RB-CCR: Radial-Based Combined Cleaning and Resampling algorithm for imbalanced data classification
Real-world classification domains, such as medicine, health and safety, and finance, often exhibit imbalanced class priors and have asynchronous misclassification costs. In such cases, the classification model must achieve a high recall without significantly impacting precision. Resampling the train...
Saved in:
Published in | Machine learning Vol. 110; no. 11-12; pp. 3059 - 3093 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0885-6125 1573-0565 |
DOI | 10.1007/s10994-021-06012-8 |
Cover
Abstract | Real-world classification domains, such as medicine, health and safety, and finance, often exhibit imbalanced class priors and have asynchronous misclassification costs. In such cases, the classification model must achieve a high recall without significantly impacting precision. Resampling the training data is the standard approach to improving classification performance on imbalanced binary data. However, the state-of-the-art methods ignore the local joint distribution of the data or correct it as a post-processing step. This can causes sub-optimal shifts in the training distribution, particularly when the target data distribution is complex. In this paper, we propose Radial-Based Combined Cleaning and Resampling (RB-CCR). RB-CCR utilizes the concept of class potential to refine the energy-based resampling approach of CCR. In particular, RB-CCR exploits the class potential to accurately locate sub-regions of the data-space for synthetic oversampling. The category sub-region for oversampling can be specified as an input parameter to meet domain-specific needs or be automatically selected via cross-validation. Our
5
×
2
cross-validated results on 57 benchmark binary datasets with 9 classifiers show that RB-CCR achieves a better precision-recall trade-off than CCR and generally out-performs the state-of-the-art resampling methods in terms of AUC and G-mean. |
---|---|
AbstractList | Real-world classification domains, such as medicine, health and safety, and finance, often exhibit imbalanced class priors and have asynchronous misclassification costs. In such cases, the classification model must achieve a high recall without significantly impacting precision. Resampling the training data is the standard approach to improving classification performance on imbalanced binary data. However, the state-of-the-art methods ignore the local joint distribution of the data or correct it as a post-processing step. This can causes sub-optimal shifts in the training distribution, particularly when the target data distribution is complex. In this paper, we propose Radial-Based Combined Cleaning and Resampling (RB-CCR). RB-CCR utilizes the concept of class potential to refine the energy-based resampling approach of CCR. In particular, RB-CCR exploits the class potential to accurately locate sub-regions of the data-space for synthetic oversampling. The category sub-region for oversampling can be specified as an input parameter to meet domain-specific needs or be automatically selected via cross-validation. Our
5
×
2
cross-validated results on 57 benchmark binary datasets with 9 classifiers show that RB-CCR achieves a better precision-recall trade-off than CCR and generally out-performs the state-of-the-art resampling methods in terms of AUC and G-mean. Real-world classification domains, such as medicine, health and safety, and finance, often exhibit imbalanced class priors and have asynchronous misclassification costs. In such cases, the classification model must achieve a high recall without significantly impacting precision. Resampling the training data is the standard approach to improving classification performance on imbalanced binary data. However, the state-of-the-art methods ignore the local joint distribution of the data or correct it as a post-processing step. This can causes sub-optimal shifts in the training distribution, particularly when the target data distribution is complex. In this paper, we propose Radial-Based Combined Cleaning and Resampling (RB-CCR). RB-CCR utilizes the concept of class potential to refine the energy-based resampling approach of CCR. In particular, RB-CCR exploits the class potential to accurately locate sub-regions of the data-space for synthetic oversampling. The category sub-region for oversampling can be specified as an input parameter to meet domain-specific needs or be automatically selected via cross-validation. Our $$5\times 2$$ 5 × 2 cross-validated results on 57 benchmark binary datasets with 9 classifiers show that RB-CCR achieves a better precision-recall trade-off than CCR and generally out-performs the state-of-the-art resampling methods in terms of AUC and G-mean. Real-world classification domains, such as medicine, health and safety, and finance, often exhibit imbalanced class priors and have asynchronous misclassification costs. In such cases, the classification model must achieve a high recall without significantly impacting precision. Resampling the training data is the standard approach to improving classification performance on imbalanced binary data. However, the state-of-the-art methods ignore the local joint distribution of the data or correct it as a post-processing step. This can causes sub-optimal shifts in the training distribution, particularly when the target data distribution is complex. In this paper, we propose Radial-Based Combined Cleaning and Resampling (RB-CCR). RB-CCR utilizes the concept of class potential to refine the energy-based resampling approach of CCR. In particular, RB-CCR exploits the class potential to accurately locate sub-regions of the data-space for synthetic oversampling. The category sub-region for oversampling can be specified as an input parameter to meet domain-specific needs or be automatically selected via cross-validation. Our 5×2 cross-validated results on 57 benchmark binary datasets with 9 classifiers show that RB-CCR achieves a better precision-recall trade-off than CCR and generally out-performs the state-of-the-art resampling methods in terms of AUC and G-mean. |
Author | Koziarski, Michał Bellinger, Colin Woźniak, Michał |
Author_xml | – sequence: 1 givenname: Michał surname: Koziarski fullname: Koziarski, Michał email: michal.koziarski@agh.edu.pl organization: Department of Electronics, AGH University of Science and Technology – sequence: 2 givenname: Colin surname: Bellinger fullname: Bellinger, Colin organization: Digital Technologies, National Research Council of Canada – sequence: 3 givenname: Michał surname: Woźniak fullname: Woźniak, Michał organization: Department of Systems and Computer Networks, Wrocław University of Science and Technology |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqOTZD9Sb3bxCwrCoucwyWZrym62JtuD_95tKwgeepoZeJ-Z4ZmRie-9JeSawS0DKO4ig8UipcAZhRwYp_KMTFlWCApZnk3IFKTMaM54dkFmMW4AgOcynxJdLWlZVvdJhbXDli4x2jop-047v29ai975dYK-Tiobsdu2h7Fd98ENn13S9CFxncYWvRmBGgdMTIsxusYZHFzvL8l5g220V791Tj6eHt_LF7p6e34tH1bUiFwMNMV6kWkOdSMaoTU0gsvcSJuikFgUBTLTyGIh04IVWssxDhwFQ0CdGiu1mJOb495t6L92Ng5q0--CH08qPjphWSrzbEzJY8qEPsZgG2XccPhzCOhaxUDtjaqjUTUaVQejSo4o_4dug-swfJ-GxBGKY9ivbfj76gT1A5nfipA |
CitedBy_id | crossref_primary_10_3390_e24111602 crossref_primary_10_1007_s10994_023_06448_0 crossref_primary_10_1007_s10115_023_01881_y crossref_primary_10_1007_s10994_022_06296_4 crossref_primary_10_1109_TSMC_2023_3319694 crossref_primary_10_1111_coin_12566 crossref_primary_10_1007_s10994_024_06558_3 |
Cites_doi | 10.1007/978-3-319-46128-1_16 10.1109/TNNLS.2015.2461436 10.1515/amcs-2017-0050 10.1016/j.eswa.2011.12.043 10.1109/CIDM.2011.5949434 10.1109/ICDM.2018.00060 10.1613/jair.953 10.1007/978-3-642-28931-6_14 10.1007/s11222-017-9746-6 10.1007/3-540-62858-4_79 10.1109/ICDM.2012.115 10.1016/j.patcog.2020.107262 10.1109/TKDE.2012.232 10.1007/s13748-016-0094-0 10.1007/3-540-48229-6_9 10.1016/j.knosys.2011.06.013 10.1007/11538059_91 10.1109/TNNLS.2019.2913673 10.1016/j.knosys.2020.106223 10.1007/s10115-019-01380-z 10.1109/TKDE.2008.239 10.1007/978-3-319-18781-5_17 10.1016/j.neucom.2018.04.089 10.1162/089976699300016007 10.1109/TNNLS.2017.2732482 10.1109/TEVC.2012.2199119 10.1109/TSMCC.2011.2161285 10.1016/j.asoc.2013.08.014 10.1109/TSMC.1972.4309137 10.1007/s10994-017-5670-4 10.1016/j.ins.2017.09.013 10.1145/2907070 10.1007/978-3-540-39804-2_12 10.1145/1401890.1401910 10.1007/978-3-642-01307-2_43 10.1016/j.ins.2013.12.019 10.1109/TNNLS.2017.2751612 10.1145/1143844.1143874 10.1109/IJCNN52387.2021.9533415 10.1016/j.inffus.2013.04.006 10.1109/ACII.2013.47 10.1109/IJCNN.2010.5596702 10.1109/TKDE.2006.17 10.1109/TNNLS.2019.2899061 |
ContentType | Journal Article |
Copyright | Crown 2021 2021 Crown 2021 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Crown 2021 2021 – notice: Crown 2021 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10994-021-06012-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0565 |
EndPage | 3093 |
ExternalDocumentID | 10_1007_s10994_021_06012_8 |
GrantInformation_xml | – fundername: Narodowe Centrum Nauki grantid: 2017/27/N/ST6/01705; 2017/27/B/ST6/01325 funderid: http://dx.doi.org/10.13039/501100004281 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-4ad95b20df3f3bb0f3286c8e4a38a777a1cf87984717bb84ad02a31a0ab4ce8b3 |
IEDL.DBID | 8FG |
ISSN | 0885-6125 |
IngestDate | Fri Jul 25 06:10:08 EDT 2025 Tue Jul 01 00:46:07 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Fri Feb 21 02:48:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11-12 |
Keywords | Imbalanced data Radial basis functions Oversampling Machine learning Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-4ad95b20df3f3bb0f3286c8e4a38a777a1cf87984717bb84ad02a31a0ab4ce8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10994-021-06012-8 |
PQID | 2601154865 |
PQPubID | 54194 |
PageCount | 35 |
ParticipantIDs | proquest_journals_2601154865 crossref_citationtrail_10_1007_s10994_021_06012_8 crossref_primary_10_1007_s10994_021_06012_8 springer_journals_10_1007_s10994_021_06012_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationTitleAbbrev | Mach Learn |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Galar, Fernandez, Barrenechea, Bustince, Herrera (CR15) 2011; 42 Wilson (CR50) 1972; 2 CR36 CR35 CR34 Stefanowski, Matwin, Mielniczuk (CR46) 2016 Brzezinski, Stefanowski, Susmaga, Szczęch (CR9) 2019; 31 Zhou, Liu (CR52) 2006; 18 Bhowan, Johnston, Zhang, Yao (CR7) 2012; 17 Koziarski, Wożniak (CR28) 2017; 27 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR43) 2011; 12 Alcalá-Fdez, Fernández, Luengo, Derrac, García (CR1) 2011; 17 CR4 López, Fernández, Moreno-Torres, Herrera (CR39) 2012; 39 Krawczyk, Wozniak, Cyganek (CR32) 2014; 264 Barua, Islam, Yao, Murase (CR3) 2012; 26 Krawczyk, Woźniak, Schaefer (CR33) 2014; 14 CR49 CR48 CR45 CR42 Alpaydin (CR2) 1999; 11 CR40 García, Sánchez, Mollineda (CR16) 2012; 25 Mathew, Pang, Luo, Leong (CR41) 2018; 29 Woźniak, Graña, Corchado (CR51) 2014; 16 Tomek (CR47) 1976; 6 CR18 CR17 Koziarski, Woźniak, Krawczyk (CR29) 2020; 204 CR14 CR13 CR12 Koziarski, Krawczyk, Woźniak (CR27) 2019; 343 Branco, Torgo, Ribeiro (CR8) 2016; 49 Bellinger, Sharma, Japkowicz, Zaïane (CR6) 2020; 62 CR10 Khan, Hayat, Bennamoun, Sohel, Togneri (CR24) 2018; 29 He, Garcia (CR21) 2009; 21 Hand, Christen (CR19) 2018; 28 Pérez-Ortiz, Gutiérrez, Tiño, Hervás-Martínez (CR44) 2016; 27 Krawczyk, Koziarski, Woźniak (CR31) 2019; 31 Bellinger, Drummond, Japkowicz (CR5) 2018; 107 Lemaitre, Nogueira, Aridas (CR37) 2017; 18 Chawla, Bowyer, Hall, Kegelmeyer (CR11) 2002; 16 CR25 Koziarski (CR26) 2020; 102 Krawczyk (CR30) 2016; 5 CR23 CR22 CR20 Li, Zhang, Zhang, Chunlei, Yue, Tian (CR38) 2018; 422 M Koziarski (6012_CR26) 2020; 102 E Alpaydin (6012_CR2) 1999; 11 I Tomek (6012_CR47) 1976; 6 J Alcalá-Fdez (6012_CR1) 2011; 17 6012_CR35 M Koziarski (6012_CR27) 2019; 343 6012_CR34 B Krawczyk (6012_CR31) 2019; 31 6012_CR36 J Mathew (6012_CR41) 2018; 29 B Krawczyk (6012_CR32) 2014; 264 Z-H Zhou (6012_CR52) 2006; 18 V López (6012_CR39) 2012; 39 H He (6012_CR21) 2009; 21 U Bhowan (6012_CR7) 2012; 17 6012_CR23 B Krawczyk (6012_CR30) 2016; 5 6012_CR25 6012_CR20 C Bellinger (6012_CR5) 2018; 107 6012_CR22 NV Chawla (6012_CR11) 2002; 16 C Bellinger (6012_CR6) 2020; 62 M Pérez-Ortiz (6012_CR44) 2016; 27 J Stefanowski (6012_CR46) 2016 6012_CR13 6012_CR12 6012_CR14 V García (6012_CR16) 2012; 25 M Koziarski (6012_CR28) 2017; 27 6012_CR10 F Pedregosa (6012_CR43) 2011; 12 DL Wilson (6012_CR50) 1972; 2 6012_CR17 B Krawczyk (6012_CR33) 2014; 14 S Barua (6012_CR3) 2012; 26 6012_CR18 M Galar (6012_CR15) 2011; 42 M Woźniak (6012_CR51) 2014; 16 6012_CR40 D Hand (6012_CR19) 2018; 28 F Li (6012_CR38) 2018; 422 6012_CR45 6012_CR48 6012_CR42 6012_CR4 SH Khan (6012_CR24) 2018; 29 P Branco (6012_CR8) 2016; 49 D Brzezinski (6012_CR9) 2019; 31 G Lemaitre (6012_CR37) 2017; 18 6012_CR49 M Koziarski (6012_CR29) 2020; 204 |
References_xml | – ident: CR45 – ident: CR22 – volume: 204 start-page: 106223 year: 2020 ident: CR29 article-title: Combined cleaning and resampling algorithm for multi-class imbalanced data with label noise publication-title: Knowledge-Based Systems – volume: 102 start-page: 107262 year: 2020 ident: CR26 article-title: Radial-based undersampling for imbalanced data classification publication-title: Pattern Recognition – ident: CR49 – ident: CR4 – volume: 17 start-page: 368 issue: 3 year: 2012 end-page: 386 ident: CR7 article-title: Evolving diverse ensembles using genetic programming for classification with unbalanced data publication-title: IEEE Transactions on Evolutionary Computation – volume: 29 start-page: 3573 issue: 8 year: 2018 end-page: 3587 ident: CR24 article-title: Cost-sensitive learning of deep feature representations from imbalanced data publication-title: IEEE Transactions on Neural Networks and Learning Systems – ident: CR12 – volume: 18 start-page: 1 issue: 17 year: 2017 end-page: 5 ident: CR37 article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: Journal of Machine Learning Research – volume: 31 start-page: 2868 issue: 8 year: 2019 end-page: 2878 ident: CR9 article-title: On the dynamics of classification measures for imbalanced and streaming data publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 27 start-page: 1947 issue: 9 year: 2016 end-page: 1961 ident: CR44 article-title: Oversampling the minority class in the feature space publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 39 start-page: 6585 issue: 7 year: 2012 end-page: 6608 ident: CR39 article-title: Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. publication-title: Expert Systems with Applications – ident: CR35 – volume: 422 start-page: 242 year: 2018 end-page: 256 ident: CR38 article-title: Cost-sensitive and hybrid-attribute measure multi-decision tree over imbalanced data sets publication-title: Information Sciences – ident: CR25 – ident: CR42 – volume: 2 start-page: 408 issue: 3 year: 1972 end-page: 421 ident: CR50 article-title: Asymptotic properties of nearest neighbor rules using edited data publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 264 start-page: 182 year: 2014 end-page: 195 ident: CR32 article-title: Clustering-based ensembles for one-class classification publication-title: Information Sciences – volume: 11 start-page: 1885 issue: 8 year: 1999 end-page: 1892 ident: CR2 article-title: Combined 5 × 2 cv F test for comparing supervised classification learning algorithms publication-title: Neural Computation – volume: 31 start-page: 2818 issue: 8 year: 2019 end-page: 2831 ident: CR31 article-title: Radial-based oversampling for multiclass imbalanced data classification publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 343 start-page: 19 year: 2019 end-page: 33 ident: CR27 article-title: Radial-based oversampling for noisy imbalanced data classification publication-title: Neurocomputing – volume: 27 start-page: 727 issue: 4 year: 2017 end-page: 736 ident: CR28 article-title: CCR: A combined cleaning and resampling algorithm for imbalanced data classification publication-title: International Journal of Applied Mathematics and Computer Science – ident: CR36 – volume: 28 start-page: 539 issue: 3 year: 2018 end-page: 547 ident: CR19 article-title: A note on using the F-measure for evaluating record linkage algorithms publication-title: Statistics and Computing – volume: 14 start-page: 554 issue: Part C year: 2014 end-page: 562 ident: CR33 article-title: Cost-sensitive decision tree ensembles for effective imbalanced classification publication-title: Applied Soft Computing – volume: 21 start-page: 1263 issue: 9 year: 2009 end-page: 1284 ident: CR21 article-title: Learning from imbalanced data publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 49 start-page: 1 issue: 2 year: 2016 end-page: 50 ident: CR8 article-title: A survey of predictive modeling on imbalanced domains publication-title: ACM Computing Surveys (CSUR) – volume: 107 start-page: 605 issue: 3 year: 2018 end-page: 637 ident: CR5 article-title: Manifold-based synthetic oversampling with manifold conformance estimation publication-title: Machine Learning – ident: CR18 – ident: CR14 – volume: 26 start-page: 405 issue: 2 year: 2012 end-page: 425 ident: CR3 article-title: MWMOTE—Majority weighted minority oversampling technique for imbalanced data set learning publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 25 start-page: 13 issue: 1 year: 2012 end-page: 21 ident: CR16 article-title: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance publication-title: Knowledge-Based Systems – volume: 5 start-page: 221 issue: 4 year: 2016 end-page: 232 ident: CR30 article-title: Learning from imbalanced data: Open challenges and future directions publication-title: Progress in Artificial Intelligence – ident: CR10 – volume: 12 start-page: 2825 issue: Oct year: 2011 end-page: 2830 ident: CR43 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research – ident: CR40 – volume: 18 start-page: 63 issue: 1 year: 2006 end-page: 77 ident: CR52 article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 16 start-page: 3 year: 2014 end-page: 17 ident: CR51 article-title: A survey of multiple classifier systems as hybrid systems publication-title: Information Fusion – ident: CR23 – volume: 42 start-page: 463 issue: 4 year: 2011 end-page: 484 ident: CR15 article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – start-page: 333 year: 2016 end-page: 363 ident: CR46 article-title: Dealing with data difficulty factors while learning from imbalanced data publication-title: Challenges in computational statistics and data mining – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR11 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research – volume: 6 start-page: 769 year: 1976 end-page: 772 ident: CR47 article-title: Two modifications of CNN publication-title: IEEE Transactions on Systems, Man, and Cybernetics – ident: CR48 – volume: 29 start-page: 4065 issue: 9 year: 2018 end-page: 4076 ident: CR41 article-title: Classification of imbalanced data by oversampling in kernel space of support vector machines publication-title: IEEE Transactions on Neural Networks and Learning Systems – ident: CR17 – ident: CR13 – volume: 17 start-page: 255 issue: 2–3 year: 2011 end-page: 287 ident: CR1 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: Journal of Multiple-Valued Logic & Soft Computing – volume: 62 start-page: 841 issue: 3 year: 2020 end-page: 866 ident: CR6 article-title: Framework for extreme imbalance classification: SWIM—Sampling with the majority class publication-title: Knowledge and Information Systems – ident: CR34 – ident: CR20 – ident: 6012_CR4 doi: 10.1007/978-3-319-46128-1_16 – volume: 27 start-page: 1947 issue: 9 year: 2016 ident: 6012_CR44 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2461436 – volume: 27 start-page: 727 issue: 4 year: 2017 ident: 6012_CR28 publication-title: International Journal of Applied Mathematics and Computer Science doi: 10.1515/amcs-2017-0050 – volume: 12 start-page: 2825 issue: Oct year: 2011 ident: 6012_CR43 publication-title: Journal of Machine Learning Research – ident: 6012_CR35 – volume: 39 start-page: 6585 issue: 7 year: 2012 ident: 6012_CR39 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.12.043 – ident: 6012_CR40 doi: 10.1109/CIDM.2011.5949434 – ident: 6012_CR45 doi: 10.1109/ICDM.2018.00060 – volume: 16 start-page: 321 year: 2002 ident: 6012_CR11 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – ident: 6012_CR22 – ident: 6012_CR42 doi: 10.1007/978-3-642-28931-6_14 – volume: 28 start-page: 539 issue: 3 year: 2018 ident: 6012_CR19 publication-title: Statistics and Computing doi: 10.1007/s11222-017-9746-6 – ident: 6012_CR34 doi: 10.1007/3-540-62858-4_79 – ident: 6012_CR48 doi: 10.1109/ICDM.2012.115 – volume: 102 start-page: 107262 year: 2020 ident: 6012_CR26 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107262 – volume: 26 start-page: 405 issue: 2 year: 2012 ident: 6012_CR3 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.232 – volume: 5 start-page: 221 issue: 4 year: 2016 ident: 6012_CR30 publication-title: Progress in Artificial Intelligence doi: 10.1007/s13748-016-0094-0 – ident: 6012_CR36 doi: 10.1007/3-540-48229-6_9 – volume: 25 start-page: 13 issue: 1 year: 2012 ident: 6012_CR16 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2011.06.013 – volume: 18 start-page: 1 issue: 17 year: 2017 ident: 6012_CR37 publication-title: Journal of Machine Learning Research – ident: 6012_CR18 doi: 10.1007/11538059_91 – volume: 31 start-page: 2818 issue: 8 year: 2019 ident: 6012_CR31 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2913673 – volume: 204 start-page: 106223 year: 2020 ident: 6012_CR29 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106223 – volume: 62 start-page: 841 issue: 3 year: 2020 ident: 6012_CR6 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-019-01380-z – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 6012_CR21 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.239 – start-page: 333 volume-title: Challenges in computational statistics and data mining year: 2016 ident: 6012_CR46 doi: 10.1007/978-3-319-18781-5_17 – ident: 6012_CR17 doi: 10.1007/11538059_91 – volume: 343 start-page: 19 year: 2019 ident: 6012_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.089 – volume: 11 start-page: 1885 issue: 8 year: 1999 ident: 6012_CR2 publication-title: Neural Computation doi: 10.1162/089976699300016007 – volume: 29 start-page: 3573 issue: 8 year: 2018 ident: 6012_CR24 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2732482 – volume: 17 start-page: 368 issue: 3 year: 2012 ident: 6012_CR7 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2012.2199119 – volume: 42 start-page: 463 issue: 4 year: 2011 ident: 6012_CR15 publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2011.2161285 – ident: 6012_CR20 – volume: 14 start-page: 554 issue: Part C year: 2014 ident: 6012_CR33 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.08.014 – volume: 17 start-page: 255 issue: 2–3 year: 2011 ident: 6012_CR1 publication-title: Journal of Multiple-Valued Logic & Soft Computing – volume: 2 start-page: 408 issue: 3 year: 1972 ident: 6012_CR50 publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1972.4309137 – volume: 107 start-page: 605 issue: 3 year: 2018 ident: 6012_CR5 publication-title: Machine Learning doi: 10.1007/s10994-017-5670-4 – volume: 422 start-page: 242 year: 2018 ident: 6012_CR38 publication-title: Information Sciences doi: 10.1016/j.ins.2017.09.013 – volume: 49 start-page: 1 issue: 2 year: 2016 ident: 6012_CR8 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/2907070 – ident: 6012_CR12 doi: 10.1007/978-3-540-39804-2_12 – ident: 6012_CR13 doi: 10.1145/1401890.1401910 – volume: 6 start-page: 769 year: 1976 ident: 6012_CR47 publication-title: IEEE Transactions on Systems, Man, and Cybernetics – ident: 6012_CR10 doi: 10.1007/978-3-642-01307-2_43 – volume: 264 start-page: 182 year: 2014 ident: 6012_CR32 publication-title: Information Sciences doi: 10.1016/j.ins.2013.12.019 – volume: 29 start-page: 4065 issue: 9 year: 2018 ident: 6012_CR41 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2751612 – ident: 6012_CR14 doi: 10.1145/1143844.1143874 – ident: 6012_CR25 doi: 10.1109/IJCNN52387.2021.9533415 – volume: 16 start-page: 3 year: 2014 ident: 6012_CR51 publication-title: Information Fusion doi: 10.1016/j.inffus.2013.04.006 – ident: 6012_CR23 doi: 10.1109/ACII.2013.47 – ident: 6012_CR49 doi: 10.1109/IJCNN.2010.5596702 – volume: 18 start-page: 63 issue: 1 year: 2006 ident: 6012_CR52 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2006.17 – volume: 31 start-page: 2868 issue: 8 year: 2019 ident: 6012_CR9 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2899061 |
SSID | ssj0002686 |
Score | 2.4196477 |
Snippet | Real-world classification domains, such as medicine, health and safety, and finance, often exhibit imbalanced class priors and have asynchronous... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3059 |
SubjectTerms | Algorithms Artificial Intelligence Binary data Classification Cleaning Computer Science Control Machine Learning Mechatronics Natural Language Processing (NLP) Oversampling Recall Resampling Robotics Simulation and Modeling Special Issue: Foundations of Data Science Training |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu7BQnqJQkAc2MEriOHHY2oqCQDBUVIIpsh0HKvpAbbrw6_GlSQsIkLolytlKfGffOf7uO4BToSJXcY9TnjK7QQkiRiNfMmvLkScC3_A0z626fwhuev7tE38qksKmJdq9PJLMV-ovyW45ja2HSB27rFKxDlXuikhUoNq8fr67WqzAXpBXeLQTiFP04EWyzO-9fHdIyyjzx8Fo7m86NeiVbzqHmbxdzDJ1oT9-kDiu-ilbsFkEoKQ5t5htWDOjHaiVxR1IMdd3QXVbtN3uXpIushcMaMu6u4RYObuVxouBkfhLhchRQrpmKhGZjreDl_Gkn70OiY2GSX-oEDqpbQOEohKNsTqCk3J72INe5-qxfUOLggxUs4Bl1JdJxJXnJClLmVJOyqw-tTBWuUKGYShdnYowQocXKiWsuONJ5kpHKl8bodg-VEbjkTkAgjz1ifFt_COFr6QfKWESR4QyCKTS0quDW2ol1gVbORbNGMRLnmUcxNgOYpwPYizqcLZo8z7n6vhXulEqOy7m7TRGgjXcxAW8Duel7paP_-7tcDXxI9jwUP05LqYBlWwyM8c2usnUSWHMn8mY7Q0 priority: 102 providerName: Springer Nature |
Title | RB-CCR: Radial-Based Combined Cleaning and Resampling algorithm for imbalanced data classification |
URI | https://link.springer.com/article/10.1007/s10994-021-06012-8 https://www.proquest.com/docview/2601154865 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZ4XLjw3NWWl3zgtmttYieOwwU1UQsCbbWKqASnyHYcQCrl0fL_mTEOFUhwiRP5IWVmPPPZHs8QcqRMHpuUpyxtBSxQZC5YnmgBspxzJROXtv5u1b-RPBsn51fpVdhwmwW3yk4nekXdPFjcI_-Loa8QXsv05PGJYdYoPF0NKTSWyWoMlgblXA1P3zUxlz7TI0yklKElD5dmwtU5HxSXo98PKGmmPhqmBdr8dEDq7c5wk6wHwEj7bxzeIktuuk02umQMNMzNHWKqgpVldUwrjDYwYQWYp4ZCO1j64svEadwCoXra0MrNNHqS4-fkBv5yfntPAb3Su3uDro4WOqDrKLWIrdGZyPPvBxkPB5flGQsJFJgVUsxZops8NTxqWtEKY6JWAP2tcsAMpbMs07FtVZajgcqMUdA84lrEOtImsU4Z8ZOsTB-m7hehGFe-cQngFa0So5PcKNdEKtNSamM175G4o15tQ3RxTHIxqRdxkZHiNVC89hSvVY_8fu_z-BZb49vW-x1T6jDPZvVCKnrkT8eoRfXXo-1-P9oeWeMoG95vZZ-szJ9f3AGgj7k59CJ2SFb7w6IYYXl6fTGAshiM_ldQW8oSnmPefwWbw9mH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoALpTzEUtr6QE_FIms7iYOEKnYLWl4rFIHELdiO0yLtLtDdCvGn-I3MZBNWrQQ3boliW9H488xnex4AW9omLRuKkIeFxA1KlEieKCMRy4nQkfJhUcZWnfWi7qU6vgqvZuCpjoUht8paJ5aKOr91dEa-Q6mviF5H4Y-7e05Vo-h2tS6hMYHFiX98wC3baO_oJ87vNyEODy46XV5VFeBORnLMlcmT0IogL2QhrQ0KiT_ltMc_1CaOY9NyhY4T0tqxtRqbB8LIlgmMVc5rK3HcWZhTFNHagLn2Qe88fdH9IiprS-LSDTlxhypMpwrWK9PwCvI0QrPA9b-mcMpv_7uSLS3d4RIsVhSV7U8w9RFm_HAZPtTlH1ilDVbApm3e6aS7LKX8Bn3eRoOYM2yHm2166HtDhy7MDHOW-pEh33V67f9CuY5_DxjyZXYzsORc6bADOasyR2ye3JdKxKzC5bsIdw0aw9uhXwdGmexzr5AhGa2sUYnVPg90bKLIWGdEE1q19DJX5TOnshr9bJqJmSSeocSzUuKZbsL3lz53k2web7berCclq1b2KJvisAnb9URNP78-2sbbo32F-e7F2Wl2etQ7-QQLgnBSes1sQmP856__jNxnbL9UgGNw_d4Yfwbj6xJF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD6CTpp4gY2BVtZtfmBPYJHauThI07S2KzAYQhVIvAXbcQZSWhgtmvbX9ut2jpsQDQneeEsU23KOP5-LfS4Am8qkXROJiEeFRAMlTiVPQy0Ry6lQceiiwsdW_TiO98_C7-fR-QL8rWNhyK2y5omeUefXls7Idyj1FanXcbRTVG4RJ4Phl5tfnCpI0U1rXU5jDpFD9-c3mm_TzwcDXOtPQgy_nfb3eVVhgFsZyxkPdZ5GRgR5IQtpTFBInKBVDmerdJIkumsLlaTEwRNjFDYPhJZdHWgTWqeMxHEX4UWCf0aGnxru3UsBEfsqk7iJI05aRBWwU4Xt-YS8gnyOUEBw9b9QbDTdB5ezXuYNX8Fypayyr3N0vYYFN1mFlboQBKv4whswox7v90e7bESZDkreQ9GYM2yHZjc9lE7T8QvTk5yN3FSTFzu9lj-RqrPLMUPNmV2NDblZWuxAbqvMkl5PjkweO2tw9iykXYfW5Hri3gKjnPa5C1FX0io0OkyNcnmgEh3H2lgt2tCtqZfZKrM5FdgosyYnM1E8Q4pnnuKZasPWfZ-beV6PJ1t36kXJqj0-zRpEtmG7Xqjm8-OjbTw92kd4icjOjg6OD9_BkiCYePeZDrRmt3fuPSpBM_PBo43BxXPD-x_krRUV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RB-CCR%3A+Radial-Based+Combined+Cleaning+and+Resampling+algorithm+for+imbalanced+data+classification&rft.jtitle=Machine+learning&rft.au=Koziarski+Micha%C5%82&rft.au=Bellinger%2C+Colin&rft.au=Wo%C5%BAniak+Micha%C5%82&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=110&rft.issue=11-12&rft.spage=3059&rft.epage=3093&rft_id=info:doi/10.1007%2Fs10994-021-06012-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |