Efficient set-valued prediction in multi-class classification

In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an optimal balance between the correctness (the true class is among the candidates) and t...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 35; no. 4; pp. 1435 - 1469
Main Authors Mortier, Thomas, Wydmuch, Marek, Dembczyński, Krzysztof, Hüllermeier, Eyke, Waegeman, Willem
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-021-00751-x

Cover

Loading…
Abstract In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an optimal balance between the correctness (the true class is among the candidates) and the precision (the candidates are not too many) of its prediction. We formalize this problem within a general decision-theoretic framework that unifies most of the existing work in this area. In this framework, uncertainty is quantified in terms of conditional class probabilities, and the quality of a predicted set is measured in terms of a utility function. We then address the problem of finding the Bayes-optimal prediction, i.e., the subset of class labels with the highest expected utility. For this problem, which is computationally challenging as there are exponentially (in the number of classes) many predictions to choose from, we propose efficient algorithms that can be applied to a broad family of utility functions. Our theoretical results are complemented by experimental studies, in which we analyze the proposed algorithms in terms of predictive accuracy and runtime efficiency.
AbstractList In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an optimal balance between the correctness (the true class is among the candidates) and the precision (the candidates are not too many) of its prediction. We formalize this problem within a general decision-theoretic framework that unifies most of the existing work in this area. In this framework, uncertainty is quantified in terms of conditional class probabilities, and the quality of a predicted set is measured in terms of a utility function. We then address the problem of finding the Bayes-optimal prediction, i.e., the subset of class labels with the highest expected utility. For this problem, which is computationally challenging as there are exponentially (in the number of classes) many predictions to choose from, we propose efficient algorithms that can be applied to a broad family of utility functions. Our theoretical results are complemented by experimental studies, in which we analyze the proposed algorithms in terms of predictive accuracy and runtime efficiency.
Author Hüllermeier, Eyke
Mortier, Thomas
Dembczyński, Krzysztof
Waegeman, Willem
Wydmuch, Marek
Author_xml – sequence: 1
  givenname: Thomas
  orcidid: 0000-0001-9650-9263
  surname: Mortier
  fullname: Mortier, Thomas
  email: thomasf.mortier@ugent.be
  organization: Department of Data Analysis and Mathematical Modelling, Ghent University
– sequence: 2
  givenname: Marek
  surname: Wydmuch
  fullname: Wydmuch, Marek
  organization: Institute of Computing Science, Poznań Unversity of Technology
– sequence: 3
  givenname: Krzysztof
  surname: Dembczyński
  fullname: Dembczyński, Krzysztof
  organization: Institute of Computing Science, Poznań Unversity of Technology, Yahoo! Research
– sequence: 4
  givenname: Eyke
  surname: Hüllermeier
  fullname: Hüllermeier, Eyke
  organization: Institute of Informatics, LMU Munich
– sequence: 5
  givenname: Willem
  surname: Waegeman
  fullname: Waegeman, Willem
  organization: Department of Data Analysis and Mathematical Modelling, Ghent University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqP53t2DBym1CgUvCt5Ckk0kZbtbk6zUf2_aFQQPvcwH8z4zwzsDk67vLADXGN1ihMq7iJHAFUQEw9xyDPdnYIp5SWHJxfsk17RikFcYXYBZjBuEECcUTcH90jlvvO1SEW2CX6odbFPsgm28Sb7vCt8V26FNHppWxVgco8-IOkwvwblTbbRXv3kO3h6Xr4snuH5ZPS8e1tBQQRNkTmurNRasdKbSije1Ehgx6wTjpTGOO1OX2AlKcs9rw7ihVZ5oTUijFZ2Dm3HvLvSfg41JbvohdPmkJJwxSiir6qyqRpUJfYzBOml8Ov6ZgvKtxEgezJKjWTKbJY9myX1GyT90F_xWhe_TEB2hmMXdhw1_X52gfgAzmn_G
CitedBy_id crossref_primary_10_1016_j_csbj_2021_11_004
crossref_primary_10_1016_j_ecoinf_2024_102627
crossref_primary_10_1016_j_ijar_2024_109328
crossref_primary_10_1117_1_JEI_33_3_031210
crossref_primary_10_1007_s10462_024_10845_9
crossref_primary_10_1007_s00357_023_09455_x
crossref_primary_10_1038_s41746_024_01395_z
crossref_primary_10_1093_jrsssc_qlad036
crossref_primary_10_51387_22_NEJSDS8
crossref_primary_10_1007_s10994_024_06703_y
crossref_primary_10_1093_bioinformatics_btae128
crossref_primary_10_1186_s12911_021_01655_y
Cites_doi 10.4018/978-1-59904-271-8.ch007
10.1145/3018661.3018741
10.1007/s10994-016-5593-5
10.1145/3178876.3185998
10.1007/s10994-018-5733-1
10.1007/s007780200060
10.1186/s12859-018-2083-8
10.1007/978-3-319-46227-1_32
10.1145/2623330.2623651
10.1007/s11263-014-0733-5
10.1109/ICCV.2011.6126527
10.1145/2556195.2556208
10.24963/ijcai.2018/706
10.1007/s00500-016-2287-7
10.1145/1610555.1610560
10.1609/aaai.v31i1.10813
10.1109/TKDE.2015.2441707
10.1016/B978-0-12-398537-8.00009-2
10.1109/TCYB.2016.2607237
10.1023/B:VISI.0000042993.50813.60
10.1016/j.ijar.2012.06.022
10.1007/s10618-016-0456-z
10.1145/1015330.1015363
10.1093/bioinformatics/btx680
10.1016/j.ins.2013.07.030
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10618-021-00751-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1469
ExternalDocumentID 10_1007_s10618_021_00751_x
GrantInformation_xml – fundername: Vlaamse Overheid
  funderid: http://dx.doi.org/10.13039/501100002913
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c363t-4fbbebb1647fc8ba5d9a6104ef6457ccf5fc971f63245759c45c3857cbb22dba3
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Sat Aug 23 15:00:09 EDT 2025
Thu Apr 24 22:58:25 EDT 2025
Tue Jul 01 00:40:32 EDT 2025
Fri Feb 21 02:48:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Multi-class classification
Set-valued prediction
Expected utility maximization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-4fbbebb1647fc8ba5d9a6104ef6457ccf5fc971f63245759c45c3857cbb22dba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9650-9263
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10618-021-00751-x.pdf
PQID 2544323489
PQPubID 43030
PageCount 35
ParticipantIDs proquest_journals_2544323489
crossref_citationtrail_10_1007_s10618_021_00751_x
crossref_primary_10_1007_s10618_021_00751_x
springer_journals_10_1007_s10618_021_00751_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WaegemanWDembczyńskiKJachnikAChengWHüllermeierEOn the Bayes-optimality of F-measure maximizersJ Mach Learn Res2014153333338832914051311.62011
Fox J (1997) Applied regression analysis, linear models, and related methods. Sage
BiWKwokJBayes-optimal hierarchical multilabel classificationIEEE Trans Knowl Data Eng2015271110.1109/TKDE.2015.2441707
Oh S (2017) Top-k hierarchical classification. In: AAAI, AAAI Press, pp 2450–2456
StockMDembczynskiKBaetsBDWaegemanWExact and efficient top-k inference for multi-target prediction by querying separable linear relational modelsData Min Knowl Discov201630513701394353998510.1007/s10618-016-0456-z1416.62541
NavarroGSearching in metric spaces by spatial approximationVLDB J2002111284610.1007/s007780200060
Yagnik J, Strelow D, Ross DA, sung Lin R (2011) The power of comparative reasoning. In: 2011 International Conference on Computer Vision, pp 2431–2438
Johnson J, Douze M, Jégou H (2017) Billion-scale similarity search with gpus. arXiv preprint arXiv:1702.08734
Dembczyński K, Waegeman W, Cheng W, Hüllermeier E (2012) An analysis of chaining in multi-label classification. In: Proceedings of the European Conference on Artificial Intelligence
Jansche M (2007) A maximum expected utility framework for binary sequence labeling. In: Association for Computational Linguistics, pp 736–743
Ziyin L, Wang Z, Liang PP, Salakhutdinov R, Morency LP, Ueda M (2019) Deep gamblers: Learning to abstain with portfolio theory. arXiv:1907.00208
Hüllermeier E, Waegeman W (2019) Aleatoric and epistemic uncertainty in machine learning: A tutorial introduction. arXiv:1910.09457
RahimiARechtBRandom features for large-scale kernel machinesAdv Neural Inform Process Syst20082011771184
Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. Tech Rep 7694, California Institute of Technology
MelnikovVHüllermeierEOn the effectiveness of heuristics for learning nested dichotomies: an empirical analysisMach Learn20181078–1015371560383527810.1007/s10994-018-5733-1
DepewegSHernández-LobatoJMDoshi-VelezFUdluftSDecomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learningICML, PMLR, Proceedings of Machine Learning Research20188011921201
Freitas A (2007) A tutorial on hierarchical classification with applications in bioinformatics. In: Research and Trends in Data Mining Technologies and Applications,, pp 175–208
LiFFAndreettoMRanzatoMACaltech101 image dataset2003California Institute of TechnologyTech. rep
Nguyen V, Destercke S, Masson M, Hüllermeier E (2018) Reliable multi-class classification based on pairwise epistemic and aleatoric uncertainty. In: IJCAI, ijcai.org, pp 5089–5095
MenaDMontañésEQuevedoJRdel CozJJA family of admissible heuristics for A* to perform inference in probabilistic classifier chainsMach Learn20171061143169359215310.1007/s10994-016-5593-5
Malkov YA, Yashunin DA (2018) Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence pp 1–1
Prabhu Y, Varma M (2014) Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In: KDD
GeusebroekJMBurghoutsGSmeuldersAThe amsterdam library of object imagesInt J Comput Vision200561110311210.1023/B:VISI.0000042993.50813.60
Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in Neural Information Processing Systems 26, Curran Associates, Inc., pp 3111–3119
Vondrak J (2019) Optimization of submodular functions tutorial. https://theory.stanford.edu/~jvondrak/data/submod-tutorial-1.pdf
LeCun Y, Cortes C (2010) MNIST handwritten digit database. Tech rep Courant Institute, Google Labs, http://yann.lecun.com/exdb/mnist
FiannacaAPagliaLLRosaMLBoscoGLRendaGRizzoRGaglioSUrsoADeep learning models for bacteria taxonomic classification of metagenomic dataBMC Bioinformat201819617610.1186/s12859-018-2083-8
Babbar R, Dembczyński K (2018) Extreme classification for information retrieval. Tutorial at ECIR 2018, http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/xmlc4ir-2018.pdf
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: NIPS-W
LiYWangSUmarovRXieBFanMLiLGaoXDeepre: sequence-based enzyme EC number prediction by deep learningBioinformatics201834576076910.1093/bioinformatics/btx680
YangGDesterckeSMassonMHCautious classification with nested dichotomies and imprecise probabilitiesSoft Comput2017217447746210.1007/s00500-016-2287-7
Prabhu Y, Kag A, Harsola S, Agrawal R, Varma M (2018) Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising. In: Proceedings of the International World Wide Web Conference
YangGDesterckeSMassonMHThe costs of indeterminacy: how to determine them?IEEE Transact Cybernet2017474316432710.1109/TCYB.2016.2607237
Babbar R, Schölkopf B (2017) Dismec: Distributed sparse machines for extreme multi-label classification. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, DOI 10(1145/3018661):3018741
Corani G, Zaffalon M (2009) Lazy naive credal classifier. In: Proceedings of the 1st ACM SIGKDD Workshop on Knowledge Discovery from Uncertain Data, ACM, pp 30–37
Del CozJJDíezJBahamondeALearning nondeterministic classifiersJ Mach Learn Res2009102273229325639821235.68144
Rangwala H, Naik A (2017) Large scale hierarchical classification: foundations, algorithms and applications. In: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Morin F, Bengio Y (2005) Hierarchical probabilistic neural network language model. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, Society for Artificial Intelligence and Statistics, pp 246–252
SengeRBösnerSDembczyénskiKHaasenritterJHirschODonner-BanzhoffNHüllermeierEReliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertaintyInf Sci20142551629311712710.1016/j.ins.2013.07.030
Dembczyński K, Kotłowski W, Waegeman W, Busa-Fekete R, Hüllermeier E (2016) Consistency of probabilistic classifier trees. In: ECML/PKDD
Frank E, Kramer S (2004) Ensembles of nested dichotomies for multi-class problems. In: Proceedings of the Twenty-first International Conference on Machine Learning, ACM, New York, NY, USA, ICML ’04, pp 39
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
Ofer D (2019) Dbpedia classes. https://www.kaggle.com/danofer/dbpedia-classes/metadata
Balasubramanian V, Ho S, Vovk V (eds) (2014) Conformal Prediction for Reliable Machine Learning: Theory. Morgan Kaufmann, Adaptations and Applications
Shafer G, Vovk V (2008) A tutorial on conformal prediction. J Mach Learn Res 9:371–421
FanREChangKWHsiehCJWangXRLinCJLIBLINEAR: a library for large linear classificationJ Mach Learn Res20089187118741225.68175
ZaffalonMGiorgioCMauáDDEvaluating credal classifiers by utility-discounted predictive accuracyInt J Approx Reasoning20125312821301297187210.1016/j.ijar.2012.06.022
Shrivastava A, Li P (2014) Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips). In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, MIT Press, Cambridge, MA, USA, NIPS’14, pp 2321–2329
Ramaswamy HG, Tewari A, Agarwal S (2015) Consistent algorithms for multiclass classification with a reject option. CoRR arXiv:5050.4137
Kendall A, Gal Y (2017) What uncertainties do we need in Bayesian deep learning for computer vision? Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017. Long Beach, CA, USA, pp 5580–5590
RIKEN (2013) Genomic-based 16s ribosomal rna database. https://metasystems.riken.jp/grd/download.html
EveringhamMEslamiASMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes challenge 2006 (VOC2006) resultsInt J comput vision200611119813610.1007/s11263-014-0733-5
Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2007) The PASCAL visual object classes challenge 2007 (VOC2007) results
PapadopoulosHInductive conformal prediction: theory and application to neural networksTools Artif Intel2008182315330
Ye N, Chai K, Lee WS, Chieu HL (2012) Optimizing f-measures: a tale of two approaches. In: Proceedings of the International Conference on Machine Learning
Naidan B, Boytsov L (2015) Non-metric space library manual. CoRR arXiv:1508.05470
Partalas I, Kosmopoulos A, Baskiotis N, Artières T, Paliouras G, Gaussier É, Androutsopoulos I, Amini M, Gallinari P (2015) LSHTC: A benchmark for large-scale text classification. CoRR arXiv:1503.08581
DenisCHebiriMConfidence sets with expected sizes for multiclass classificationJ Mach Learn Res20171810212837254411441.62166
Syed S (2016) Submodularity in machine learning. MLRG Summer School, https://www.stat.ubc.ca/~saif.syed/papers/mlrg_submodularity.pdf
Vovk V, Gammerman A, Shafer G (2003) Algorithmic Learning in a Random World. Springer-Verlag
Beygelzimer A, Langford J, Lifshits Y, Sorkin G, Strehl A (2009) Conditional probability tree estimation analysis and algorithms. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, AUAI Press, Arlington, Virginia, United States, UAI ’09, pp 51–58
CoraniGZaffalonMLearning reliable classifiers from small or incomplete data sets: the naive credal classifier 2J Mach Learn Res2008958162124172481225.62082
751_CR18
751_CR19
751_CR17
RE Fan (751_CR15) 2008; 9
H Papadopoulos (751_CR39) 2008; 18
G Navarro (751_CR35) 2002; 11
M Everingham (751_CR13) 2006; 111
751_CR62
FF Li (751_CR27) 2003
JJ Del Coz (751_CR8) 2009; 10
751_CR60
751_CR21
751_CR22
751_CR25
751_CR26
751_CR23
751_CR24
751_CR29
V Melnikov (751_CR30) 2018; 107
R Senge (751_CR48) 2014; 255
W Waegeman (751_CR56) 2014; 15
G Yang (751_CR59) 2017; 47
M Zaffalon (751_CR61) 2012; 53
751_CR1
751_CR2
A Rahimi (751_CR44) 2008; 20
751_CR9
751_CR32
751_CR33
751_CR7
751_CR36
G Yang (751_CR58) 2017; 21
751_CR37
751_CR3
751_CR34
751_CR4
751_CR38
C Denis (751_CR11) 2017; 18
G Corani (751_CR6) 2008; 9
D Mena (751_CR31) 2017; 106
751_CR40
751_CR43
751_CR41
751_CR42
M Stock (751_CR52) 2016; 30
751_CR47
751_CR45
751_CR46
S Depeweg (751_CR12) 2018; 80
A Fiannaca (751_CR16) 2018; 19
751_CR49
Y Li (751_CR28) 2018; 34
JM Geusebroek (751_CR20) 2005; 61
751_CR50
751_CR51
751_CR10
751_CR54
751_CR55
W Bi (751_CR5) 2015; 27
751_CR53
751_CR14
751_CR57
References_xml – reference: LeCun Y, Cortes C (2010) MNIST handwritten digit database. Tech rep Courant Institute, Google Labs, http://yann.lecun.com/exdb/mnist/
– reference: Vovk V, Gammerman A, Shafer G (2003) Algorithmic Learning in a Random World. Springer-Verlag,
– reference: Partalas I, Kosmopoulos A, Baskiotis N, Artières T, Paliouras G, Gaussier É, Androutsopoulos I, Amini M, Gallinari P (2015) LSHTC: A benchmark for large-scale text classification. CoRR arXiv:1503.08581
– reference: SengeRBösnerSDembczyénskiKHaasenritterJHirschODonner-BanzhoffNHüllermeierEReliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertaintyInf Sci20142551629311712710.1016/j.ins.2013.07.030
– reference: Ye N, Chai K, Lee WS, Chieu HL (2012) Optimizing f-measures: a tale of two approaches. In: Proceedings of the International Conference on Machine Learning
– reference: Ofer D (2019) Dbpedia classes. https://www.kaggle.com/danofer/dbpedia-classes/metadata
– reference: Balasubramanian V, Ho S, Vovk V (eds) (2014) Conformal Prediction for Reliable Machine Learning: Theory. Morgan Kaufmann, Adaptations and Applications
– reference: WaegemanWDembczyńskiKJachnikAChengWHüllermeierEOn the Bayes-optimality of F-measure maximizersJ Mach Learn Res2014153333338832914051311.62011
– reference: Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: NIPS-W
– reference: Prabhu Y, Kag A, Harsola S, Agrawal R, Varma M (2018) Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising. In: Proceedings of the International World Wide Web Conference
– reference: Syed S (2016) Submodularity in machine learning. MLRG Summer School, https://www.stat.ubc.ca/~saif.syed/papers/mlrg_submodularity.pdf
– reference: StockMDembczynskiKBaetsBDWaegemanWExact and efficient top-k inference for multi-target prediction by querying separable linear relational modelsData Min Knowl Discov201630513701394353998510.1007/s10618-016-0456-z1416.62541
– reference: Dembczyński K, Kotłowski W, Waegeman W, Busa-Fekete R, Hüllermeier E (2016) Consistency of probabilistic classifier trees. In: ECML/PKDD
– reference: GeusebroekJMBurghoutsGSmeuldersAThe amsterdam library of object imagesInt J Comput Vision200561110311210.1023/B:VISI.0000042993.50813.60
– reference: Yagnik J, Strelow D, Ross DA, sung Lin R (2011) The power of comparative reasoning. In: 2011 International Conference on Computer Vision, pp 2431–2438
– reference: MenaDMontañésEQuevedoJRdel CozJJA family of admissible heuristics for A* to perform inference in probabilistic classifier chainsMach Learn20171061143169359215310.1007/s10994-016-5593-5
– reference: Freitas A (2007) A tutorial on hierarchical classification with applications in bioinformatics. In: Research and Trends in Data Mining Technologies and Applications,, pp 175–208
– reference: Hüllermeier E, Waegeman W (2019) Aleatoric and epistemic uncertainty in machine learning: A tutorial introduction. arXiv:1910.09457
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
– reference: RIKEN (2013) Genomic-based 16s ribosomal rna database. https://metasystems.riken.jp/grd/download.html
– reference: Malkov YA, Yashunin DA (2018) Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence pp 1–1
– reference: NavarroGSearching in metric spaces by spatial approximationVLDB J2002111284610.1007/s007780200060
– reference: YangGDesterckeSMassonMHThe costs of indeterminacy: how to determine them?IEEE Transact Cybernet2017474316432710.1109/TCYB.2016.2607237
– reference: Dembczyński K, Waegeman W, Cheng W, Hüllermeier E (2012) An analysis of chaining in multi-label classification. In: Proceedings of the European Conference on Artificial Intelligence
– reference: PapadopoulosHInductive conformal prediction: theory and application to neural networksTools Artif Intel2008182315330
– reference: Prabhu Y, Varma M (2014) Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In: KDD
– reference: RahimiARechtBRandom features for large-scale kernel machinesAdv Neural Inform Process Syst20082011771184
– reference: CoraniGZaffalonMLearning reliable classifiers from small or incomplete data sets: the naive credal classifier 2J Mach Learn Res2008958162124172481225.62082
– reference: Kendall A, Gal Y (2017) What uncertainties do we need in Bayesian deep learning for computer vision? Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017. Long Beach, CA, USA, pp 5580–5590
– reference: MelnikovVHüllermeierEOn the effectiveness of heuristics for learning nested dichotomies: an empirical analysisMach Learn20181078–1015371560383527810.1007/s10994-018-5733-1
– reference: Morin F, Bengio Y (2005) Hierarchical probabilistic neural network language model. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, Society for Artificial Intelligence and Statistics, pp 246–252
– reference: Naidan B, Boytsov L (2015) Non-metric space library manual. CoRR arXiv:1508.05470
– reference: Ziyin L, Wang Z, Liang PP, Salakhutdinov R, Morency LP, Ueda M (2019) Deep gamblers: Learning to abstain with portfolio theory. arXiv:1907.00208
– reference: BiWKwokJBayes-optimal hierarchical multilabel classificationIEEE Trans Knowl Data Eng2015271110.1109/TKDE.2015.2441707
– reference: Fox J (1997) Applied regression analysis, linear models, and related methods. Sage,
– reference: YangGDesterckeSMassonMHCautious classification with nested dichotomies and imprecise probabilitiesSoft Comput2017217447746210.1007/s00500-016-2287-7
– reference: ZaffalonMGiorgioCMauáDDEvaluating credal classifiers by utility-discounted predictive accuracyInt J Approx Reasoning20125312821301297187210.1016/j.ijar.2012.06.022
– reference: Beygelzimer A, Langford J, Lifshits Y, Sorkin G, Strehl A (2009) Conditional probability tree estimation analysis and algorithms. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, AUAI Press, Arlington, Virginia, United States, UAI ’09, pp 51–58
– reference: Nguyen V, Destercke S, Masson M, Hüllermeier E (2018) Reliable multi-class classification based on pairwise epistemic and aleatoric uncertainty. In: IJCAI, ijcai.org, pp 5089–5095
– reference: Ramaswamy HG, Tewari A, Agarwal S (2015) Consistent algorithms for multiclass classification with a reject option. CoRR arXiv:5050.4137
– reference: Rangwala H, Naik A (2017) Large scale hierarchical classification: foundations, algorithms and applications. In: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
– reference: Babbar R, Dembczyński K (2018) Extreme classification for information retrieval. Tutorial at ECIR 2018, http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/xmlc4ir-2018.pdf
– reference: FanREChangKWHsiehCJWangXRLinCJLIBLINEAR: a library for large linear classificationJ Mach Learn Res20089187118741225.68175
– reference: Babbar R, Schölkopf B (2017) Dismec: Distributed sparse machines for extreme multi-label classification. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, DOI 10(1145/3018661):3018741
– reference: Del CozJJDíezJBahamondeALearning nondeterministic classifiersJ Mach Learn Res2009102273229325639821235.68144
– reference: DenisCHebiriMConfidence sets with expected sizes for multiclass classificationJ Mach Learn Res20171810212837254411441.62166
– reference: LiYWangSUmarovRXieBFanMLiLGaoXDeepre: sequence-based enzyme EC number prediction by deep learningBioinformatics201834576076910.1093/bioinformatics/btx680
– reference: EveringhamMEslamiASMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes challenge 2006 (VOC2006) resultsInt J comput vision200611119813610.1007/s11263-014-0733-5
– reference: Corani G, Zaffalon M (2009) Lazy naive credal classifier. In: Proceedings of the 1st ACM SIGKDD Workshop on Knowledge Discovery from Uncertain Data, ACM, pp 30–37
– reference: Oh S (2017) Top-k hierarchical classification. In: AAAI, AAAI Press, pp 2450–2456
– reference: Jansche M (2007) A maximum expected utility framework for binary sequence labeling. In: Association for Computational Linguistics, pp 736–743
– reference: Frank E, Kramer S (2004) Ensembles of nested dichotomies for multi-class problems. In: Proceedings of the Twenty-first International Conference on Machine Learning, ACM, New York, NY, USA, ICML ’04, pp 39
– reference: Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in Neural Information Processing Systems 26, Curran Associates, Inc., pp 3111–3119
– reference: LiFFAndreettoMRanzatoMACaltech101 image dataset2003California Institute of TechnologyTech. rep
– reference: Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. Tech Rep 7694, California Institute of Technology
– reference: Johnson J, Douze M, Jégou H (2017) Billion-scale similarity search with gpus. arXiv preprint arXiv:1702.08734
– reference: DepewegSHernández-LobatoJMDoshi-VelezFUdluftSDecomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learningICML, PMLR, Proceedings of Machine Learning Research20188011921201
– reference: Vondrak J (2019) Optimization of submodular functions tutorial. https://theory.stanford.edu/~jvondrak/data/submod-tutorial-1.pdf
– reference: Shafer G, Vovk V (2008) A tutorial on conformal prediction. J Mach Learn Res 9:371–421
– reference: Shrivastava A, Li P (2014) Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips). In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, MIT Press, Cambridge, MA, USA, NIPS’14, pp 2321–2329
– reference: Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2007) The PASCAL visual object classes challenge 2007 (VOC2007) results
– reference: FiannacaAPagliaLLRosaMLBoscoGLRendaGRizzoRGaglioSUrsoADeep learning models for bacteria taxonomic classification of metagenomic dataBMC Bioinformat201819617610.1186/s12859-018-2083-8
– ident: 751_CR21
– volume: 18
  start-page: 102
  year: 2017
  ident: 751_CR11
  publication-title: J Mach Learn Res
– ident: 751_CR19
  doi: 10.4018/978-1-59904-271-8.ch007
– volume-title: Caltech101 image dataset
  year: 2003
  ident: 751_CR27
– ident: 751_CR2
  doi: 10.1145/3018661.3018741
– ident: 751_CR4
– ident: 751_CR50
– volume: 106
  start-page: 143
  issue: 1
  year: 2017
  ident: 751_CR31
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5593-5
– ident: 751_CR54
– ident: 751_CR43
  doi: 10.1145/3178876.3185998
– volume: 9
  start-page: 1871
  year: 2008
  ident: 751_CR15
  publication-title: J Mach Learn Res
– volume: 107
  start-page: 1537
  issue: 8–10
  year: 2018
  ident: 751_CR30
  publication-title: Mach Learn
  doi: 10.1007/s10994-018-5733-1
– volume: 11
  start-page: 28
  issue: 1
  year: 2002
  ident: 751_CR35
  publication-title: VLDB J
  doi: 10.1007/s007780200060
– ident: 751_CR25
– volume: 19
  start-page: 61
  year: 2018
  ident: 751_CR16
  publication-title: BMC Bioinformat
  doi: 10.1186/s12859-018-2083-8
– ident: 751_CR10
  doi: 10.1007/978-3-319-46227-1_32
– ident: 751_CR29
– ident: 751_CR42
  doi: 10.1145/2623330.2623651
– volume: 111
  start-page: 98
  issue: 1
  year: 2006
  ident: 751_CR13
  publication-title: Int J comput vision
  doi: 10.1007/s11263-014-0733-5
– volume: 15
  start-page: 3333
  year: 2014
  ident: 751_CR56
  publication-title: J Mach Learn Res
– ident: 751_CR24
– ident: 751_CR57
  doi: 10.1109/ICCV.2011.6126527
– ident: 751_CR14
– ident: 751_CR51
– volume: 10
  start-page: 2273
  year: 2009
  ident: 751_CR8
  publication-title: J Mach Learn Res
– ident: 751_CR34
– ident: 751_CR55
– ident: 751_CR40
  doi: 10.1145/2556195.2556208
– ident: 751_CR41
– ident: 751_CR49
– ident: 751_CR45
– ident: 751_CR62
– ident: 751_CR23
– ident: 751_CR36
  doi: 10.24963/ijcai.2018/706
– volume: 21
  start-page: 7447
  year: 2017
  ident: 751_CR58
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2287-7
– ident: 751_CR7
  doi: 10.1145/1610555.1610560
– ident: 751_CR17
– ident: 751_CR33
– volume: 9
  start-page: 581
  year: 2008
  ident: 751_CR6
  publication-title: J Mach Learn Res
– volume: 80
  start-page: 1192
  year: 2018
  ident: 751_CR12
  publication-title: ICML, PMLR, Proceedings of Machine Learning Research
– volume: 18
  start-page: 315
  issue: 2
  year: 2008
  ident: 751_CR39
  publication-title: Tools Artif Intel
– ident: 751_CR38
  doi: 10.1609/aaai.v31i1.10813
– volume: 27
  start-page: 1
  year: 2015
  ident: 751_CR5
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2441707
– ident: 751_CR46
– ident: 751_CR47
– ident: 751_CR22
– volume: 20
  start-page: 1177
  year: 2008
  ident: 751_CR44
  publication-title: Adv Neural Inform Process Syst
– ident: 751_CR9
– ident: 751_CR3
  doi: 10.1016/B978-0-12-398537-8.00009-2
– volume: 47
  start-page: 4316
  year: 2017
  ident: 751_CR59
  publication-title: IEEE Transact Cybernet
  doi: 10.1109/TCYB.2016.2607237
– ident: 751_CR32
– ident: 751_CR1
– volume: 61
  start-page: 103
  issue: 1
  year: 2005
  ident: 751_CR20
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000042993.50813.60
– ident: 751_CR37
– ident: 751_CR53
– ident: 751_CR60
– volume: 53
  start-page: 1282
  year: 2012
  ident: 751_CR61
  publication-title: Int J Approx Reasoning
  doi: 10.1016/j.ijar.2012.06.022
– volume: 30
  start-page: 1370
  issue: 5
  year: 2016
  ident: 751_CR52
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-016-0456-z
– ident: 751_CR18
  doi: 10.1145/1015330.1015363
– volume: 34
  start-page: 760
  issue: 5
  year: 2018
  ident: 751_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx680
– volume: 255
  start-page: 16
  year: 2014
  ident: 751_CR48
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.07.030
– ident: 751_CR26
SSID ssj0005230
Score 2.4794366
Snippet In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1435
SubjectTerms Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Classifiers
Computer Science
Data Mining and Knowledge Discovery
Decision theory
Expected utility
Information Storage and Retrieval
Physics
Special Issue of the Journal Track of ECML PKDD 2021
Statistics for Engineering
Uncertainty
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7odvHib3E6JQdvGlzbpM1OorIxBIeIg91Kk77CQLa5Vdifb16WWhXcpZc0KXwvefmavPc9gCuptcySUPFMYM6FQusHpUaOlv2SfBcmSPnOz8N4MBJPYzn2B25LH1ZZ-UTnqPOZoTPyW5LSisJIqO7d_INT1Si6XfUlNLahaV2wsjO8-dAbvrz-CPKI1nnCSnCpgo5Pm_HJc3GgOIUo0L4Z8NXvranmm3-uSN3O09-HXU8Z2f3axgewhdND2KvKMTC_Oo-AlIgnLr-RLbHkJOONOZsv6CqG4GeTKXPxg9wQZWbuSZFCzjjHMOr33h4H3FdH4CaKo5KLQmvUmvTACqN0JvNuZrmQwCIWMjGmkIXpJkFBeuxUhdMIaSJlW7QOw1xn0Qk0prMpngKLLWe0PzJJkWQWZNHRMsZMo0yIP9nPtCCogEmNlw6nChbvaS16TGCmFszUgZmuWnD93We-Fs7Y-Ha7wjv1i2iZ1iZvwU1lg7r5_9HONo92DjuhMzsF3bahUS4-8cJSi1Jf-vnzBWYkykM
  priority: 102
  providerName: ProQuest
Title Efficient set-valued prediction in multi-class classification
URI https://link.springer.com/article/10.1007/s10618-021-00751-x
https://www.proquest.com/docview/2544323489
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7ohuDFH1NxOkcO3jSwNkmbHafsB4pDxME8lSZNYSDdWCv455uXtW6KCl7aQ9IUXl7yvpDvfQ_gUigl4tCXNOYmoVwauw8KZaix6Bflu0xoMN_5YRyMJvxuKqZlUlhesd2rK0m3U28kuwWepEgpwDjnUYsc68Ke3dGvJ35vg9jBVrnBklMhvU6ZKvPzGF_D0RpjfrsWddFmcAB7JUwkvdW8HsKWyRqwX5VgIOWKbMCOY3Dq_AhQh3jmshtJbgqKIt4mIYslXsSg8cksI449SDUCZuKeyBNyU3MMk0H_-XZEy9oIVLOAFZSnShmlUA0s1VLFIunGFglxkwZchFqnItXd0EtRjR1rcGouNJO2RSnfT1TMTqCWzTNzCiSwiNEeY8I0jDlnvKNEYGJlRIjoyf6mCV5lokiXwuFYv-I1Wkseo1kja9bImTV6b8LV5zeLlWzGn71bleWjcgnlEWqnMZ9x2W3CdTUb6-bfRzv7X_dz2PWdQyAFtwW1YvlmLizQKFQbtuVg2IZ6b_hy37fvm_748antvO0D-bnNSw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjSgU8AATWJDYTtwBIQSUQh9TK3ULseNISKgUWkT5U_xGfE5CAIluLFmcONLdl_Pn-O47gAOhlIhDX9KYm4RyaWwcFMpQY9kvyneZ0GC9c7sTNHr8ri_6M_BR1MJgWmURE12gTp40_iM_QSkt5jMua-fDZ4pdo_B0tWihkcGiad7f7JZtdHZ7Zf176Pv16-5lg-ZdBahmARtTnipllEIdrVRLFYukFlsOwU0acBFqnYpU10IvRR1z7F6pudBM2hGlfD9RMbPzzsI8Z6yGKYSyfvMtpYRlVcmSUyG907xIJy_VCzxJMSECV2mPTn4uhCW7_XUg69a5-gos5QSVXGSIWoUZM1iD5aL5A8ljwTqg7vGDq6YkIzOmKBpuEjJ8wYMfdDZ5GBCXrUg1EnTirpiX5KCwAb1_sdomzA2eBmYLSGAZqt02hWkYW5fyUyUCEysjQmRr9jUV8ArDRDoXKsd-GY9RKbGMxoysMSNnzGhSgaOvZ4aZTMfUu6uFvaP8kx1FJcAqcFz4oBz-e7bt6bPtw0Kj225FrdtOcwcWfQcBTPetwtz45dXsWlIzVnsOSQTu_xu6nwFXByo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT8IwFH5BTIwXfxtR1B70pA1sa7dyMMaICKLEgyTc5tp1CYkBBIz4r_nX2Vc2URO5cdmlW5e89-316_re9wBOuJQ8ClxBI6ZjyoQ2cZBLTbVhvyjfpQON9c4PLb_eZncd3snBZ1YLg2mVWUy0gTruK_xHXkIpLc_1mKiUkjQt4rFauxy8UuwghSetWTuNKUSa-uPdbN9GF42q8fWp69Zunq7rNO0wQJXne2PKEim1lKiplSghIx5XIsMnmE58xgOlEp6oSuAkqGmOnSwV48oTZkRK141l5Jl5l2A58EQZuyeI2u2P9BJvWqEsGOXCKacFO2nZnu8IiskRuGI7dPJ7UZwx3T-Hs3bNq23AWkpWydUUXZuQ070tWM8aQZA0LmwDaiB3bWUlGekxRQFxHZPBEA-B0PGk2yM2c5EqJOvEXjFHycJiB9oLsdou5Hv9nt4D4hu2arZQQRJExr2sLLmvI6l5gMzNvKYATmaYUKWi5dg74yWcyS2jMUNjzNAaM5wU4Oz7mcFUsmPu3cXM3mH6-Y7CGdgKcJ75YDb8_2z782c7hhUD2vC-0WoewKprEYCZv0XIj4dv-tDwm7E8skAi8Lxo5H4BD5YLVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+set-valued+prediction+in+multi-class+classification&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Mortier%2C+Thomas&rft.au=Wydmuch%2C+Marek&rft.au=Dembczy%C5%84ski%2C+Krzysztof&rft.au=H%C3%BCllermeier%2C+Eyke&rft.date=2021-07-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=35&rft.issue=4&rft.spage=1435&rft.epage=1469&rft_id=info:doi/10.1007%2Fs10618-021-00751-x&rft.externalDocID=10_1007_s10618_021_00751_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon