Towards analysing student failures: neural networks compared with regression analysis and multiple discriminant analysis
Using data from key first year courses, this article considers the development of subject-specific models to identify enrolled students at-risk of failure. The primary technique considered was neural networks, with it's results compared with logistic regression and multiple discriminant analysi...
Saved in:
Published in | Computers & operations research Vol. 24; no. 4; pp. 367 - 377 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.1997
Elsevier Science Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using data from key first year courses, this article considers the development of subject-specific models to identify enrolled students at-risk of failure. The primary technique considered was neural networks, with it's results compared with logistic regression and multiple discriminant analysis. The three different modelling approaches were developed by three different analysts to achieve the benefits accruing from the independent M-Competition. We have found the quality of forecasts achieved to be significantly improved on earlier studies, presumably because of the subject specific nature of the models. |
---|---|
AbstractList | Using data from key first year courses, this article considers the development of subject-specific models to identify enrolled students at-risk of failure. The primary technique considered was neural networks, with it's results compared with logistic regression and multiple discriminant analysis. The three different modelling approaches were developed by three different analysts to achieve the benefits accruing from the independent M-Competition. We have found the quality of forecasts achieved to be significantly improved on earlier studies, presumably because of the subject specific nature of the models. Using data from key first-year courses, the development of subject-specific models to identify enrolled students at risk of failure is considered. The primary technique considered was neural networks, with its results compared with logistic regression and multiple discriminant analysis. The 3 different modeling approaches were developed by 3 different analysts to achieve the benefits accruing from the independent M-Competition. The quality of forecasts achieved were found to be significantly improved on earlier studies, presumably because of the subject-specific nature of the models. |
Author | Flitman, A.M. |
Author_xml | – sequence: 1 givenname: A.M. surname: Flitman fullname: Flitman, A.M. email: AFLITMAN@fcit-ml.monash.edu.au organization: Department of Business Systems, Faculty of Computing and Information Technology, Monash University, Clayton, Victoria 3168, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2609555$$DView record in Pascal Francis |
BookMark | eNqFkc1uFDEQhC0UJDYJj4BkIQ5wGGiPx94xHBCK-JMi5ZAgcbN67Z7gMOtZbA9L3j7ebJIDl5yqD1-VWlWH7CBOkRh7IeCtAKHfnYME1YDq-tdGvwEADY18whaiX8pmqdXPA7Z4QJ6xw5yvKgTLVizYv4tpi8lnjhHH6xziJc9l9hQLHzCMc6L8nkeaE45VynZKvzN303qDiTzfhvKLJ7qsVA5TvA_ZpXm-nscSNiNxH7JLYR0i1tR75Jg9HXDM9PxOj9iPL58vTr41p2dfv598Om2c1LI0HYkBsJdAosMepZIrs0K90kKBkAaAehLGGeU76HWryHhPq2UL2Kl6OnnEXu5zN2n6M1Mu9mqaU30iW2FU3-rO6Aq9uoMwOxyHhNGFbDf1a0zXttVglFIVU3vMpSnnRMMDIcDuprC3U9hdz9ZoezuFldX34T-fCwVLbaykWvKj7o97N9Wa_gZKNrtA0ZEPiVyxfgqPJNwAc8eneQ |
CODEN | CMORAP |
CitedBy_id | crossref_primary_10_1080_08839514_2018_1448146 crossref_primary_10_1186_s40165_015_0018_2 crossref_primary_10_1016_j_cor_2004_09_032 crossref_primary_10_1007_BF03403515 crossref_primary_10_1590_S0101_74382005000100004 crossref_primary_10_1016_j_eswa_2008_09_023 crossref_primary_10_1109_JIOT_2018_2816007 crossref_primary_10_1179_crn_2005_006 crossref_primary_10_1080_21568235_2020_1718518 crossref_primary_10_1016_j_ijcce_2020_07_001 crossref_primary_10_1016_S0973_0826_08_60576_1 crossref_primary_10_1016_j_eswa_2010_06_005 |
Cites_doi | 10.1016/0305-0548(94)90088-4 10.1111/j.1540-5915.1992.tb00425.x 10.1177/0013164491513023 10.1002/for.3980010202 10.1016/0169-2070(93)90043-M |
ContentType | Journal Article |
Copyright | 1997 1997 INIST-CNRS Copyright Pergamon Press Inc. Apr 1997 |
Copyright_xml | – notice: 1997 – notice: 1997 INIST-CNRS – notice: Copyright Pergamon Press Inc. Apr 1997 |
DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/S0305-0548(96)00060-3 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business Applied Sciences |
EISSN | 1873-765X 0305-0548 |
EndPage | 377 |
ExternalDocumentID | 11471959 2609555 10_1016_S0305_0548_96_00060_3 S0305054896000603 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c363t-4e1f0a830e14a8a353b9ba6b615013900e8e19c95d408625e9ddeb720a459ddc3 |
IEDL.DBID | AIKHN |
ISSN | 0305-0548 |
IngestDate | Fri Jul 25 06:36:11 EDT 2025 Mon Jul 21 09:16:34 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 02:06:15 EDT 2025 Fri Feb 23 02:33:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Logistic regression Discriminant analysis Prediction Network Neural network Risk analysis Student School failure |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-4e1f0a830e14a8a353b9ba6b615013900e8e19c95d408625e9ddeb720a459ddc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
PQID | 195826496 |
PQPubID | 45870 |
PageCount | 11 |
ParticipantIDs | proquest_journals_195826496 pascalfrancis_primary_2609555 crossref_primary_10_1016_S0305_0548_96_00060_3 crossref_citationtrail_10_1016_S0305_0548_96_00060_3 elsevier_sciencedirect_doi_10_1016_S0305_0548_96_00060_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1997-04-01 |
PublicationDateYYYYMMDD | 1997-04-01 |
PublicationDate_xml | – month: 04 year: 1997 text: 1997-04-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: New York |
PublicationTitle | Computers & operations research |
PublicationYear | 1997 |
Publisher | Elsevier Ltd Elsevier Science Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science – name: Pergamon Press Inc |
References | Fisher, Resnick (BIB2) 1990; 55 Lipperman (BIB8) 1987 Graham (BIB9) 1991 Chatfield (BIB1) 1993; 9 Wasserman (BIB11) 1993 Hertz, Krogh, Palmer (BIB10) 1991 Salchenberger, Cinar, Lash (BIB7) 1992; 23 Hardgrave, Wilson, Walstrom (BIB5) 1994; 213 Makridakis (BIB6) 1982; 1 Baird (BIB3) 1975; 35 Remus, Wong (BIB4) 1982; 16 Baird (10.1016/S0305-0548(96)00060-3_BIB3) 1975; 35 Hertz (10.1016/S0305-0548(96)00060-3_BIB10) 1991 Fisher (10.1016/S0305-0548(96)00060-3_BIB2) 1990; 55 Remus (10.1016/S0305-0548(96)00060-3_BIB4) 1982; 16 Lipperman (10.1016/S0305-0548(96)00060-3_BIB8) 1987 Graham (10.1016/S0305-0548(96)00060-3_BIB9) 1991 Makridakis (10.1016/S0305-0548(96)00060-3_BIB6) 1982; 1 Hardgrave (10.1016/S0305-0548(96)00060-3_BIB5) 1994; 213 Wasserman (10.1016/S0305-0548(96)00060-3_BIB11) 1993 Chatfield (10.1016/S0305-0548(96)00060-3_BIB1) 1993; 9 Salchenberger (10.1016/S0305-0548(96)00060-3_BIB7) 1992; 23 |
References_xml | – year: 1993 ident: BIB11 article-title: Advanced Methods in Neural Computing – volume: 23 start-page: 899 year: 1992 end-page: 916 ident: BIB7 article-title: Neural networks: a new tool for predicting thrift failures publication-title: Decision Sciences – start-page: 721 year: 1991 end-page: 727 ident: BIB9 article-title: Predicting academic success of students in a master of business administration program publication-title: Educational Psychol. Measure. – volume: 35 start-page: 137 year: 1975 end-page: 148 ident: BIB3 article-title: Comparative prediction of first year graduate and professional school grades in six fields publication-title: Educ. Phychol. Measure. – volume: 213 start-page: 249 year: 1994 end-page: 263 ident: BIB5 article-title: Predicting graduate student success: a comparison of neural networks and traditional techniques publication-title: Computers Ops Res. – volume: 9 start-page: 1 year: 1993 end-page: 3 ident: BIB1 article-title: Neural networks: forecasting breakthrough or passing fad? publication-title: Int. J. Forecasting – volume: 16 start-page: 53 year: 1982 end-page: 59 ident: BIB4 article-title: An evaluation of five models for the admission decision publication-title: College Student – year: 1987 ident: BIB8 article-title: An Introduction to Computing with Neural Nets – volume: 1 start-page: 111 year: 1982 end-page: 153 ident: BIB6 article-title: The accuracy of extrapolation (time series) methods: results of a forecasting competition publication-title: J. Forecasting – volume: 55 start-page: 137 year: 1990 end-page: 148 ident: BIB2 article-title: Standardized testing and graduate business school admission: a review of issues and an analysis of a baruch college MBA cohort publication-title: College Univ. – year: 1991 ident: BIB10 article-title: Introduction to the Theory of Neural Computation – volume: 16 start-page: 53 year: 1982 ident: 10.1016/S0305-0548(96)00060-3_BIB4 article-title: An evaluation of five models for the admission decision publication-title: College Student – volume: 213 start-page: 249 year: 1994 ident: 10.1016/S0305-0548(96)00060-3_BIB5 article-title: Predicting graduate student success: a comparison of neural networks and traditional techniques publication-title: Computers Ops Res. doi: 10.1016/0305-0548(94)90088-4 – volume: 23 start-page: 899 year: 1992 ident: 10.1016/S0305-0548(96)00060-3_BIB7 article-title: Neural networks: a new tool for predicting thrift failures publication-title: Decision Sciences doi: 10.1111/j.1540-5915.1992.tb00425.x – volume: 35 start-page: 137 year: 1975 ident: 10.1016/S0305-0548(96)00060-3_BIB3 article-title: Comparative prediction of first year graduate and professional school grades in six fields publication-title: Educ. Phychol. Measure. – start-page: 721 year: 1991 ident: 10.1016/S0305-0548(96)00060-3_BIB9 article-title: Predicting academic success of students in a master of business administration program publication-title: Educational Psychol. Measure. doi: 10.1177/0013164491513023 – volume: 55 start-page: 137 year: 1990 ident: 10.1016/S0305-0548(96)00060-3_BIB2 article-title: Standardized testing and graduate business school admission: a review of issues and an analysis of a baruch college MBA cohort publication-title: College Univ. – year: 1993 ident: 10.1016/S0305-0548(96)00060-3_BIB11 – volume: 1 start-page: 111 year: 1982 ident: 10.1016/S0305-0548(96)00060-3_BIB6 article-title: The accuracy of extrapolation (time series) methods: results of a forecasting competition publication-title: J. Forecasting doi: 10.1002/for.3980010202 – year: 1991 ident: 10.1016/S0305-0548(96)00060-3_BIB10 – year: 1987 ident: 10.1016/S0305-0548(96)00060-3_BIB8 – volume: 9 start-page: 1 year: 1993 ident: 10.1016/S0305-0548(96)00060-3_BIB1 article-title: Neural networks: forecasting breakthrough or passing fad? publication-title: Int. J. Forecasting doi: 10.1016/0169-2070(93)90043-M |
SSID | ssj0000721 |
Score | 1.6326029 |
Snippet | Using data from key first year courses, this article considers the development of subject-specific models to identify enrolled students at-risk of failure. The... Using data from key first-year courses, the development of subject-specific models to identify enrolled students at risk of failure is considered. The primary... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 367 |
SubjectTerms | Applied sciences Artificial intelligence Comparative studies Computer science; control theory; systems Connectionism. Neural networks Discriminant analysis Exact sciences and technology Failure Forecasting Neural networks Operational research and scientific management Operational research. Management science Planning. Forecasting Regression analysis Students |
Title | Towards analysing student failures: neural networks compared with regression analysis and multiple discriminant analysis |
URI | https://dx.doi.org/10.1016/S0305-0548(96)00060-3 https://www.proquest.com/docview/195826496 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEB78AeJx3Ol6x3mekgcf9KG77aZpm3tb5GRPwRdX8C0k2VQWpLfYFXzyb3emSVzlOBburYTMpE2mM9PyzTcAx4ZrzBtsmXS1H7mwMqkwTCUYKtOsLoyxdYe2uCrGN_nFrbhdg7NYC0OwyuD7vU_vvHUYGYTdHMxns8E1mSomHBXm4MQqwtdhc8hlgaa9Ofp9Ob5aOuSyK7-i-QkJLAt5vJJu8EQWp52ehP8rRH2c6xY3rvYdL_5y3l1EOt-BTyGVZCN_t7uw5poebEUkew8-x44NLLzAPfjwhn5wD54mHWa2ZdozkzR3rPVUl6zWM8Krtz8ZEV7iKo2Hi7csgtYZ_cFlD-7OA2mbqIS0TVnEKTKq-vWdw1BrnPIFbs5_Tc7GSejEkFhe8EWSu6xOdcVTl-W60lxwI40uDLHJYwqZpq5ymbRSTHP6RBJOotc05TDVucBLy7_CRvOncd-AVbYUpSl0WYthXkqhURDNxNipnuoqFfuQx81XNtCUU7eMe7XEo-GZKTozJQmTh2em-D70X8XmnqdjlUAVT1a9MziFsWSV6OE7S3hdcEjsfQIf4SBahgoeoVVE6oPJpyy-___CB7Dt2XMJOPQDNhYPj-4Qc6KFOYL1_nN2FCz_Bbs2Bqs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFoQou0WxLP40EN7CJtd20nMDSHQ8rx0kbhZttdBK1VhRRaJE7-dmThmQRVC4hZZnnFij2cmyedvAH5ZbjBvcHnSnP0Q0qmkwDCVYKhMe2VmrSsbtMVlNrgSp9fyeg4O41kYglW2vj_49MZbty3ddja7k_G4-5dMFROOAnNwYhXhn2BB4Pal3bn3OMN5EAFY-JUgE-o-O8YTVDSNv1X2p9GS8LcC1PLE1DhtZah38Z_rbuLR8TdYaRNJdhDu9TvM-aoDnyOOvQNfY70G1m7fDiy9IB_8AQ_DBjFbMxN4SaobVgeiS1aaMaHV631GdJc4ShXA4jWLkHVG32_Znb8JMNoqKiFtIxZRiozO_Ia6Yag1dlmFq-Oj4eEgaeswJI5nfJoI3ytTU_DU94QpDJfcKmsyS1zymECmqS98TzklR4JekKRX6DNt3k-NkHjp-BrMV7eVXwdWuFzmNjN5KfsiV9KgIBqJdSMzMkUqN0DEydeuJSmnWhn_9AyNhmumac20IkQerpnmG7D3LDYJLB3vCRRxZfUrc9MYSd4T3XllCc8D9om7T-IjbEXL0K0_qDVR-mDqqbLNjw-8C18Gw4tzfX5yebYFi4FHlyBE2zA_vbv3O5gdTe3PxvqfANmzB28 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+analysing+student+failures+%3A+Neural+networks+compared+with+regression+analysis+and+multiple+discriminant+analysis&rft.jtitle=Computers+%26+operations+research&rft.au=FLITMAN%2C+A.+M&rft.date=1997-04-01&rft.pub=Elsevier+Science&rft.issn=0305-0548&rft.volume=24&rft.issue=4&rft.spage=367&rft.epage=377&rft_id=info:doi/10.1016%2FS0305-0548%2896%2900060-3&rft.externalDBID=n%2Fa&rft.externalDocID=2609555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |