46 – ident: 751_CR47 – ident: 751_CR22 – volume: 20 start-page: 1177 year: 2008 ident: 751_CR44 publication-title: Adv Neural Inform Process Syst – ident: 751_CR9 – ident: 751_CR3 doi: 10.1016/B978-0-12-398537-8.00009-2 – volume: 47 start-page: 4316 year: 2017 ident: 751_CR59 publication-title: IEEE Transact Cybernet doi: 10.1109/TCYB.2016.2607237 – ident: 751_CR32 – ident: 751_CR1 – volume: 61 start-page: 103 issue: 1 year: 2005 ident: 751_CR20 publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000042993.50813.60 – ident: 751_CR37 – ident: 751_CR53 – ident: 751_CR60 – volume: 53 start-page: 1282 year: 2012 ident: 751_CR61 publication-title: Int J Approx Reasoning doi: 10.1016/j.ijar.2012.06.022 – volume: 30 start-page: 1370 issue: 5 year: 2016 ident: 751_CR52 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-016-0456-z – ident: 751_CR18 doi: 10.1145/1015330.1015363 – volume: 34 start-page: 760 issue: 5 year: 2018 ident: 751_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx680 – volume: 255 start-page: 16 year: 2014 ident: 751_CR48 publication-title: Inf Sci doi: 10.1016/j.ins.2013.07.030 – ident: 751_CR26 |
SSID | ssj0005230 |
Score | 2.4794366 |
Snippet | In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1435 |
SubjectTerms | Algorithms Artificial Intelligence Chemistry and Earth Sciences Classifiers Computer Science Data Mining and Knowledge Discovery Decision theory Expected utility Information Storage and Retrieval Physics Special Issue of the Journal Track of ECML PKDD 2021 Statistics for Engineering Uncertainty |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7odvHib3E6JQdvGlzbpM1OorIxBIeIg91Kk77CQLa5Vdifb16WWhXcpZc0KXwvefmavPc9gCuptcySUPFMYM6FQusHpUaOlv2SfBcmSPnOz8N4MBJPYzn2B25LH1ZZ-UTnqPOZoTPyW5LSisJIqO7d_INT1Si6XfUlNLahaV2wsjO8-dAbvrz-CPKI1nnCSnCpgo5Pm_HJc3GgOIUo0L4Z8NXvranmm3-uSN3O09-HXU8Z2f3axgewhdND2KvKMTC_Oo-AlIgnLr-RLbHkJOONOZsv6CqG4GeTKXPxg9wQZWbuSZFCzjjHMOr33h4H3FdH4CaKo5KLQmvUmvTACqN0JvNuZrmQwCIWMjGmkIXpJkFBeuxUhdMIaSJlW7QOw1xn0Qk0prMpngKLLWe0PzJJkWQWZNHRMsZMo0yIP9nPtCCogEmNlw6nChbvaS16TGCmFszUgZmuWnD93We-Fs7Y-Ha7wjv1i2iZ1iZvwU1lg7r5_9HONo92DjuhMzsF3bahUS4-8cJSi1Jf-vnzBWYkykM priority: 102 providerName: ProQuest |
Title | Efficient set-valued prediction in multi-class classification |
URI | https://link.springer.com/article/10.1007/s10618-021-00751-x https://www.proquest.com/docview/2544323489 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7ohuDFH1NxOkcO3jSwNkmbHafsB4pDxME8lSZNYSDdWCv455uXtW6KCl7aQ9IUXl7yvpDvfQ_gUigl4tCXNOYmoVwauw8KZaix6Bflu0xoMN_5YRyMJvxuKqZlUlhesd2rK0m3U28kuwWepEgpwDjnUYsc68Ke3dGvJ35vg9jBVrnBklMhvU6ZKvPzGF_D0RpjfrsWddFmcAB7JUwkvdW8HsKWyRqwX5VgIOWKbMCOY3Dq_AhQh3jmshtJbgqKIt4mIYslXsSg8cksI449SDUCZuKeyBNyU3MMk0H_-XZEy9oIVLOAFZSnShmlUA0s1VLFIunGFglxkwZchFqnItXd0EtRjR1rcGouNJO2RSnfT1TMTqCWzTNzCiSwiNEeY8I0jDlnvKNEYGJlRIjoyf6mCV5lokiXwuFYv-I1Wkseo1kja9bImTV6b8LV5zeLlWzGn71bleWjcgnlEWqnMZ9x2W3CdTUb6-bfRzv7X_dz2PWdQyAFtwW1YvlmLizQKFQbtuVg2IZ6b_hy37fvm_748antvO0D-bnNSw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjSgU8AATWJDYTtwBIQSUQh9TK3ULseNISKgUWkT5U_xGfE5CAIluLFmcONLdl_Pn-O47gAOhlIhDX9KYm4RyaWwcFMpQY9kvyneZ0GC9c7sTNHr8ri_6M_BR1MJgWmURE12gTp40_iM_QSkt5jMua-fDZ4pdo_B0tWihkcGiad7f7JZtdHZ7Zf176Pv16-5lg-ZdBahmARtTnipllEIdrVRLFYukFlsOwU0acBFqnYpU10IvRR1z7F6pudBM2hGlfD9RMbPzzsI8Z6yGKYSyfvMtpYRlVcmSUyG907xIJy_VCzxJMSECV2mPTn4uhCW7_XUg69a5-gos5QSVXGSIWoUZM1iD5aL5A8ljwTqg7vGDq6YkIzOmKBpuEjJ8wYMfdDZ5GBCXrUg1EnTirpiX5KCwAb1_sdomzA2eBmYLSGAZqt02hWkYW5fyUyUCEysjQmRr9jUV8ArDRDoXKsd-GY9RKbGMxoysMSNnzGhSgaOvZ4aZTMfUu6uFvaP8kx1FJcAqcFz4oBz-e7bt6bPtw0Kj225FrdtOcwcWfQcBTPetwtz45dXsWlIzVnsOSQTu_xu6nwFXByo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT8IwFH5BTIwXfxtR1B70pA1sa7dyMMaICKLEgyTc5tp1CYkBBIz4r_nX2Vc2URO5cdmlW5e89-316_re9wBOuJQ8ClxBI6ZjyoQ2cZBLTbVhvyjfpQON9c4PLb_eZncd3snBZ1YLg2mVWUy0gTruK_xHXkIpLc_1mKiUkjQt4rFauxy8UuwghSetWTuNKUSa-uPdbN9GF42q8fWp69Zunq7rNO0wQJXne2PKEim1lKiplSghIx5XIsMnmE58xgOlEp6oSuAkqGmOnSwV48oTZkRK141l5Jl5l2A58EQZuyeI2u2P9BJvWqEsGOXCKacFO2nZnu8IiskRuGI7dPJ7UZwx3T-Hs3bNq23AWkpWydUUXZuQ070tWM8aQZA0LmwDaiB3bWUlGekxRQFxHZPBEA-B0PGk2yM2c5EqJOvEXjFHycJiB9oLsdou5Hv9nt4D4hu2arZQQRJExr2sLLmvI6l5gMzNvKYATmaYUKWi5dg74yWcyS2jMUNjzNAaM5wU4Oz7mcFUsmPu3cXM3mH6-Y7CGdgKcJ75YDb8_2z782c7hhUD2vC-0WoewKprEYCZv0XIj4dv-tDwm7E8skAi8Lxo5H4BD5YLVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+set-valued+prediction+in+multi-class+classification&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Mortier%2C+Thomas&rft.au=Wydmuch%2C+Marek&rft.au=Dembczy%C5%84ski%2C+Krzysztof&rft.au=H%C3%BCllermeier%2C+Eyke&rft.date=2021-07-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=35&rft.issue=4&rft.spage=1435&rft.epage=1469&rft_id=info:doi/10.1007%2Fs10618-021-00751-x&rft.externalDocID=10_1007_s10618_021_00751_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |