Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: a study using POD-Galerkin and dynamical low-rank approximation

Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the so-called moment system. This calls for tailored model order reduction techniques that allow for efficient and accurate simulations while guaran...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 50; no. 4
Main Authors Koellermeier, Julian, Krah, Philipp, Kusch, Jonas
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the so-called moment system. This calls for tailored model order reduction techniques that allow for efficient and accurate simulations while guaranteeing physical properties like mass conservation. In this paper, we develop the first model reduction for the hyperbolic shallow water moment equations and achieve mass conservation. This is accomplished using a macro-micro decomposition of the model into a macroscopic (conservative) part and a microscopic (non-conservative) part with subsequent model reduction using either POD-Galerkin or dynamical low-rank approximation only on the microscopic (non-conservative) part. Numerical experiments showcase the performance of the new model reduction methods including high accuracy and fast computation times together with guaranteed conservation and consistency properties.
AbstractList Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the so-called moment system. This calls for tailored model order reduction techniques that allow for efficient and accurate simulations while guaranteeing physical properties like mass conservation. In this paper, we develop the first model reduction for the hyperbolic shallow water moment equations and achieve mass conservation. This is accomplished using a macro-micro decomposition of the model into a macroscopic (conservative) part and a microscopic (non-conservative) part with subsequent model reduction using either POD-Galerkin or dynamical low-rank approximation only on the microscopic (non-conservative) part. Numerical experiments showcase the performance of the new model reduction methods including high accuracy and fast computation times together with guaranteed conservation and consistency properties.
ArticleNumber 76
Author Koellermeier, Julian
Krah, Philipp
Kusch, Jonas
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0000-0002-8822-461X
  surname: Koellermeier
  fullname: Koellermeier, Julian
  email: j.koellermeier@rug.nl
  organization: Bernoulli Institute, University of Groningen, Groningen Cognitive Systems and Materials Center, University of Groningen
– sequence: 2
  givenname: Philipp
  orcidid: 0000-0001-8982-4230
  surname: Krah
  fullname: Krah, Philipp
  organization: Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université
– sequence: 3
  givenname: Jonas
  orcidid: 0000-0002-2061-2114
  surname: Kusch
  fullname: Kusch, Jonas
  organization: Institut für Mathematik, Universität Innsbruck
BookMark eNp9Uc1uFSEYJaYmttUXcEXiGoWBGe64M1Vbk5q60DVh4KOlnYEpMK3zcL5buXNNTFx0Ax_h_ME5QUchBkDoLaPvGaXyQ2ZUCEFoIwijTLZkfYGOWSsb0teLozpT1hPJut0rdJLzLaW072R7jP581yZFMvm6YgsmTnPMvvgYsIsJmxiyzwVCwTrY7QjpQRf_AHiKFkYck4WEE9jFbKzo8M06Qxri6A3ON3oc4yN-1KWipjjtleB-0Xts_og1zmWxK16yD9f4x9Vncq5HSHc-bH52DbpG0yOuIiTpcIf1PKf420-bwmv00ukxw5u_-yn69fXLz7MLcnl1_u3s0yUxvOOFiIGDk4PgtjODcwMbhOTUdK1uKdtxqQdDact61oDpnKmDa6QQ1PaWc9ANP0XvDrrV-36BXNRtXFKolorTHZO8a7s9qjmg6l_mnMCpOdWgaVWMqn1N6lCTqjWprSa1VtLuP5LxZXtcSdqPz1P5gZqrT7iG9C_VM6wnUhqvwg
CitedBy_id crossref_primary_10_1137_24M164392X
crossref_primary_10_1007_s10543_024_01032_x
crossref_primary_10_1098_rspa_2024_0658
crossref_primary_10_1137_24M1646303
Cites_doi 10.1016/j.jcp.2015.04.030
10.1007/BF02288367
10.1137/090756624
10.1002/cnm.2808
10.1137/15M1026791
10.1137/18M1218686
10.1051/m2an:2008001
10.1137/19M1257275
10.1007/s10915-013-9804-y
10.1016/j.jcp.2012.11.035
10.1051/m2an/2022090
10.1137/090766498
10.1146/annurev-fluid-122414-034259
10.1090/S0025-5718-1981-0616358-0
10.1137/09076578X
10.1016/j.crma.2004.08.006
10.1002/qj.49711448309
10.4208/eajam.090920.130121
10.1007/s10543-023-00942-6
10.1051/m2an/2016031
10.3934/krm.2014.7.531
10.4208/cicp.OA-2017-0263
10.1137/23M1565103
10.2514/6.2003-4213
10.1002/fld.3946
10.1186/1752-0509-6-81
10.1007/978-3-319-02090-7_9
10.1016/j.coldregions.2010.04.005
10.1051/m2an/2022013
10.1137/S0036142900382612
10.1090/S0025-5718-1981-0628701-7
10.1016/j.cma.2017.01.027
10.1137/090771806
10.1051/m2an:2004027
10.1364/JOSAA.12.001657
10.1007/s10543-021-00873-0
10.1002/nme.4668
10.1016/j.jcp.2008.05.012
10.1137/100795280
10.1002/mma.8180
10.1007/s10955-015-1384-9
10.1016/j.jcp.2021.110353
10.1051/m2an:2007031
10.1137/22M1519493
10.1007/s10915-021-01539-3
10.1109/TAC.2008.2006102
10.1093/qmath/11.1.50
10.1016/j.cam.2016.01.029
10.1063/5.0091678
10.1137/21M1446289
10.4208/cicp.OA-2019-0065
10.1007/s10444-021-09922-2
10.1137/050639703
10.4310/CMS.2013.v11.n2.a12
10.1016/j.amc.2022.127166
10.1016/j.jcp.2023.112060
10.1137/20M1321838
10.1090/S0025-5718-1981-0616359-2
10.1002/mma.6751
10.1016/j.compfluid.2016.04.014
10.1007/s10543-013-0454-0
10.1016/j.aml.2019.05.013
10.3390/axioms11050235
10.1016/j.jcp.2017.03.015
10.3189/172756410791386643
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10444-024-10175-y
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_024_10175_y
GrantInformation_xml – fundername: CogniGron research center and the Ubbo Emmius Funds
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 491976834
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Grand Équipement National De Calcul Intensif
  grantid: AD012A01664R1
  funderid: http://dx.doi.org/10.13039/501100010190
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-4b3ef7b43d6cbffb1b4730c65a501837abc0051912ec6fc191f27440d9d33ea23
IEDL.DBID U2A
ISSN 1019-7168
IngestDate Fri Jul 25 11:05:38 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
Tue Jul 01 02:55:36 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Dynamical low-rank approximation
Shallow water moment equations
65M08
65F55
76B15
POD-Galerkin
Model order reduction
65M60
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-4b3ef7b43d6cbffb1b4730c65a501837abc0051912ec6fc191f27440d9d33ea23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8822-461X
0000-0001-8982-4230
0000-0002-2061-2114
OpenAccessLink https://link.springer.com/10.1007/s10444-024-10175-y
PQID 3081736562
PQPubID 2043875
ParticipantIDs proquest_journals_3081736562
crossref_primary_10_1007_s10444_024_10175_y
crossref_citationtrail_10_1007_s10444_024_10175_y
springer_journals_10_1007_s10444_024_10175_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AstridPWeilandSWillcoxKBackxTMissing point estimation in models described by proper orthogonal decompositionIEEE Trans. Autom. Control2008531022372251246658110.1109/TAC.2008.2006102
PerottoSErnAVenezianiAHierarchical local model reduction for elliptic problems: a domain decomposition approachMultiscale Modeling & Simulation20108411021127266166810.1137/090756624
Koellermeier, J., Castro, M.: High-order non-conservative simulation of hyperbolic moment models in partially-conservative form. East Asian J. Appl. Math. 11(3), (2021)
Bui-Thanh, T., Damodaran, M., Willcox, K.: Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics. In: 21st AIAA Applied Aerodynamics Conference, p. 4213, 2003
Garres-DíazJde LunaTMCastroMJKoellermeierJShallow water moment models for bedload transport problemsCommun. Comp. Phys.20211134354674290988
KernMABarteltPASovillaBVelocity profile inversion in dense avalanche flowAnn. Glaciol.20105154273110.3189/172756410791386643
MirskyLSymmetric gauge functions and unitarily invariant normsQ. J. Math.1960111505911482110.1093/qmath/11.1.50
CaiZFanYLiRGlobally hyperbolic regularization of Grad’s moment system in one dimensional spaceCommun. Math. Sci.2013112547571300256510.4310/CMS.2013.v11.n2.a12
EinkemmerLLubichCA quasi-conservative dynamical low-rank algorithm for the Vlasov equationSIAM J. Sci. Comput.2019415B1061B1081401613710.1137/18M1218686
Einkemmer, L., Hu, J., Kusch, J.: Asymptotic–preserving and energy stable dynamical low-rank approximation (2022). arXiv preprint arXiv:2212.12012
KieriELubichCWalachHDiscretized dynamical low-rank approximation in the presence of small singular valuesSIAM J. Numer. Anal.201654210201038348239710.1137/15M1026791
Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. Proceedings of the Conference Algoritmy, pp. 1–12 (2016)
Mansilla Alvarez, L., Blanco, P., Bulant, C., Dari, E., Veneziani, A., Feijóo, R.: Transversally enriched pipe element method (tepem): an effective numerical approach for blood flow modeling. Int. J. Numer. Method. Biomed. Eng. 33(4), e2808 (2017)
Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model order reduction in fluid dynamics: challenges and perspectives. Reduced Order Methods for modeling and computational reduction, pp. 235–273 (2014)
BarraultMMadayYNguyenNCPateraATAn ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equationsC.R. Math.20043399667672210320810.1016/j.crma.2004.08.006
PerottoSVenezianiACoupled model and grid adaptivity in hierarchical reduction of elliptic problemsJ. Sci. Comput.2014603505536323979710.1007/s10915-013-9804-y
Christen, M., Kowalski, J., Bartelt, P.: RAMMS:: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63(1–2), 1–14 (2010)
Lumley, J.L.: The structure of inhomogeneous turbulent flows. Atmos. Turbul. Radio Wave Propag. pp. 166–178 (1967)
Ceruti, G., Kusch, J., Lubich, C.: A parallel rank-adaptive integrator for dynamical low-rank approximation (2023). arXiv preprint arXiv:2304.05660
Kowalski, J., Torrilhon, M.: Moment approximations and model cascades for shallow flow. Commun. Comput. Phys. 25, (2019)
ChaturantabutSSorensenDCNonlinear model reduction via discrete empirical interpolationSIAM J. Sci. Comput.201032527372764268473510.1137/090766498
Koellermeier, J., Rominger, M.: Analysis and numerical simulation of hyperbolic shallow water moment equations. Commun. Comp. Phys. 28(3), 1038–1084 (2020)
Perotto, S., Reali, A., Rusconi, P., Veneziani, A.: HIGAMod: A Hierarchical IsoGeometric Approach for MODel reduction in curved pipes. Computers & Fluids 142, 21–29 (2017)
EhrlacherVLombardiDA dynamical adaptive tensor method for the Vlasov-Poisson systemJ. Comput. Phys.2017339285306363265710.1016/j.jcp.2017.03.015
Smetana, K., Ohlberger, M.: Hierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques. ESAIM: Math. Model. Numer. Anal. 51(2), 641–677 (2017)
EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika19361321121810.1007/BF02288367
Amrita, A., Koellermeier, J.: Projective integration for hyperbolic shallow water moment equations. Axioms 11(5), 235 (2022)
EversonRSirovichLKarhunen-Loeve procedure for gappy dataJOSA A19951281657166410.1364/JOSAA.12.001657
KochOLubichCDynamical tensor approximationSIAM J. Matrix Anal. Appl.201031523602375268516210.1137/09076578X
Einkemmer, L., Ostermann, A., Scalone, C.: A robust and conservative dynamical low-rank algorithm (2022). arXiv preprint arXiv:2206.09374
WaldherrSHaasdonkBEfficient parametric analysis of the chemical master equation through model order reductionBMC Syst. Biol.2012611210.1186/1752-0509-6-81
Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Math. Model. Numer. Anal. 42(2), 277–302 (2008)
Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Math. Model. Numer. Anal. 41(3), 575–605 (2007)
Koellermeier, J., Pimentel, E.: Steady states and well-balanced schemes for shallow water moment equations with topography. Appl. Math. Comput. 427, (2022)
HochbruckMNeherMSchrammerSRank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equationsBIT Numer. Math.20236319454416510.1007/s10543-023-00942-6
Vogelius, M., Babuška, I.: On a dimensional reduction method. iii. a posteriori error estimation and an adaptive approach. Math. comput. 37(156), 361–384 (1981)
LubichCOseledetsIVA projector-splitting integrator for dynamical low-rank approximationBIT Numer. Math.2014541171188317796010.1007/s10543-013-0454-0
FanYKoellermeierJLiJLiRTorrilhonMModel reduction of kinetic equations by operator projectionJ. Stat. Phys.20161622457486344136910.1007/s10955-015-1384-9
Vogelius, M., Babuška, I.: On a dimensional reduction method. ii. some approximation-theoretic results. Math. comput. 37(155), 47–68 (1981)
LozovskiyAFarthingMKeesCGildinEPOD-based model reduction for stabilized finite element approximations of shallow water flowsJ. Comput. Appl. Math.20163025070347550310.1016/j.cam.2016.01.029
Hesthaven, J.S., Pagliantini, C., Ripamonti, N.: Rank-adaptive structure-preserving model order reduction of Hamiltonian systems. ESAIM: Math. Model. Numer. Anal. 56(2), 617–650 (2022)
Kusch, J., Stammer, P.: A robust collision source method for rank adaptive dynamical low-rank approximation in radiation therapy. ESAIM: M2AN, (2022)
Kollermeier, J., Krah, P., Kusch, J.: Numerical testcases for "Dynamical low-rank approximation for Burgers’ equation with uncertainty" (2023). https://github.com/JonasKu/Publication-Split-conservative-model-order-reduction-for-hyperbolic-shallow-water-moment-equations.git
HalkoNMartinssonPGTroppJAFinding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev.2011532217288280663710.1137/090771806
KarasözenBYıldızSUzuncaMStructure preserving model order reduction of shallow water equationsMath. Methods Appl. Sci.2021441476492418526510.1002/mma.6751
Vogelius, M., Babuška, I.: On a dimensional reduction method. i. the optimal selection of basis functions. Math. comput. 37(155), 31–46 (1981)
ŞtefănescuRSanduANavonIMPOD/DEIM reduced-order strategies for efficient four dimensional variational data assimilationJ. Comput. Phys.2015295569595334522610.1016/j.jcp.2015.04.030
FarhatCAveryPChapmanTCortialJDimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiencyInt. J. Numer. Meth. Eng.2014989625662320604710.1002/nme.4668
CastroMFernández-NietoEA class of computationally fast first order finite volume solvers: PVM methodsSIAM J. Sci. Comput.2012344A2173A2196297040110.1137/100795280
CerutiGLubichCAn unconventional robust integrator for dynamical low-rank approximationBIT Numer. Math.20226212344437502310.1007/s10543-021-00873-0
Ceruti, G., Kusch, J., Lubich, C.: A rank-adaptive robust integrator for dynamical low-rank approximation. BIT Numer. Math. pp. 1–26 (2022)
KarasözenBYıldızSUzuncaMEnergy preserving reduced-order modeling of the rotating thermal shallow water equationPhys. Fluids202234510.1063/5.0091678
GreifCUrbanKDecay of the Kolmogorov n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-width for wave problemsAppl. Math. Lett.201996216222395341910.1016/j.aml.2019.05.013
ŞtefănescuRNavonIPOD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations modelJ. Comput. Phys.201323795114302002310.1016/j.jcp.2012.11.035
KochOLubichCDynamical low-rank approximationSIAM J. Matrix Anal. Appl.2007292434454231835710.1137/050639703
Castro, M.J., LeFloch, P.G., Munoz-Ruiz, M.L., Pares, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008)
KuschJEinkemmerLCerutiGOn the stability of robust dynamical low-rank approximations for hyperbolic problemsSIAM J. Sci. Comput.2023451A1A24453533910.1137/21M1446289
TorrilhonMModeling nonequilibrium gas flow based on moment equationsAnnu. Rev. Fluid Mech.2016481429458372639210.1146/annurev-fluid-122414-034259
ŞtefănescuRSanduANavonIMComparison of pod reduced order strategies for the nonlinear 2d shallow water equationsInt. J. Numer. Meth. Fluids2014768497521326841710.1002/fld.3946
KunischKVolkweinSGalerkin proper orthogonal decomposition methods for a general equation in fluid dynamicsSIAM J. Numer. Anal.2002402492515192166710.1137/S0036142900382612
KoellermeierJSchaererRPTorrilhonMA framework for h
10175_CR45
10175_CR43
L Einkemmer (10175_CR21) 2019; 41
10175_CR42
O Koch (10175_CR39) 2007; 29
10175_CR41
P Astrid (10175_CR2) 2008; 53
Q Huang (10175_CR34) 2022; 45
S Chaturantabut (10175_CR13) 2010; 32
A Dektor (10175_CR16) 2021; 88
A Lozovskiy (10175_CR52) 2017; 318
G Ceruti (10175_CR11) 2022; 62
K Kunisch (10175_CR48) 2002; 40
J Kusch (10175_CR49) 2023; 45
J Koellermeier (10175_CR44) 2014; 7
E Kieri (10175_CR38) 2016; 54
10175_CR32
10175_CR31
S Waldherr (10175_CR70) 2012; 6
C Greif (10175_CR27) 2019; 96
M Torrilhon (10175_CR66) 2016; 48
R Ştefănescu (10175_CR71) 2013; 237
P Krah (10175_CR47) 2022; 48
R Ştefănescu (10175_CR64) 2014; 76
R Ştefănescu (10175_CR65) 2015; 295
C Lubich (10175_CR54) 2014; 54
C Eckart (10175_CR17) 1936; 1
10175_CR29
S Perotto (10175_CR62) 2014; 60
10175_CR28
10175_CR69
B Karasözen (10175_CR36) 2022; 34
10175_CR68
L Mirsky (10175_CR57) 1960; 11
10175_CR67
10175_CR22
10175_CR20
10175_CR63
M Barrault (10175_CR3) 2004; 339
G Ceruti (10175_CR12) 2021; 59
R Everson (10175_CR23) 1995; 12
10175_CR61
B Karasözen (10175_CR35) 2021; 44
C Farhat (10175_CR25) 2014; 98
J Garres-Díaz (10175_CR26) 2021; 11
O Koch (10175_CR40) 2010; 31
Z Cai (10175_CR6) 2013; 11
10175_CR19
S Perotto (10175_CR60) 2010; 8
10175_CR15
10175_CR59
10175_CR14
10175_CR58
10175_CR56
10175_CR55
10175_CR4
10175_CR10
10175_CR5
Y Fan (10175_CR24) 2016; 162
V Ehrlacher (10175_CR18) 2017; 339
M Hochbruck (10175_CR33) 2023; 63
10175_CR51
N Halko (10175_CR30) 2011; 53
10175_CR50
10175_CR1
MA Kern (10175_CR37) 2010; 51
10175_CR8
10175_CR9
M Castro (10175_CR7) 2012; 34
A Lozovskiy (10175_CR53) 2016; 302
10175_CR46
References_xml – reference: Garres-DíazJde LunaTMCastroMJKoellermeierJShallow water moment models for bedload transport problemsCommun. Comp. Phys.20211134354674290988
– reference: HochbruckMNeherMSchrammerSRank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equationsBIT Numer. Math.20236319454416510.1007/s10543-023-00942-6
– reference: ŞtefănescuRSanduANavonIMComparison of pod reduced order strategies for the nonlinear 2d shallow water equationsInt. J. Numer. Meth. Fluids2014768497521326841710.1002/fld.3946
– reference: KoellermeierJSchaererRPTorrilhonMA framework for hyperbolic approximation of kinetic equations using quadrature-based projection methodsKinet. Relat. Model.201473531549331757210.3934/krm.2014.7.531
– reference: LozovskiyAFarthingMKeesCGildinEPOD-based model reduction for stabilized finite element approximations of shallow water flowsJ. Comput. Appl. Math.20163025070347550310.1016/j.cam.2016.01.029
– reference: Breuß, M.: The correct use of the Lax–Friedrichs method. ESAIM: Math. Model. Numer. Anal. 38(3), 519–540 (2004)
– reference: Einkemmer, L., Hu, J., Kusch, J.: Asymptotic–preserving and energy stable dynamical low-rank approximation (2022). arXiv preprint arXiv:2212.12012
– reference: Hauck, C., Schnake, S.: A predictor-corrector strategy for adaptivity in dynamical low-rank approximations (2022). arXiv preprint arXiv:2209.00550
– reference: KernMABarteltPASovillaBVelocity profile inversion in dense avalanche flowAnn. Glaciol.20105154273110.3189/172756410791386643
– reference: Amrita, A., Koellermeier, J.: Projective integration for hyperbolic shallow water moment equations. Axioms 11(5), 235 (2022)
– reference: Lumley, J.L.: The structure of inhomogeneous turbulent flows. Atmos. Turbul. Radio Wave Propag. pp. 166–178 (1967)
– reference: Castro, M.J., LeFloch, P.G., Munoz-Ruiz, M.L., Pares, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008)
– reference: Kollermeier, J., Krah, P., Kusch, J.: Numerical testcases for "Dynamical low-rank approximation for Burgers’ equation with uncertainty" (2023). https://github.com/JonasKu/Publication-Split-conservative-model-order-reduction-for-hyperbolic-shallow-water-moment-equations.git
– reference: Vogelius, M., Babuška, I.: On a dimensional reduction method. iii. a posteriori error estimation and an adaptive approach. Math. comput. 37(156), 361–384 (1981)
– reference: Vogelius, M., Babuška, I.: On a dimensional reduction method. i. the optimal selection of basis functions. Math. comput. 37(155), 31–46 (1981)
– reference: LozovskiyAFarthingMKeesCEvaluation of Galerkin and Petrov–Galerkin model reduction for finite element approximations of the shallow water equationsComput. Methods Appl. Mech. Eng.2017318537571362719010.1016/j.cma.2017.01.027
– reference: Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model order reduction in fluid dynamics: challenges and perspectives. Reduced Order Methods for modeling and computational reduction, pp. 235–273 (2014)
– reference: HuangQKoellermeierJYongW-AEquilibrium stability analysis of hyperbolic shallow water moment equationsMath. Method. Appl. Sci.2022451064596480443794610.1002/mma.8180
– reference: KrahPEngelsTSchneiderKReissJWavelet adaptive proper orthogonal decomposition for large-scale flow dataAdv. Comput. Math.2022482140438266010.1007/s10444-021-09922-2
– reference: Courtier, P., Geleyn, J.-F.: A global numerical weather prediction model with variable resolution: application to the shallow-water equations. Q. J. R. Meteorol. Soc. 114(483), 1321–1346 (1988)
– reference: Vogelius, M., Babuška, I.: On a dimensional reduction method. ii. some approximation-theoretic results. Math. comput. 37(155), 47–68 (1981)
– reference: KieriELubichCWalachHDiscretized dynamical low-rank approximation in the presence of small singular valuesSIAM J. Numer. Anal.201654210201038348239710.1137/15M1026791
– reference: Hesthaven, J.S., Pagliantini, C., Ripamonti, N.: Rank-adaptive structure-preserving model order reduction of Hamiltonian systems. ESAIM: Math. Model. Numer. Anal. 56(2), 617–650 (2022)
– reference: KuschJEinkemmerLCerutiGOn the stability of robust dynamical low-rank approximations for hyperbolic problemsSIAM J. Sci. Comput.2023451A1A24453533910.1137/21M1446289
– reference: GreifCUrbanKDecay of the Kolmogorov n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-width for wave problemsAppl. Math. Lett.201996216222395341910.1016/j.aml.2019.05.013
– reference: ChaturantabutSSorensenDCNonlinear model reduction via discrete empirical interpolationSIAM J. Sci. Comput.201032527372764268473510.1137/090766498
– reference: PerottoSErnAVenezianiAHierarchical local model reduction for elliptic problems: a domain decomposition approachMultiscale Modeling & Simulation20108411021127266166810.1137/090756624
– reference: Koellermeier, J., Rominger, M.: Analysis and numerical simulation of hyperbolic shallow water moment equations. Commun. Comp. Phys. 28(3), 1038–1084 (2020)
– reference: Perotto, S., Reali, A., Rusconi, P., Veneziani, A.: HIGAMod: A Hierarchical IsoGeometric Approach for MODel reduction in curved pipes. Computers & Fluids 142, 21–29 (2017)
– reference: PerottoSVenezianiACoupled model and grid adaptivity in hierarchical reduction of elliptic problemsJ. Sci. Comput.2014603505536323979710.1007/s10915-013-9804-y
– reference: WaldherrSHaasdonkBEfficient parametric analysis of the chemical master equation through model order reductionBMC Syst. Biol.2012611210.1186/1752-0509-6-81
– reference: DektorARodgersAVenturiDRank-adaptive tensor methods for high-dimensional nonlinear PDEsJ. Sci. Comput.202188236427732210.1007/s10915-021-01539-3
– reference: Kowalski, J., Torrilhon, M.: Moment approximations and model cascades for shallow flow. Commun. Comput. Phys. 25, (2019)
– reference: EhrlacherVLombardiDA dynamical adaptive tensor method for the Vlasov-Poisson systemJ. Comput. Phys.2017339285306363265710.1016/j.jcp.2017.03.015
– reference: FarhatCAveryPChapmanTCortialJDimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiencyInt. J. Numer. Meth. Eng.2014989625662320604710.1002/nme.4668
– reference: Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Math. Model. Numer. Anal. 41(3), 575–605 (2007)
– reference: Smetana, K., Ohlberger, M.: Hierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques. ESAIM: Math. Model. Numer. Anal. 51(2), 641–677 (2017)
– reference: Ceruti, G., Kusch, J., Lubich, C.: A parallel rank-adaptive integrator for dynamical low-rank approximation (2023). arXiv preprint arXiv:2304.05660
– reference: Einkemmer, L., Ostermann, A., Scalone, C.: A robust and conservative dynamical low-rank algorithm (2022). arXiv preprint arXiv:2206.09374
– reference: Koellermeier, J., Castro, M.: High-order non-conservative simulation of hyperbolic moment models in partially-conservative form. East Asian J. Appl. Math. 11(3), (2021)
– reference: Kusch, J., Stammer, P.: A robust collision source method for rank adaptive dynamical low-rank approximation in radiation therapy. ESAIM: M2AN, (2022)
– reference: Peherstorfer, B.: Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling. SIAM J. Sci. Comput. 42(5), A2803–A2836, Jan. 2020. Publisher: Society for Industrial and Applied Mathematics
– reference: CaiZFanYLiRGlobally hyperbolic regularization of Grad’s moment system in one dimensional spaceCommun. Math. Sci.2013112547571300256510.4310/CMS.2013.v11.n2.a12
– reference: KochOLubichCDynamical tensor approximationSIAM J. Matrix Anal. Appl.201031523602375268516210.1137/09076578X
– reference: Mansilla Alvarez, L., Blanco, P., Bulant, C., Dari, E., Veneziani, A., Feijóo, R.: Transversally enriched pipe element method (tepem): an effective numerical approach for blood flow modeling. Int. J. Numer. Method. Biomed. Eng. 33(4), e2808 (2017)
– reference: EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika19361321121810.1007/BF02288367
– reference: CerutiGLubichCWalachHTime integration of tree tensor networksSIAM J. Numer. Anal.2021591289313420717910.1137/20M1321838
– reference: FanYKoellermeierJLiJLiRTorrilhonMModel reduction of kinetic equations by operator projectionJ. Stat. Phys.20161622457486344136910.1007/s10955-015-1384-9
– reference: ŞtefănescuRNavonIPOD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations modelJ. Comput. Phys.201323795114302002310.1016/j.jcp.2012.11.035
– reference: TorrilhonMModeling nonequilibrium gas flow based on moment equationsAnnu. Rev. Fluid Mech.2016481429458372639210.1146/annurev-fluid-122414-034259
– reference: Einkemmer, L., Hu, J., Wang, Y.: An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation. J. Comput. Phys. p. 110353, 5 (2021)
– reference: HalkoNMartinssonPGTroppJAFinding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev.2011532217288280663710.1137/090771806
– reference: Ceruti, G., Kusch, J., Lubich, C.: A rank-adaptive robust integrator for dynamical low-rank approximation. BIT Numer. Math. pp. 1–26 (2022)
– reference: CastroMFernández-NietoEA class of computationally fast first order finite volume solvers: PVM methodsSIAM J. Sci. Comput.2012344A2173A2196297040110.1137/100795280
– reference: Koellermeier, J., Pimentel, E.: Steady states and well-balanced schemes for shallow water moment equations with topography. Appl. Math. Comput. 427, (2022)
– reference: BarraultMMadayYNguyenNCPateraATAn ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equationsC.R. Math.20043399667672210320810.1016/j.crma.2004.08.006
– reference: Bui-Thanh, T., Damodaran, M., Willcox, K.: Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics. In: 21st AIAA Applied Aerodynamics Conference, p. 4213, 2003
– reference: Christen, M., Kowalski, J., Bartelt, P.: RAMMS:: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63(1–2), 1–14 (2010)
– reference: EinkemmerLLubichCA quasi-conservative dynamical low-rank algorithm for the Vlasov equationSIAM J. Sci. Comput.2019415B1061B1081401613710.1137/18M1218686
– reference: KunischKVolkweinSGalerkin proper orthogonal decomposition methods for a general equation in fluid dynamicsSIAM J. Numer. Anal.2002402492515192166710.1137/S0036142900382612
– reference: AstridPWeilandSWillcoxKBackxTMissing point estimation in models described by proper orthogonal decompositionIEEE Trans. Autom. Control2008531022372251246658110.1109/TAC.2008.2006102
– reference: Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. Proceedings of the Conference Algoritmy, pp. 1–12 (2016)
– reference: LubichCOseledetsIVA projector-splitting integrator for dynamical low-rank approximationBIT Numer. Math.2014541171188317796010.1007/s10543-013-0454-0
– reference: KarasözenBYıldızSUzuncaMEnergy preserving reduced-order modeling of the rotating thermal shallow water equationPhys. Fluids202234510.1063/5.0091678
– reference: MirskyLSymmetric gauge functions and unitarily invariant normsQ. J. Math.1960111505911482110.1093/qmath/11.1.50
– reference: Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Math. Model. Numer. Anal. 42(2), 277–302 (2008)
– reference: ŞtefănescuRSanduANavonIMPOD/DEIM reduced-order strategies for efficient four dimensional variational data assimilationJ. Comput. Phys.2015295569595334522610.1016/j.jcp.2015.04.030
– reference: KochOLubichCDynamical low-rank approximationSIAM J. Matrix Anal. Appl.2007292434454231835710.1137/050639703
– reference: EversonRSirovichLKarhunen-Loeve procedure for gappy dataJOSA A19951281657166410.1364/JOSAA.12.001657
– reference: CerutiGLubichCAn unconventional robust integrator for dynamical low-rank approximationBIT Numer. Math.20226212344437502310.1007/s10543-021-00873-0
– reference: KarasözenBYıldızSUzuncaMStructure preserving model order reduction of shallow water equationsMath. Methods Appl. Sci.2021441476492418526510.1002/mma.6751
– volume: 295
  start-page: 569
  year: 2015
  ident: 10175_CR65
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.04.030
– volume: 1
  start-page: 211
  issue: 3
  year: 1936
  ident: 10175_CR17
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– volume: 8
  start-page: 1102
  issue: 4
  year: 2010
  ident: 10175_CR60
  publication-title: Multiscale Modeling & Simulation
  doi: 10.1137/090756624
– ident: 10175_CR56
  doi: 10.1002/cnm.2808
– volume: 54
  start-page: 1020
  issue: 2
  year: 2016
  ident: 10175_CR38
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1026791
– volume: 41
  start-page: B1061
  issue: 5
  year: 2019
  ident: 10175_CR21
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1218686
– ident: 10175_CR29
  doi: 10.1051/m2an:2008001
– ident: 10175_CR59
  doi: 10.1137/19M1257275
– volume: 60
  start-page: 505
  issue: 3
  year: 2014
  ident: 10175_CR62
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9804-y
– volume: 237
  start-page: 95
  year: 2013
  ident: 10175_CR71
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.11.035
– ident: 10175_CR50
  doi: 10.1051/m2an/2022090
– volume: 32
  start-page: 2737
  issue: 5
  year: 2010
  ident: 10175_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090766498
– volume: 48
  start-page: 429
  issue: 1
  year: 2016
  ident: 10175_CR66
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122414-034259
– ident: 10175_CR67
  doi: 10.1090/S0025-5718-1981-0616358-0
– volume: 31
  start-page: 2360
  issue: 5
  year: 2010
  ident: 10175_CR40
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/09076578X
– volume: 339
  start-page: 667
  issue: 9
  year: 2004
  ident: 10175_CR3
  publication-title: C.R. Math.
  doi: 10.1016/j.crma.2004.08.006
– ident: 10175_CR15
  doi: 10.1002/qj.49711448309
– ident: 10175_CR41
  doi: 10.4208/eajam.090920.130121
– volume: 63
  start-page: 9
  issue: 1
  year: 2023
  ident: 10175_CR33
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-023-00942-6
– ident: 10175_CR63
  doi: 10.1051/m2an/2016031
– volume: 7
  start-page: 531
  issue: 3
  year: 2014
  ident: 10175_CR44
  publication-title: Kinet. Relat. Model.
  doi: 10.3934/krm.2014.7.531
– ident: 10175_CR46
  doi: 10.4208/cicp.OA-2017-0263
– ident: 10175_CR10
  doi: 10.1137/23M1565103
– ident: 10175_CR5
  doi: 10.2514/6.2003-4213
– volume: 76
  start-page: 497
  issue: 8
  year: 2014
  ident: 10175_CR64
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.3946
– volume: 6
  start-page: 1
  year: 2012
  ident: 10175_CR70
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-6-81
– ident: 10175_CR51
  doi: 10.1007/978-3-319-02090-7_9
– ident: 10175_CR14
  doi: 10.1016/j.coldregions.2010.04.005
– ident: 10175_CR32
  doi: 10.1051/m2an/2022013
– volume: 40
  start-page: 492
  issue: 2
  year: 2002
  ident: 10175_CR48
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900382612
– ident: 10175_CR69
  doi: 10.1090/S0025-5718-1981-0628701-7
– volume: 11
  start-page: 435
  issue: 3
  year: 2021
  ident: 10175_CR26
  publication-title: Commun. Comp. Phys.
– ident: 10175_CR19
– volume: 318
  start-page: 537
  year: 2017
  ident: 10175_CR52
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.01.027
– volume: 53
  start-page: 217
  issue: 2
  year: 2011
  ident: 10175_CR30
  publication-title: SIAM Rev.
  doi: 10.1137/090771806
– ident: 10175_CR4
  doi: 10.1051/m2an:2004027
– volume: 12
  start-page: 1657
  issue: 8
  year: 1995
  ident: 10175_CR23
  publication-title: JOSA A
  doi: 10.1364/JOSAA.12.001657
– ident: 10175_CR9
  doi: 10.1007/s10543-021-00873-0
– volume: 98
  start-page: 625
  issue: 9
  year: 2014
  ident: 10175_CR25
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.4668
– ident: 10175_CR8
  doi: 10.1016/j.jcp.2008.05.012
– volume: 34
  start-page: A2173
  issue: 4
  year: 2012
  ident: 10175_CR7
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100795280
– volume: 45
  start-page: 6459
  issue: 10
  year: 2022
  ident: 10175_CR34
  publication-title: Math. Method. Appl. Sci.
  doi: 10.1002/mma.8180
– volume: 162
  start-page: 457
  issue: 2
  year: 2016
  ident: 10175_CR24
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-015-1384-9
– ident: 10175_CR20
  doi: 10.1016/j.jcp.2021.110353
– ident: 10175_CR28
  doi: 10.1051/m2an:2007031
– ident: 10175_CR58
– ident: 10175_CR31
  doi: 10.1137/22M1519493
– volume: 88
  start-page: 36
  issue: 2
  year: 2021
  ident: 10175_CR16
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01539-3
– volume: 53
  start-page: 2237
  issue: 10
  year: 2008
  ident: 10175_CR2
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2006102
– volume: 11
  start-page: 50
  issue: 1
  year: 1960
  ident: 10175_CR57
  publication-title: Q. J. Math.
  doi: 10.1093/qmath/11.1.50
– volume: 62
  start-page: 23
  issue: 1
  year: 2022
  ident: 10175_CR11
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-021-00873-0
– volume: 302
  start-page: 50
  year: 2016
  ident: 10175_CR53
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.01.029
– volume: 34
  issue: 5
  year: 2022
  ident: 10175_CR36
  publication-title: Phys. Fluids
  doi: 10.1063/5.0091678
– volume: 45
  start-page: A1
  issue: 1
  year: 2023
  ident: 10175_CR49
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/21M1446289
– ident: 10175_CR43
  doi: 10.4208/cicp.OA-2019-0065
– ident: 10175_CR45
– volume: 48
  start-page: 1
  issue: 2
  year: 2022
  ident: 10175_CR47
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-021-09922-2
– volume: 29
  start-page: 434
  issue: 2
  year: 2007
  ident: 10175_CR39
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/050639703
– volume: 11
  start-page: 547
  issue: 2
  year: 2013
  ident: 10175_CR6
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2013.v11.n2.a12
– ident: 10175_CR42
  doi: 10.1016/j.amc.2022.127166
– ident: 10175_CR22
  doi: 10.1016/j.jcp.2023.112060
– volume: 59
  start-page: 289
  issue: 1
  year: 2021
  ident: 10175_CR12
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/20M1321838
– ident: 10175_CR68
  doi: 10.1090/S0025-5718-1981-0616359-2
– volume: 44
  start-page: 476
  issue: 1
  year: 2021
  ident: 10175_CR35
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6751
– ident: 10175_CR61
  doi: 10.1016/j.compfluid.2016.04.014
– volume: 54
  start-page: 171
  issue: 1
  year: 2014
  ident: 10175_CR54
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-013-0454-0
– ident: 10175_CR55
– volume: 96
  start-page: 216
  year: 2019
  ident: 10175_CR27
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.05.013
– ident: 10175_CR1
  doi: 10.3390/axioms11050235
– volume: 339
  start-page: 285
  year: 2017
  ident: 10175_CR18
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.03.015
– volume: 51
  start-page: 27
  issue: 54
  year: 2010
  ident: 10175_CR37
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756410791386643
SSID ssj0009675
Score 2.3832083
Snippet Geophysical flow simulations using hyperbolic shallow water moment equations require an efficient discretization of a potentially large system of PDEs, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Approximation
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Decomposition
Flow simulation
Galerkin method
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Model reduction
Physical properties
Shallow water
Visualization
Water conservation
Title Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: a study using POD-Galerkin and dynamical low-rank approximation
URI https://link.springer.com/article/10.1007/s10444-024-10175-y
https://www.proquest.com/docview/3081736562
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7R9gKHAgVEoERz4AYrJd712uaWhqYVKIUDkcrJ2icggVPiQMmP478xs143gACJk215H4eZ3flmd-Ybxh5b67UWdsSrshpxWXrPdSkMrqt8pHzQ1pWU4Dw_U6cL-eI8P09JYW0f7d5fScad-qdkNyklR5vCSY1yvtlhezn57qjFi2yypdpVkV4XG1UcvYEypcr8eYxfzdEWY_52LRqtzewW208wESadXG-za745YDcTZIS0INsDdmN-Rbva3mHf5xqn4Z8oyA6cp3DxFJMFiE3BUjAsSrVZg25c_OyOZL96iBVxIBJxworoXGOvZYD36KiuDLEHQ0uFV5aXcIn4dIU96GAR_OeOLLx9BhoiWS1QLP07eP3qOT9B80OH8XE-t2l0JCcAHIRTsXiIjObfPnTpk3fZYnb8ZnrKU30GboUSay6N8KEwUjhlTQhmbCTuF1blmlgCRaGNjQhxnHmrgsWXEPkIXeWE8DoT99hus2z8fQZOlqbyI6dz5eVYo8-pdaFdFnJdIKAMAzbuxVTbRF5ONTQ-1lvaZRJtjaKto2jrzYA9uepz0VF3_LP1YS_9Oi3jthYImAqBkDcbsKe9Rmx__320B__X_CG7npFSxsDCQ7a7Xn3xjxDsrM2Q7U1mR0dn9Dx5-_J4yHamajqMGv8DQO4AJg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQAHHgXEQoE5cANLu7HjJNzQQlmgWzi0Um-RnwUJsrBZKP1x_DdmHG9XVIDELVH8kDXjzDf2zDcAj50Lxkg3Fk3djIWqQxCmlpb2VTnWIRrna05wnu_r2aF6c1QeZZoczoU5d3_PKW5KKUGWRLDylOL0IlxS5Clz-N5UTzcEuzqR6lKjRpAPUOcEmT-P8bsR2iDLc5ehycbs3oBrGRzi80GaN-FC6LbhegaKmLdhvw1X52dkq_0t-Dk3NI34zKF16AMHiedILCREio5DYEmW3QpN59PrcBD7PWCqg4OJfhOXTOKaei0ifiD3dGmZMxh7LreyOMETQqVL6sHHiRi-DhTh_TM0mChqkSPoj_H9uxfiFRkdPoJP8_mh5D0tiwYRXCIeE4_5j49D0uRtONx9eTCdiVyVQTip5UooK0OsrJJeOxujnVhFfwmnS8PcgLIy1iVcOCmC09HRQ0wshL7xUgZTyDuw1S26cBfQq9o2YexNqYOaGPI0jamML2JpKoKRcQSTtZhalynLuXLGp3ZDtsyibUm0bRJtezqCJ2d9vgyEHf9svbOWfps3b99KgkmVJKBbjODpWiM2n_8-2r3_a_4ILs8O5nvt3uv9t_fhSsEKmkILd2BrtfwWHhDcWdmHSc9_ARun-vw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMctKBKCA48C6kKBOXADq7ux4yTc0JalPLb0QKXeIj8LEs2WzULZD8d3Y2aS7RYESNwSxXYUjR3_bc_8Rogn3kdrlR_KqqyGUpcxSlsqh-MqH5qYrA8lBThP983eoX5zlB9diOJnb_fVkWQX00CUpmaxcxrSzoXAN621xPlFUpfK5fKyuIIrFT6oHZvxGrtrGLWLhSqJK4OyD5v5cxu_Tk1rvfnbESnPPJNb4kYvGeFFZ-Pb4lJsNsXNXj5CPzjbTXF9eo5gbe-IH1OLr5En5HAHIZLreO-fBahTwZNjbEufDLYJfNttz36LwNlxgKGcMCe0K9eaJfiIi9a5I5IwtJSEZXYGZ6hV51iDNhkhfunA4e1zsMDgWiC_-mM4eL8rX-FURBvz_L6wbCyDCgAbkZQ4Hphu_v1TF0p5VxxOXn4Y78k-V4P0yqiF1E7FVDitgvEuJTdyGv8d3uSWiIGqsM6zWhxl0Zvk8SIxmzBUQaloM3VPbDSzJm4JCLp0VRwGm5uoRxbXn9YWNmQptwWKyzQQo5WZat-DzCmfxud6jWAm09Zo2ppNWy8H4ul5ndMO4_HP0tsr69f9kG5rheKpUCh_s4F4tuoR68d_b-3-_xV_LK4e7E7qd6_33z4Q1zLqn-xvuC02FvOv8SFqoIV7xN38J5frA1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macro-micro+decomposition+for+consistent+and+conservative+model+order+reduction+of+hyperbolic+shallow+water+moment+equations%3A+a+study+using+POD-Galerkin+and+dynamical+low-rank+approximation&rft.jtitle=Advances+in+computational+mathematics&rft.au=Koellermeier%2C+Julian&rft.au=Krah%2C+Philipp&rft.au=Kusch%2C+Jonas&rft.date=2024-08-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=4&rft_id=info:doi/10.1007%2Fs10444-024-10175-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_024_10175_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon