Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: a study using POD-Galerkin and dynamical low-rank approximation
Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the so-called moment system. This calls for tailored model order reduction techniques that allow for efficient and accurate simulations while guaran...
Saved in:
Published in | Advances in computational mathematics Vol. 50; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the so-called moment system. This calls for tailored model order reduction techniques that allow for efficient and accurate simulations while guaranteeing physical properties like mass conservation. In this paper, we develop the first model reduction for the hyperbolic shallow water moment equations and achieve mass conservation. This is accomplished using a macro-micro decomposition of the model into a macroscopic (conservative) part and a microscopic (non-conservative) part with subsequent model reduction using either POD-Galerkin or dynamical low-rank approximation only on the microscopic (non-conservative) part. Numerical experiments showcase the performance of the new model reduction methods including high accuracy and fast computation times together with guaranteed conservation and consistency properties. |
---|---|
AbstractList | Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the so-called moment system. This calls for tailored model order reduction techniques that allow for efficient and accurate simulations while guaranteeing physical properties like mass conservation. In this paper, we develop the first model reduction for the hyperbolic shallow water moment equations and achieve mass conservation. This is accomplished using a macro-micro decomposition of the model into a macroscopic (conservative) part and a microscopic (non-conservative) part with subsequent model reduction using either POD-Galerkin or dynamical low-rank approximation only on the microscopic (non-conservative) part. Numerical experiments showcase the performance of the new model reduction methods including high accuracy and fast computation times together with guaranteed conservation and consistency properties. |
ArticleNumber | 76 |
Author | Koellermeier, Julian Krah, Philipp Kusch, Jonas |
Author_xml | – sequence: 1 givenname: Julian orcidid: 0000-0002-8822-461X surname: Koellermeier fullname: Koellermeier, Julian email: j.koellermeier@rug.nl organization: Bernoulli Institute, University of Groningen, Groningen Cognitive Systems and Materials Center, University of Groningen – sequence: 2 givenname: Philipp orcidid: 0000-0001-8982-4230 surname: Krah fullname: Krah, Philipp organization: Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université – sequence: 3 givenname: Jonas orcidid: 0000-0002-2061-2114 surname: Kusch fullname: Kusch, Jonas organization: Institut für Mathematik, Universität Innsbruck |
BookMark | eNp9Uc1uFSEYJaYmttUXcEXiGoWBGe64M1Vbk5q60DVh4KOlnYEpMK3zcL5buXNNTFx0Ax_h_ME5QUchBkDoLaPvGaXyQ2ZUCEFoIwijTLZkfYGOWSsb0teLozpT1hPJut0rdJLzLaW072R7jP581yZFMvm6YgsmTnPMvvgYsIsJmxiyzwVCwTrY7QjpQRf_AHiKFkYck4WEE9jFbKzo8M06Qxri6A3ON3oc4yN-1KWipjjtleB-0Xts_og1zmWxK16yD9f4x9Vncq5HSHc-bH52DbpG0yOuIiTpcIf1PKf420-bwmv00ukxw5u_-yn69fXLz7MLcnl1_u3s0yUxvOOFiIGDk4PgtjODcwMbhOTUdK1uKdtxqQdDact61oDpnKmDa6QQ1PaWc9ANP0XvDrrV-36BXNRtXFKolorTHZO8a7s9qjmg6l_mnMCpOdWgaVWMqn1N6lCTqjWprSa1VtLuP5LxZXtcSdqPz1P5gZqrT7iG9C_VM6wnUhqvwg |
CitedBy_id | crossref_primary_10_1137_24M164392X crossref_primary_10_1007_s10543_024_01032_x crossref_primary_10_1098_rspa_2024_0658 crossref_primary_10_1137_24M1646303 |
Cites_doi | 10.1016/j.jcp.2015.04.030 10.1007/BF02288367 10.1137/090756624 10.1002/cnm.2808 10.1137/15M1026791 10.1137/18M1218686 10.1051/m2an:2008001 10.1137/19M1257275 10.1007/s10915-013-9804-y 10.1016/j.jcp.2012.11.035 10.1051/m2an/2022090 10.1137/090766498 10.1146/annurev-fluid-122414-034259 10.1090/S0025-5718-1981-0616358-0 10.1137/09076578X 10.1016/j.crma.2004.08.006 10.1002/qj.49711448309 10.4208/eajam.090920.130121 10.1007/s10543-023-00942-6 10.1051/m2an/2016031 10.3934/krm.2014.7.531 10.4208/cicp.OA-2017-0263 10.1137/23M1565103 10.2514/6.2003-4213 10.1002/fld.3946 10.1186/1752-0509-6-81 10.1007/978-3-319-02090-7_9 10.1016/j.coldregions.2010.04.005 10.1051/m2an/2022013 10.1137/S0036142900382612 10.1090/S0025-5718-1981-0628701-7 10.1016/j.cma.2017.01.027 10.1137/090771806 10.1051/m2an:2004027 10.1364/JOSAA.12.001657 10.1007/s10543-021-00873-0 10.1002/nme.4668 10.1016/j.jcp.2008.05.012 10.1137/100795280 10.1002/mma.8180 10.1007/s10955-015-1384-9 10.1016/j.jcp.2021.110353 10.1051/m2an:2007031 10.1137/22M1519493 10.1007/s10915-021-01539-3 10.1109/TAC.2008.2006102 10.1093/qmath/11.1.50 10.1016/j.cam.2016.01.029 10.1063/5.0091678 10.1137/21M1446289 10.4208/cicp.OA-2019-0065 10.1007/s10444-021-09922-2 10.1137/050639703 10.4310/CMS.2013.v11.n2.a12 10.1016/j.amc.2022.127166 10.1016/j.jcp.2023.112060 10.1137/20M1321838 10.1090/S0025-5718-1981-0616359-2 10.1002/mma.6751 10.1016/j.compfluid.2016.04.014 10.1007/s10543-013-0454-0 10.1016/j.aml.2019.05.013 10.3390/axioms11050235 10.1016/j.jcp.2017.03.015 10.3189/172756410791386643 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10444-024-10175-y |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_024_10175_y |
GrantInformation_xml | – fundername: CogniGron research center and the Ubbo Emmius Funds – fundername: Deutsche Forschungsgemeinschaft grantid: 491976834 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Grand Équipement National De Calcul Intensif grantid: AD012A01664R1 funderid: http://dx.doi.org/10.13039/501100010190 |
GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-4b3ef7b43d6cbffb1b4730c65a501837abc0051912ec6fc191f27440d9d33ea23 |
IEDL.DBID | U2A |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 11:05:38 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 02:55:36 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Dynamical low-rank approximation Shallow water moment equations 65M08 65F55 76B15 POD-Galerkin Model order reduction 65M60 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-4b3ef7b43d6cbffb1b4730c65a501837abc0051912ec6fc191f27440d9d33ea23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8822-461X 0000-0001-8982-4230 0000-0002-2061-2114 |
OpenAccessLink | https://link.springer.com/10.1007/s10444-024-10175-y |
PQID | 3081736562 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_3081736562 crossref_primary_10_1007_s10444_024_10175_y crossref_citationtrail_10_1007_s10444_024_10175_y springer_journals_10_1007_s10444_024_10175_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | AstridPWeilandSWillcoxKBackxTMissing point estimation in models described by proper orthogonal decompositionIEEE Trans. Autom. Control2008531022372251246658110.1109/TAC.2008.2006102 PerottoSErnAVenezianiAHierarchical local model reduction for elliptic problems: a domain decomposition approachMultiscale Modeling & Simulation20108411021127266166810.1137/090756624 Koellermeier, J., Castro, M.: High-order non-conservative simulation of hyperbolic moment models in partially-conservative form. East Asian J. Appl. Math. 11(3), (2021) Bui-Thanh, T., Damodaran, M., Willcox, K.: Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics. In: 21st AIAA Applied Aerodynamics Conference, p. 4213, 2003 Garres-DíazJde LunaTMCastroMJKoellermeierJShallow water moment models for bedload transport problemsCommun. Comp. Phys.20211134354674290988 KernMABarteltPASovillaBVelocity profile inversion in dense avalanche flowAnn. Glaciol.20105154273110.3189/172756410791386643 MirskyLSymmetric gauge functions and unitarily invariant normsQ. J. Math.1960111505911482110.1093/qmath/11.1.50 CaiZFanYLiRGlobally hyperbolic regularization of Grad’s moment system in one dimensional spaceCommun. Math. Sci.2013112547571300256510.4310/CMS.2013.v11.n2.a12 EinkemmerLLubichCA quasi-conservative dynamical low-rank algorithm for the Vlasov equationSIAM J. Sci. Comput.2019415B1061B1081401613710.1137/18M1218686 Einkemmer, L., Hu, J., Kusch, J.: Asymptotic–preserving and energy stable dynamical low-rank approximation (2022). arXiv preprint arXiv:2212.12012 KieriELubichCWalachHDiscretized dynamical low-rank approximation in the presence of small singular valuesSIAM J. Numer. Anal.201654210201038348239710.1137/15M1026791 Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. Proceedings of the Conference Algoritmy, pp. 1–12 (2016) Mansilla Alvarez, L., Blanco, P., Bulant, C., Dari, E., Veneziani, A., Feijóo, R.: Transversally enriched pipe element method (tepem): an effective numerical approach for blood flow modeling. Int. J. Numer. Method. Biomed. Eng. 33(4), e2808 (2017) Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model order reduction in fluid dynamics: challenges and perspectives. Reduced Order Methods for modeling and computational reduction, pp. 235–273 (2014) BarraultMMadayYNguyenNCPateraATAn ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equationsC.R. Math.20043399667672210320810.1016/j.crma.2004.08.006 PerottoSVenezianiACoupled model and grid adaptivity in hierarchical reduction of elliptic problemsJ. Sci. Comput.2014603505536323979710.1007/s10915-013-9804-y Christen, M., Kowalski, J., Bartelt, P.: RAMMS:: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63(1–2), 1–14 (2010) Lumley, J.L.: The structure of inhomogeneous turbulent flows. Atmos. Turbul. Radio Wave Propag. pp. 166–178 (1967) Ceruti, G., Kusch, J., Lubich, C.: A parallel rank-adaptive integrator for dynamical low-rank approximation (2023). arXiv preprint arXiv:2304.05660 Kowalski, J., Torrilhon, M.: Moment approximations and model cascades for shallow flow. Commun. Comput. Phys. 25, (2019) ChaturantabutSSorensenDCNonlinear model reduction via discrete empirical interpolationSIAM J. Sci. Comput.201032527372764268473510.1137/090766498 Koellermeier, J., Rominger, M.: Analysis and numerical simulation of hyperbolic shallow water moment equations. Commun. Comp. Phys. 28(3), 1038–1084 (2020) Perotto, S., Reali, A., Rusconi, P., Veneziani, A.: HIGAMod: A Hierarchical IsoGeometric Approach for MODel reduction in curved pipes. Computers & Fluids 142, 21–29 (2017) EhrlacherVLombardiDA dynamical adaptive tensor method for the Vlasov-Poisson systemJ. Comput. Phys.2017339285306363265710.1016/j.jcp.2017.03.015 Smetana, K., Ohlberger, M.: Hierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques. ESAIM: Math. Model. Numer. Anal. 51(2), 641–677 (2017) EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika19361321121810.1007/BF02288367 Amrita, A., Koellermeier, J.: Projective integration for hyperbolic shallow water moment equations. Axioms 11(5), 235 (2022) EversonRSirovichLKarhunen-Loeve procedure for gappy dataJOSA A19951281657166410.1364/JOSAA.12.001657 KochOLubichCDynamical tensor approximationSIAM J. Matrix Anal. Appl.201031523602375268516210.1137/09076578X Einkemmer, L., Ostermann, A., Scalone, C.: A robust and conservative dynamical low-rank algorithm (2022). arXiv preprint arXiv:2206.09374 WaldherrSHaasdonkBEfficient parametric analysis of the chemical master equation through model order reductionBMC Syst. Biol.2012611210.1186/1752-0509-6-81 Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Math. Model. Numer. Anal. 42(2), 277–302 (2008) Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Math. Model. Numer. Anal. 41(3), 575–605 (2007) Koellermeier, J., Pimentel, E.: Steady states and well-balanced schemes for shallow water moment equations with topography. Appl. Math. Comput. 427, (2022) HochbruckMNeherMSchrammerSRank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equationsBIT Numer. Math.20236319454416510.1007/s10543-023-00942-6 Vogelius, M., Babuška, I.: On a dimensional reduction method. iii. a posteriori error estimation and an adaptive approach. Math. comput. 37(156), 361–384 (1981) LubichCOseledetsIVA projector-splitting integrator for dynamical low-rank approximationBIT Numer. Math.2014541171188317796010.1007/s10543-013-0454-0 FanYKoellermeierJLiJLiRTorrilhonMModel reduction of kinetic equations by operator projectionJ. Stat. Phys.20161622457486344136910.1007/s10955-015-1384-9 Vogelius, M., Babuška, I.: On a dimensional reduction method. ii. some approximation-theoretic results. Math. comput. 37(155), 47–68 (1981) LozovskiyAFarthingMKeesCGildinEPOD-based model reduction for stabilized finite element approximations of shallow water flowsJ. Comput. Appl. Math.20163025070347550310.1016/j.cam.2016.01.029 Hesthaven, J.S., Pagliantini, C., Ripamonti, N.: Rank-adaptive structure-preserving model order reduction of Hamiltonian systems. ESAIM: Math. Model. Numer. Anal. 56(2), 617–650 (2022) Kusch, J., Stammer, P.: A robust collision source method for rank adaptive dynamical low-rank approximation in radiation therapy. ESAIM: M2AN, (2022) Kollermeier, J., Krah, P., Kusch, J.: Numerical testcases for "Dynamical low-rank approximation for Burgers’ equation with uncertainty" (2023). https://github.com/JonasKu/Publication-Split-conservative-model-order-reduction-for-hyperbolic-shallow-water-moment-equations.git HalkoNMartinssonPGTroppJAFinding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev.2011532217288280663710.1137/090771806 KarasözenBYıldızSUzuncaMStructure preserving model order reduction of shallow water equationsMath. Methods Appl. Sci.2021441476492418526510.1002/mma.6751 Vogelius, M., Babuška, I.: On a dimensional reduction method. i. the optimal selection of basis functions. Math. comput. 37(155), 31–46 (1981) ŞtefănescuRSanduANavonIMPOD/DEIM reduced-order strategies for efficient four dimensional variational data assimilationJ. Comput. Phys.2015295569595334522610.1016/j.jcp.2015.04.030 FarhatCAveryPChapmanTCortialJDimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiencyInt. J. Numer. Meth. Eng.2014989625662320604710.1002/nme.4668 CastroMFernández-NietoEA class of computationally fast first order finite volume solvers: PVM methodsSIAM J. Sci. Comput.2012344A2173A2196297040110.1137/100795280 CerutiGLubichCAn unconventional robust integrator for dynamical low-rank approximationBIT Numer. Math.20226212344437502310.1007/s10543-021-00873-0 Ceruti, G., Kusch, J., Lubich, C.: A rank-adaptive robust integrator for dynamical low-rank approximation. BIT Numer. Math. pp. 1–26 (2022) KarasözenBYıldızSUzuncaMEnergy preserving reduced-order modeling of the rotating thermal shallow water equationPhys. Fluids202234510.1063/5.0091678 GreifCUrbanKDecay of the Kolmogorov n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-width for wave problemsAppl. Math. Lett.201996216222395341910.1016/j.aml.2019.05.013 ŞtefănescuRNavonIPOD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations modelJ. Comput. Phys.201323795114302002310.1016/j.jcp.2012.11.035 KochOLubichCDynamical low-rank approximationSIAM J. Matrix Anal. Appl.2007292434454231835710.1137/050639703 Castro, M.J., LeFloch, P.G., Munoz-Ruiz, M.L., Pares, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008) KuschJEinkemmerLCerutiGOn the stability of robust dynamical low-rank approximations for hyperbolic problemsSIAM J. Sci. Comput.2023451A1A24453533910.1137/21M1446289 TorrilhonMModeling nonequilibrium gas flow based on moment equationsAnnu. Rev. Fluid Mech.2016481429458372639210.1146/annurev-fluid-122414-034259 ŞtefănescuRSanduANavonIMComparison of pod reduced order strategies for the nonlinear 2d shallow water equationsInt. J. Numer. Meth. Fluids2014768497521326841710.1002/fld.3946 KunischKVolkweinSGalerkin proper orthogonal decomposition methods for a general equation in fluid dynamicsSIAM J. Numer. Anal.2002402492515192166710.1137/S0036142900382612 KoellermeierJSchaererRPTorrilhonMA framework for h 10175_CR45 10175_CR43 L Einkemmer (10175_CR21) 2019; 41 10175_CR42 O Koch (10175_CR39) 2007; 29 10175_CR41 P Astrid (10175_CR2) 2008; 53 Q Huang (10175_CR34) 2022; 45 S Chaturantabut (10175_CR13) 2010; 32 A Dektor (10175_CR16) 2021; 88 A Lozovskiy (10175_CR52) 2017; 318 G Ceruti (10175_CR11) 2022; 62 K Kunisch (10175_CR48) 2002; 40 J Kusch (10175_CR49) 2023; 45 J Koellermeier (10175_CR44) 2014; 7 E Kieri (10175_CR38) 2016; 54 10175_CR32 10175_CR31 S Waldherr (10175_CR70) 2012; 6 C Greif (10175_CR27) 2019; 96 M Torrilhon (10175_CR66) 2016; 48 R Ştefănescu (10175_CR71) 2013; 237 P Krah (10175_CR47) 2022; 48 R Ştefănescu (10175_CR64) 2014; 76 R Ştefănescu (10175_CR65) 2015; 295 C Lubich (10175_CR54) 2014; 54 C Eckart (10175_CR17) 1936; 1 10175_CR29 S Perotto (10175_CR62) 2014; 60 10175_CR28 10175_CR69 B Karasözen (10175_CR36) 2022; 34 10175_CR68 L Mirsky (10175_CR57) 1960; 11 10175_CR67 10175_CR22 10175_CR20 10175_CR63 M Barrault (10175_CR3) 2004; 339 G Ceruti (10175_CR12) 2021; 59 R Everson (10175_CR23) 1995; 12 10175_CR61 B Karasözen (10175_CR35) 2021; 44 C Farhat (10175_CR25) 2014; 98 J Garres-Díaz (10175_CR26) 2021; 11 O Koch (10175_CR40) 2010; 31 Z Cai (10175_CR6) 2013; 11 10175_CR19 S Perotto (10175_CR60) 2010; 8 10175_CR15 10175_CR59 10175_CR14 10175_CR58 10175_CR56 10175_CR55 10175_CR4 10175_CR10 10175_CR5 Y Fan (10175_CR24) 2016; 162 V Ehrlacher (10175_CR18) 2017; 339 M Hochbruck (10175_CR33) 2023; 63 10175_CR51 N Halko (10175_CR30) 2011; 53 10175_CR50 10175_CR1 MA Kern (10175_CR37) 2010; 51 10175_CR8 10175_CR9 M Castro (10175_CR7) 2012; 34 A Lozovskiy (10175_CR53) 2016; 302 10175_CR46 |
References_xml | – reference: Garres-DíazJde LunaTMCastroMJKoellermeierJShallow water moment models for bedload transport problemsCommun. Comp. Phys.20211134354674290988 – reference: HochbruckMNeherMSchrammerSRank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equationsBIT Numer. Math.20236319454416510.1007/s10543-023-00942-6 – reference: ŞtefănescuRSanduANavonIMComparison of pod reduced order strategies for the nonlinear 2d shallow water equationsInt. J. Numer. Meth. Fluids2014768497521326841710.1002/fld.3946 – reference: KoellermeierJSchaererRPTorrilhonMA framework for hyperbolic approximation of kinetic equations using quadrature-based projection methodsKinet. Relat. Model.201473531549331757210.3934/krm.2014.7.531 – reference: LozovskiyAFarthingMKeesCGildinEPOD-based model reduction for stabilized finite element approximations of shallow water flowsJ. Comput. Appl. Math.20163025070347550310.1016/j.cam.2016.01.029 – reference: Breuß, M.: The correct use of the Lax–Friedrichs method. ESAIM: Math. Model. Numer. Anal. 38(3), 519–540 (2004) – reference: Einkemmer, L., Hu, J., Kusch, J.: Asymptotic–preserving and energy stable dynamical low-rank approximation (2022). arXiv preprint arXiv:2212.12012 – reference: Hauck, C., Schnake, S.: A predictor-corrector strategy for adaptivity in dynamical low-rank approximations (2022). arXiv preprint arXiv:2209.00550 – reference: KernMABarteltPASovillaBVelocity profile inversion in dense avalanche flowAnn. Glaciol.20105154273110.3189/172756410791386643 – reference: Amrita, A., Koellermeier, J.: Projective integration for hyperbolic shallow water moment equations. Axioms 11(5), 235 (2022) – reference: Lumley, J.L.: The structure of inhomogeneous turbulent flows. Atmos. Turbul. Radio Wave Propag. pp. 166–178 (1967) – reference: Castro, M.J., LeFloch, P.G., Munoz-Ruiz, M.L., Pares, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008) – reference: Kollermeier, J., Krah, P., Kusch, J.: Numerical testcases for "Dynamical low-rank approximation for Burgers’ equation with uncertainty" (2023). https://github.com/JonasKu/Publication-Split-conservative-model-order-reduction-for-hyperbolic-shallow-water-moment-equations.git – reference: Vogelius, M., Babuška, I.: On a dimensional reduction method. iii. a posteriori error estimation and an adaptive approach. Math. comput. 37(156), 361–384 (1981) – reference: Vogelius, M., Babuška, I.: On a dimensional reduction method. i. the optimal selection of basis functions. Math. comput. 37(155), 31–46 (1981) – reference: LozovskiyAFarthingMKeesCEvaluation of Galerkin and Petrov–Galerkin model reduction for finite element approximations of the shallow water equationsComput. Methods Appl. Mech. Eng.2017318537571362719010.1016/j.cma.2017.01.027 – reference: Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model order reduction in fluid dynamics: challenges and perspectives. Reduced Order Methods for modeling and computational reduction, pp. 235–273 (2014) – reference: HuangQKoellermeierJYongW-AEquilibrium stability analysis of hyperbolic shallow water moment equationsMath. Method. Appl. Sci.2022451064596480443794610.1002/mma.8180 – reference: KrahPEngelsTSchneiderKReissJWavelet adaptive proper orthogonal decomposition for large-scale flow dataAdv. Comput. Math.2022482140438266010.1007/s10444-021-09922-2 – reference: Courtier, P., Geleyn, J.-F.: A global numerical weather prediction model with variable resolution: application to the shallow-water equations. Q. J. R. Meteorol. Soc. 114(483), 1321–1346 (1988) – reference: Vogelius, M., Babuška, I.: On a dimensional reduction method. ii. some approximation-theoretic results. Math. comput. 37(155), 47–68 (1981) – reference: KieriELubichCWalachHDiscretized dynamical low-rank approximation in the presence of small singular valuesSIAM J. Numer. Anal.201654210201038348239710.1137/15M1026791 – reference: Hesthaven, J.S., Pagliantini, C., Ripamonti, N.: Rank-adaptive structure-preserving model order reduction of Hamiltonian systems. ESAIM: Math. Model. Numer. Anal. 56(2), 617–650 (2022) – reference: KuschJEinkemmerLCerutiGOn the stability of robust dynamical low-rank approximations for hyperbolic problemsSIAM J. Sci. Comput.2023451A1A24453533910.1137/21M1446289 – reference: GreifCUrbanKDecay of the Kolmogorov n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-width for wave problemsAppl. Math. Lett.201996216222395341910.1016/j.aml.2019.05.013 – reference: ChaturantabutSSorensenDCNonlinear model reduction via discrete empirical interpolationSIAM J. Sci. Comput.201032527372764268473510.1137/090766498 – reference: PerottoSErnAVenezianiAHierarchical local model reduction for elliptic problems: a domain decomposition approachMultiscale Modeling & Simulation20108411021127266166810.1137/090756624 – reference: Koellermeier, J., Rominger, M.: Analysis and numerical simulation of hyperbolic shallow water moment equations. Commun. Comp. Phys. 28(3), 1038–1084 (2020) – reference: Perotto, S., Reali, A., Rusconi, P., Veneziani, A.: HIGAMod: A Hierarchical IsoGeometric Approach for MODel reduction in curved pipes. Computers & Fluids 142, 21–29 (2017) – reference: PerottoSVenezianiACoupled model and grid adaptivity in hierarchical reduction of elliptic problemsJ. Sci. Comput.2014603505536323979710.1007/s10915-013-9804-y – reference: WaldherrSHaasdonkBEfficient parametric analysis of the chemical master equation through model order reductionBMC Syst. Biol.2012611210.1186/1752-0509-6-81 – reference: DektorARodgersAVenturiDRank-adaptive tensor methods for high-dimensional nonlinear PDEsJ. Sci. Comput.202188236427732210.1007/s10915-021-01539-3 – reference: Kowalski, J., Torrilhon, M.: Moment approximations and model cascades for shallow flow. Commun. Comput. Phys. 25, (2019) – reference: EhrlacherVLombardiDA dynamical adaptive tensor method for the Vlasov-Poisson systemJ. Comput. Phys.2017339285306363265710.1016/j.jcp.2017.03.015 – reference: FarhatCAveryPChapmanTCortialJDimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiencyInt. J. Numer. Meth. Eng.2014989625662320604710.1002/nme.4668 – reference: Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Math. Model. Numer. Anal. 41(3), 575–605 (2007) – reference: Smetana, K., Ohlberger, M.: Hierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques. ESAIM: Math. Model. Numer. Anal. 51(2), 641–677 (2017) – reference: Ceruti, G., Kusch, J., Lubich, C.: A parallel rank-adaptive integrator for dynamical low-rank approximation (2023). arXiv preprint arXiv:2304.05660 – reference: Einkemmer, L., Ostermann, A., Scalone, C.: A robust and conservative dynamical low-rank algorithm (2022). arXiv preprint arXiv:2206.09374 – reference: Koellermeier, J., Castro, M.: High-order non-conservative simulation of hyperbolic moment models in partially-conservative form. East Asian J. Appl. Math. 11(3), (2021) – reference: Kusch, J., Stammer, P.: A robust collision source method for rank adaptive dynamical low-rank approximation in radiation therapy. ESAIM: M2AN, (2022) – reference: Peherstorfer, B.: Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling. SIAM J. Sci. Comput. 42(5), A2803–A2836, Jan. 2020. Publisher: Society for Industrial and Applied Mathematics – reference: CaiZFanYLiRGlobally hyperbolic regularization of Grad’s moment system in one dimensional spaceCommun. Math. Sci.2013112547571300256510.4310/CMS.2013.v11.n2.a12 – reference: KochOLubichCDynamical tensor approximationSIAM J. Matrix Anal. Appl.201031523602375268516210.1137/09076578X – reference: Mansilla Alvarez, L., Blanco, P., Bulant, C., Dari, E., Veneziani, A., Feijóo, R.: Transversally enriched pipe element method (tepem): an effective numerical approach for blood flow modeling. Int. J. Numer. Method. Biomed. Eng. 33(4), e2808 (2017) – reference: EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika19361321121810.1007/BF02288367 – reference: CerutiGLubichCWalachHTime integration of tree tensor networksSIAM J. Numer. Anal.2021591289313420717910.1137/20M1321838 – reference: FanYKoellermeierJLiJLiRTorrilhonMModel reduction of kinetic equations by operator projectionJ. Stat. Phys.20161622457486344136910.1007/s10955-015-1384-9 – reference: ŞtefănescuRNavonIPOD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations modelJ. Comput. Phys.201323795114302002310.1016/j.jcp.2012.11.035 – reference: TorrilhonMModeling nonequilibrium gas flow based on moment equationsAnnu. Rev. Fluid Mech.2016481429458372639210.1146/annurev-fluid-122414-034259 – reference: Einkemmer, L., Hu, J., Wang, Y.: An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation. J. Comput. Phys. p. 110353, 5 (2021) – reference: HalkoNMartinssonPGTroppJAFinding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev.2011532217288280663710.1137/090771806 – reference: Ceruti, G., Kusch, J., Lubich, C.: A rank-adaptive robust integrator for dynamical low-rank approximation. BIT Numer. Math. pp. 1–26 (2022) – reference: CastroMFernández-NietoEA class of computationally fast first order finite volume solvers: PVM methodsSIAM J. Sci. Comput.2012344A2173A2196297040110.1137/100795280 – reference: Koellermeier, J., Pimentel, E.: Steady states and well-balanced schemes for shallow water moment equations with topography. Appl. Math. Comput. 427, (2022) – reference: BarraultMMadayYNguyenNCPateraATAn ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equationsC.R. Math.20043399667672210320810.1016/j.crma.2004.08.006 – reference: Bui-Thanh, T., Damodaran, M., Willcox, K.: Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics. In: 21st AIAA Applied Aerodynamics Conference, p. 4213, 2003 – reference: Christen, M., Kowalski, J., Bartelt, P.: RAMMS:: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63(1–2), 1–14 (2010) – reference: EinkemmerLLubichCA quasi-conservative dynamical low-rank algorithm for the Vlasov equationSIAM J. Sci. Comput.2019415B1061B1081401613710.1137/18M1218686 – reference: KunischKVolkweinSGalerkin proper orthogonal decomposition methods for a general equation in fluid dynamicsSIAM J. Numer. Anal.2002402492515192166710.1137/S0036142900382612 – reference: AstridPWeilandSWillcoxKBackxTMissing point estimation in models described by proper orthogonal decompositionIEEE Trans. Autom. Control2008531022372251246658110.1109/TAC.2008.2006102 – reference: Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. Proceedings of the Conference Algoritmy, pp. 1–12 (2016) – reference: LubichCOseledetsIVA projector-splitting integrator for dynamical low-rank approximationBIT Numer. Math.2014541171188317796010.1007/s10543-013-0454-0 – reference: KarasözenBYıldızSUzuncaMEnergy preserving reduced-order modeling of the rotating thermal shallow water equationPhys. Fluids202234510.1063/5.0091678 – reference: MirskyLSymmetric gauge functions and unitarily invariant normsQ. J. Math.1960111505911482110.1093/qmath/11.1.50 – reference: Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Math. Model. Numer. Anal. 42(2), 277–302 (2008) – reference: ŞtefănescuRSanduANavonIMPOD/DEIM reduced-order strategies for efficient four dimensional variational data assimilationJ. Comput. Phys.2015295569595334522610.1016/j.jcp.2015.04.030 – reference: KochOLubichCDynamical low-rank approximationSIAM J. Matrix Anal. Appl.2007292434454231835710.1137/050639703 – reference: EversonRSirovichLKarhunen-Loeve procedure for gappy dataJOSA A19951281657166410.1364/JOSAA.12.001657 – reference: CerutiGLubichCAn unconventional robust integrator for dynamical low-rank approximationBIT Numer. Math.20226212344437502310.1007/s10543-021-00873-0 – reference: KarasözenBYıldızSUzuncaMStructure preserving model order reduction of shallow water equationsMath. Methods Appl. Sci.2021441476492418526510.1002/mma.6751 – volume: 295 start-page: 569 year: 2015 ident: 10175_CR65 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.04.030 – volume: 1 start-page: 211 issue: 3 year: 1936 ident: 10175_CR17 publication-title: Psychometrika doi: 10.1007/BF02288367 – volume: 8 start-page: 1102 issue: 4 year: 2010 ident: 10175_CR60 publication-title: Multiscale Modeling & Simulation doi: 10.1137/090756624 – ident: 10175_CR56 doi: 10.1002/cnm.2808 – volume: 54 start-page: 1020 issue: 2 year: 2016 ident: 10175_CR38 publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1026791 – volume: 41 start-page: B1061 issue: 5 year: 2019 ident: 10175_CR21 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1218686 – ident: 10175_CR29 doi: 10.1051/m2an:2008001 – ident: 10175_CR59 doi: 10.1137/19M1257275 – volume: 60 start-page: 505 issue: 3 year: 2014 ident: 10175_CR62 publication-title: J. Sci. Comput. doi: 10.1007/s10915-013-9804-y – volume: 237 start-page: 95 year: 2013 ident: 10175_CR71 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.11.035 – ident: 10175_CR50 doi: 10.1051/m2an/2022090 – volume: 32 start-page: 2737 issue: 5 year: 2010 ident: 10175_CR13 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090766498 – volume: 48 start-page: 429 issue: 1 year: 2016 ident: 10175_CR66 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034259 – ident: 10175_CR67 doi: 10.1090/S0025-5718-1981-0616358-0 – volume: 31 start-page: 2360 issue: 5 year: 2010 ident: 10175_CR40 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/09076578X – volume: 339 start-page: 667 issue: 9 year: 2004 ident: 10175_CR3 publication-title: C.R. Math. doi: 10.1016/j.crma.2004.08.006 – ident: 10175_CR15 doi: 10.1002/qj.49711448309 – ident: 10175_CR41 doi: 10.4208/eajam.090920.130121 – volume: 63 start-page: 9 issue: 1 year: 2023 ident: 10175_CR33 publication-title: BIT Numer. Math. doi: 10.1007/s10543-023-00942-6 – ident: 10175_CR63 doi: 10.1051/m2an/2016031 – volume: 7 start-page: 531 issue: 3 year: 2014 ident: 10175_CR44 publication-title: Kinet. Relat. Model. doi: 10.3934/krm.2014.7.531 – ident: 10175_CR46 doi: 10.4208/cicp.OA-2017-0263 – ident: 10175_CR10 doi: 10.1137/23M1565103 – ident: 10175_CR5 doi: 10.2514/6.2003-4213 – volume: 76 start-page: 497 issue: 8 year: 2014 ident: 10175_CR64 publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.3946 – volume: 6 start-page: 1 year: 2012 ident: 10175_CR70 publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-6-81 – ident: 10175_CR51 doi: 10.1007/978-3-319-02090-7_9 – ident: 10175_CR14 doi: 10.1016/j.coldregions.2010.04.005 – ident: 10175_CR32 doi: 10.1051/m2an/2022013 – volume: 40 start-page: 492 issue: 2 year: 2002 ident: 10175_CR48 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142900382612 – ident: 10175_CR69 doi: 10.1090/S0025-5718-1981-0628701-7 – volume: 11 start-page: 435 issue: 3 year: 2021 ident: 10175_CR26 publication-title: Commun. Comp. Phys. – ident: 10175_CR19 – volume: 318 start-page: 537 year: 2017 ident: 10175_CR52 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.01.027 – volume: 53 start-page: 217 issue: 2 year: 2011 ident: 10175_CR30 publication-title: SIAM Rev. doi: 10.1137/090771806 – ident: 10175_CR4 doi: 10.1051/m2an:2004027 – volume: 12 start-page: 1657 issue: 8 year: 1995 ident: 10175_CR23 publication-title: JOSA A doi: 10.1364/JOSAA.12.001657 – ident: 10175_CR9 doi: 10.1007/s10543-021-00873-0 – volume: 98 start-page: 625 issue: 9 year: 2014 ident: 10175_CR25 publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.4668 – ident: 10175_CR8 doi: 10.1016/j.jcp.2008.05.012 – volume: 34 start-page: A2173 issue: 4 year: 2012 ident: 10175_CR7 publication-title: SIAM J. Sci. Comput. doi: 10.1137/100795280 – volume: 45 start-page: 6459 issue: 10 year: 2022 ident: 10175_CR34 publication-title: Math. Method. Appl. Sci. doi: 10.1002/mma.8180 – volume: 162 start-page: 457 issue: 2 year: 2016 ident: 10175_CR24 publication-title: J. Stat. Phys. doi: 10.1007/s10955-015-1384-9 – ident: 10175_CR20 doi: 10.1016/j.jcp.2021.110353 – ident: 10175_CR28 doi: 10.1051/m2an:2007031 – ident: 10175_CR58 – ident: 10175_CR31 doi: 10.1137/22M1519493 – volume: 88 start-page: 36 issue: 2 year: 2021 ident: 10175_CR16 publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01539-3 – volume: 53 start-page: 2237 issue: 10 year: 2008 ident: 10175_CR2 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2006102 – volume: 11 start-page: 50 issue: 1 year: 1960 ident: 10175_CR57 publication-title: Q. J. Math. doi: 10.1093/qmath/11.1.50 – volume: 62 start-page: 23 issue: 1 year: 2022 ident: 10175_CR11 publication-title: BIT Numer. Math. doi: 10.1007/s10543-021-00873-0 – volume: 302 start-page: 50 year: 2016 ident: 10175_CR53 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.01.029 – volume: 34 issue: 5 year: 2022 ident: 10175_CR36 publication-title: Phys. Fluids doi: 10.1063/5.0091678 – volume: 45 start-page: A1 issue: 1 year: 2023 ident: 10175_CR49 publication-title: SIAM J. Sci. Comput. doi: 10.1137/21M1446289 – ident: 10175_CR43 doi: 10.4208/cicp.OA-2019-0065 – ident: 10175_CR45 – volume: 48 start-page: 1 issue: 2 year: 2022 ident: 10175_CR47 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-021-09922-2 – volume: 29 start-page: 434 issue: 2 year: 2007 ident: 10175_CR39 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/050639703 – volume: 11 start-page: 547 issue: 2 year: 2013 ident: 10175_CR6 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2013.v11.n2.a12 – ident: 10175_CR42 doi: 10.1016/j.amc.2022.127166 – ident: 10175_CR22 doi: 10.1016/j.jcp.2023.112060 – volume: 59 start-page: 289 issue: 1 year: 2021 ident: 10175_CR12 publication-title: SIAM J. Numer. Anal. doi: 10.1137/20M1321838 – ident: 10175_CR68 doi: 10.1090/S0025-5718-1981-0616359-2 – volume: 44 start-page: 476 issue: 1 year: 2021 ident: 10175_CR35 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6751 – ident: 10175_CR61 doi: 10.1016/j.compfluid.2016.04.014 – volume: 54 start-page: 171 issue: 1 year: 2014 ident: 10175_CR54 publication-title: BIT Numer. Math. doi: 10.1007/s10543-013-0454-0 – ident: 10175_CR55 – volume: 96 start-page: 216 year: 2019 ident: 10175_CR27 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.05.013 – ident: 10175_CR1 doi: 10.3390/axioms11050235 – volume: 339 start-page: 285 year: 2017 ident: 10175_CR18 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.03.015 – volume: 51 start-page: 27 issue: 54 year: 2010 ident: 10175_CR37 publication-title: Ann. Glaciol. doi: 10.3189/172756410791386643 |
SSID | ssj0009675 |
Score | 2.3832083 |
Snippet | Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Approximation Computational Mathematics and Numerical Analysis Computational Science and Engineering Decomposition Flow simulation Galerkin method Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Model reduction Physical properties Shallow water Visualization Water conservation |
Title | Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: a study using POD-Galerkin and dynamical low-rank approximation |
URI | https://link.springer.com/article/10.1007/s10444-024-10175-y https://www.proquest.com/docview/3081736562 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7R9gKHAgVEoERz4AYrJd712uaWhqYVKIUDkcrJ2icggVPiQMmP478xs143gACJk215H4eZ3flmd-Ybxh5b67UWdsSrshpxWXrPdSkMrqt8pHzQ1pWU4Dw_U6cL-eI8P09JYW0f7d5fScad-qdkNyklR5vCSY1yvtlhezn57qjFi2yypdpVkV4XG1UcvYEypcr8eYxfzdEWY_52LRqtzewW208wESadXG-za745YDcTZIS0INsDdmN-Rbva3mHf5xqn4Z8oyA6cp3DxFJMFiE3BUjAsSrVZg25c_OyOZL96iBVxIBJxworoXGOvZYD36KiuDLEHQ0uFV5aXcIn4dIU96GAR_OeOLLx9BhoiWS1QLP07eP3qOT9B80OH8XE-t2l0JCcAHIRTsXiIjObfPnTpk3fZYnb8ZnrKU30GboUSay6N8KEwUjhlTQhmbCTuF1blmlgCRaGNjQhxnHmrgsWXEPkIXeWE8DoT99hus2z8fQZOlqbyI6dz5eVYo8-pdaFdFnJdIKAMAzbuxVTbRF5ONTQ-1lvaZRJtjaKto2jrzYA9uepz0VF3_LP1YS_9Oi3jthYImAqBkDcbsKe9Rmx__320B__X_CG7npFSxsDCQ7a7Xn3xjxDsrM2Q7U1mR0dn9Dx5-_J4yHamajqMGv8DQO4AJg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQAHHgXEQoE5cANLu7HjJNzQQlmgWzi0Um-RnwUJsrBZKP1x_DdmHG9XVIDELVH8kDXjzDf2zDcAj50Lxkg3Fk3djIWqQxCmlpb2VTnWIRrna05wnu_r2aF6c1QeZZoczoU5d3_PKW5KKUGWRLDylOL0IlxS5Clz-N5UTzcEuzqR6lKjRpAPUOcEmT-P8bsR2iDLc5ehycbs3oBrGRzi80GaN-FC6LbhegaKmLdhvw1X52dkq_0t-Dk3NI34zKF16AMHiedILCREio5DYEmW3QpN59PrcBD7PWCqg4OJfhOXTOKaei0ifiD3dGmZMxh7LreyOMETQqVL6sHHiRi-DhTh_TM0mChqkSPoj_H9uxfiFRkdPoJP8_mh5D0tiwYRXCIeE4_5j49D0uRtONx9eTCdiVyVQTip5UooK0OsrJJeOxujnVhFfwmnS8PcgLIy1iVcOCmC09HRQ0wshL7xUgZTyDuw1S26cBfQq9o2YexNqYOaGPI0jamML2JpKoKRcQSTtZhalynLuXLGp3ZDtsyibUm0bRJtezqCJ2d9vgyEHf9svbOWfps3b99KgkmVJKBbjODpWiM2n_8-2r3_a_4ILs8O5nvt3uv9t_fhSsEKmkILd2BrtfwWHhDcWdmHSc9_ARun-vw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMctKBKCA48C6kKBOXADq7ux4yTc0JalPLb0QKXeIj8LEs2WzULZD8d3Y2aS7RYESNwSxXYUjR3_bc_8Rogn3kdrlR_KqqyGUpcxSlsqh-MqH5qYrA8lBThP983eoX5zlB9diOJnb_fVkWQX00CUpmaxcxrSzoXAN621xPlFUpfK5fKyuIIrFT6oHZvxGrtrGLWLhSqJK4OyD5v5cxu_Tk1rvfnbESnPPJNb4kYvGeFFZ-Pb4lJsNsXNXj5CPzjbTXF9eo5gbe-IH1OLr5En5HAHIZLreO-fBahTwZNjbEufDLYJfNttz36LwNlxgKGcMCe0K9eaJfiIi9a5I5IwtJSEZXYGZ6hV51iDNhkhfunA4e1zsMDgWiC_-mM4eL8rX-FURBvz_L6wbCyDCgAbkZQ4Hphu_v1TF0p5VxxOXn4Y78k-V4P0yqiF1E7FVDitgvEuJTdyGv8d3uSWiIGqsM6zWhxl0Zvk8SIxmzBUQaloM3VPbDSzJm4JCLp0VRwGm5uoRxbXn9YWNmQptwWKyzQQo5WZat-DzCmfxud6jWAm09Zo2ppNWy8H4ul5ndMO4_HP0tsr69f9kG5rheKpUCh_s4F4tuoR68d_b-3-_xV_LK4e7E7qd6_33z4Q1zLqn-xvuC02FvOv8SFqoIV7xN38J5frA1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macro-micro+decomposition+for+consistent+and+conservative+model+order+reduction+of+hyperbolic+shallow+water+moment+equations%3A+a+study+using+POD-Galerkin+and+dynamical+low-rank+approximation&rft.jtitle=Advances+in+computational+mathematics&rft.au=Koellermeier%2C+Julian&rft.au=Krah%2C+Philipp&rft.au=Kusch%2C+Jonas&rft.date=2024-08-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=4&rft_id=info:doi/10.1007%2Fs10444-024-10175-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_024_10175_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |